
Chapter 2

Graphs and Laplacians

2.1 Motivation

In this chapter, we are interested in exploring questions such as the following.

Question 2.1. If a group G acts on a graph Γ, what is the relationship
between the spectrum of Γ and the spectrum of the quotient Γ/G?

If G is a group acting on graphs Γ1 and Γ2, then a G-equivariant map
Γ1 → Γ2 is a map that respects the action of G on these graphs.

Question 2.2. If G is a group acting on graphs Γ1 and Γ2, and if there is
a G-equivariant map Γ1 → Γ2, how are the Laplacians of Γ1 and Γ2 related?

2.2 Basic results

Let’s start with some motivation for the definition of the Laplacian.
Recall that if Γ = (V,E) is a graph and F is a ring, then C0(Γ, F ) is

the set of all F -valued functions on the vertex set V of Γ, and C1(Γ, F ) is
the set of all F -valued functions on the edge set E of Γ. If the graph Γ is a
large square lattice grid, and if f ∈ C0(Γ, F ), then the usual definition of the
Laplacian,

∂2f

∂x2
+

∂2f

∂y2
,

corresponds to the discrete Laplacian Q on f

(Qf)(v) =
∑

w:d(w,v)=1

[f(w) − f(v)] (2.1)
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42 2 GRAPHS AND LAPLACIANS

where d(w, v) is the graph distance function on V × V . Indeed,

∂2f

∂x2
= lim

ε→0

[f(x + ε, y) − f(x, y)] + [f(x − ε, y) − f(x, y)]

ε2

and
∂2f

∂y2
= lim

ε→0

[f(x, y + ε) − f(x, y)] + [f(x, y − ε) − f(x, y)]

ε2

so taking ε = 1 gives the desired discrete analog of fxx + fyy on the grid
graph. This operator only depends on “local” properties. That is, (Qf)(v)
depends only on the neighbors of v in the graph Γ. It may come as a surprise
to find out that Q governs a number of “global properties” of Γ as well,
such as connectivity. We shall see these and other fascinating properties of
Q below.

Recall from §1.1 that, given an orientation on Γ, there is a linear transfor-
mation

B : C1(Γ, F ) → C0(Γ, F )

given by
(Bf)(v) =

∑

h(e)=v

f(e) −
∑

t(e)=v

f(e) (2.2)

and a dual linear transformation

B∗ : C0(Γ, F ) → C1(Γ, F ).

Recall also (see Lemma 1.1.20) that there are natural bases for the spaces
C0(Γ, F ) and C1(Γ, F ). If we choose orderings of the vertices and edges of
Γ, then the linear transformation B is given with respect to these bases by
the incidence matrix, which we also denote by B. The dual B∗ of this linear
transformation is given by the transpose Bt of the incidence matrix.

The vertex Laplacian (or simply “the Laplacian”) is the linear transfor-
mation Q = QΓ : C0(Γ, F ) → C0(Γ, F ) defined by

Q = BB∗, (2.3)

where B is the linear transformation of Equation (2.2) above, and B∗ is its
dual.

The matrix representation of the Laplacian will also be denoted Q. We
leave it as an exercise to show that the linear transformation Q = BB∗ is
independent of the orientation chosen on Γ.

Exercise 2.1. Suppose that Γ is given an orientation, and denote by B the
n×m incidence matrix of Γ with respect to this orientation (and some order-
ings of the vertex and edge sets of Γ). Denote by Q the matrix representation

http://dx.doi.org/10.1007/978-3-319-68383-6_1
http://dx.doi.org/10.1007/978-3-319-68383-6_1
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of the Laplacian. Show that the matrix BBt is independent of the orientation
chosen and that BBt = Q.

Recall that if the graph Γ has vertex set

V = VΓ = {0, 1, 2, . . . , n − 1},

then the (undirected, unweighted) adjacency matrix of Γ is the n×n matrix
A = (aij), where aij = 1 if vertex i shares an edge with vertex j, and
aij = 0 otherwise. There is a simple connection between the Laplacian and
the adjacency matrix.

Lemma 2.2.1. For an oriented graph Γ with unsigned adjacency matrix A,
there is a natural basis of C0(Γ, F ) for which the matrix representation of the
Laplacian is given by

Q = Δ − A,

where Δ denotes the diagonal matrix of the degrees of the vertices of V :

Δ =

⎛

⎜⎜⎜⎜⎜⎝

d0 0 0 . . . 0
0 d1 0 . . . 0
0 0 d2 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn−1

⎞

⎟⎟⎟⎟⎟⎠
,

where di = degΓ(i), for i ∈ V .

Proof. Let Q = (Qij). Since Q = BBt, where B = (bij) is the incidence
matrix, Qii is the inner product of the i-th row of the incidence matrix
with itself. This simply counts the number of edges incident to vertex i, so
Qii = degΓ(i). If i �= j then Qij is the inner product of the i-th row of
the incidence matrix with the j-th row. This is nonzero if i and j are both
incident to the same edge, and zero if they are not. Indeed, if i and j are
both incident to edge k then either

bik = 1, bjk = −1, b�,k = 0 for all � �= i, j,

or
bik = −1, bjk = 1, b�,k = 0 for all � �= i, j.

In either case, the k-th entry of the i-th row times the k-th entry of the j-th
row equals −1. Summing over all edges k gives Qij = −aij . �
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Example 2.2.2. Consider the graph in Figure 2.1.

Figure 2.1: A graph with 5 vertices.

This graph has Laplacian matrix

Q = BBt =

⎛

⎜⎜⎜⎜⎝

2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 3 −1 0

0 0 −1 2 −1
0 0 0 −1 1

⎞

⎟⎟⎟⎟⎠
.

Example 2.2.3. Consider the 3 × 3 grid graph in Figure 2.2.
Sage can be used to calculate the Laplacian matrix of this graph.

Sage

sage: Gamma = graphs.GridGraph([3,3])
## this is the 3x3 grid graph with 9 vertices

sage: B = incidence_matrix(Gamma, 12*[-1])
sage: B
[-1 -1 0 0 0 0 0 0 0 0 0 0]
[ 0 1 -1 -1 0 0 0 0 0 0 0 0]
[ 0 0 0 1 -1 0 0 0 0 0 0 0]
[ 1 0 0 0 0 -1 -1 0 0 0 0 0]
[ 0 0 1 0 0 0 1 -1 -1 0 0 0]
[ 0 0 0 0 1 0 0 0 1 -1 0 0]
[ 0 0 0 0 0 1 0 0 0 0 -1 0]
[ 0 0 0 0 0 0 0 1 0 0 1 -1]
[ 0 0 0 0 0 0 0 0 0 1 0 1]

Figure 2.2: The 3 × 3 grid graph.
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sage: B*transpose(B)
[ 2 -1 0 -1 0 0 0 0 0]
[-1 3 -1 0 -1 0 0 0 0]
[ 0 -1 2 0 0 -1 0 0 0]
[-1 0 0 3 -1 0 -1 0 0]
[ 0 -1 0 -1 4 -1 0 -1 0]
[ 0 0 -1 0 -1 3 0 0 -1]
[ 0 0 0 -1 0 0 2 -1 0]
[ 0 0 0 0 -1 0 -1 3 -1]
[ 0 0 0 0 0 -1 0 -1 2]
sage: Gamma.laplacian_matrix()
[ 2 -1 0 -1 0 0 0 0 0]
[-1 3 -1 0 -1 0 0 0 0]
[ 0 -1 2 0 0 -1 0 0 0]
[-1 0 0 3 -1 0 -1 0 0]
[ 0 -1 0 -1 4 -1 0 -1 0]
[ 0 0 -1 0 -1 3 0 0 -1]
[ 0 0 0 -1 0 0 2 -1 0]
[ 0 0 0 0 -1 0 -1 3 -1]
[ 0 0 0 0 0 -1 0 -1 2]

The “4” in the center of the Laplacian matrix illustrates the fact that there
are four edges emanating from the central vertex of the 3 × 3 grid graph in
Figure 2.2.

Lemma 2.2.4. For any vector x = (x0, . . . , xn−1), we have

xtQx =
∑

(i,j)∈E,j>i

(xi − xj)2.

In other words, the quantity xtQx measures how far away the vector x is
from being constant.

Proof. Indeed,

xtQx = xtBBtx = (Btx) · (Btx) =
∑

(i,j)∈E, j>i

(xi − xj)2.

�

Example 2.2.5. Consider the tetrahedral graph, Γ. Using Sage, it is easy
to verify that the identity in Lemma 2.2.4 holds in this example.

Sage

sage: Gamma = graphs.TetrahedralGraph()
sage: Q = Gamma.laplacian_matrix(); Q
[ 3 -1 -1 -1]
[-1 3 -1 -1]
[-1 -1 3 -1]
[-1 -1 -1 3]
sage: x0,x1,x2,x3 = var("x0,x1,x2,x3")
sage: x = vector(SR, [x0,x1,x2,x3])
sage: expand(x.dot_product(Q*x))
3*x0^2 - 2*x0*x1 + 3*x1^2 - 2*x0*x2 - 2*x1*x2 + 3*x2^2 - 2*x0*x3

- 2*x1*x3 - 2*x2*x3 + 3*x3^2
sage: expand(x.dot_product(Q*x))-expand((x1-x0)^2+(x2-x1)^2+(x3-x2)^2

+(x2-x0)^2+(x3-x0)^2+(x3-x1)^2)
0
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For a given orientation of Γ, the edge Laplacian is the linear transformation
Qe = Qe,Γ : C1(Γ, F ) → C1(Γ, F ) defined by

Qe = B∗B, (2.4)

where B is the linear transformation of Equation (2.2) and B∗ is its dual.
Unlike the vertex Laplacian, Qe depends on the orientation.

The following proposition describes the kernel of the Laplacian matrix of
a connected graph.

Proposition 2.2.6. If Γ is a connected graph, the kernel of the Laplacian
matrix Q consists of all multiples of the all 1’s vector 1 = (1, 1, . . . , 1), i.e., 1
is an eigenvector of Q corresponding to the eigenvalue 0, and the eigenspace
of 0 is 1-dimensional.

Proof. Each row of Bt contains 1 once and −1 once and all other entries of
the row are 0. Thus Bt1 = 0, the zero vector. Furthermore, if x is a vector
in the kernel of BBt, then xtBBtx = 0, so Btx = 0. But if x is in the kernel
of Bt, then x takes the same value on the head and tail vertices of each edge.
Since Γ is assumed to be connected, x must take the same value on all vertices
of Γ. �

Corollary 2.2.7. If Γ is a connected graph, the rank of the Laplacian matrix
Q is n − 1, where n is the number of vertices of Γ.

Definition 2.2.8. The spectrum of a graph Γ is the multi-set of eigenval-
ues of the (unsigned) adjacency matrix A = AΓ. We sometimes denote the
spectrum of Γ by σ(Γ). The Laplacian spectrum of a graph Γ is the set of
eigenvalues of the Laplacian matrix Q = QΓ. The characteristic polynomial
pΓ of a graph Γ is the characteristic polynomial of A.

Let Γ be a simple connected graph. If Γ has n vertices, let

λ0 = 0 ≤ λ1 ≤ · · · ≤ λn−1 (2.5)

denote the eigenvalues of Q. By Lemma 2.2.4, Q is positive semidefinite.
This implies λi(Q) ≥ 0 for all i. Consequently, λ0 = 0, because the vector
v0 = (1, 1, . . . , 1) satisfies Qv0 = 0.

Lemma 2.2.9. If Γ is a k-regular graph, and the Laplacian Q of Γ has
eigenvalues λ0, λ1, . . . , λn−1, then the adjacency matrix A of Γ has eigenval-
ues k − λ0, k − λ1, . . . , k − λn−1.

Proof. This is an immediate corollary of Lemma 2.2.1. �

Recall, the diameter of the graph Γ is the maximum distance between any
two vertices of Γ.
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Lemma 2.2.10. Let Γ be a simple connected graph with n vertices and diam-
eter d. Then

λ1 ≥ (dn)−1,

where λ1 is as in Equation (2.5).

Proof. Since Q is symmetric, Rn has an orthonormal basis of eigenvectors of
Q.

It is a consequence of well-known facts from linear algebra1 that we have

λ1 = min
v, v·1=0

v · Qv
v · v .

