
Hybrid Heuristic for the Clustered Orienteering
Problem

Ala-Eddine Yahiaoui, Aziz Moukrim and Mehdi Serairi

Sorbonne universités, Université de technologie de Compiègne, CNRS
Heudiasyc UMR 7253, CS 60 319, 60 203 Compiègne cedex

{ala-eddine.yahiaoui, aziz.moukrim, mehdi.serairi}@hds.utc.fr

Abstract. This paper addresses the Clustered Orienteering Problem, a
recent variant of the Orienteering Problem. In this variant, customers are
grouped into subsets called clusters. A profit is assigned to each cluster
and is collected only if all customers belonging to the cluster are served.
The objective is to visit the customers of a subset of clusters in order to
maximize the total collected profit with respect to a travel time limit. Our
solution method is based on the order first-cluster second approach. It
incorporates a split procedure that converts a giant tour into an optimal
solution. Experiments conducted on benchmark instances show that our
algorithm outperforms the existing methods in the literature. Actually,
we have found the best known solution for 916 instances from 924 with
strict improvement of 82 instances.

Keywords: Clustered Orienteering Problem · Adaptive Large Neigh-
borhood Search · Branch and Bound · Knapsack Problem

1 Introduction

The Orienteering Problem (OP) is a well studied variant of the Traveling Sales-
man Problem (TSP). In the OP, a profit is associated with every customer to
represent the value of service, and the aim is to select a subset of customers to
visit in order to maximize the total collected profit without exceeding a prede-
fined travel time limit.

Recently, a new generalization of the OP was introduced by Angelelli et al.
[1] called the Clustered Orienteering Problem (COP). In this problem, customers
are grouped into subsets called clusters. Unlike the OP, profits are associated
with the clusters instead of the customers. The profit of a given cluster is gained
only if all of its customers are served.

A COP instance, that we denote by ICOP , is modeled as a complete undi-
rected graph G = (V,E) where V = {1, . . . , n} ∪ {0} is the set of vertices repre-
senting customers and the depot, and E is the set of edges. A cost c(e) is assigned
to each edge e ∈ E which represents the travel time needed to cross e. We assume
that travel times satisfy the triangle inequality. A cover S = {S1, S2, . . . , SK} is
a set of K clusters where ∪K

i=1Si = V \{0}. Each customer can belong to more
than one cluster. A profit Pi is associated with each cluster Si which is collected

. Split

© Springer International Publishing AG 2017
et al. (Eds.), ICCL 2017, LNCS 10572, pp. 19–33, 2017.

https://doi.org/10.1007/978-3-319-68496-3_2
T. Bektaş

only if customers belonging to cluster Si are all served. One vehicle is available to
serve customers with a maximum travel time Tmax. It is noteworthy to mention
that there is no requirement on the order of visits, i.e. a vehicle can alternate
the visits between customers belonging to different clusters.

Fig.1 shows a feasible COP solution for an instance where |S| = 3, |V | = 9.
Customers with two circles means that they belong to two clusters. In this so-
lution, only the customers of cluster S2 and cluster S3 are served.

Fig. 1: Example of COP solution

The interest in the COP arises in many real-life applications that can be
modeled as variants or generalizations [1]. One of the applications of the COP
is when customers are grouped into clusters according to their geographical
locations, and a profit is gained only if all customers belonging to a particular
area are served. Another example is in the distribution of mass products, where
customers are supply chains that contain many retailers. In the case where a
contract is made between a carrier and a supply chain, the carrier should serve
all the retailers of that supply chain.

Angelelli et al. [1] proposed an exact and a heuristic method to solve the COP.
The exact method is a branch and cut algorithm based on the OP formulation
proposed in Fischetti et al. [4]. Angelelli et al. [1] solved a linear relaxation of the
model without subtour elimination constraints. These constraints are added to
the model once violated. The branch and cut algorithm is able to solve optimally
small and medium-sized instances. To tackle large-scale instances, Angelelli et al.
[1] proposed a heuristic method based on tabu search (TS). TS used an ordered
set of insertion and removal moves. Each time a cluster is inserted, TS used a
TSP heuristic called Lin-Kernighan heuristic [5] to check the move feasibility.

In this paper, we propose a hybrid heuristic scheme based on the order first-
cluster second approach [8] to solve the COP. The first component is a meta-
heuristic scheme called Adaptive Large Neighborhood Search (ALNS) heuristic,
whose aim is to generate giant tours with good quality. The giant tours are then
provided to the second component which is a split procedure in order to extract
solutions with better profit. The split is based on a branch and bound algorithm
that incorporates a knapsack-based upper bound to fathom inferior nodes.

