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Abstract. This work considers the problem of building a class of test
problems for global optimization algorithms. The authors present an
approach to building multidimensional multiextremal problems, which
can clearly demonstrate the nature of the best current approximation,
regardless of the problems dimensionality. As part of this approach, the
objective function and constraints arise in the process of solving an auxil-
iary approximation problem. The proposed generator allows the problem
to be simplified or complicated, which results in changes to its dimen-
sionality and changes in the feasible domain. The generator was tested by
building and solving 100 problems using a parallel global optimization
index algorithm. The algorithm’s results are presented using different
numbers of computing cores, which clearly demonstrate its acceleration
and non-redundancy.

Keywords: Global optimization · Multiextremal functions · Non-
convex constraints

1 Introduction

One of the general approaches to studying and comparing multiextremal opti-
mization algorithms is based on applying these methods to solve a set of test prob-
lems, selected at random from a certain specially constructed class. In this case,
each test problem can be viewed as a random function created by a special gen-
erator. Using multiextremal optimization algorithms with large samples of such
problems allows the operating characteristics of the methods to be evaluated (the
likelihood of properly identifying the global optimizer within a given number of
iterations), thus characterizing the efficiency of each particular algorithm.

The generator for one-dimensional problems was suggested by Hill [1]. These
test functions are typical for many engineering problems; they are particularly
reminiscent of reduced stress functions in problems with multiple concentrated
loads (see [2] for example). Another widely known class of one-dimensional test
problems is produced using a generator developed by Shekel [3].

A special GLOBALIZER software suite [4] was developed to study vari-
ous one-dimensional algorithms with random samples of functions produced by
the Hill and Shekel generators. A comprehensive description of this system, its
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capabilities and example uses is provided in [5]. It should be noted that the Hill
functions were successfully used in the design of a one-dimensional constrained
problem generator with controlled measure of a feasible domain [6].

Another generator for random samples of two-dimensional test functions,
successfully used in the studies by a number of authors, was developed and
investigated in [7–10]. A generator for functions with arbitrary dimensionality
was suggested in [11]. It was used to study certain multidimensional algorithms
as described in [12–15]. Well-known collections of test problems for constrained
global optimization algorithms were proposed in [16,17].

All of these generators produce the function to be optimized. In the case
when the dimensionality is greater than two the optimization process itself can-
not be clearly observed. In this regard, it is interesting to examine a different
approach, initiated in [5]. In this approach, the objective function appears as
a solution to a certain supporting approximation problem, which allows the
nature of the best current estimate and the final result to be observed, regard-
less of the number of variables. Complicating the problem statement (including
non-convex constraints) results in an increase of its dimensionality. In fact, the
proposed generator produces an approximation problem to which the objective
function is related.

2 Problem Statement

Let’s consider the mathematical model of a charged particle moving through a
magnetic field along the u axis in the form

mü = −eu + F (1)

where m > 0 is the particles mass, u(t) is the particle’s current position at a
moment of time t ≥ 0, −eu – is an attractive force affecting the particle, F is an
external force applied to the particle along u axis (control action). It is assumed
that control action F is a function of time and is represented as

F = m

n∑

i=1

Ai sin(ωit + ϕi).

Here n > 0 is the dimensionality of the vectors ω and determines the number of
frequencies in the control action.

Substituting ω2
0 = e/m the Eq. (1) is reduced to a known equation of forced

oscillations

ü + ω2
0u =

n∑

i=1

Ai sin(ωit + ϕi). (2)

The problem is to find own frequency, control action and initial conditions such
that:
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1. at t ∈ [a, b] the particle would deviate from the position q0 by no more than
δ > 0;

2. at t = t1, t2, t3, the particle would deviate from positions q1, q2, q3 respectively
by no more than δ > 0;

3. at t = t3 the particle speed would be maximized.

This problem statement can be interpreted as follows: the trajectory of particle
movement u(t) shall pass within a “tube”, then through the three “windows”,
with maximum slope in the last of the “windows”. The illustration in Fig. 1
shows a graph of the function u(t) of the solution to problem (2), which passes
through the “tube” and “windows” shown in the chart by dashed lines.

Fig. 1. Problem solution u(t)

Thus, for a particle of a given mass m > 0 it is necessary to determine its
own frequency ω0, the amplitudes Ai, frequencies ωi and phases ϕi of the control
action, as well as the initial conditions u0 = u(0), u̇0 = u̇(0) for the Eq. (2), such
that conditions 1–3 are true.

Using the following notation for the Eq. (2) solution

u(t, ω, c) =
n∑

i=0

[c2i+1 sin(ωit) + c2i+2 cos(ωit)] , (3)

where c = (c1, . . . , c2n+2), ω = (ω0, ω1, . . . , ωn), we can represent the original
problem as a constrained maximization problem with parameters c and ω:

|u̇(t3, ω, c)| → max
|u(ti, ω, c) − qi| ≤ δ, i = 1, 2, 3, (4)
|u(t, ω, c) − q0| ≤ δ, t ∈ [a, b].



Test Problems for Parallel Algorithms of Constrained Global Optimization 21

Solving the optimization problem (4) and finding the vectors ω, c the solution
to the original problem (2) can be written in accordance with the following
relationships:

u0 =
∑n

i=0 c2i+2, u̇0 =
∑n

i=0 c2i+1ωi

Ai =
(
ω2
0 − ω2

i

) √
c22i+1 + c22i+2, 1 ≤ i ≤ n, (5)

ϕi = arcsin c2i+2√
c22i+1+c22i+2

, 1 ≤ i ≤ n.