Let f = (f0, f1, . . . , fn−1) denote an eigenvector of Q satisfying

λ1 =

∑
(i,j)∈E(fj − fi)2∑

i∈V f2
i

.

Let j0 denote a vertex such that |fj0 | = maxi∈V |fi|. We know that f is
orthogonal to the all 1’s vector (which is an eigenvector for λ0 = 0), so there
exists j1 ∈ V such that fj0fj1 < 0.

Let P denote a shortest path from j0 to j1. We denote the adjacent vertices
in P by i0 = j0, i1, . . . , ir−1, ir = j1. The number of edges in P is at most d,
so r ≤ d. Note

fir
− fi0 = fir

− fir−1 + fir−1 − fir−2 + · · · + fi1 − fi0

= (fir
− fir−1 , fir−1 − fir−2 , . . . , fi1 − fi0) · (1, 1, . . . , 1)

≤ ((fir
− fir−1)

2 + (fir−1 − fir−2)
2 + · · · + (fi1 − fi0)

2)1/2 ·
√

d,

so

(fir
− fir−1)

2 + (fir−1 − fir−2)
2 + · · · + (fi1 − fi0)

2 ≥ (fir
− fi0)

2

d
.

We therefore have

1See Biggs, §8c, [Bi93] for further details.
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λ1 =
∑

(i,j)∈E(fj−fi)
2

∑
i∈V f2

i

≥
∑

(i,j)∈P (fj−fi)
2

n|fj0 |2

≥ (fj1−fj0 )2

dn|fj0 |2

≥ 1
dn

,

(2.6)

as desired. �

Remark 2.2.11. (1) A similar result, for the “normalized Laplacian”, can
be found in Chung [Ch92], Lemma 1.9.

(2) The above argument, with a more detailed analysis, can be pushed to
prove a stronger result (due to B. McKay):

λ1 ≥ 4
dn

.

See Mohar [Mo91b] for details. See also Spielman [Sp10].

Example 2.2.12. A barbell graph (see Figure 2.3) illustrates how good
McKay’s lower bound really is.

Figure 2.3: A barbell graph created using Sage.
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Sage

sage: Gamma = graphs.BarbellGraph(3,2)
sage: d = Gamma.diameter()
sage: n = len(Gamma.vertices())
sage: Q = Gamma.laplacian_matrix()
sage: spec = Q.eigenvalues()
sage: spec.sort()
sage: spec
[0, 0.1863934973516692?, 1, 2.470683419871161?, 3, 3, 4, 4.342923082777170?]
sage: 4.0/(d*n)
0.100000000000000

Let Γ be a graph, and let ρ be an element of the automorphism group
Aut(Γ) of Γ. If f is an eigenfunction of Q (regarded as a vector indexed by
the vertices V of Γ), we define ρf to be the eigenfunction whose entries are
permuted according to the action of ρ−1 on V , i.e., (ρf)(v) = f(ρ−1(v)) for
any vertex v of Γ.

Definition 2.2.13. A representation of G is a homomorphism π : G →
GL(n,C). A vector subspace W ⊂ C

n is called G-invariant if π(g)w ∈ W
for all g ∈ G and all w ∈ W . The restriction of π to a G-invariant subspace
is known as a subrepresentation. A representation is said to be irreducible
if it has only trivial subrepresentations. A character χ of G is a trace of a
representation π, denoted

χ(g) = tr(π(g)), g ∈ G,

i.e., χ(g) is the trace of the matrix π(g) ∈ GL(n,C).

Lemma 2.2.14. The eigenspaces of the Laplacian of a graph Γ are repre-
sentations of the automorphism group Aut(Γ). In other words, if f is an
eigenfunction of Q = QΓ corresponding to an eigenvalue λ, then ρf is also
an eigenfunction of Q with eigenvalue λ.

Proof. We have

Q(ρf)(v) =
∑

(v,w)∈E(ρf(v) − ρf(w))

=
∑

(v,w)∈E(f(ρ−1(v)) − f(ρ−1(w)))

=
∑

(ρ−1v,w)∈E(f(ρ−1(v)) − f(w))

= Qf(ρ−1(v))

= λf(ρ−1(v))

= λ(ρf)(v).

�
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Lemma 2.2.15. Every row sum and column sum of Q is zero.

Proof. Since Q is symmetric, each column sum agrees with the corresponding
row sum. Indeed, in the row sum corresponding to vertex v, the degree of v
is summed with a “−1” for each neighbor of v. These cancel, giving us a sum
of 0, as desired. �

Example 2.2.16. The star graph Starn is a graph on n+1 vertices v0, . . . ,
vn with edges (v0, vi), for i = 1, . . . , n. For example, Star5 is depicted in
Figure 2.4.

Figure 2.4: A star graph created using Sage.

Exercise 2.2. (a) Show that the eigenvalues of the adjacency matrix of
Starn are −√

n, 0 (with multiplicity n − 1),
√

n.
(b) Show that the eigenvalues of the Laplacian matrix of Starn are 0, 1

(with multiplicity n − 1), n + 1.

Example 2.2.17. Consider the Paley graph on 9 vertices, Γ, depicted in
Figure 1.12.

This graph has incidence matrix

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 1 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 −1 −1 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 −1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

http://dx.doi.org/10.1007/978-3-319-68383-6_1
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and Laplacian matrix

Q = BBt =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 0 −1 0 0 0 −1
−1 4 −1 0 0 −1 −1 0 0
−1 −1 4 −1 0 0 0 −1 0

0 0 −1 4 −1 −1 0 −1 0
−1 0 0 −1 4 −1 0 0 −1

0 −1 0 −1 −1 4 −1 0 0
0 −1 0 0 0 −1 4 −1 −1
0 0 −1 −1 0 0 −1 4 −1

−1 0 0 0 −1 0 −1 −1 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of Q are

0, 3, 3, 3, 3, 6, 6, 6, 6.

This graph is just one case of a very interesting family of graphs named
after Raymond Paley. More information on them is given, for example, in
§5.17 below. We shall see more of this remarkable graph and its cousins,
later.

Example 2.2.18. Let Cycn denote the cycle graph with n vertices. The
characteristic polynomial of Γ = Cycn is

pΓ(x) = 2Tn(x/2) − 2,

where Tn(x) is the n-th Chebyshev polynomial of the first kind (see
Stevanovic [St14]).

For an (undirected) graph Γ, denote the eigenvalues of the Laplacian by

λ0(Q) ≤ λ1(Q) ≤ · · · ≤ λn−1(Q).

Recall the incidence matrix B and its transpose Bt can be regarded as
homomorphisms

B : C1(Γ,Z) → C0(Γ,Z) and Bt : C0(Γ,Z) → C1(Γ,Z).

Therefore, we can regard the Laplacian Q = BBt as a homomorphism
C0(Γ,Z) → C0(Γ,Z).

Lemma 2.2.19. The adjacency matrix of Γ has an eigenvector of all 1’s if
and only if Γ is regular.

Proof. By definition, the sum of the entries in the i-th row of A is equal to the
number of vertices which share an edge with vertex i. This is, of course, the

http://dx.doi.org/10.1007/978-3-319-68383-6_5
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degree of i. Let 1 = 1n ∈ Z
n denote the vector of all 1’s. If deg(v) = degΓ(v)

denotes the degree of a vertex v then we have shown

A1 =

⎛

⎜⎜⎜⎝

deg(0)
deg(1)

...
deg(n − 1)

⎞

⎟⎟⎟⎠ .

The vector on the right-hand side of the above equation is a scalar vector
(i.e., all the components are the same) if and only if Γ is regular. �

The index of Γ is the largest eigenvalue of Γ. The index has an eigenvector
which consists of nonnegative components.

Lemma 2.2.20. Suppose Γ has connected components Γ1, . . . , Γr.

(a) Possibly after reordering the vertices of Γ, Q is a block diagonal matrix,
where each block is the respective Laplacian matrix for a correspond-
ing component. In other words, Q is permutation conjugate to a block
diagonal matrix.

(b) If n = |V |, define the vector vj ∈ R
n to be the vector whose component

associated to a vertex in Γj is = 1 and all other components = 0. Then
vj is an eigenvector of Q having eigenvalue 0.

Proof. This proof is left as an exercise in every other textbook on graph
theory, so we should not be any different. Exercise! �

Lemma 2.2.21. The graph Γ is connected if and only if the index of Γ occurs
with multiplicity 1 and it has an eigenvector which consists of strictly positive
components.

Proof. This follows from the Perron–Frobenius Theorem: If an n× n matrix
has nonnegative entries then it has a nonnegative real eigenvalue λ which has
maximum absolute value among all eigenvalues. This eigenvalue λ has a non-
negative real eigenvector. If, in addition, the matrix has no block triangular
decomposition (i.e., it does not contain a k× (n−k) block of 0s disjoint from
the diagonal), then λ has multiplicity 1 and the corresponding eigenvector is
positive. �

Exercise 2.3. Show that the multiplicity of λ = 0 as an eigenvalue of the
Laplacian Q is the number of connected components in the graph.

Remark 2.2.22. Let Q∗ denote a reduced Laplacian matrix (obtained by
removing any row and the corresponding column of the Laplacian matrix
Q) of a connected graph Γ. Then the critical group of Γ is isomorphic to
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Z
n−1/Col(Q∗), where Col(Q∗) denotes the Z-span of the columns of Q∗ and

n is the number of vertices of Γ. For more details, see Proposition 4.6.2 in
Chapter 4 on chip-firing.

For further reading on the topics of this section, see also Biyikogu, Leydold,
and Stadler [BLS07] and Mohar [Mo91a].

2.3 The Moore–Penrose pseudoinverse

Throughout this section, we assume that the underlying graph Γ is connected.
The Moore–Penrose pseudoinverse of the Laplacian matrix Q is a type

of generalized inverse of Q. There are other generalized inverses. General-
ized inverses are sometimes classified by the additional properties they have,
beyond that of the definition below.

After some preliminaries, we will give a construction of the Moore–Penrose
pseudoinverse of the Laplacian matrix. An alternative construction will also
be given (see Lemma 2.3.10).

Definition 2.3.1. If M and L are matrices such that MLM = M , then L
is said to be a generalized inverse of M .

Let J be the n×n matrix, all of whose entries are 1. Let 1 be the n-vector,
all of whose entries are 1.

Remark 2.3.2. Note that

• QJ = JQ = 0 (the all 0’s matrix).

• J2 = nJ .

• If x is any n-vector and deg(x) =
∑n

i=1 xi, then Jx = deg(x)1.

• In particular, J1 = n1.

• If s has degree 0, then Js = 0 (the all 0’s vector) since deg(s) = 0.

Lemma 2.3.3. Q + 1
nJ is nonsingular.

We will prove this lemma at the end of §2.3, after giving an alternative
construction of the Moore–Penrose pseudoinverse.

Remark 2.3.4. Note that (Q + 1
nJ)J = J = J(Q + 1

nJ).

Definition 2.3.5. The Moore–Penrose pseudoinverse of Q is defined to be

Q+ =
(

Q +
1
n

J

)−1

− 1
n

J.

http://dx.doi.org/10.1007/978-3-319-68383-6_4
http://dx.doi.org/10.1007/978-3-319-68383-6_4
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Example 2.3.6. The Paley graph on 9 vertices Γ has Laplacian matrix

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 0 −1 0 0 0 −1
−1 4 −1 0 0 −1 −1 0 0
−1 −1 4 −1 0 0 0 −1 0

0 0 −1 4 −1 −1 0 −1 0
−1 0 0 −1 4 −1 0 0 −1

0 −1 0 −1 −1 4 −1 0 0
0 −1 0 0 0 −1 4 −1 −1
0 0 −1 −1 0 0 −1 4 −1

−1 0 0 0 −1 0 −1 −1 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whose Moore–Penrose pseudoinverse is

Q+ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
9 0 0 − 1

18 0 − 1
18 − 1

18 − 1
18 0

0 2
9 0 − 1

18 − 1
18 0 0 − 1

18 − 1
18

0 0 2
9 0 − 1

18 − 1
18 − 1

18 0 − 1
18

− 1
18 − 1

18 0 2
9 0 0 − 1

18 0 − 1
18

0 − 1
18 − 1

18 0 2
9 0 − 1

18 − 1
18 0

− 1
18 0 − 1

18 0 0 2
9 0 − 1

18 − 1
18

− 1
18 0 − 1

18 − 1
18 − 1

18 0 2
9 0 0

− 1
18 − 1

18 0 0 − 1
18 − 1

18 0 2
9 0

0 − 1
18 − 1

18 − 1
18 0 − 1

18 0 0 2
9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proposition 2.3.7. The Moore–Penrose pseudoinverse Q+ has the follow-
ing properties:

i. Q+ is symmetric.

ii. Q++ = Q.

iii.
(
Q + 1

nJ
)−1 = Q+ + 1

nJ .

iv. JQ+ = Q+J = 0 (the all 0’s matrix).

v. QQ+ = Q+Q = I − 1
nJ .

vi. QQ+Q = Q and Q+QQ+ = Q+.

vii. Q+ = B+(B+)t, where B+ = Q+B and B is the incidence matrix.