The remainder of this paper is as follows. The global scheme of the proposed
heuristic is introduced in Section 2. The ALNS heuristic is detailed in Section 3.

20 A-E. Yahiaoui et al.

sented in Section 5. Finally, we conclude by some remarks in Section 6.

2 Heuristic global scheme

In the last decade, numerous heuristics based on the order first-cluster second
approach have been proposed for the VRP and its variants [8]. This approach
consists of two phases: the ordering phase in which a giant tour covering all
customers is constructed. In the second phase, a split procedure is used to extract
the optimal solution while respecting the predefined order of customers. The first
split method was introduced by Beasley in [2] for the CVRP. Then, this method
was incorporated within a genetic algorithm by Prins in [7].

For selective VRP, in most cases it is impossible to serve all the customers
due to the travel time limit. Thus, the objective of a split procedure is to se-
lect a subset of customers that satisfies the objective function. Vidal et al. [10]
and Vargas et al. [9] studied some selective problems like the Team Orienteer-
ing Problem, Capacitated Profitable Tour Problem, Covering Tour Problem,
etc. while considering the giant tour. Vidal et al. [10] modeled the problem as
a resource constrained shortest path. To solve the problem, they proposed an
efficient split procedure based on dynamic programming in order to maximize
the total collected profit. Vargas et al. [9] used also in their heuristic a dynamic
programming based split to minimize the total travel time. For more detailed
literature on the order first-cluster second approach, we reffer the reader to [8].

Our solution method adopts also the order first-cluster second approach. Al-
gorithm 1 describes the global scheme of our heuristic. It is composed of two
main components: an ALNS metaheuristic and a split procedure. The ALNS
generates solutions with good quality in a short time (line 4). From a given
solution, a giant tour is constructed by randomly inserting the unrouted cus-
tomers (line 5). Then, the giant tour is given to the split procedure in order to
extract a solution with better profit (line 6). We use in Algorithm 1 Eval(X)
to denote the profit of a solution X. This process is iterated until a stop con-
dition is reached. In our algorithm, we consider two conditions: the first one is
the maximum number of iterations which is fixed at n, where n is the number
of customers. The second stop condition is the maximum number of iterations
without improvement, which is fixed at the average number of customers per
cluster.

3 Adaptive large neighborhood search

The main feature of the ALNS is the use of multiple neighborhoods in parallel
during the search process [6]. These different neighborhoods are identified by a
set of competing removal and insertion operator. An operator is defined as a fast
heuristic that explores a large part of the neighborhood in a polynomial time. In
each iteration, the algorithm selects a removal and an insertion operator based

Hybrid Heuristic for the Clustered Orienteering Problem 21

Our split algorithm is presented in Section 4. Computational results are pre-

Algorithm 1: Global scheme

Input: Solution X
Output: Solution Xbest

1 Xbest ← X
2 LB ← Eval(X)
3 repeat
4 ALNS(X)(see Section 3)
5 Construct a giant tour GT from X
6 X ← SPLIT (GT,LB)(see Section 4)
7 if (Eval(X) > Eval(Xbest)) then
8 Xbest ← X
9 LB ← Eval(X)

10 until (stop condition is reached)
11 return Xbest

on statistics gathered during the search process. This characteristic improves the
flexibility of the heuristic to tackle a wide variety of instances.

Our ALNS scheme includes one removal operator and a set of three insertion
operators. We use a local search operator called 2-opt to improve the travel time
of the current solution. This operator is called at each iteration between the
removal and the insertion operator.

Random removal operator

This operator selects a random number of clusters between 1 and dmax and
removes their customers from the current solution. Note that customers which
are shared with other clusters in the solution are not removed. The worst-case
complexity of this operator is O(n ∗K).

The parameter dmax is a diversification/intensification parameter. If it is
small, the heuristic tries to intensify the search in a limited neighborhood. On
the other hand, if dmax is large, it helps the heuristic to modify a large part of
the solution in order to escape from local optima. In our heuristic, dmax is set
to initial value equal to 3, then it is increased by 1 after each iteration without
improvement. Note that dmax must not exceed the current number of routed
clusters. Once the current solution is improved, dmax is set to 3.

Insertion operators

Insertion operators are incorporated in a global scheme that inserts unrouted
clusters one by one in the current solution. A cluster is unrouted if and only if
at least one of its customers is unrouted. At each iteration, an unrouted cluster
is randomly selected, then its unrouted customers are identified (probably some
of its customers have been already inserted) and given to one of the insertion
operators. The process is iterated until either no further insertions are possible
or all the clusters are inserted.

22 A-E. Yahiaoui et al.

Best insertion operator (BIO): This operator evaluates all feasible inser-
tions for each unrouted customer. Then the best insertion with the smallest
travel time gap is selected. The process is iterated until either all customers are
inserted or the solution cannot accept other customers. The complexity of this
operator is O(n3).

