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Abstract. In this paper, we propose a method to dynamically mod-
ulate the input state of recurrent neural networks (RNNs) so as to
realize flexible and robust robot behavior. We employ the so-called
stochastic continuous-time RNN (S-CTRNN), which can learn to pre-
dict the mean and variance (or uncertainty) of subsequent sensorimotor
information. Our proposed method uses this estimated uncertainty to
determine a mixture ratio for combining actual and predicted sensory
states of network input. The method is evaluated by conducting a robot
learning experiment in which a robot is required to perform a sensory-
dependent task and a sensory-independent task. The sensory-dependent
task requires the robot to incorporate meaningful sensory information,
and the sensory-independent task requires the robot to ignore irrelevant
sensory information. Experimental results demonstrate that a robot con-
trolled by our proposed method exhibits flexible and robust behavior,
which results from dynamic modulation of the network input on the
basis of the estimated uncertainty of actual sensory states.

Keywords: Recurrent neural networks · Uncertainty · Robot · Neuro-
robotics

1 Introduction

Flexible and robust behavior is crucial for autonomous robots that are expected
to work in the same environments as people. Flexibility enables robots to gen-
erate context-dependent behavior that is suitable for the current situation. As
a complement, robustness enables robots to generate behavior without being
affected by perturbations, such as unknown irregularities and unrelated or noisy
sensory information. Flexibility can be realized by accepting sensory information
about the current environment, and robustness by ignoring the information or
assessing its relative importance. From this viewpoint, flexibility and robustness
are conflicting demands, which makes it non-trivial to achieve both at the same
time. We aim to tackle this issue in terms of predictive learning of sensorimotor
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information with uncertainty estimation, which has been widely accepted as a
key computational principle for cognitive functions, including action, perception,
and attention [1].

In the context of robot learning, Noda et al. [2] demonstrated that a small
humanoid robot with a connectionist framework using a recurrent neural net-
work with parametric biases (RNNPB) [3] can dynamically generate and switch
its object-handling behavior. Their RNNPB was trained to predict sensorimotor
information by receiving current information and integrating it with contextual
information stored in the network. The key point is that the network received a
mixture of actual and predicted sensorimotor states as network input. Modula-
tion of network input is an important aspect of using RNNs. For example, in the
studies [4,5], the performance of RNNs was improved by replacing the predicted
states with the actual (true) states for network input in the training phase. In
the study by Noda et al. [2], mixing the actual and predicted states together
results in both flexibility in the face of environmental change and robustness
against noise. However, the usefulness of this method as presented is limited
because the mixture ratio must be hand-tuned for each target task, after which
the tuned ratio was static through the task.

In the present study, we speculate that the uncertainty of sensory information
can be used to dynamically modulate the input state of RNNs so as to realize flex-
ible and robust robot behavior. Specifically, we propose a method in which the
uncertainty of a future actual sensory state is estimated by a so-called stochastic
continuous-time RNN (S-CTRNN) [6]. The estimated uncertainty is used as a fac-
tor in determining the mixture ratio between actual and predicted sensory states
for the network input.The proposedmethod is validated by a robot-learning exper-
iment that compares its results with those from a conventional method.

2 Computational Framework

2.1 Overview of S-CTRNN

S-CTRNN is an extension of conventional CTRNNs [7], and it consists of input,
context, output, and variance layers. The distinguishing characteristic of this
network is the newly added variance layer, which is used to estimate the uncer-
tainty of target states. As a generative model, the network learns to predict the
mean yt and variance (uncertainty) vt of a target state ŷt given the input state
xt and the context ct stored in the network, where the target state at time step
t characterizes the input state at the next time step t + 1. The internal state of
the ith neural unit at time step t (ut,i) in each layer other than the input layer
is described by
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where IC, IO, and IV are the index sets for the context, output, and variance
layers, respectively; NI, NC, NO, and IV are the numbers of the input, context,
output, and variance units, respectively; xt,j is the jth input state at time step
t; ct−1,j is the state of the jth context at time step t − 1; τi is the time constant
of the ith context unit; wij is the synaptic weight of the connection from the jth
to the ith unit; and bi is the bias of the ith unit. The activation state for the
context and output states is computed by tanh(ut,i); that for the variance state
is computed by exp(ut,i).

The goal of predictive learning is to maximize the likelihood L(θ), which is
derived from the Gaussian assumption:

L(θ) =
T∏
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i=1

1√
2πvt,i

exp
(

− (ŷt,i − yt,i)2

2vt,i

)
, (2)

where θ is a set of network parameters (wij , bi), T is the length of the time series,
and ŷt,i is the ith target state corresponding to the next input state xt+1,i. The
network parameters are optimized by using the gradient ascent method with
back-propagation through time (BPTT), as detailed in [6].