Proof. The first three properties are immediate, from the definition. From
property (iii), we have

J

(
Q +

1
n

J

)(
Q+ +

1
n

J

)
= JI

which expands to



2.3 THE MOORE–PENROSE PSEUDOINVERSE 55

JQQ+ +
1
n

JQJ +
1
n

J2Q+ +
1
n2

J3 = J.

Noting that JQ = 0 and J2 = nJ , we obtain

0 + 0 + JQ+ + J = J,

so that JQ+ = 0. Taking transposes, and noting that both J and Q+ are
symmetric, gives Q+J = 0 also.

Using property (iii) again, we have
(

Q +
1
n

J

)(
Q+ +

1
n

J

)
= I.

Expanding gives

QQ+ +
1
n

QJ +
1
n

JQ+ +
1
n2

J2 = I.

Simplifying and using property (iv) gives

QQ+ + 0 + 0 +
1
n

J = I

so that QQ+ = I − 1
nJ . Taking transposes and noting that Q and Q+ are

symmetric gives Q+Q = I − 1
nJ .

Using property (v), we have

QQ+Q = Q

(
I − 1

n
J

)
= Q − 1

n
QJ = Q.

The proof that Q+QQ+ = Q+ is similar.
Finally, we note that B+(B+)t = Q+BBt(Q+)t = Q+QQ+ (since Q+ is

symmetric) which equals Q+ by property (vi). �

Corollary 2.3.8. If s is a vector whose entries sum to 0, then

QQ+s = Q+Qs = s and stQQ+ = stQ+Q = st.

Proof. By part (v) of Proposition 2.3.7, QQ+s = Q+Qs = (I − 1
nJ)s. When

the entries of s sum to 0, Js = 0, so QQ+s = Q+Qs = Is = s. The proof of
the second statement is similar, and it also follows from the fact that Q and
Q+ are symmetric. �

Example 2.3.9. The cycle graph on 3 vertices Γ = C3 has Laplacian matrix

Q =

⎛

⎝
2 −1 −1

−1 2 −1
−1 −1 2

⎞

⎠
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whose Moore–Penrose pseudoinverse is

Q+ =

⎛

⎜⎝

2
9 − 1

9 − 1
9

− 1
9

2
9 − 1

9

− 1
9 − 1

9
2
9

⎞

⎟⎠ .

The signed incidence matrix attached to the edges

E = {e0 = (1, 0), e1 = (2, 0), e2 = (2, 1)}

having orientation [1, 1, 1] is

B =

⎛

⎝
1 1 0

−1 0 1
0 −1 −1

⎞

⎠ ,

so that

B+ = Q+B =

⎛

⎜⎝

1
3

1
3 0

− 1
3 0 1

3

0 − 1
3 − 1

3

⎞

⎟⎠ .

Exercise 2.4. Show that the matrices of Example 2.3.9 satisfy properties
(i)-(vii) of Proposition 2.3.7. Also, show that B+ is not a generalized inverse
of B, i.e., show that BB+B �= B.

We will now give another construction of the Moore–Penrose pseudoin-
verse.

Since the Laplacian matrix Q is a real n × n symmetric matrix, we can
choose a basis of Rn consisting of n orthonormal eigenvectors w1, w2, . . . , wn

corresponding to eigenvalues λ1, λ2, . . . , λn of Q. For Γ a connected graph,
the rank of Q is n − 1, so we may assume that λ1 = 0 and w1 = 1√

n
1,

i.e., every entry of w1 is 1√
n
. The nonzero eigenvalues are all positive, since

Q = BBt. Let U be the orthogonal matrix whose columns are the eigenvectors
w1, w2, . . . , wn and let Σ be the diagonal matrix whose diagonal entries are
λ1 = 0, λ2, λ3, . . . , λn. Then UU t = U tU = I and

Q = UΣU t. (2.7)

We define the pseudoinverse of the diagonal matrix Σ to be the diagonal
matrix Σ+ whose i-th diagonal entry is the reciprocal of the i-th diagonal
entry of Σ, if this entry is nonzero, and zero otherwise, i.e., the diagonal
entries of Σ+ are 0, 1

λ2
, 1

λ3
, . . . , 1

λn
.
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We define Q+ to be the matrix given by

Q+ = UΣ+U t. (2.8)

The matrix Q+ is called a pseudoinverse of Q. We will show that Q+ is equal
to the Moore–Penrose pseudoinverse defined above, and is thus independent
of the choice of matrix U. Note that from Equation (2.8), it is clear that Q+

is symmetric and has the same rank n − 1 as Q. Furthermore, QQ+ = Q+Q
and the matrices Q and Q+ have the same eigenvectors. Thus the all 1’s
vector 1 is a basis for the kernel of Q+ and Q+J = JQ+ = 0, the all 0’s
matrix.

Lemma 2.3.10. The matrix Q+ given by Equation (2.8) is the Moore–
Penrose pseudoinverse, i.e.,

UΣ+U t =
(

Q +
1
n

J

)−1

− 1
n

J. (2.9)

Proof. By Equation (2.7), proving Equation (2.9) is equivalent to proving

(
UΣ+U t +

1
n

J

)(
UΣU t +

1
n

J

)
= I.

The left side of the previous equation expands to give

UΣ+U tUΣU t +
1
n

UΣ+U tJ +
1
n

JUΣU t +
1
n2

J2

= UΣ+ΣU t +
1
n

UU tQ+J +
1
n

JQUU t +
1
n

J

= UΣ+ΣU t +
1
n

J

since Q+J = JQ = 0. Let I(1,1) denote the matrix, all of whose entries are 0,
except for the (1, 1)-entry, which is 1. Note that Σ+Σ = I − I(1,1). Then

UΣ+ΣU t +
1
n

J = U(I − I(1,1))U t +
1
n

J

= I − UI(1,1)U
t +

1
n

J.

It is not hard to check that UI(1,1)U
t = 1

nJ , from which the required identity
follows. �
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Exercise 2.5. Prove that the formula

(
Q − 1

n
J

)−1

+
1
n

J

also gives the Moore–Penrose pseudoinverse of Q.

We will now prove Lemma 2.3.3.

Proof. Let Q = UΣU t be a decomposition of Q as above. The diagonal
elements of Σ are 0, λ2, λ3, . . . , λn and the first column of U is the eigenvector
1√
n
1 corresponding to λ1 = 0. We can decompose J as J = UΣJU t where

ΣJ = I(1,1) is the diagonal matrix with 1 in the (1, 1)-entry and all other
entries zero. Then Q + 1

nJ = UΣ′U t, where Σ′ is the diagonal matrix with
diagonal entries 1, λ2, λ3, . . . , λn. Thus, Q + 1

nJ is nonsingular. �

2.4 Circulant graphs

Recall that a circulant matrix is a square matrix where each row vector is
a cyclic shift one element to the right relative to the preceding row vector,
such as

C =

⎛

⎜⎜⎜⎝

c0 cn−1 . . . c1

c1 c0 . . . c2

...
...

...
cn−1 cn−2 . . . c0

⎞

⎟⎟⎟⎠ .

Circulant matrices have the property that vk = (ζjk/
√

n | j = 0, . . . , n − 1)
is an eigenvector with eigenvalue

λk(C) =
n−1∑

j=0

ζ−jkcj =
n∑

j=1

ζjkcn−j ,

for each k = 0, . . . , n − 1.
A graph Γ is called circulant if its vertices can be reindexed in such a way

that its adjacency matrix is a circulant matrix. For example, a cycle graph
is a circulant graph.

Example 2.4.1. Consider the Möbius ladder graph on 8 vertices, Γ, depicted
in Figure 2.5.
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Figure 2.5: A Möbius ladder graph created using Sage.

This graph has adjacency matrix

AΓ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

incidence matrix

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 −1 0 0 0 0 0 0 0
0 0 0 0 1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 1 0 0 0 0 0 0 1 −1 0 0
0 0 0 1 0 0 0 0 0 1 −1 0
0 0 0 0 0 1 0 0 0 0 1 −1
1 0 0 0 0 0 0 1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and Laplacian matrix
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Q = BBt =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0 0 −1 0 0 −1
−1 3 −1 0 0 −1 0 0

0 −1 3 −1 0 0 −1 0
0 0 −1 3 −1 0 0 −1

−1 0 0 −1 3 −1 0 0
0 −1 0 0 −1 3 −1 0
0 0 −1 0 0 −1 3 −1

−1 0 0 −1 0 0 −1 3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is a circulant graph.

2.4.1 Cycle graphs

For the cycle graph on n vertices, Γn, the eigenvalues are 2 cos(2πk/n), for
0 ≤ k ≤ n−1. Since these are not distinct, some can occur with multiplicities.
n even: The only eigenvalues of Γn which occur with multiplicity 1 are 2
and −2. The eigenvalues 2 cos(2πk/n), for 1 ≤ k ≤ n−2

2 , all occur with
multiplicity 2.
n odd: The only eigenvalue of Γn which occurs with multiplicity 1 is 2. The
eigenvalues 2 cos(2πk/n), for 1 ≤ k ≤ n−1

2 , all occur with multiplicity 2.
For example, the graph Γ8 is depicted in Figure 2.6

Figure 2.6: A cycle graph created using Sage.

The adjacency matrix is circulant:



2.4 CIRCULANT GRAPHS 61

AΓ8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues (counted according to their multiplicity are 2,
√

2,
√

2, 0,
0, −

√
2, −

√
2, −2.

Let Γ1 be the cycle graph with n vertices, let Γ2 be the cycle digraph
(directed graph) with n vertices (with edges oriented counterclockwise around
the cycle), let Gi denote the automorphism group of Γi, i = 1, 2.

Lemma 2.4.2. The automorphism group G1 of the cycle graph Γ1 is the
dihedral group of order 2n, Dn.

Proof. We may assume that the vertices are labeled

V = {0, 1, . . . , n − 1},

and that the edges are

E = {(0, 1), (1, 2), . . . , (n − 1, 0)}.

Clearly, the “rotation” (written in disjoint cycle notation) belongs to the
automorphism group, i.e., (0, 1, . . . , n − 1) ∈ G1. Clearly, the “reflection”
(written in disjoint cycle notation) belongs to the automorphism group, i.e.,
(0, n − 1)(1, n − 2) · · · ∈ G1. The rotation and reflection generate Dn. The
remainder of the proof is left as Exercise 2.6. �
Exercise 2.6. Complete the proof of Lemma 2.4.2 above by showing that,
for n > 2, there are no other automorphisms of the cycle graph Γ1 beyond
the elements in the dihedral group, Dn. (Hint: Let g ∈ G1. Suppose g : 0 	→ i.
Then it must send 1 and n − 1 to a neighbor of i.)

Exercise 2.7. Show that the automorphism group G2 of the cycle digraph
(directed graph) Γ2 is the cyclic group of order n, Cn.

2.4.2 Relationship to convolution operators

We identify the vertices V of a circulant graph Γ having n vertices with the
abelian group of integers mod n, Z/nZ. If C denotes the field of complex
numbers, let
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C0(Γ,C) = {f | f : Z/nZ → C}.

This is a complex vector space which we can identify with the vector space
C

n via the map f 	−→ (f(0), f(1), . . . , f(n − 1)).
Define convolution by

C0(Γ,C) × C0(Γ,C) → C0(Γ,C)
(f, g) 	−→ f ∗ g,

(2.10)

where

(f ∗ g)(k) =
∑

�∈Z/nZ

f(�)g(k − �).

