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Abstract. The study of automated epileptic seizure detection using
EEGs has attracted more and more researchers in these decades. How
to extract appropriate features in EEGs, which can be applied to differ-
entiate non-seizure EEG from seizure EEG, is considered to be crucial
in the successful realization. In this work, we proposed a novel kernel-
radius-based feature extraction method from the perspective of nonlinear
dynamics analysis. The given EEG signal is first decomposed into dif-
ferent numbers of intrinsic mode functions (IMFs) adaptively by using
empirical mode decomposition. Then the three-dimensional phase space
representation (3D-PSR) is reconstructed for each IMF according to the
time delay method. At last, the kernel radius of the corresponding 3D-
PSR is defined, which aims to characterize the concentration degree of
all the points in 3D-PSR. With the extracted feature KRF, we employ
extreme learning machine and support vector machine as the classifiers
to achieve the task of the automate epileptic seizure detection. Perfor-
mances of the proposed method are finally verified on the Bonn EEG
database.

Keywords: Automatic seizure detection · Electroencephalogram
(EEG) · Empirical mode decomposition (EMD) · Phase space represen-
tation (PSR) · Kernel-radius-based feature · Extreme learning machine
(ELM) · Support vector machine (SVM)

1 Introduction

Epilepsy is a serious chronic neurological disorders that has an active incidence
of 4–8/1000 and may affect both children and adults [3]. It is characterized
by periodic and unpredictable occurrence of seizures, which are resulted from
abnormal discharges of excessive amount of brain neurons, and usually appears
to be the muscle stiffness, staring and impaired consciousness etc. [6].

As an electrophysiological monitoring approach to record electrical activities
of the brain, electroencephalogram (EEG) has been widely applied in clinics
due to its potential for exploring the physiological and pathological information
in the brain. For epilepsy patients, the seizure detection using EEGs becomes
an important and necessary step in the diagnosis and treatment. However, the
traditional seizure detection by a trained neurologist always appears costly and
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inefficient, as well as sometimes includes subjective factors. Therefore, issues
regarding the automatic seizure detection have been raised by more and more
researchers in these decades. In order to realize it successfully, extracting proper
features from EEG signals, which are then fed into a classifier so that the epileptic
EEGs can be distinguished from background EEGs, is acknowledged to be one
of the key points.

Since it has been demonstrated that human brain is a nonlinear dynamical
system, the application of various nonlinear analysis methods for extracting fea-
tures from EEGs presents a new avenue to exploit the underlying physiological
processes. With the recognition that the system in non-seizure periods is more
complex comparing with that in seizure periods, fractal dimension [20], sample
entropy [16], permutation entropy [11], correlation sum [17] and recurrence quan-
tification analysis (RQA) [2] have been explored to be the extracted features.
Differently, in accordance with the similarity analysis, dynamical similarity index
[13], fuzzy similarity index [12] and Bhattacharyya-based dissimilarity index [9],
have been proposed to find the transition from a seizure-free state to a seizure
state. If a non-seizure EEG segment is defined as the reference template, then the
less similar a given present EEG segment is with the template, the more possible
it will be the epileptic one. Originated from the fact that the anti-persistence
of systems in non-seizure periods is weaker than that in seizure periods, var-
ious extraction methods on the basis of detrended fluctuation analysis index
and Hurst exponent have been designed in [19]. Meanwhile, from the chaoticity
analysis point of view, the Lyapunov exponent of EEG signals has also been
taken as the feature for completing the seizure detection in [18]. Furthermore,
given an EEG signal, the distribution uniformity and scatter degree of its lagged
Poincaŕe plot have been presented in [15], which are defined to measure the
difference between seizure EEGs and non-seizure EEGs intuitively.