2.2 Mixing Actual and Predicted States Using S-CTRNN

Conventionally, forward computation of RNNs is performed via open-loop gen-
eration or closed-loop generation. In open-loop generation, shown in Fig. 1 (left),
the input layer receives the actual state, such as recorded or online sensory data,
at time step t + 1, and the state is taken as the target state at the previous
time step t (xt+1,i = ŷt,i). In closed-loop generation, shown in Fig. 1 (center),
in contrast, the input layer receives the output state generated at the previous
time step t, which corresponds to the prediction of the input state at the current
time step t + 1 (xt+1,i = yt,i).

Here, we propose to mix these operations according to the variance predicted
by the S-CTRNN, which represents the uncertainty of the next input state. This
is done as follows:

xt+1,i = (1 − α(vt,i)) ŷt,i + α(vt,i)yt,i, (3)

where 0 ≤ α(vt,i) ≤ 1 is the mixture ratio, represented by a monotonically
increasing function of the uncertainty. This equation is derived from the idea
that actual states with high uncertainty, which may perturb the network dynam-
ics, should not be input to the network and should, instead, be replaced with
predicted states for stability. When α(vt,i) is a fixed value that does not depend
on the time step t and the element i, Eq. (3) corresponds to the method used
in the study by Noda et al. [2]. The generation method, which can be called
mixture-loop generation, is illustrated in Fig. 1 (right). In the figure, as an exam-
ple, the S-CTRNN generates low uncertainty for the first dimension and high
uncertainty for the second. The first dimension of the input layer at the next
time step receives the actual state (which has a relatively certain estimate) in
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Fig. 1. Different generation methods. Left: open-loop generation with a conventional
CTRNN in which the actual state ŷt (magenta) is fed into the input layer. Center:
closed-loop generation with a conventional CTRNN in which the predicted state yt

(cyan), instead of the actual state, is fed into the input layer. Right: proposed method
(mixture-loop generation) with an S-CTRNN in which the actual and predicted states
are mixed according to the mixture ratio α(vt), where vt is a vector representing
uncertainty or variance (orange) as estimated by the S-CTRNN. (Color figure online)

greater proportion than the predicted state. In contrast, the second dimension
receives the predicted state in greater proportion than the actual state (which
has an uncertain estimate). This mixture method, which is specific to each time
step and dimension, is expected to contribute to the flexibility and robustness
of robot behavior.

3 Robot Experiment

3.1 Task Setting

We performed a robot learning experiment to evaluate the proposed method. In
the experiment, a small humanoid robot “NAO” (Aldebaran Robotics) was used
and interacted with a human experimenter, who was wearing a red glove to ease
visual processing. The robot was required to perform an interactive task with
the experimenter. The required task consisted of two phases: a sensor-dependent
task and a sensor-independent task, as shown in Fig. 2.

In the first phase (the sensor-dependent task), the experimenter moved his
hand to the left or right relative to the home position, and the robot was required
to raise its corresponding hand. The direction of the human hand movement was
randomly selected with equal probability by generating a sequence in advance.
This phase was repeated until the experimenter cued a task transition by putting
his hand up. Whether to continue the current task or transition to the other task
was also determined with equal probability.

In the second phase (the sensor-independent task), after the demonstration
of the transition cue, the robot was required to alternately raise its right and
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Fig. 2. Interactive task between a human experimenter and a small humanoid robot
“NAO”. The task has sensor-dependent and sensor-independent tasks.

left hands once, independent of the human hand movement. During this phase,
the experimenter made hand movements as distractions, such as by randomly
moving the hand or keeping the hand at a specific position. That is, in this
phase, the robot needed to ignore unrelated sensory states (visual information
from the human hand movement) and perform its own task. After finishing this
phase, the task returned to the first phase again without giving any cue that
task transition had occurred.

3.2 Experimental Procedure

The robot learning experiment consisted of three phases: recording of training
data, training the S-CTRNN, and testing the performance of the robot. In what
follows, each phase is briefly introduced.

In the first phase (data recording), training data were collected through kines-
thetic teaching, with the robot controlled by directly guiding its arm movements.
The recorded training data consisted of 3-dimensional visual information and 8-
dimensional motor information. The visual information comprises time-series
data of the center of gravity and area ratio of the red glove as extracted from a
visual image obtained by a camera mounted on the robot. The motor information
comprises time-series data of the four joint angles of each arm of the robot. In
this data recording phase, the sensor-dependent task was repeated several times
and then the task switched to the sensor-independent task. The entire procedure
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was repeated twice, and in total 10 training data were recorded, each of which
included two transitions between the sensor-dependent and sensor-independent
tasks.