Insertion with regret Operator (IRO): IRO evaluates all feasible insertions
for each unrouted customer. Then, it calculates the gap in terms of travel time
between the two best insertions of each customer. We call this gap as regret. Then
it selects the customer with the highest regret and inserts it in the solution. The
process is iterated until either all customers are inserted or no customer can be
added to the solution. The complexity of this operator is O(n3).

Random Best Insertion Operator (RBIO): RBIO randomly selects one
unrouted customer then evaluates all of its feasible insertions that respect the
travel time limit. The best insertion is then selected. The process is iterated until
either all customers are inserted or no customer can be added to the solution.
The complexity of this operator is O(n2).

Adaptive weight adjustment

An important aspect of the ALNS is the dynamic weight adjustment carried out
during the search process. Weights are associated with insertion operators and
are initialized using the same value. Then, these weights are dynamically changed
during the search progress according to the performance of each operator. The
aim is to give larger weights to operators which have contributed better to the
solution process. The criteria used to measure how much an operator contributes
during the search process is based on the quality of the solution found after each
iteration:

– if it is a new best solution, it gives a large weight to the operator.
– if it is better than the current solution, it gives a medium weight to the

operator.
– if it is worse than the current solution, it gives a small weight.

For more details about the update procedure, the reader is referred to Pisinger
and Ropke [6].

4 Split procedure

We propose in the following a split procedure based on a branch and bound
scheme. The aim of the split is to find the subset of clusters that maximizes the
collected profit while respecting the order of customers in π and the travel time
limit. Before detailing our split procedure, let us first introduce a preliminary
result. This result is used afterwards in the upper bound.

Hybrid Heuristic for the Clustered Orienteering Problem 23

Algorithm 2: ALNS

Input: Solution X
Output: Solution Xbest

1 dmax ← 1 + rand()%3
2 Xbest ← X
3 repeat
4 Remove dmax clusters from X
5 Apply 2-opt on X
6 Select an insertion operator i
7 Apply i on X
8 if (Eval(X) > Eval(Xbest)) then
9 Xbest ← X

10 dmax ← 1 + rand()%3

11 else dmax ← dmax + 1
12

13 Update weights using the adaptive weight adjustment procedure

14 until (stop condition is reached)
15 return Xbest

4.1 Preliminary result

In this subsection, we present a relaxation scheme for the COP based on the OP.

Definition 1. Given a COP instance ICOP . We define an OP associated in-
stance IOP composed of the same set of vertices V = {0, 1, . . . , n} and the
same set of edges E. Profits of customers in IOP are computed as follows:

ρj =
∑

i:j∈Si

Pi

|Si| . In fact, the ratio
Pi

|Si| could be interpreted as the contribu-

tion of the customer j to the cluster Si. Finally, the maximal travel time is
Tmax.

Proposition 1. For any COP instance ICOP , the optimal objective value of the
associated OP instance, IOP , represents an upper bound on the profit of ICOP .

Proof. We prove in the following that the optimal solution of a given ICOP is
a feasible solution for IOP with a profit lower than or equal to the optimal
objective value of the IOP .

Assume that S∗ is the set of clusters of the optimal solution of ICOP with
a total collected profit Pcop(S

∗) =
∑

i:Si∈S∗ Pi = P ∗
cop(ICOP). Let V ∗ be the

set of customers belonging to S∗. It is obvious that this optimal solution is a
feasible solution for the IOP and its profit is Pop(V

∗) =
∑

j∈V ∗ ρj . We denote

24 A-E. Yahiaoui et al.

by P ∗
op(IOP) the optimal objective value for IOP .

Pop(V
∗) =

∑

j∈V ∗
ρj =

∑

j∈V ∗

∑

i:j∈Si

Pi

|Si|

=
∑

j∈V ∗

∑

i:j∈Si andSi∈S∗

Pi

|Si| +
∑

j∈V ∗

∑

i:j∈Si andSi /∈S∗

Pi

|Si|

= Pcop(S
∗) +

∑

j∈V ∗

∑

i:j∈Si andSi /∈S∗

Pi

|Si|

= P ∗
cop(ICOP) +

∑

j∈V ∗

∑

i:j∈Si andSi /∈S∗

Pi

|Si| (1)

We conclude that an optimal solution for ICOP is feasible for the IOP . Further-
more, P ∗

cop(ICOP) = Pcop(S
∗) ≤ Pop(V

∗) ≤ P ∗
op(IOP). ��

Let us consider now a giant tour π = (π1, π2, ..., πn) that covers all the
customers of ICOP . The giant tour π imposes an order of visit among all the
customers of ICOP . This can be seen as a derived instance I ′COP , in which arcs
that do not respect this ordering are not considered. The following corollary
holds.