In this study, a new kernel-radius-based feature (KRF) extraction method is
proposed, where the kernel radius of three-dimensional phase space representa-
tion (3D-PSR) of an intrinsic mode function (IMF) is defined to be the feature.
The key idea can be summarized as follows. Due to the fact that small change
in EEG signals may be amplified when signals are decomposed and analyzed
on smaller frequency-bands separately [10], the given EEG signal is first decom-
posed into different numbers of IMFs adaptively by using the empirical mode
decomposition (EMD) method. Then the 3D-PSR is reconstructed for each IMF
according to the time delay method. Next, kernel radius of the corresponding
3D-PSR is defined, which aims to characterize the concentration degree of all
the points in 3D-PSR. With the extracted KRF, we finally apply support vector
machine (SVM) and extreme learning machine (ELM) to achieve the task of
epileptic seizure detection automatically.

The remainder of this paper is organized as follows. Section 2 systematically
describe the proposed feature extraction method. Section 3 introduces the EEG
database and discusses the experimental results, and some remarks are concluded
in the last section.
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2 Methods

2.1 Empirical Mode Decomposition

Empirical mode decomposition (EMD), which is a fundamental part of the
Hilbert Huang Transform (HHT), has been proposed for analyzing non-linear
and non-stationary signals by Huang et al. [5]. Applying EMD, a complicated
signal can be decomposed into a finite and often small number of components.
Such components, which are named as intrinsic mode functions (IMFs), consti-
tute a complete and almost orthogonal basis of the original signal.

An IMF is defined as a function satisfying two conditions: (i) there holds
|a − b| ≤ 1 where a and b denote the numbers of extrema and zero-crossings of
the signal; (ii) there holds e++e−

2 = 0 at any point where e+ and e− represent
two envelopes of the signal. The iterative process of extracting IMFs from the
given signal can be summarized in the following algorithm [8].

Algorithm I (EMD): Given a signal s = {s(t)}N
t=1.

Step 1. Identify the local maxima and local minima from s(t) respectively.
Step 2. Construct the upper envelope e+(t) and lower envelope e−(t) of s(t)

by using the cubic spline interpolation.
Step 3. Calculate the mean of e+(t) and e−(t), which is denoted by

m(t) =
e+(t) + e−(t)

2
.

Step 4. Extract h(t) from s(t) as

h(t) = s(t) − m(t).

Step 5. If h(t) satisfies two conditions for IMF, then stop; otherwise, let
s(t) = h(t) and repeat steps 1–5 until h(t) satisfies the conditions. According
to EMD, the original signal s(t) can be represented by

s(t) =
M∑

i=1

Xi(t) + r(t), t = 1, 2, · · · , N. (1)

Here, Xi(t) denotes the ith IMF, r(t) denotes the residual and M is the number
of IMFs of s(t), which is determined by the method adaptively.

Figure 1(a) and (b) illustrate the IMFs of a non-seizure EEG segment and a
seizure EEG segment respectively.

2.2 Kernel-Radius-Based Feature Extraction Method

For each IMF, we reconstruct its phase space by time delay method [4]. In
our work, we have confined our discussion to the value of embedding dimen-
sion as three, because of its visualization simplicity and performance reliability.
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Fig. 1. IMFs of EEG signals decomposed by EMD

We name the corresponding plot as the 3-dimensional phase space representation
(3D-PSR) in what follows.

Denote by Xi = {Xi(1),Xi(2), · · · ,Xi(N)} the ith IMF, we then construct
its 3D-PSR as

Yi = {Y
(k)
i : k = 1, 2, · · · , N − 2τ}

where

Y
(k)
i = [Xi(k),Xi(k + τ),Xi(k + 2τ)]T ,

k = 1, 2, · · · , N − 2τ.

For visualization, we write P
(k)
i to denote the corresponding point of Y

(k)
i in the

3D phase space, and PSRi = {P
(k)
i : k = 1, 2, · · · , N − 2τ} the collection of all

points in terms of Xi. Figure 2 illustrates the 3D-PSR plots of non-seizure EEG
and seizure EEG respectively.