This is commutative: f ∗ g = g ∗ f .
Let ζ = ζn denote a primitive nth root of unity in C. Recall, for g ∈

C0(Γ,C), the discrete Fourier transform Fn of g is defined by

(Fng)(λ) = g∧(λ) =
∑

�∈Z/nZ

g(�)ζ�λ, λ ∈ Z/nZ.

Define the inverse discrete Fourier transform of G by

(F−1
n G)(�) = G∨(�) =

1
n

∑

λ∈Z/nZ

G(λ)ζ−�λ, � ∈ Z/nZ.

The following lemma states the basic and very useful fact that the Fourier
transform of a convolution is the product of the Fourier transforms.

Lemma 2.4.3. For any f, g ∈ C0(Γ,C), we have

(f ∗ g)∧(λ) = f∧(λ)g∧(λ).

Proof.

(f ∗ g)∧(λ) =
∑

�∈Z/nZ

∑

k∈Z/nZ

f(k)g(� − k)ζ�λ

=
∑

k∈Z/nZ

f(k)
∑

�∈Z/nZ

g(� − k)ζ�λ

=
∑

k∈Z/nZ

f(k)ζkλ
∑

�′∈Z/nZ

g(�′)ζ�′λ

= f∧(λ)g∧(λ). �
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Definition 2.4.4. For h ∈ C0(Γ,C), define Th : C0(Γ,C) → C0(Γ,C) by

Th(f) = (h ⊗ f∧)∨,

where ⊗ denotes the componentwise product of two vectors:

(a0, a1, . . . , an−1) ⊗ (b0, b1, . . . , bn−1) = (a0b0, a1b1, . . . , an−1bn−1).

A linear transformation M : C0(Γ,C) → C0(Γ,C) of the form M = Th,
for some h ∈ C0(Γ,C), is called a Fourier multiplier operator.

Let τ : C0(Γ,C) → C0(Γ,C) denote the translation map: (τf)(x) = f(x +
1) (addition in Z/nZ). Note τ sends (x0, x1, . . . , xn−1) to (x1, x2, . . . , xn−1,
x0). A transformation T : C0(Γ,C) → C0(Γ,C) which commutes with τ is
called translation invariant (or translation equivariant).

Define the convolution operator associated to g,

Tg : C0(Γ,C) → C0(Γ,C),

by Tg(f) = f ∗ g.

Exercise 2.8. Show that a Fourier multiplier operator M = Th is a linear
transformation of the form F−1

n DFn, where D is an n × n diagonal matrix.
(Hint: The diagonal elements of D may be taken to be values of h on the
elements of Z/nZ.)

Recall a matrix A is circulant if and only if there is an n such that Ak,� =
Ak+1 (mod n), �+1 (mod n), for all 0 ≤ k ≤ n − 1, 0 ≤ � ≤ n − 1.

The following result appears as Theorem 2.19 of Frazier [Fr99]. It charac-
terizes the Fourier multiplier operators on C0(Γ,C).

Theorem 2.4.5. Let T : C0(Γ,C) → C0(Γ,C) denote a linear operator. The
following statements are equivalent:

1. T is translation invariant.

2. The matrix [T ] representing T in the standard basis is circulant.

3. T is a convolution operator.

4. T is a Fourier multiplier operator.

5. The matrix B representing T in the Fourier basis is diagonal.

We will prove the equivalence of the first three items in the following three
lemmas. We leave the proof of the equivalence of the remaining items as an
exercise.
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Lemma 2.4.6. The convolution operator Tg is translation invariant. In
other words, the diagram

C0(Γ,C) τ−−−−→ C0(Γ,C)

Tg

⏐⏐� Tg

⏐⏐�

C0(Γ,C) τ−−−−→ C0(Γ,C)

commutes, for all g ∈ C0(Γ,C).

Proof. For k ∈ Z/nZ, we have

Tg(τ(f))(k) = (τ(f) ∗ g)(k)

=
∑

�∈Z/nZ

(τ(f))(�)g(k − �)

=
∑

�∈Z/nZ

f(� + 1)g(k − �)

=
∑

�′∈Z/nZ

f(�′)g(k − �′ + 1)

= τ(Tg(f))(k).

�

Lemma 2.4.7. A linear transformation T : C0(Γ,C) → C0(Γ,C) is trans-
lation invariant if and only if the matrix representing it in the standard basis
is circulant.

Proof. Since T : C0(Γ,C) → C0(Γ,C) is linear, it is represented by an n× n
matrix

Tf = A�f,

where �f = (f(0), f(1), . . . , f(n − 1))t. In other words,

T (f)(k) =
∑

�∈Z/nZ

f(�)Ak,�,

for k ∈ Z/nZ. For k ∈ Z/nZ, we have

T (τ(f))(k) =
∑

�∈Z/nZ Ak,�(τ(f))(�)
=

∑
�∈Z/nZ Ak,�f(� + 1)

=
∑

�′∈Z/nZ Ak,�′−1f(�′),

where the 2nd subscript of Ai,j is taken mod n. On the other hand,
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τ(T (f))(k) =
∑

�∈Z/nZ

Ak+1,�f(�).

It follows that the linear transformation T is translation invariant if and only
if its matrix A is circulant: Ak,� = Ak+1 (mod n), �+1 (mod n), for all 0 ≤ k ≤
n − 1, 0 ≤ � ≤ n − 1. �

Lemma 2.4.8. A linear transformation T : C0(Γ,C) → C0(Γ,C) is a con-
volution map if and only if the matrix representing it in the standard basis is
circulant.

Proof. It is not hard to see the connection between maps given by circulant
matrices and convolution operators. Suppose that the matrix representing
T in the standard basis is circulant. By Lemma 2.4.7, T is also translation
invariant. Define g ∈ C0(Γ,C) by

g(−k) = A0,k (mod n), for k ∈ Z/nZ.

Then

T (f)(0) =
∑

�∈Z/nZ

g(−�)f(�),

for all f ∈ C0(Γ,C). Replacing f by a translation (mod n) (since T is
translation invariant and g is periodic with period n) gives

T (f)(k) =
∑

�∈Z/NZ

g(k − �)f(�),

for all f ∈ C0(Γ,C). In other words, T is a convolution map. This construc-
tion can be reversed: a convolution map corresponds to a circulant matrix
transformation. �

Exercise 2.9. For the circulant matrices T and maps f given below, verify
that τT (f) = T (τ(f)).

(a)

T =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
and f = (1, 2, 3, 4, 5).

(b)

T =

⎛

⎜⎜⎜⎜⎝

0 1 2 0 0
0 0 1 2 0
0 0 0 1 2
2 0 0 0 1
1 2 0 0 0

⎞

⎟⎟⎟⎟⎠
and f = (1, 2, 3, 4, 5).
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Exercise 2.10. Prove that the last two items of Theorem 2.4.5 are equiva-
lent to the first three items.

In graph-theoretic terms, a Fourier multiplier operator is a linear trans-
formation of the form B−1

Γ DBΓ, where D is an n × n diagonal matrix and
BΓ is a matrix of eigenvectors of the Laplacian of Γ.

Question 2.3. To what extent can the result above about Fourier multiplier
operators be generalized to arbitrary graphs?

2.5 Expander graphs

Let Γ = (V,E) be a graph, let S be a subset of V , and let

∂S = {(u, v) ∈ E(G) | u ∈ S, v ∈ V \ S}

denote the edge boundary of S. This is the cocycle associated to the partition
S ∪ (V \ S).

The edge expansion h(Γ) is defined as

h(Γ) = min
0<|S|≤ |V |

2

|∂S|
|S| .

We say Γ has the expander property when each subset S ⊂ V has a “relatively
large” edge expansion, as specified in the definition below.

The second smallest eigenvalue of the Laplacian matrix Q of Γ, λ1(Q), is
called the spectral gap. For example, if Γ = (V,E) is a k-regular graph, then
it is known that all eigenvalues λ of the adjacency matrix A of Γ satisfy −k ≤
λ ≤ k (so the eigenvalues of Q satisfy 0 ≤ λ ≤ 2k, by Lemma 2.2.9). Moreover,
λ = k is an eigenvalue of A (with the all 1’s vector as an eigenvector).
Therefore, in the regular case, the spectral gap measures the gap from the
so-called trivial eigenvalue k of A to the next one (i.e., to k − λ1(Q), by
Lemma 2.2.9).

Definition 2.5.1. Let Γ = (V,E) be a k-regular graph.
We call

γΓ =
λ1(Q)

k
,

the relative spectral gap of Γ. We say Γ is a (k, r)-expander if, for each S ⊂ V ,

|∂S|
|S| ≥ kr

(
1 − |S|

|V |

)
.
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The following result can be found in Roth [Ro06], §13.3.

Theorem 2.5.2. If Γ is a k-regular graph then Γ is a (k, r)-expander for
each r with 0 ≤ r ≤ 1 − γΓ.

Example 2.5.3. Consider the 4-regular Paley graph on 9 vertices Γ =
(V,E), depicted in Figure 1.12.

If S = {0, 1, 2} then

∂S = {(0, a + 1), (0, 2a + 2), (1, a + 2), (1, 2a), (2, a), (2, 2a + 1)}.

The edge expansion is 2. Recall from Example 2.2.17 that the Laplacian
spectrum is {0, 3, 3, 3, 3, 6, 6, 6, 6}, so λ1(Q) = 3 and γΓ = 3/4. By the above
theorem, the inequality

h(Γ) ≥ kr(1 − |S|/|V |),

for all nonempty subsets S ⊂ V , holds for 0 ≤ r ≤ 1−γΓ. In this case, k = 4,
and so kr(1 − |S|/|V |) ≤ 32r/9.

Example 2.5.4. Consider the 6-regular graph on 16 vertices Γ = (V,E),
depicted in Figure 2.7 (Example 2.6.3 below). The eigenvalues of the adja-
cency matrix are

6, 2, 2, 2, 2, 2, 2,−2,−2,−2,−2,−2,−2,−2,−2,−2.

According to Sage, the edge expansion is h(Γ) = 7/2. The Laplacian spectrum
is {0, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8}, so λ1(Q) = 4 and γΓ = 4/6 = 2/3.
By the above theorem, the inequality

h(Γ) ≥ kr(1 − |S|/|V |),

for all nonempty subsets S ⊂ V , holds for 0 ≤ r ≤ 1−γΓ. In this case, k = 6,
and so kr(1 − |S|/|V |) ≤ 15/8.

Let Γ = (V,E) be a connected k-regular graph with n = |V | vertices, and
let

k = λ0(A) ≥ λ1(A) ≥ · · · ≥ λn−1(A)

be the eigenvalues of its adjacency matrix A = AΓ. If there exists λi = λi(A)
with |λi| < k, define

λ(Γ) = max
|λi|<k

|λi|.

http://dx.doi.org/10.1007/978-3-319-68383-6_1
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We call Γ a Ramanujan graph if

λ(Γ) ≤ 2
√

k − 1.

Example 2.5.5. The above Example 2.5.4 is a 6-regular graph Γ satisfying

λ(Γ) = 2 ≤ 2
√

k − 1 = 2
√

5.

Therefore, it is an example of a Ramanujan graph.

The excellent book by Davidoff, Sarnak, and Valette [DSV03] contains a
detailed construction of an infinite family of Ramanujan graphs. For instance,
if p, q are odd primes with q > 2

√
p and p is not a quadratic residue (mod q),

they construct a symmetric generating set Sp,q of PGL(2, q), such that the
Cayley graph Cay(PGL(2, q), Sp,q) (this notation is defined at the beginning
of §2.6 below) is a (p + 1)-regular Ramanujan graph. The details of the con-
struction require more number-theoretic background than we have introduced
here. We refer to [DSV03] for details.

2.6 Cayley graphs

Let G be a finite multiplicative group. Let S ⊂ G be a subset which satisfies
S = S−1 and 1 /∈ S. The Cayley graph of (G,S) is the graph Γ = Cay(G,S)
whose vertices are V = G and whose edges E are defined by those pairs
(g1, g2) such that g2g

−1
1 ∈ S.

This is a k-regular graph having degree k = |S|. By Lemma 2.2.1, the
eigenvalues λi(Q) of the Laplacian Q are related to the eigenvalues λi(A) of
the (unweighted) adjacency matrix by

λi(Q) = k − λi(A).