Corollary 1. Given a COP instance ICOP , its associated instance IOP and a
giant tour π. The optimal objective value of IOP while considering π represents
an upper bound on the optimal objective value of ICOP w.r.t. to π.

4.2 Principle of the split

The goal is to calculate a partial sequence σ that visits the customers of a subset
of clusters in order to maximize the total collected profit while preserving the
original order of customers in π. To that end, the branch and bound algorithm
explores a search tree generated according to decisions made on clusters.

In the root node, an arbitrary order of branching is established among clus-
ters. In each node of the search tree, the possible decision that can be made
regarding a given cluster is whether it is selected or rejected. This leads to a
binary search tree with at most 2K+1 − 1 nodes.

Several components are embedded within the branch and bound algorithm
in order to achieve high performance. These components include in addition
to the branching scheme, a suitable node selection strategy, an upper bound
to fathom inferior nodes, a feasibility test to discard unfeasible nodes. In what
follows, we describe the different components implemented in our branch and
bound algorithm.

Before proceeding further, we distinguish in each node η three subsets of
clusters: the selected clusters denoted by Sη

s , the removed clusters denoted by
Sη
r and the potential clusters denoted by Sη

p representing the remainder set of
clusters on which decision has not been made yet.

Hybrid Heuristic for the Clustered Orienteering Problem 25

4.3 Knapsack-based upper bound

Vargas et al. [9] proposed a dynamic programming split procedure that incor-
porates a lower bound based on the Fractional Knapsack Problem (FKSP). We
propose in this paper an upper bound that is also based on the FKSP. We make
use of the cluster constraint in order to improve this upper bound.

Given a giant tour π and a node η in the branch and bound tree. We consider
the Knapsack instance IFKSP in which we associate an item to each potential
customer. A customer is considered as potential if it belongs at least to one of
the potential clusters Sη

p and does not belong to any of the selected clusters Sη
s .

The profit of a given item/potential customer πj is calculated using Def-
inition 1. Note that to calculate these profits in a node η, we consider only
contributions related to potential clusters Sη

p and we discard those related to
removed clusters Sη

r . Consequently, in a given node η and for a given potential

customer πj , we have: ρηπj
=

∑
i:πj∈Si and Si∈Sη

p

Pi

|Sη
i |
, where |Sη

i | is the number

of potential customers belonging to cluster Si in the node η.
The weight wη

πj
of the item/potential customer πj in a given node η is mod-

eled by the minimal insertion cost. Assume that Iηj is the set of all valid in-
sertion positions composed of a predecessor and a successor of πj in π, i.e.
Iηj = {(πl, πr)|l < j < r, πl, πr ∈ Sη

s ∪ Sη
p}. Thus the minimal insertion cost is

calculated as wη
πj

= min{c(πl, πj) + c(πj , πr) − c(πl, πr)|(πl, πr) ∈ Iηj }, where
c(πl, πr) is the travel time between customers πl and πr.

To model the knapsack size W η, we proceed as follows. We consider the par-
tial sequence that contains the customers of the selected clusters Sη

s . AssumeD is
the travel time needed to go from the depot, visit all these customers and return
back to the depot. W η is modeled as the residual distance, i.e. W η = Tmax −D.

Proposition 2. Given a giant tour π and a node η in the branch and bound
tree, the optimal objective value of the IFKSP previously defined represents an
upper bound on the profit of the ICOP while considering π and η.

Proof. Given a giant tour π covering all the customers of ICOP and a node η.
We construct FKSP instance IFKSP in which, each item/ potential customer
πj has a weight wη

j and a profit ρηπj
. According to Corollary 1, an upper bound

on IOP is also an upper bound on the ICOP while considering π and η. In the
following, we prove that the optimal solution of IFKSP is an upper bound on
IOP while considering π and η.

Assume ση is the optimal partial sequence in the node η and δη(πj) is the
insertion cost of the customer πj in ση. According to the definition of the minimal
cost insertion, we observe that wη

j ≤ δη(πj) for any potential customer πj in Sη
p .

Consequently, the optimal solution for the IFKSP is an upper bound on the
profit of IOP while considering π and η. ��

Each customer can have n2 possible insertion positions. In the following, we
propose to reduce this number. Assume that πj is a potential customer and
(πl, πr) ∈ Iηj is a possible insertion position. This couple of customers must
satisfy the following rules.