It can be easily seen from Fig. 2 that the points in 3D-PSR of seizure EEG
distribute more sparse than those of non-seizure EEG. Therefore, we focus on
characterizing the concentration degree of the points in PSRi to be the extracted
feature, which can be then applied to discriminate the seizure EEGs from non-
seizure EEGs.

Firstly, we define the center Oi = (ai, bi, ci) of PSRi according to the fol-
lowing way:

ai =
1

N − 2τ

N−2τ∑

k=1

Xi(k),
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Fig. 2. The 3D-PSRs of IMF1 corresponding to the non-seizure EEG and seizure EEG

Fig. 3. The flowchart of KFR feature extraction method

bi =
1

N − 2τ

N−2τ∑

k=1

Xi(k + τ),

ci =
1

N − 2τ

N−2τ∑

k=1

Xi(k + 2τ).
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Secondly, we calculate the distance between point P
(k)
i and center Oi as

d
(k)
i � d(P (k)

i , Oi), k = 1, 2, · · · , N − 2τ

where d(·, ·) is the Euclidean distance. Denote by Di = {d
(k)
i : k = 1, 2, · · · , N −

2τ} be the set of all distances.
Thirdly, we sort all elements in Di in the ascending order, denoted by

Di = {d̄
(1)
i , d̄

(2)
i , · · · , d̄

(N−2τ)
i },

where d̄
(1)
i ≤ d̄

(2)
i ≤ · · · ≤ d̄

(N−2τ)
i .

Finally, we define the kernel radius of PSRi in terms of a given threshold
δ ∈ (0, 1) to be

KRi = d̄
(r)
i

where

r = (N − 2τ) · δ.

With the proceeding preliminaries, the kernel-radius-based feature (KRF)
extraction method can be summarized as the flowchart shown in Fig. 3.

3 Experiments

3.1 Database

This work applies Bonn EEG database, which is taken from the Department of
Epileptology, Germany [1]. The details of Bonn database is shown in Table 1.
Because it is the most difficult for seizures to be detected between ictal EEGs
and inter-ictal EEGs, we only verify the performance of the proposed method
on sets D and E in this paper. Figure 4 illustrates one inter-ictal EEG segment
in D and one ictal EEG segment in E.

Table 1. Detail EEG information of Bonn database

Data set Recording electrodes Recorded position Subject state

A Scalp electrode Cortex Awake and relaxed state with eye open

of five healthy people

B Scalp electrode Cortex Awake and relaxed state with eye

closed of five healthy people

C Intracranial electrode Hippocampal formation Period of inter-ictal of epilepsy patients

D Intracranial electrode Epileptogenic zone Period of inter-ictal of epilepsy patients

E Intracranial electrode Epileptogenic zone Period of ictal of epilepsy patients
1Each data-set comprises 100 epochs of single-channel EEG signal, which are 23.6 s single-channel

EEG signals with 173.61 HZ sampling rate.
2There is no artifact in all EEGs.
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Fig. 4. Sample EEG recordings in set D (inter-ictal) and set E (ictal)

Table 2. Specified parameter in the experiments

Methods Parameter Symbol Specified values

ELM Number of hidden nodes L 10

SVM Regularization parameter C 2−5

SVM Kernel width g 2−6

Kernel radius Threshold parameter δ 0.5

3.2 The Experimental Results and Discussions

This subsection will verify the performance of the proposed automated seizure
detection method, which combines the kernel-radius-based feature (KRF) with
extreme learning machine (ELM) and support vector machine (SVM) respec-
tively.

In ELM, the additive hidden nodes G(a, b,x) = g(a · x + b) are applied and
the optimal number of hidden nodes is determined by ten-fold cross validation.
Here, (a, b) are weight and bias of the hidden-node, and β is the output weight.
In SVM, the latest LIBSVM software package 3.22 version is applied with the
radial base function (RBF) as the kernel function. The regularization parameter
C and the kernel width g are selected according to the grid search method. In
both ELM and SVM, fifty trials have been conducted with training and testing
datasets randomly generated for each trial, where the size of training and testing
datasets is equal. All of the parameters in our experiments are summarized
specifically in Table 2.