Exercise 2.11. Show that a Cayley graph Γ = Cay(G,S) is regular with
degree |S|.

Exercise 2.12. Show that a Cayley graph Γ = Cay(G,S) is connected if
and only if S generates G.

Example 2.6.1. The Sage commands to produce the types of Cayley graphs
we are interested in are a bit tricky. You will want to be sure to select the
“simple” option and to select symmetric generating sets.
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Sage

sage: G = AdditiveAbelianGroup([6])
sage: Gp = G.permutation_group()
sage: g1, g2 = Gp.gens()
sage: S = [(g1*g2)^2,(g1*g2)^(-2),(g1*g2)^3]; S
[(3,5,4), (3,4,5), (1,2)]
sage: A = Gp.cayley_graph(generators=S,simple=True).adjacency_matrix()
sage: Gamma1 = Graph(A)
sage: AG1 = Gamma1.automorphism_group()
sage: AG1.cardinality()
12

Sage

sage: G = SymmetricGroup(3)
sage: S = G.gens()+[G.gens()[0]^(-1)]; S
[(1,2,3), (1,2), (1,3,2)]
sage: A = G.cayley_graph(generators=S,simple=True).adjacency_matrix()
sage: Gamma2 = Graph(A)
sage: AG2 = Gamma2.automorphism_group()
sage: AG2.cardinality()
12

These two Cayley graphs are isomorphic. With these options selected, we see
that the graph has the desired symmetry. More of this example will be given
later (e.g., Example 4.7.8 below).

There is also an edge-weighted analog of this definition.
For g ∈ G, the conjugacy class of g is the subset

ClG(g) = {x−1gx | x ∈ G}.

The set of conjugacy classes will be denoted G∗. A function f : G → C is
called a class function if it is constant on conjugacy classes. In other words,
f is a class function if and only if the restriction f |γ is a constant (possibly
depending on γ), for each γ ∈ G∗.

Let α : G → Z be a given class function. The edge-weighted Cayley graph
associated to (G,S, α), is the graph Γ = Cay(G,S), where edge (g1, g2) has
weight α(g2g

−1
1 ). We denote this graph by Cay(G,S, α). By convention, if

α(g2g
−1
1 ) = 0 then we say that the 0-weighted edge (g1, g2) does not exist.

Let n = |G|. A subgroup H of Sn acts on Γ if and only if it is an auto-
morphism group of the unweighted graph Γ∗ and each graph automorphism
h ∈ H also preserves the edge weights. In particular, the H-orbit of any
edge of Γ consists of edges which have the same edge weight. The set of such
actions on Γ forms a subgroup of the automorphism group of Γ∗.

http://dx.doi.org/10.1007/978-3-319-68383-6_4
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2.6.1 Cayley graphs on abelian groups

The eigenvalues of the Cayley graph in the abelian case are easy to determine.

Proposition 2.6.2. Let G be a finite abelian group written multiplicatively,
let χ : G → C

× be a homomorphism of G, and let S ⊂ G be a symmetric
set. Let A be the adjacency matrix of the Cayley graph Γ = Cay(G,S). Con-
sider the vector x ∈ C

G such that xa = χ(a), where C
G denotes the vector

space of complex-valued functions on G. Then x is an eigenvector of A, with
eigenvalue χ(S) =

∑
s∈S χ(s).

Proof. This follows from the proof in the non-abelian case, given in the next
section. �

Example 2.6.3. Consider the Cayley graph Γ of Z/4Z×Z/4Z, with gener-
ator set S = {±(0, 1),±(1, 0),±(1, 1)}. This has Laplacian matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −1 0 −1 −1 −1 0 0 0 0 0 0 −1 0 0 −1
−1 6 −1 0 0 −1 −1 0 0 0 0 0 −1 −1 0 0

0 −1 6 −1 0 0 −1 −1 0 0 0 0 0 −1 −1 0
−1 0 −1 6 −1 0 0 −1 0 0 0 0 0 0 −1 −1
−1 0 0 −1 6 −1 0 −1 −1 −1 0 0 0 0 0 0
−1 −1 0 0 −1 6 −1 0 0 −1 −1 0 0 0 0 0

0 −1 −1 0 0 −1 6 −1 0 0 −1 −1 0 0 0 0
0 0 −1 −1 −1 0 −1 6 −1 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 −1 6 −1 0 −1 −1 −1 0 0
0 0 0 0 −1 −1 0 0 −1 6 −1 0 0 −1 −1 0
0 0 0 0 0 −1 −1 0 0 −1 6 −1 0 0 −1 −1
0 0 0 0 0 0 −1 −1 −1 0 −1 6 −1 0 0 −1

−1 −1 0 0 0 0 0 0 −1 0 0 −1 6 −1 0 −1
0 −1 −1 0 0 0 0 0 −1 −1 0 0 −1 6 −1 0
0 0 −1 −1 0 0 0 0 0 −1 −1 0 0 −1 6 −1

−1 0 0 −1 0 0 0 0 0 0 −1 −1 −1 0 −1 6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and characteristic polynomial

(x − 6) · (x − 2)6 · (x + 2)9.

The graph Γ is depicted in Figure 2.7.
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Figure 2.7: The Cayley graph of Z/4Z × Z/4Z, with generator set S =
{±(0, 1),±(1, 0),±(1, 1)}, created using Sage.

Sage

sage: G = AdditiveAbelianGroup([4,4])
sage: GP = G.permutation_group()
sage: g0 = GP.gens()[0]
sage: g1 = GP.gens()[1]
sage: S = [g0, g1, g0^(-1), g1^(-1), (g0*g1)^(-1), g0*g1]
sage: Gamma = GP.cayley_graph(side=’left’, generators = S)
sage: A = Gamma.adjacency_matrix()
sage: Gamma1 = Graph(A, format = "adjacency_matrix")
sage: Gamma1.show(layout="circular", dpi = 300)
sage: Gamma1.characteristic_polynomial().factor()
(x - 6) * (x - 2)^6 * (x + 2)^9

2.6.2 Cayley graphs for non-abelian groups

Let α : G → Z be a given class function. Let S ⊂ G be a subset which
generates G satisfying S = S−1 and 1 /∈ S. Let Γ denote the edge-weighted
Cayley graph associated to (G,S, α), where edge (g1, g2) has weight α(g2g

−1
1 ).

In particular, we assume α is supported on S. In the notation above, Γ =
Cay(G,S, α). We assume that the (weighted) adjacency matrix of Γ is the
|G| × |G| matrix A = (ag,h), where

ag,h = α(gh−1).

Let G∗ denote a complete set of inequivalent representations of G. We can
write

ρi : G → Aut(Vi),

where Vi
∼= C

di and di is the degree of ρi, for i = 1, . . . , |G∗|.
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Example 2.6.4. While this is a very long example, we hope it will be useful
to illustrate the ideas in the theorem below.

Let G=D6 denote the dihedral group of order 12, written in the follow-
ing order:

g1 = 1, g2 = (2, 6)(3, 5), g3 = (1, 2)(3, 6)(4, 5), g4 = (1, 2, 3, 4, 5, 6),
g5 = (1, 3)(4, 6), g6 = (1, 3, 5)(2, 4, 6), g7 = (1, 4)(2, 3)(5, 6),
g8 = (1, 4)(2, 5)(3, 6), g9 = (1, 5)(2, 4), g10 = (1, 5, 3)(2, 6, 4),

g11 = (1, 6, 5, 4, 3, 2), g12 = (1, 6)(2, 5)(3, 4).

Let

S = {g4, g11, g3, g7, g12}

and note S generates G, and is conjugation-invariant and closed under taking
inverses. The conjugacy classes clG(x) of G are ordered as follows:

clG(g1), clG(g2), clG(g3), clG(g4), clG(g6), clG(g8).

Sage

sage: G = DihedralGroup(6); G
Dihedral group of order 12 as a permutation group
sage: g1 = G.gens()[0]
sage: g2 = G.gens()[0]^(-1)
sage: g3 = G.gens()[1]
sage: Cg3 = [x^(-1)*g3*x for x in G]
sage: g4 = Cg3[1]; g5 = Cg3[2]
sage: S = [g1, g2, g3, g4, g5]; S
[(1,2,3,4,5,6), (1,6,5,4,3,2), (1,6)(2,5)(3,4), (1,2)(3,6)(4,5), (1,4)(2,3)(5,6)]

The character table of G is

g1 g2 g3 g4 g6 g8

χ1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 1
χ3 1 −1 1 −1 1 −1
χ4 1 1 −1 −1 1 −1
χ6 2 0 0 1 −1 −2
χ8 2 0 0 −1 −1 2

,

where χi is the i-th irreducible character of G (in the ordering given by Sage
and GAP).

Define the class function α : G → Z by

α(x) =

⎧
⎨

⎩

1, x ∈ {(1, 2, 3, 4, 5, 6), (1, 6, 5, 4, 3, 2)},
2, x ∈ {(1, 2)(3, 6)(4, 5), (1, 2)(3, 6)(4, 5), (1, 4)(2, 3)(5, 6)},
0, otherwise.
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The associated (weighted) adjacency matrix is

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 1 0 0 2 0 0 0 1 2
0 0 1 2 0 0 0 2 0 0 2 1
2 1 0 0 1 2 0 0 0 2 0 0
1 2 0 0 2 1 0 0 2 0 0 0
0 0 1 2 0 0 1 2 0 0 2 0
0 0 2 1 0 0 2 1 0 0 0 2
2 0 0 0 1 2 0 0 1 2 0 0
0 2 0 0 2 1 0 0 2 1 0 0
0 0 0 2 0 0 1 2 0 0 2 1
0 0 2 0 0 0 2 1 0 0 1 2
1 2 0 0 2 0 0 0 2 1 0 0
2 1 0 0 0 2 0 0 1 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Sage

sage: def alpha(x):
if x==S[0] or x==S[1]:

return 1
if x==S[2] or x==S[3] or x==S[4]:

return 2
return 0

sage: A = [[alpha(x*y^(-1)) for x in G] for y in G]; matrix(A)
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Figure 2.8: The undirected edge-weighted Cayley graph of D6 with respect to S.
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[0 0 2 1 0 0 2 0 0 0 1 2]
[0 0 1 2 0 0 0 2 0 0 2 1]
[2 1 0 0 1 2 0 0 0 2 0 0]
[1 2 0 0 2 1 0 0 2 0 0 0]
[0 0 1 2 0 0 1 2 0 0 2 0]
[0 0 2 1 0 0 2 1 0 0 0 2]
[2 0 0 0 1 2 0 0 1 2 0 0]
[0 2 0 0 2 1 0 0 2 1 0 0]
[0 0 0 2 0 0 1 2 0 0 2 1]
[0 0 2 0 0 0 2 1 0 0 1 2]
[1 2 0 0 2 0 0 0 2 1 0 0]
[2 1 0 0 0 2 0 0 1 2 0 0]
sage: Gamma = Graph(matrix(A), format = "adjacency_matrix", weighted=True)
sage: Gamma.show(layout="circular", dpi = 300, edge_labels=True)
sage: Gamma.automorphism_group(edge_labels=True).order()
144
sage: Gamma.automorphism_group().order()
1440

The weighted Cayley graph of (G,S, α) is shown in Figure 2.8.
The eigenvalues and eigenvectors of A are

λ0 = 8, x0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

λ1 = −4, x1 = (1,−1,−1, 1,−1, 1,−1, 1,−1, 1, 1,−1),

λ2 = 4, x2 = (1,−1, 1,−1,−1, 1, 1,−1,−1, 1,−1, 1),

λ3 = −8, x3 = (1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1),

each occurring with multiplicity 1. Note that, for i = 0, 1, 2, 3, we have

xi = (χi(g1), . . . , χi(g12)),

where χi is the i-th character in the character table of G. Here they are in
Sage 2:

Sage

sage: A*x1
(8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8)
sage: x2 = vector([1,-1,-1,1,-1,1,-1,1,-1,1,1,-1])
sage: A*x2
(-4, 4, 4, -4, 4, -4, 4, -4, 4, -4, -4, 4)
sage: x3 = vector([1,-1,1,-1,-1,1,1,-1,-1,1,-1,1])
sage: A*x3
(4, -4, 4, -4, -4, 4, 4, -4, -4, 4, -4, 4)
sage: x4 = vector([1,1,-1,-1,1,1,-1,-1,1,1,-1,1])
sage: A*x4
(-4, -6, 8, 8, -8, -4, 8, 8, -6, -4, 8, 8)
sage: x4 = vector([1,1,-1,-1,1,1,-1,-1,1,1,-1,-1])
sage: A*x4
(-8, -8, 8, 8, -8, -8, 8, 8, -8, -8, 8, 8)
sage: x5 = vector([2,0,0,1,0,-1,0,-2,0,-1,1,0])

2Some care must be taken to record the entries of xi consistent with the way the
elements of G are listed.
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sage: A*x5
(2, 0, 0, 1, 0, -1, 0, -2, 0, -1, 1, 0)

Indeed, all these characters have degree 1. The remaining eigenvalues each
occur with multiplicity 4. The eigenvalue λ4 = 1, has eigenspace

Eλ4 = Span((1, 0, 0, 0, 0,−1, 0,−1, 0, 0, 1, 0),
(0, 1, 0, 0,−1, 0,−1, 0, 0, 0, 0, 1),
(0, 0, 1, 0, 1, 0, 0, 0,−1, 0, 0,−1),
(0, 0, 0, 1, 0, 1, 0, 0, 0,−1,−1, 0)).