26 A-E. Yahiaoui et al.

– The first rule is that (πl, πr) must not skip any visited customer, i.e. (πl, πr)
is considered only if:

� ∃j′/(l < j′ < j or j < j′ < r) and πj′ ∈ Sη
s (2)

– The second rule is that for any skipped customer, its cluster set must not
include the cluster set of any of the involved customers in the insertion (πl, πr

or πj). Let us define Ω(i) as the set of clusters which customer i is included
in, i.e. (πl, πr) is considered only if:

� ∃j′/(l < j′ < j or j < j′ < r)

and (Ω(πl) ⊆ Ω(πj′) or Ω(πr) ⊆ Ω(πj′) or Ω(πj) ⊆ Ω(πj′)) (3)

For computational efficiency, the best insertion for each customer is pre-
computed beforehand and saved. Each time a cluster is selected or rejected, this
list of possible insertions is updated.

4.4 Feasibility check

Feasibility check (FC) is done every time a potential cluster is selected. This
is done by computing the length of the partial sequence that contains only the
customers of the selected clusters while considering the given order of the giant
tour. If the length of this partial sequence exceeds Tmax, and due to the triangle
inequality, node η can be pruned. The complexity of this test is O(n).

4.5 Local search procedure

We propose to improve the split procedure by integrating a Local Search heuristic
(LS). The LS uses some relevant information from the enumeration tree in order
to explore efficiently the search space alongside with the branch and bound. The
solution value obtained by LS is used also as a lower bound in the branch and
bound.

Each time the LS is called in a given node η, it considers only the selected
and the potential sets of clusters Sη

s ∪ Sη
p . The LS consists of two phases: a

destruction phase which is used as a perturbation technique. It removes a small
number of clusters from the current solution. This number is chosen randomly
between 1 and 3.

The second phase is a constructive heuristic which tries to insert clusters
one by one until either the solution cannot accept additional clusters or there is
no clusters left. It randomly selects in each iteration one unrouted cluster and
tries to insert its customers in the current solution. To check the feasibility of
a cluster insertion, this procedure calls an Iterative Destructive Constructive
Heuristic (IDCH) proposed in [3]. If IDCH fails to insert the customers, the
Lin-Kernighan TSP heuristic [5] is used (see Algorithm 3).

Hybrid Heuristic for the Clustered Orienteering Problem 27

Algorithm 3: Iterative insertion

Input: Solution X
Output: Solution X

1 Δ ← unrouted clusters of X
2 insert ← true
3 while (Δ �= ∅ and insert = true) do
4 insert ← false
5 foreach (k ∈ Δ) do
6 if (IDCH(X, k) = true) then
7 Δ ← Δ\{k}
8 insert ← true
9 break

10 else if (LinKernighan(X, k) = true) then
11 Δ ← Δ\{k}
12 insert ← true
13 break

14 Δ ← Δ\{k}
15 return X

4.6 Beam search

When the number of clusters becomes large, computational time dramatically
increases. To cope with this problem, we propose to limit the number of nodes
generated during the search process. The main idea is to explore the search tree
using a breath-first search (BFS) and impose a limit on the number of nodes
expanded in each level of the tree. Consequently, this scheme does not guarantee
that the solution found is optimal. It is important to select in each level the
most promising nodes to be expanded, so that a good-quality solution could be
found. To this end, we use the knapsack upper bound described in Section (4.3)
as a selection criteria. Another important aspect is the number of nodes selected
at each level. This parameter was fixed after experimentation at K nodes per
level.

Algorithm 4 describes the whole split procedure. We use in Algorithm 4 two
ordered lists, one is the active list, and the second is temporary. The lower bound
LB is initialized by the best objective value obtained by the global heuristic.

5 Computational results

Our heuristic is coded in C++ using the Standard Template Library (STL) for
data structures. Experiments were conducted on a computer with Intel Xeon
X7542 CPU@2.66 GHz and a Linux OS 64 bits.

In order to verify the efficiency of our approach, we used benchmark instances
designed in [1]. The benchmark is derived from 57 instances of TSPLIB with the
number of vertices ranging from 42 to 532. For each base instance of TSPLIB, a

28 A-E. Yahiaoui et al.

Algorithm 4: SPLIT

Input: giant tour GT , Lower bound LB
Output: best solution Xbest

Data: Ordered lists of size K: actList, tmpList
1 Initialization: ordered list of the clusters Order used as branching strategy,

current level L ← 0, current node e ← 0, actList ← e, tmpList ← ∅
2 while (actList �= ∅ and L < K) do
3 Select the best node e in actList based on Knapsack UB (See Section 4.3)
4 Expand e to two nodes e1 and e2 based on Order(L) (See Section 4.2)
5 foreach (e ∈ {e1, e2}) do
6 if (e is infeasible) then continue (See Section 4.4)
7 if (Knapsack UB of (e) ≤ LB) then continue (See Section 4.3)
8 tmpList ← tmpList ∪ {e}
9 Extract solution X from e