Firstly, we reveal the practicability of proposed feature KRF for
discriminating seizure and non-seizure EEGs as shown in Figs. 5 and 6. Figure 5
demonstrates the kernel radius corresponding to a non-seizure and seizure EEG
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(a) non-seizure (b) seizure

Fig. 5. The kernel radius corresponding to a non-seizure EEG and seizure EEG
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Fig. 6. The values of KRF corresponding to EEG segments of set D and set E

respectively. It is obvious that the kernel radius 2.6874 corresponding to non-
seizure EEG is much smaller than the kernel radius 492.3256 corresponding to
seizure EEG, which shows that the proposed feature KRF is able to differen-
tiate seizure EEGs and non-seizure EEGs successfully. Such fact can also been
illustrated in Fig. 6.

Next, a comparative study between ELM and SVM is done with the same
feature KRF. Experiments results are shown in Table 3, which include accuracy,
standard deviation of accuracy and training time. We can observe from Table 3
that the classification accuracy obtained by ELM is a little better than that
obtained by SVM with much smaller standard variation. It means that a better
and stabler performance of epileptic seizure detection can be achieved by using
KRF and ELM. Meanwhile, ELM spends much less time than SVM.

Finally, we compare the proposed automated seizure detection method KRF-
ELM with other existing methods where the same datasets (i.e., D and E) are
applied in simulations. We can observe from Table 4 that the proposed method
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Table 3. Performance comparison between ELM and SVM with the same feature KRF

Classifier Time Accuracy Standard deviation

ELM 0.0022 96.64% 0.0180

SVM 7.93 96.00% 3.1

Table 4. A comparison between the proposed methods in this paper and the method-
ologies in other literatures

Authors Year Methods CA(%)

Qi yuan et al. [19] 2012 Approximate entropy+ELM 88.00 ± 0.75%

2012 Hurst exponent+ELM 88.00 ± 0.5%

2012 DFA+ELM 82.00 ± 0.5%

Nicolaou et al. [11] 2012 Permutation entropy+SVM 83.13%

Zhu et al. [21] 2014 Degree and Strength of HVG+KNN 93%

Siuly et al. [14] 2011 Clustering+SVM 93.6%

Y. Kumar et al. [7] 2014 Fuzzy approximate entropy+SVM 95.85%

J.-L. Song et al. [15] 2016 lagged-Poincaŕe based feature+ELM 96.16%

This paper KRF+ELM 96.64%

KRF-ELM performs better than others. Even for the best and the most recent
results obtained in [15], the classification accuracy obtained by our method
increases from 96.16% to 96.64%.

4 Conclusion

In this work, we proposed the kernel-radius-based feature extraction method,
where the kernel radius of three-dimensional phase space representation
(3D-PSR) of intrinsic mode functions (IMFs) is defined to be the feature, which
is further applied to differentiate seizure EEGs from non-seizure EEGs in accor-
dance with the following procedures. At the first step, the given EEG signal
is decomposed into different numbers of intrinsic mode functions (IMFs) adap-
tively by empirical mode decomposition (EMD) method; At the second step, the
3D-PSR is reconstructed for each IMF according to the time delay method; At
the third step, the kernel radius of the corresponding 3D-PSR is defined, which
aims to characterize the concentration degree of all the points in 3D-PSR. Com-
bining with ELM and SVM, performances of the proposed method are finally
verified on the open EEG database from three aspects: (1) performance verifi-
cation of the proposed feature KRF; (2) performance comparison between ELM
and SVM with the same feature KRF; (3) performance comparison between the
proposed seizure detection method KRF-ELM with other existing methods. All
the experimental results have demonstrated that the proposed method does a
good job in the automated seizure detection.
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