It is easy to see that

(χ4(g1), . . . , χ4(g12)) = (2, 0, 0, 1, 0,−1, 0,−2, 0,−1, 1, 0)

is an element of Eλ4 . The eigenvalue λ5 = −1, has eigenspace

Eλ5 = Span((1, 0, 0, 0, 0,−1, 0, 1, 0, 0,−1, 0),
(0, 1, 0, 0,−1, 0, 1, 0, 0, 0, 0,−1),
(0, 0, 1, 0,−1, 0, 0, 0, 1, 0, 0,−1),
(0, 0, 0, 1, 0,−1, 0, 0, 0, 1,−1, 0)).

It is easy to see that

(χ5(g1), . . . , χ5(g12)) = (2, 0, 0,−1, 0,−1, 0, 2, 0,−1,−1, 0)

is an element of Eλ5 .

The following well-known result describes a way to generalize the above
example. Roughly speaking, it says that if Γ is a weighted Cayley graph
attached to a group G and if the weight function of Γ is given by a class
function of G, then the spectrum of Γ is determined by the representations
of G.

Theorem 2.6.5. Let α be a class function, and let Γ = Cay(G,S, α), as
above (so, in particular, α is supported on S). If n = |G|, write

G = {g1 = 1, g2, . . . , gn}.

Each eigenvector of the adjacency matrix A has the form

(χ(g1), . . . , χ(gn)),
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where χ = tr(ρ), for some ρ ∈ G∗, with eigenvalue

λ = λρ =
1
dρ

∑

s∈S

α(s)tr(ρ)(s),

where dρ is the degree of ρ. Moreover, the multiplicity of λ is χ(1)2.

The proof below follows Brouwer and Haemers [BH11], §6.3, and Kaski
[KA02], §5, and is included for the reader’s convenience. See also Rockmore,
Kostelec, Hordijk, and Stadler [RKHS02].

Proof. Suppose Γ has vertex set V , and W = C0(Γ,R) ∼= R
V is the R-vector

space spanned by the vertices of Γ. Part of this proof applies to any matrix
which commutes with the action of G, such as the (unweighted) adjacency
matrix A∗ or the Laplacian Q. By Schur’s Lemma3, A∗ acts as a scalar on
each irreducible G-invariant subspace of W . In other words, the irreducible
G-invariant subspaces are eigenspaces of A∗. If A∗ acts like θI on the irre-
ducible G-invariant subspace U = Wχ with character χ, then tr(A∗g|U ) =
θχ(g).

Since S is a union of conjugacy classes of G, the weighted adjacency matrix
A commutes with the elements of G, and the previous discussion applies.
The regular representation of G decomposes into a direct sum of irreducible
subspaces, where for each irreducible character χ there are χ(1) copies of
Wχ. To be explicit, Wχ is spanned by vχ = (χ(g1), . . . , χ(gn)) and all its
images under the G-action. On each copy A acts like θI, for some θ ∈ R, and
dim(Wχ) = χ(1), so θ has multiplicity χ(1)2. We saw that

tr(Ag|Wχ
) = θχ(g).

The first entry of Avχ is equal to
∑

s∈S α(s)χ(s). Since this is also θχ(1), we
have

θ =
1

χ(1)

∑

s∈S

α(s)χ(s) =
1

χ(1)
tr(A|Wχ

).

�

3If π is an irreducible n-dimensional representation of G and if B ∈ GL(n,C) com-
mutes with all matrices π(g), g ∈ G, then B is a scalar matrix. A proof can be found
in many textbooks on abstract algebra, e.g., [DF99], page 337.
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Example 2.6.6. This is an extension of (the already very long) Example
2.6.4.

Let G and Γ be as in Example 2.6.4. The unweighted adjacency matrix is

A0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 1 0 0 0 1 1
0 0 1 1 0 0 0 1 0 0 1 1
1 1 0 0 1 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1 0
0 0 1 1 0 0 1 1 0 0 0 1
1 0 0 0 1 1 0 0 1 1 0 0
0 1 0 0 1 1 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0 0 1 1
0 0 1 0 0 0 1 1 0 0 1 1
1 1 0 0 1 0 0 0 1 1 0 0
1 1 0 0 0 1 0 0 1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Sage

sage: A0 = Gamma.adjacency_matrix()
sage: A0*v1==(5)*v1
True
sage: A0*v2==(-1)*v2
True
sage: A0*v3==(1)*v3
True
sage: A0*v4==(-5)*v4
True
sage: A0*v5==(1)*v5
True
sage: A0*v6==(-1)*v6
True

In other words, in this example, Sage helps us verify that, even if we use
the unweighted adjacency matrix, the conclusion of the above Theorem 2.6.5
still holds.

2.7 Additive Cayley graphs

An additive Cayley graph (or Cayley sum graph) Γ with sum set S in a finite
abelian group G has vertex set VΓ = G, and two elements g, h ∈ G are
adjacent (i.e., connected by a edge) if and only if g + h ∈ S.
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Let G∗ denote the dual group of G, that is, the multiplicative group of
multiplicative characters χ : G → C

×. Let G∗
R

denote the subgroup of real-
valued characters χ : G → R

×. For convenience of notation, we fix an indexing
of the elements of these groups,

G = {g1, . . . , gn},

and
G∗ = {χ1, . . . , χn}.

Example 2.7.1. Consider the group G = Z/10Z and the set S = {3, 5, 7}.
The adjacency matrix of the associated additive Cayley graph is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1 1
1 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 0 1 0 1
1 0 0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the graph itself is depicted in Figure 2.9.
If χ(S) =

∑
s∈S χ(s), the values of χ(S), for χ ∈ G∗, are listed as follows:

χ1(S) = 3, χ2(S) = e
7
5 i π + e

3
5 i π − 1, χ3(S) = e

14
5 i π + e

6
5 i π + 1,

χ4(S) = e
21
5 i π + e

9
5 i π − 1, χ5(S) = e

28
5 i π + e

12
5 i π + 1, χ6(S) = −3,

χ7(S) = e
42
5 i π + e

18
5 i π + 1, χ8(S) = e

49
5 i π + e

21
5 i π − 1,

χ9(S) = e
56
5 i π + e

24
5 i π + 1, χ10(S) = e

63
5 i π + e

27
5 i π − 1.

The following result can be found in Brouwer and Haemers [BH11].

Proposition 2.7.2. Let Γ be the additive Cayley graph with sum set S in
the finite abelian group G. The spectrum of Γ consists of

{χ(S) | χ ∈ G∗
R
} ∪ {±|χ(S)| | χ ∈ G∗ − G∗

R
}.

The eigenvector of χ(S), for χ ∈ G∗
R
, is
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Figure 2.9: The undirected additive Cayley graph of Z/10Z with respect to S.

xχ = (χ(g1), . . . , χ(gn)).

Pick α = αS,χ ∈ C
× so that |χ(S)| = α2χ(S). The eigenvector of |χ(S)|, for

χ ∈ G∗ − G∗
R
, is

xχ,+ = (Re (αχ(g1)), . . . , Re (αχ(gn))).

The eigenvector of −|χ(S)|, for χ ∈ G∗ − G∗
R
, is

xχ,− = (Im (αχ(g1)), . . . , Im (αχ(gn))).

Proof. For x, y ∈ G, define x ∼ y if and only if x + y ∈ S. If the vertices of Γ
are denoted 1, . . . , n, then the (unweighted) adjacency matrix A acts on R

n

by sending a vector x = (x1, . . . , xn) to x′ = (x′
1, . . . , x

′
n), where

x′
j =

∑

(i,j)∈EΓ

xi.

If χ : G → C
× is a character of G, then

∑

y∼x

χ(y) =
∑

s∈S

χ(s − x) =

(
∑

s∈S

χ(s)

)
χ(−x) = χ(S)χ(x).
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Since Γ is undirected, the spectrum is real.
If χ is a real character, then the computation displayed above tells us that

vχ is an eigenvector of A with eigenvalue χ(S). If χ is nonreal, then xχ,+

and xχ,− are eigenvectors with eigenvalues |χ(S)| and −|χ(S)|, respectively.
Indeed, the j-th component of Axχ,+ is

(Axχ,+)j =
∑

(i,j)∈EΓ
Re(αχ(gi))

= Re(α
∑

(i,j)∈EΓ
χ(gi))

= Re(α
∑

s∈S χ(s − gj))
= Re(α−1χ(gj)α2χ(S))
= |χ(S)| · Re(αχ(gj)).

�

An analogous definition of an additive Cayley graph associated to a subset
S ⊂ G is a graph Γ which has vertex set VΓ = G, and two elements g, h ∈ G
are adjacent (i.e., connected by a edge) if and only if g − h ∈ S. In this case,
we also require that S is symmetric: S = −S.

The next section is devoted to a class of graphs of this type.

2.7.1 Cayley graphs and p-ary functions

This section describes a type of Cayley graph attached to a p-ary function.
More details are in Chapter 6 and in Celerier, Joyner, Melles, Phillips, and
Walsh [CJMPW15].

Fix n ≥ 1 and let V = GF (p)n, where p is a prime.
If f : V → GF (p), then we let fC : V → C be the function whose values

are those of f but regarded as integers (i.e., we select the congruence class
residue representative in the interval {0, 1, . . . , p − 1}). We sometimes abuse
notation and often write f in place of fC.

Let f be a GF (p)-valued function on V such that f(0) = 0.
The Cayley graph of f is defined to be the edge-weighted directed graph

Γf = (GF (p)n, Ef ), (2.11)

whose vertex set is V = V (Γf ) = GF (p)n and whose set of edges is defined
by

Ef = {(u, v) ∈ GF (p)n | f(u − v) �= 0},

where the edge (u, v) ∈ Ef has weight f(u−v). However, if f is even then we
can (and do) regard Γf as a weighted (undirected) graph. We assume from
this point on that f is even.

http://dx.doi.org/10.1007/978-3-319-68383-6_6
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The adjacency matrix A = Af is the matrix whose entries are

Ai,j = fC(η(i) − η(j)), (2.12)

where η(k) is the p-ary representation as in (6.5). Ignoring edge weights, we
let

A∗
i,j =

{
1, fC(η(i) − η(j)) �= 0,
0, otherwise. (2.13)

Let supp(f) = {v ∈ V | f(v) �= 0} be the support of f , let

ωf = |supp(f)|,

and let
σf =

∑

v∈V

fC(v).

Clearly, the vertices in Γf connected to 0 ∈ V are in natural bijection with
the elements of supp(f).

Recall that, given a graph Γ and its adjacency matrix A, the spectrum

σ(Γ) = {λ1, λ2, . . . , λN},

is the multi-set of real eigenvalues of A. When Γ is the Cayley graph of a
p-ary function on GF (p)n, we have N = pn. Following a standard convention,
we index the elements λi = λi(A) of the spectrum in such a way that they
are monotonically increasing. Because Γf is regular, the row sums of A are
all σf , hence the all 1’s vector is an eigenvector of A with eigenvalue σf . We
will see later (Corollary 2.7.6) that λN (A) = σf .