10 Apply Local Search on X (See Section 4.5)
11 if (Eval(X) > Eval(Xbest)) then
12 Xbest ← X
13 if (Eval(X) > LB) then LB ← Eval(X)

14 if (actList = ∅) then
15 actList ← tmpList
16 tmpList ← ∅
17 L++

18 Select the best node e in actList based on Knapsack UB (See Section 4.3)
19 Extract solution X from e
20 if (Eval(X) > Eval(Xbest)) then Xbest ← X
21 return Xbest

set of derived instances for the COP is constructed according to different values
assigned to the following parameters:

1. Number of clusters: It varies between the values 10, 15, 20 and 25.

2. Profits of clusters: Two models are used, the first is deterministic while the
second is random.

3. Tmax: Given TSP ∗ the optimal value of TSP over all vertices of the base
instance, Tmax is set to the values 1

2TSP
∗ and 3

4TSP
∗.

As a result, 16 different instances are derived from each TSP instance. Further-
more, 12 other instances are added to the biggest class with 532 vertices. These
instances have a larger number of clusters (50, 75 and 100). Thus, the total
number of instances is 924. The instances can be found at the following URL:
http://or-brescia.unibs.it/. For detailed description of instance generation, the
reader can refer to Angelelli et al. [1].

Hybrid Heuristic for the Clustered Orienteering Problem 29

5.1 Parameter setting

The execution of the LS procedure inside the branch and bound algorithm seems
to be expensive in terms of computational time. In order to reach the best per-
formance of our algorithm in terms of solution quality and computational time,
we propose to tune the number of calls of the LS procedure inside the branch
and bound algorithm. We call this parameter NLS . In our experiments, NLS

takes different values of k × Cavg where (k = 1, 10, 20, 30, 40). Cavg represents
the average number of customers per cluster. We carried out these experiments
on a representative sample composed of 22 instances. These instances are cho-
sen between the most difficult ones for which high values of NLS are needed to
obtain solutions with good quality.

To measure the performance of each configuration, we used the relative gap
to the best solution found in the literature, denoted by RPE and the average
CPU time. To calculate the RPE, we recorded the Best Known Solution for each
instance (Zbest), and also we recorded the maximal score (Zmax) realized by our
heuristic. The relative percentage error RPE of a given instance using (4).

RPE =
Zbest − Zmax

Zbest
× 100 (4)

According to Fig. 2, the value 20× Cavg gives the best compromise in terms of
RPE and CPU time. In fact, the RPE tends to stabilize at a value near to zero
when the NLS exceeds 20×Cavg, whereas the CPU time continues to increase.
As a result, we set NLS at 20× Cavg.g

Fig. 2: Performance of our heuristic with different values of NLS

30 A-E. Yahiaoui et al.

5.2 Performance comparison

Results achieved by our algorithm are compared to the different versions of tabu
heuristics proposed in [1]. Three versions of tabu were presented: COP-TABU-
Basic, COP-TABU-Multistart and COP-TABU-Reactive.

Table 1. shows the results organized per class of instances. As described
earlier, each class is composed of 16 instances, except the last one (att532), which
is composed of 28 instances. We run our algorithm 10 times per instance as in
[1]. For each method, we provide the number of instances per class for which the
Best Known Solution was found (BKS). We report also the relative percentage
error per class (CRPE) which is the average RPE per class of instances. The
average CPU time (CPU) for each class is compared to the best results of each
heuristic.

The results show clearly that our algorithm outperforms existing methods in
the literature. It succeeds to reduce the CRPE to less than 0.011 against 1.498
for COP-TABU-Basic, 0.841 for COP-TABU-Multistart and 0.327 for COP-
TABU-Reactive. Our heuristic found up to 916 BKS against 656, 720 and 816
for the three tabu versions. Furthermore, new BKS were found for 82 instances.
In terms of CPU time, our heuristic consumes lower computational time than the
three tabu versions. In fact, our heuristic has an average CPU time of 136.33s,
against 153.71s for COP-TABU-Basic, 174.37s for COP-TABU-Multistart and
223.88s for COP-TABU-Reactive.