In the second phase (network training), the S-CTRNN was trained offline
by using the recorded data from the first phase. The numbers of input, context,
output, and variance units were NI = 11, NC = 55, NO = 11, and NV = 11,
respectively. The context units were divided into two groups, fast context units
(NFC = 50) and slow context units (NSC = 5), on the basis of a time constant
and connection setting to introduce the multiple timescale property proposed
by Yamashita and Tani [8]. The time constants of the fast and slow context
units were τFC = 5 and τSC = 50, respectively. The fast context units were
connected with the input, fast context, slow context, output, and variance units.
In contrast, the slow context units were connected with only the fast and slow
context units to constrain the information flow. Details of the multiple timescale
property derived from these settings are discussed in [8].

In the third phase (performance testing), the trained S-CTRNN was installed
in the robot, and the actions generated via the conventional open-loop and pro-
posed mixture-loop generation methods were compared. For the monotonically
increasing function in Eq. (3), we used α(vt,i) = vt,i/vmax, where vmax = 0.01
is a predefined parameter representing an upper bound of the estimated uncer-
tainty. In this testing phase, the sensor-dependent task was repeated twice and
then the processing was switched to the sensor-independent task. This set of
procedures was repeated twice, meaning that, in all, each trial included four
sensor-dependent tasks and two sensor-independent tasks.

4 Results and Discussion

In the sensor-dependent task, both the robot with open-loop generation and that
with the proposed mixture-loop generation were able to perform flexible behavior
corresponding to demonstrated human hand movements. However, in the sensor-
independent task, only the robot with mixture-loop generation succeeded in
generating learned behavior robustly; the robot with open-loop generation failed.

Examples of the time-series data during action generation with each method
are shown in Fig. 3. In the sensor-dependent task, the experimenter first moved
the hand to the right side and then to the left side. The network outputs show
the corresponding movement of both the left and right robot arms. In the sensor-
independent task with open-loop generation, although the robot needed to first
raise its right hand and then its left hand, it moved the left arm first (represented
by the gray ellipse). After this failure, the robot moved the left arm again for
the latter part of the sensor-independent task. However, the movement was not
enough large relative to the other movements. In contrast, no failures occur with
the proposed mixture-loop generation: both the sensor-dependent and sensor-
independent tasks are successfully completed. It should be noted that the ratio
of actual states used for the network inputs dynamically changes at around
time step 300, which corresponds to the moment after the task transition. This
dynamic modulation of the mixture ratio between actual and predicted sensory
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Fig. 3. Time-series data of actual states, network inputs, network outputs, and the ratio
of actual states with open-loop generation and the proposed mixture-loop generation.
Task transition points from the sensor-dependent (SD) task to the sensor-independent
(SI) task are indicated by orange arrows. Failures are indicated by the gray ellipses in
the sensor-independent task with open-loop generation.

states on the basis of estimated uncertainty enables the robot to perform flexible
and robust behavior by accounting for necessary visual states in the sensor-
dependent task and ignoring unnecessary visual states in the sensor-independent
task.

We characterized the success of the proposed method by taking success rates
for generated movements in both methods. Specifically, we set a threshold for the
shoulder roll angles each necessary depending on the situation. If the angle value
exceeded the threshold within a certain period, the generated movement was
considered successful. Table 1 shows the success rates for generated movements
with the conventional open-loop generation and with the proposed mixture-loop
generation in each task. The results demonstrate that the proposed method
outperforms the open-loop generation on both tasks.

Table 1. Success rates for generated movements out of 160 trials

Open-loop generation Proposed method

SD task SI task SD task SI task

Number of successes 145 106 157 154

Success rates 0.906 0.663 0.981 0.963
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5 Conclusions

In this study, we proposed a method to dynamically modulate the input state
of RNNs in order to realize flexible and robust robot behavior. We employed S-
CTRNN as a computational framework, estimating the uncertainty of next sen-
sory states and then using the estimated uncertainty to determine the mixture
ratio between actual and predicted states for the next network input. We per-
formed a robot learning experiment to evaluate our proposed method. The task
for the robot consisted of a sensory-dependent task and a sensory-independent
task. The former task required the robot to incorporate meaningful visual infor-
mation, and the latter required the robot to ignore meaningless visual informa-
tion. The experimental results demonstrated that our proposed method enabled
the robot to behave flexibly and robustly. Future work will focus on applying
the proposed method to more practical tasks and on extending the method to
high-dimensional sensory data, such as raw visual images by using state of the
art data sets, instead of only low-dimensional feature information.
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