Let Δ denote the identity matrix multiplied by σf . The Laplacian of Γf

is the matrix Q = Δ − A.

Lemma 2.7.3. Assume f is even. As an edge-weighted graph, Γf is con-
nected if and only if λN−1(A) < λN (A) = σf , where A is the adjacency
matrix of Equation (2.12). If we ignore edge weights, then Γf is connected if
and only if λN−1(A∗) < λN (A∗) = ωf , where A∗ is the unweighted adjacency
matrix in (2.13).

Proof. We only prove the statement for the edge-weighted case.
Note that for i = 1, . . . , N , λi(Q) = σf − λN−i+1(A), since det(Q− λI) =

det(σfI − A − λI) = (−1)n det(A − (σf − λ)I). Thus, λi(Q) ≥ 0, for all i.
By a theorem of Fiedler [Fi73], λ2(Q) > 0 if and only if Γf is connected. But
λ2(Q) > 0 is equivalent to σf − λN−1(A) > 0. �

Recall a circulant matrix is a square matrix where each row vector is a
cyclic shift one element to the right relative to the preceding row vector.

http://dx.doi.org/10.1007/978-3-319-68383-6_2
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Our Fourier transform matrix F is not circulant, but is “block circulant.”
Like circulant matrices, it has the property that va = (ζ−〈a,x〉 | x ∈ V ) is
an eigenvector with eigenvalue λa = f̂(−a) (something related to a value of
the Hadamard transform of f). Thus, the proposition below shows that it
“morally” behaves like a circulant matrix in some ways.

Proposition 2.7.4. The eigenvalues λa = f̂(−a) of this matrix F are values
of the Fourier transform of the function fC,

f̂(y) =
∑

x∈V

fC(x)ζ−〈x,y〉,

and the eigenvectors are the vectors of p-th roots of unity,

va = (ζ−〈a,x〉 | x ∈ V ).

Proof. In F = (Fi,j), we have Fi,j = fC(η(i)−η(j)) for i, j ∈ {0, 1, . . . , pn−1}.
For each a ∈ GF (p)n, let

va = (ζ−〈a,η(i)〉 | i ∈ {0, 1, . . . , pn − 1}).

Then

Fva = (
∑

y∈V

fC(x − y)ζ−〈a,y〉 | x ∈ V ).

The entry in the i-th coordinate, where x = η(i) is given by
∑

y∈V fC(x − y)ζ−〈a,y〉 =
∑

y∈V fC(−y)ζ−〈a,y+x〉

= ζ−〈a,x〉 ∑
y∈V fC(−y)ζ−〈a,y〉

= ζ−〈a,x〉 ∑
y∈V fC(y)ζ〈a,y〉

= ζ−〈a,x〉f̂(−a).

Therefore, the coordinates of the vector Fva are the same as those of va, up to
a scalar factor. Thus λa = f̂(−a) is an eigenvalue and va = (ζ−〈a,x〉 | x ∈ V )
is an eigenvector. �

Corollary 2.7.5. The matrix F is invertible if and only if none of the values
of the Fourier transform of fC vanish.

Corollary 2.7.6. The spectrum of the graph Γf is precisely the set of values
of the Fourier transform of fC.
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Example 2.7.7. We take V = GF (3)2 and consider an even function f :
V → GF (3) given by

f(x0, x1) = −x2
0x

2
1 + x2

0 + x0x1 − x2
1.

Its Cayley graph Γf has weighted adjacency matrix

Aw =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 2 0 1 2 1 0
1 0 1 1 2 0 0 2 1
1 1 0 0 1 2 1 0 2
2 1 0 0 1 1 2 0 1
0 2 1 1 0 1 1 2 0
1 0 2 1 1 0 0 1 2
2 0 1 2 1 0 0 1 1
1 2 0 0 2 1 1 0 1
0 1 2 1 0 2 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As a weighted graph, the adjacency spectrum is

8, 2, 2,−1,−1,−1,−1,−4,−4,

while the Laplacian spectrum is

12, 12, 9, 9, 9, 9, 6, 6, 0.

The unweighted adjacency matrix is

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1 0
1 0 1 1 1 0 0 1 1
1 1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 1
0 1 1 1 0 1 1 1 0
1 0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1 1
1 1 0 0 1 1 1 0 1
0 1 1 1 0 1 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As an unweighted graph, its Laplacian has eigenvalues

9, 9, 6, 6, 6, 6, 6, 6, 0,

and the adjacency matrix has eigenvalues

6, 0, 0, 0, 0, 0, 0,−3,−3.
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This function is not bent (in the sense of §6.3), yet the unweighted version
of the graph Γf , shown in Figure 2.10, is a strongly regular graph with para-
meters (9, 6, 3, 6). (Strongly regular is defined in §6.6.1 below.) However, the
complement of Γf is disconnected, so Γf is not a primitive strongly regular
graph4.

Consider the subgraph Γ1 of weight one edges. This has adjacency matrix

A1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1 0 1 0
1 0 1 1 0 0 0 0 1
1 1 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 1
0 0 1 1 0 1 1 0 0
1 0 0 1 1 0 0 1 0
0 0 1 0 1 0 0 1 1
1 0 0 0 0 1 1 0 1
0 1 0 1 0 0 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Figure 2.10: The undirected Cayley graph of an even GF (3)-valued function of two
variables from Example 2.7.7. (The vertices are ordered as in the example.)

and is depicted in Figure 2.11.
Clearly, this is a 4-regular graph on 9 vertices. In fact, Sage allows us to

verify that it is isomorphic to the Paley graph on 9 vertices.

4An SRG is primitive if both the graph and its complement are connected.

http://dx.doi.org/10.1007/978-3-319-68383-6_6
http://dx.doi.org/10.1007/978-3-319-68383-6_6
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Figure 2.11: The subgraph Γ1 of Γ is isomorphic to the Paley graph on 9 vertices.

Sage

sage: F = GF(3)
sage: V = F^2
sage: f = lambda x:-x[0]^2*x[1]^2+x[0]^2+x[0]*x[1]-x[1]^2
sage: Gamma = boolean_cayley_graph(f, V)
sage: Alist = [[ZZ(f(x-y)) for x in V] for y in V]; matrix(ZZ, Alist)
[0 1 1 2 0 1 2 1 0]
[1 0 1 1 2 0 0 2 1]
[1 1 0 0 1 2 1 0 2]
[2 1 0 0 1 1 2 0 1]
[0 2 1 1 0 1 1 2 0]
[1 0 2 1 1 0 0 1 2]
[2 0 1 2 1 0 0 1 1]
[1 2 0 0 2 1 1 0 1]
[0 1 2 1 0 2 1 1 0]
sage: A = matrix(GF(2), Alist); A
[0 1 1 0 0 1 0 1 0]
[1 0 1 1 0 0 0 0 1]
[1 1 0 0 1 0 1 0 0]
[0 1 0 0 1 1 0 0 1]
[0 0 1 1 0 1 1 0 0]
[1 0 0 1 1 0 0 1 0]
[0 0 1 0 1 0 0 1 1]
[1 0 0 0 0 1 1 0 1]
[0 1 0 1 0 0 1 1 0]
sage: Gamma1 = Graph(A)
sage: Gamma2 = graphs.PaleyGraph(9)
sage: Gamma1.is_isomorphic(Gamma2)
True
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2.8 Graphs of group quotients

If Γ = (V,E) is a graph and G a subgroup of its automorphism group, we
define the quotient graph by G, denoted Γ/G, as follows:

1. The vertices of Γ/G are the G-orbits in V .

2. Distinct vertices v1, v2 of Γ/G are connected by an edge if and only if
there is a vertex v1 in V belonging to the orbit v1, and a vertex v2 in
V belonging to the orbit v2, for which (v1, v2) belongs to E.

3. Γ/G is simple.

For example, if Γ is any graph and G is any group that acts regularly5 on
Γ then Γ/G is the empty graph with one vertex.

Example 2.8.1. The graph Γ2 depicted in Figure 2.12 is a 2-fold cover6 of
the diamond graph Γ1 (isomorphic to the graph depicted in Figure 1.2).

Figure 2.12: Two depictions of a twofold cover of the diamond graph.

Moreover, the automorphism group G of Γ2 is a cyclic group of order 16
and the quotient map Γ2 → Γ1 = Γ2/G0 is harmonic7, where G0 is the
subgroup of order 2 generated by (0, 6)(1, 5)(2, 4)(3, 7). The Laplacian of Γ1

is

5The adjective “regular” is over-used in mathematics. In this case, it means that G
acts transitively on Γ (i.e., each vertex can be sent to any other by some element of
G) and no vertex is fixed by any element of G − {1}.
6A cover is defined in §3.4.
7In the sense of Definition 3.3.5 below.

http://dx.doi.org/10.1007/978-3-319-68383-6_1
http://dx.doi.org/10.1007/978-3-319-68383-6_3
http://dx.doi.org/10.1007/978-3-319-68383-6_3
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Q1 =

⎛

⎜⎜⎝

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎞

⎟⎟⎠ ,

and the Laplacian of Γ2 is

Q2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0 −1 −1 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 3 −1 0 0 −1 0
−1 0 −1 2 0 0 0 0
−1 0 0 0 3 −1 0 −1

0 0 0 0 −1 2 −1 0
0 0 −1 0 0 −1 3 −1
0 0 0 0 −1 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Sage

sage: V1 = [0,1,2,3]
sage: E1 = [(0,1),(0,2),(0,3),(1,2),(2,3)]
sage: V2 = [0,1,2,3,4,5,6,7]
sage: E2 = [(0,1),(0,3),(0,4),(1,2),(2,3),(2,6),(4,5),(4,7),(6,5),(6,7)]
sage: Gamma1 = Graph([V1,E1], format=’vertices_and_edges’)
sage: Gamma2 = Graph([V2,E2], format=’vertices_and_edges’)
sage: AG = Gamma2.automorphism_group()
sage: AG.cardinality()
16
sage: AG.sylow_subgroup(2).cardinality()
16
sage: Q2 = Gamma2.laplacian_matrix()
sage: Q1 = Gamma1.laplacian_matrix()
sage: factor(Q2.charpoly())
x * (x - 4)^2 * (x - 2)^3 * (x^2 - 6*x + 4)
sage: factor(Q1.charpoly())
(x - 2) * x * (x - 4)^2

Recall that if Γ is a graph, we denote by σ(Γ) the spectrum of Γ, i.e., the
multi-set of eigenvalues of the adjacency matrix of A. Recall also that if G is a
finite multiplicative group, S is a subset of G such that S = S−1, and S does
not contain the identity 1, then we denote by Cay(G,S) the Cayley graph of
the pair (G,S). The next proposition states that if S is also a generating set
of G, and if H is a “good” subgroup of G, then the spectrum of the Cayley
graph of (H,H ∩S) is contained in a translate of the spectrum of the Cayley
graph of (G,S).

Proposition 2.8.2. Let G be a finite multiplicative group. Let H ⊂ G be
a normal subgroup. Assume that S ⊂ G is a symmetric (i.e., S = S−1)
generating set with 1 �= S such that (1) H ∩ S generates H, (2) S − H ∩ S
generates a subgroup K disjoint from H (i.e., H ∩K = {1}), and (3) G acts
by permutations on H ∩ S via conjugations. Then
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|S − H ∩ S| + σ(Cay(H,H ∩ S)) ⊂ σ(Cay(G,S)).

Proof. If G is abelian then this follows from Proposition 2.6.2. Indeed, in this
case

σ(Cay(H,H ∩ S)) = {χ(H ∩ S) | χ ∈ H∗},

and

σ(Cay(G,S)) = {χ(S) | χ ∈ G∗}.