Table 1: Performance of our heuristic

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Our Contribution

BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU

dantzig42 16 0 13.27 16 0 17.77 16 0 38.95 16 0 0.55
swiss42 13 0.719 15.38 14 0.281 23.09 15 0.013 31.93 16 0 0.56
att48 16 0 18.24 16 0 26.08 15 0.062 38.76 16 0 1.51
gr48 11 5.709 13.74 12 3.184 26.02 16 0 37.96 16 0 0.78
hk48 15 1.250 20.58 16 0 30.76 15 0.315 37.68 16 0 1.05
eil51 11 2.181 15.92 11 2.181 24.46 15 0.242 36.83 14 0.228 1.11
berlin52 15 0.548 38.88 15 0.120 53.39 15 0.120 60.41 16 0 2.42
brazil58 13 0.573 58.99 14 0.115 75.72 16 0 83.97 16 0 4.51
st70 11 1.303 23.18 11 1.012 38.95 12 0.639 48.01 16 0 2.44
eil76 9 6.407 24.50 10 4.050 33.74 15 0.125 45.84 16 0 2.41
pr76 11 1.014 21.40 13 0.105 30.88 15 0.009 54.76 16 0 4.79
gr96 12 0.612 44.07 13 0.116 51.35 14 0.025 68.19 16 0 5.49
rat99 12 1.752 32.99 12 0.127 52.03 15 0.034 63.65 15 0.079 7.03
kroA100 11 6.013 44.65 14 0.123 50.98 14 0.429 52.62 16 0 3.92
kroB100 15 0.714 47.96 16 0 58.94 16 0 62.20 16 0 3.87
kroC100 10 3.687 37.55 15 0.269 48.74 14 0.452 59.42 16 0 3.73
kroD100 10 1.879 36.85 11 1.247 56.70 13 0.520 69.57 16 0 4.94
kroE100 12 2.889 46.59 12 1.374 48.83 14 0.270 62.77 16 0 3.69
rd100 12 1.431 36.51 13 1.030 47.81 15 0.568 82.29 16 0 4.89
eil101 7 2.495 32.97 12 0.729 44.62 16 0 79 16 0 5.87
lin105 11 1.393 36.06 13 0.461 52.48 14 0.348 105.21 16 0 11.42
pr107 13 6.350 72.19 15 0.203 86.35 15 0.160 135.39 16 0 36.10
gr120 10 2.917 50.87 11 2.856 66.36 14 0.185 105.25 16 0 10.43
pr124 14 1.180 80.33 16 0 88.26 16 0 150.15 16 0 18.7
bier127 12 0.873 63.05 14 0.108 94.57 15 0.005 149.64 16 0 14.65
ch130 7 4.016 49.79 9 2.949 64.58 12 1.376 106.57 16 0 10.91
pr136 12 1.588 59.86 14 0.949 71.37 15 0.694 121.5 16 0 14.83
gr137 15 0.156 82.07 16 0 104.45 16 0 181.54 16 0 14.25
pr144 16 0 168.25 16 0 175.28 16 0 247.29 16 0 29.07

continued on next page

Hybrid Heuristic for the Clustered Orienteering Problem 31

Table 1 – continued from previous page

Class
COP-TABU-Basic COP-TABU-Multistart COP-TABU-Reactive Our Contribution

BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU BKS CRPE CPU

ch150 8 2.684 34.19 8 2.543 53.97 14 0.554 101.37 16 0 13.87
kroA150 9 1.002 36.84 13 0.228 50.6 14 0.074 102.11 16 0 13.13
kroB150 8 2.456 40.06 10 2.127 56.69 14 0.621 107.93 16 0 12.31
pr152 15 0.545 120.08 16 0 164.81 16 0 248.1 16 0 26.30
u159 6 3.300 113.36 9 2.373 125.51 8 1.447 184.68 16 0 48.45
si175 16 0 47.69 16 0 63.36 16 0 126.80 16 0 227.71
brg180 12 0.656 54.29 13 0.578 72.18 15 0.091 127.74 16 0 166.41
rat195 12 0.531 68.18 10 0.209 78.52 14 0.401 172 16 0 48.04
d198 15 0.062 172.56 16 0 217.29 16 0 368.98 16 0 40.15
kroA200 11 1.130 55.09 12 1.093 76.17 14 1.052 139.43 15 0.035 30.45
kroB200 8 2.610 71.45 10 1.978 87.73 13 0.129 142.43 16 0 29.4
gr202 11 1.256 88.17 12 1.001 121.27 16 0 236.24 16 0 56.19
ts225 12 0.259 162.94 12 0.158 189.13 15 0.019 234.81 16 0 65.60
tsp225 9 1.583 87.78 9 0.495 102.99 11 0.142 180.26 16 0 64.19
pr226 12 0.872 244.84 12 0.787 268.33 15 0.042 331.10 16 0 84.61
gr229 15 0.023 109.99 15 0.023 121.07 15 0.023 170.85 16 0 34.08
gil262 7 8.107 57.09 6 4.296 84.20 10 2.441 135.48 15 0.032 70.85
pr264 11 4.230 151.96 10 4.243 208.51 14 0.323 304.70 16 0 100.79
a280 11 0.159 99.98 12 0.156 150.54 10 0.255 191.39 15 0.003 249.43
pr299 10 1.097 105.14 10 1.089 125.98 12 0.614 205.23 16 0 221.36
lin318 8 1.009 247.01 9 0.870 260.81 11 0.492 311.25 16 0 309.03
rd400 10 2.014 100.44 11 1.435 147.13 12 1.413 203.08 16 0 322.72
fl417 11 1.055 518.97 12 0.397 577.53 13 0.079 708.57 16 0 362.65
gr431 12 0.788 236.75 15 0.009 252.35 16 0 280.53 16 0 251.45
pr439 11 0.685 180.16 13 0.074 221.23 14 0.058 324.17 16 0 316.19
pcb442 11 0.390 151.28 11 0.610 199.82 13 0.593 274.18 16 0 499.62
d493 7 1.157 418.35 9 1.208 419.66 12 1.051 515.84 16 0 638.77
att532 16 3.218 3815.65 19 2.684 3927.68 24 1.769 4082.2 26 0.275 3343.6
Total 656 1.498 153.719 720 0.841 174.37 816 0.327 223.88 916 0.011 136.338

6 Conclusion and future work

In this paper, we proposed a hybrid heuristic for the Clustered Orienteering
Problem. This heuristic is composed of a split procedure that evaluates efficiently
giant tours and an Adaptive Large Neighborhood Search heuristic. The split
procedure is based on a branch and bound scheme, in which an efficient upper
bound based on the Knapsack Problem is used. A Local Search procedure is
also incorporated inside the split procedure. The LS is applied each time on a
subset of clusters in order to find better combination of clusters quickly. The
computational results show clearly the efficiency of our method compared to the
existing heuristic methods. Many improvements have been achieved as well as
new Best Known Solutions.

As future work, our aim is to propose different extensions for the COP,
including the case of multiple vehicles. Also, additional constraints like time
windows or vehicle capacity should be considered.

32 A-E. Yahiaoui et al.

Acknowledgements

The authors would like to thank the Hauts-de-France region and the European
Regional Development Fund (ERDF) 2014/2020 for the funding of this work.

This work was carried out in the framework of ANR project TCDU (Collabora-
tive Transportation in Urban Distribution ANR-14- CE22-0017) and of Labex
MS2T funded through the program ”Investments for the Future” managed by
the National Agency for Research (Reference ANR-11-IDEX-0004-02).

References

1. Enrico Angelelli, Claudia Archetti, and Michele Vindigni. The clustered orienteer-
ing problem. European Journal of Operational Research, 238(2):404–414, 2014.

2. John E Beasley. Route first-cluster second methods for vehicle routing. Omega,
11(4):403–408, 1983.

3. Hermann Bouly, Duc-Cuong Dang, and Aziz Moukrim. A memetic algorithm for
the team orienteering problem. 4OR, 8(1):49–70, 2010.

4. Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving the ori-
enteering problem through branch-and-cut. INFORMS Journal on Computing,
10(2):133–148, 1998.

5. Shen Lin and Brian Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516, 1973.

6. David Pisinger and Stefan Ropke. Large neighborhood search. In Handbook of
metaheuristics, pages 399–419. Springer, 2010.

7. Christian Prins. A simple and effective evolutionary algorithm for the vehicle
routing problem. Computers & Operations Research, 31(12):1985–2002, 2004.

8. Christian Prins, Philippe Lacomme, and Caroline Prodhon. Order-first split-second
methods for vehicle routing problems: A review. Transportation Research Part C:
Emerging Technologies, 40:179–200, 2014.

9. Leticia Vargas, Nicolas Jozefowiez, and Sandra Ulrich Ngueveu. A dynamic pro-
gramming operator for tour location problems applied to the covering tour problem.
Journal of Heuristics, 23(1):53–80, 2017.

10. Thibaut Vidal, Nelson Maculan, Luiz Satoru Ochi, and Puca Huachi Vaz Penna.
Large neighborhoods with implicit customer selection for vehicle routing problems
with profits. Transportation Science, 50(2):720–734, 2015.

Hybrid Heuristic for the Clustered Orienteering Problem 33

http://www.springer.com/978-3-319-68495-6

	2
Hybrid Heuristic for the Clustered Orienteering Problem
	Abstract
	Keywords
	1 Introduction
	2 Heuristic global scheme
	3 Adaptive large neighborhood search
	4 Split procedure
	4.1 Preliminary result
	4.2 Principle of the split
	4.3 Knapsack-based upper bound
	4.4 Feasibility check
	4.5 Local search procedure
	4.6 Beam search

	5 Computational results
	5.1 Parameter setting
	5.2 Performance comparison

	6 Conclusion and future work
	Acknowledgements
	References