Since G is a direct product of cyclic subgroups of prime power order, H is a
sub-product. By induction, we may assume without loss of generality that G
is cyclic and so is H. For χ ∈ G∗ such that χ|K = 1, we have

χ(S) =
∑

s∈S

χ(s) =
∑

s∈H∩S

χ(s) +
∑

s∈S−H∩S

χ(s) = χ(H ∩ S) + |S − H ∩ S|,

by our hypothesis on K = G/H.
Now, assume G is non-abelian. By Theorem 2.6.5,

σ(Cay(H,H ∩ S)) =
{

1
deg(χ)

χ(H ∩ S) | χ ∈ H∗
}

,

and

σ(Cay(G,S)) =
{

1
deg(χ)

χ(S) | χ ∈ G∗
}

. (2.14)

We need to understand the behavior of characters under restriction. The
following fact can be found in Weintraub [Wi03] (Corollary 1.12, p. 105): Let
H ⊂ G be normal, ρ : G → Aut(V ) an irreducible representation, τ : H →
Aut(W ) an irreducible component of ResG

H(ρ) = ρ|H . Then

ResG
H(ρ) = m ⊕j τj ,

for some integer m ≥ 1, where {τj} is a complete set of representatives of
conjugates of τ = τ1 under the action of G. It is easy to compute m if the
number of conjugates N = |{τj}| is known:
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Figure 2.13: The ladder graph L3.

m =
1
N

deg(ρ)
deg(τ)

.

We assumed that S −H ∩S generates a group K ⊂ G for which H ∩K =
{1}. This implies that if χ = tr(ρ) and ψ = tr(τ), then

χ(S) =
∑

s∈S

χ(s)

=
∑

s∈H∩S

χ(s) +
∑

s∈S−H∩S

χ(s)

= χ(H ∩ S) + |S − H ∩ S|deg(χ)

= m
∑

j

tr(τj)(H ∩ S) + |S − H ∩ S|deg(χ)

=
1
N

deg(ρ)
deg(τ)

· N · ψ(H ∩ S) + |S − H ∩ S|deg(χ) by condition (3)

=
deg(ρ)
deg(τ)

· ψ(H ∩ S) + |S − H ∩ S|deg(χ).

Dividing by deg(χ) = deg(ρ) and using Equation (2.14) gives the result. �

Example 2.8.3. We consider next the ladder graph of 6 vertices L3, depicted
in Figure 2.13. The automorphism group G of L3 is the permutation group
with generators {(0, 2)(3, 5), (0, 3)(1, 4)(2, 5)}. Because G has only 4 elements,
it can’t be vertex transitive or edge transitive.
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The quotient L3/G is the connected graph with 2 vertices.

Example 2.8.4. We continue with the weighted Cayley graph Γ of G =
D6 in Example 2.6.4 above. The following Sage computation uses the Sage
algebraic graph theory module written for this book8. It must be loaded
before the following computations are possible.

Sage

sage: G = DihedralGroup(6); G
Dihedral group of order 12 as a permutation group
sage: G3 = G.sylow_subgroup(3)
sage: G3.order()
3
sage: A = [[alpha(x*y^(-1)) for x in G] for y in G]
sage: Gamma = Graph(matrix(A), format = "adjacency_matrix", weighted=True)
sage: Gamma.automorphism_group(edge_labels=True)
Permutation Group with generators [(3,10)(5,9), (2,11)(4,8),

(1,4)(6,11), (0,1)(2,3)(4,5)(6,7)(8,9)(10,11), (0,2,5,6,9,11)(1,3,4,7,8,10)]
sage: AutGammaD12a = Gamma.automorphism_group()
sage: AutGammaD12b = Gamma.automorphism_group(edge_labels=True)
sage: AutGammaD12b.order()
144
sage: AutGammaD12a.order()
1440
sage: G9 = AutGammaD12b.sylow_subgroup(3)
sage: G9.order()
9

Let G9 denote the Sylow subgroup of G. This group acts on the edge-
weighted graph Γ (in the sense of §2.6). The orbits of G9 on Γ are

0 = {0, 5, 9}, 1 = {1, 4, 8}, 2 = {2, 6, 11}, 3 = {3, 7, 10},

and the edges in the cycle graph Γ/G9 are (0, 2) (weight 2), (1, 3) (weight 2),
(1, 2) (weight 1), (0, 3) (weight 1). The orbits of G3 on Γ are

0 = {0}, 1 = {1, 3, 5}, 2 = {2, 4, 6}, 7 = {7},
8 = {8}, 9 = {9}, 10 = {10}, 11 = {11},

and the edges in Γ/G9 are as in Figure 2.14, where 0 corresponds to 0, 1
corresponds to 1, 2 corresponds to 2, 3 corresponds to 7, 4 corresponds to 8,
5 corresponds to 9, 6 corresponds to 10, and 7 corresponds to 11.

Example 2.8.5. Consider the Paley graph on 9 vertices, Γ, depicted in
Figure 1.12.

8This module is available from the github site for this book.

http://dx.doi.org/10.1007/978-3-319-68383-6_1
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Figure 2.14: The group quotient graph of Γ/G3.

The automorphism group G of Γ has order 72. The action of G on the
vertices of Γ is transitive. The action of G on the edges of Γ is also transitive.
Thus, the quotient graph Γ/G is the empty graph with one vertex.

The 2-Sylow subgroup G2 of G is order 8. The quotient graph Γ/G2 is
described as follows. Vertices of Γ:

0, 1, 2, a, a + 1, a + 2, 2a, 2a + 1, 2a + 2,

where a ∈ GF (9)−GF (3) is a root of the generating polynomial, x2 +2x+2.
The orbits under the G2-action:

0 = {0}, 1 = {1, 2, a + 1, 2a + 2}, a = {a, a + 2, 2a, 2a + 1}.

The quotient graph therefore has three vertices, 0, 1, and a, with edges

(0, 1), (1, a).

The quotient graph on 3 vertices, Γ/G2, is depicted in Figure 2.15.
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1

0

2

Figure 2.15: A quotient of a Paley graph created using Sage.

Definition 2.8.6. The Cartesian graph product of two graphs Γ1 = (V1, E1)
and Γ2 = (V2, E2) is a graph Γ3 = Γ1�Γ2 with the following properties:

• The vertex set of Γ3 is the Cartesian product V1 × V2.

• Two vertices (u1, u2) and (v1, v2) of Γ3 are connected by an edge if and
only if u1 = v1 and u2 is a neighbor of v2 in Γ2 or u2 = v2 and u1 is a
neighbor of v1 in Γ1.

Exercise 2.13. Let G denote the cyclic group of order 3, Γ1 denote the cycle
graph on 3 vertices and let Γ2 denote the cycle graph on 4 vertices. Take G to
act on Γ1 in the obvious way and to act on Γ2 trivially. Let Γ = Γ1�Γ2 denote
the graph product of them, depicted in Figure 2.16. Show that Γ/G ∼= Γ2.

(0,0)
(0,1)

(0,2)

(0,3)

(1,0)

(1,1)
(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

Figure 2.16: A graph product of two cycle graphs.

Exercise 2.14. Let G be a finite group, and let S be a subset of G such
that S = S−1 and 1 /∈ S. Let Γ1 denote the Cayley graph of (G,S), let Γ2

denote an arbitrary graph, and let Γ = Γ1�Γ2 denote the graph product of
them. Show that there is a natural action of G on Γ such that Γ/G ∼= Γ2.



2.8 GRAPHS OF GROUP QUOTIENTS 93

Example 2.8.7. Consider the symmetric group on {1, 2, 3}, G generated
by S = {(1, 2, 3), (1, 2), (1, 3, 2)}. The Cayley graph Γ2 of (G,S), depicted
in Figure 4.8, has automorphism group of order 12 (with G as a normal
subgroup). In particular, there is an action of G on Γ2.

Let Γ1 denote the cycle graph on 5 vertices and let Γ3 denote the product
graph Γ3 = Γ1�Γ2. This has an automorphism group of order 120, with the
automorphism group of Γ1 (a cyclic group of order 5) as a normal subgroup.
The following Sage code shows there is a copy of G in the automorphism
group of Γ3 such that Γ3/G ∼= Γ1.

Sage

sage: G = SymmetricGroup(3)
sage: S = G.gens()+[G.gens()[0]^(-1)]; S
[(1,2,3), (1,2), (1,3,2)]
sage: A = G.cayley_graph(generators=S,simple=True).adjacency_matrix()
sage: Gamma1 = Graph(A)
sage: Gamma1.show(layout="spring", dpi = 300)
Launched png viewer for Graphics object consisting of 16 graphics primitives
sage: AG1 = Gamma1.automorphism_group()
sage: AG1.cardinality()
12
sage: Gamma2 = graphs.CycleGraph(5)
sage: Gamma3 = Gamma1.cartesian_product(Gamma2)
sage: AG3 = Gamma3.automorphism_group()
sage: AG3.cardinality()
120
sage: AG33 = AG3.sylow_subgroup(3)
sage: AG33.cardinality()
3
sage: AG32 = AG3.sylow_subgroup(2)
sage: AG32.cardinality()
8
sage: G0 = AG3.subgroup([AG32.list()[2],AG33.list()[1]])
sage: G0.cardinality()
6
sage: G0.is_normal(AG3)
True
sage: G0.is_abelian()
False
sage: Gamma4 = quotient_graph(Gamma3, G0)
sage: Gamma4.is_circulant()
True
sage: Gamma4.is_connected()
True
sage: len(Gamma4.vertices())
5

Next we give a construction of a graph with a given graph quotient.
Let G be a finite group, and let S be a subset of G such that S = S−1

and 1 /∈ S. Let Γ1 denote the Cayley graph of (G,S), and let Γ2 denote an
arbitrary graph with a distinguished vertex v0. Let Γ3 = Γ1�Γ2 denote the
Cartesian graph product of Γ1 and Γ2, and let Γ be the result of deleting
from Γ3 all edges of the form ((g, v), (g, v0)) where v �= v0.

http://dx.doi.org/10.1007/978-3-319-68383-6_4
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Exercise 2.15. Show that there is a natural action of G on Γ such that
Γ/G ∼= Γ2, where Γ is as in the construction above.

2.8.1 Example of the Biggs–Smith graph

Consider the Biggs–Smith graph Γ, encountered in Chapter 5 on graph exam-
ples. It is a 3-regular graph with 102 vertices and 153 edges, having an auto-
morphism group G ∼= PSL(2, 17), of order 2448, which acts regularly on it.
Using Sage, it can be shown that there is an edge e0 of Γ such that the
stabilizer of the edge e0 is a subgroup G0 of order 16. The quotient graph
Γ0 = Γ/G0, shown in Figure 2.17, is a connected graph having 10 vertices
and 10 edges, which itself has an automorphism group of order 2.

Sage

sage: Gamma = graphs.BiggsSmithGraph()
sage: G = Gamma.automorphism_group(); G.order()
2448
sage: E = Gamma.edges(); len(E)
153
sage: V = Gamma.vertices(); len(V)
102
sage: Gamma.delete_edge(0,1)
sage: E = Gamma.edges(); len(E)
152
sage: Gamma.add_edge((0,1), label="label")
sage: E = Gamma.edges(); len(E)
153
sage: G0 = Gamma.automorphism_group(edge_labels=True); G0.order()
16

The stabilizer of the vertex 0 is a subgroup G1 of order 24. The quotient
graph Γ1 = Γ/G1, shown in Figure 2.18, is a tree having 8 vertices and 7
edges, which itself has an automorphism group of order 2.

Sage

sage: Gamma = graphs.BiggsSmithGraph()
sage: G = Gamma.automorphism_group(); G.order()
2448
sage: G1 = Gamma.automorphism_group(partition=[[0],range(1,102)])
sage: G1.order()
24

http://dx.doi.org/10.1007/978-3-319-68383-6_5
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Figure 2.17: The group quotient graph of Γ/G0.

The orbits of G1 acting on Γ are:

{0}, {7, 41, 10, 44, 50, 88, 94, 31}, {16, 1, 101},
{17, 2, 100, 25, 36, 15}, {64, 65, 67, 4, 98, 70, 71, 73, 76, 13, 77,

82, 19, 20, 23, 27, 28, 34, 38, 54, 55, 84, 61, 62},
{66, 35, 37, 72, 83, 14, 99, 18, 3, 24, 26, 63},

{68, 5, 97, 74, 75, 12, 78, 81, 21, 22, 90, 91, 86, 29, 69,
33, 39, 46, 47, 53, 56, 57, 60, 85}, {96, 6, 8, 9, 11, 79, 80, 87, 89, 92,

93, 30, 95, 32, 40, 42, 43, 45, 48, 49, 51, 52, 58, 59}.

1 4 6 2 3 0 5 7

Figure 2.18: The group quotient graph of Γ/G1.



http://www.springer.com/978-3-319-68381-2
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