As follows from formula (3), the parameters c are included in the equation
solution linearly, and the parameters ω – non-linearly. Given the constraints (4)
this allows the problem to be reformulated and c to be found without using a
numerical optimization method.

Let’s consider a set of points (τj , uj), 0 ≤ j ≤ m, with the coordinates defined
as follows:

τj = a + jh, uj = q0, 0 ≤ j ≤ m − 3, (6)
τm−2 = t1, um−2 = q1,

τm−1 = t2, um−1 = q2,

τm = t3, um = q3,

where h = (b − a)/(m − 3), i.e. the first m − 3 points are located at equal
distances in the center of the “tube”, the other three align with the centers of
the “windows”.

The requirement is that the trajectory of particle u(t) passes “near” the
points (τj , uj), 0 ≤ j ≤ m. If the measure of deviation from the points is defined
as the sum of the squared deviations

Δ(c, ω) =
m∑

j=0

[uj − u(τj , ω, c)]2 ,

then the parameters c can be found (given fixed values of ω), by solving the least
squares problem

c∗(ω) = arg min Δ(c, ω). (7)

According to the least squares method, the solution to problem (7) can be
obtained by solving a system of linear algebraic equations regarding the unknown
c, which can be done, e.g., by Gaussian elimination.

It should also be considered that the components of frequency vector ω can
be placed in ascending order, so as to avoid duplicate solutions corresponding to
the vector ω with similar components in different order. In addition, it is natural
to assume that frequencies in the control action must not just be ordered but
differ by a certain positive value, as an actual physical device can only generate
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control signals with a certain precision. This assumption can be represented in
the form of a requirement for the following inequalities to be true:

ωi−1(1 + α) − ωi(1 − α) ≤ 0, 1 ≤ i ≤ n. (8)

Here α ∈ (0, 1) is a parameter reflecting the precision of signal generation by the
control device.

Then the original problem can be reformulated as follows:

ω∗ = arg max
ω∈Ω

|u̇(t3, ω, c∗(ω))| (9)

ωi−1(1 + α) − ωi(1 − α) ≤ 0, 1 ≤ i ≤ n,
|u(ti, ω, c∗(ω)) − qi| ≤ δ, i = 1, 2, 3,

max
t∈[a,b]

u(t, ω, c∗(ω)) − min
t∈[a,b]

u(t, ω, c∗(ω)) ≤ δ,

where c∗(ω) is determined from (7), and the number of constraints will be depen-
dent on the number of frequencies n in the control action.

Figure 1 shows trajectory u(t), which corresponds to the solution to problem
(9) with parameters a = 1, b = 10, t1 = 13, t2 = 16.65, t3 = 18, q0 = q3 = 0,
q1 = 7.65, q2 = −9.86. The solution (with three significant digits)

u(t) = 34.997 sin(0.01t − 0.061) + 11.323 sin(0.902t − 0.777)
− 19.489 sin(1.023t + 0.054) + 9.147 sin(1.139t + 0.633)

is determined by the optimal vectors ω∗ = (0.01, 0.902, 1.023, 1.139) and c∗ =
(34.93,−2.151,−8.075,−7.936, 19.461, 1.048,−7.375, 5.411). As follows from (5),
the original problem with the solution u(t) is noted as

ü + 10−4u = − 9.213 sin(0.902t − 0.777) − 20.383 sin(1.023t + 0.054)
− 11.842 sin(1.139t + 0.633),

u0 = −3.62, u̇0 = 4.556.

3 Generating a Series of Problems

The numeric experiments described below used a generator based on the approx-
imation problem from Sect. 2. Apparently, the variation in any parameter of the
original problem (2) will change the optimization problem (9), so it is sufficient
to vary just a few of them.

The centers of the first two “windows”, i.e. the pairs (t1, q1) and (t2, q2),
were chosen as the parameters for determining the specific problem statement.
The values q1 and q2 were chosen independently and uniformly from the ranges
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[1, 10] and [−10,−1], respectively. The values t1 and t2 were dependent: first, the
value t1 was chosen from the range [b + 1, t3 − 2], then, the value t2 was chosen
from the range [t1 + 1, t3 − 1]. All other parameters in problem (2) were fixed:
a = 1, b = 10, t3 = 18, q0 = q3 = 0, δ = 0.3. Parameter α from (8) was chosen
at 0.05. The number of points in the additional grid (6) for solving the least
square problem (7) was set at 20. The problem of one-dimensional maximization
and minimization from (9) were solved by a scanning over a uniform grid of 100
nodes within the interval [a, b].

An important feature determining the existence of a feasible solution for the
problem being considered is the number and range of frequency variation in the
vector ω. If the range is too small, or the number of frequencies is insufficient,
the feasible domain in the problem (9) will be empty. In the experiments carried
out, the number of frequencies was chosen to be n = 3, which corresponds to
ω = (ω0, ω1, ω2, ω3), while the variable frequency change range was set from 0.01
to 2, i.e. ωi ∈ [0.01, 2], 0 ≤ i ≤ 3.

Let’s note some important properties of the problems produced by the gen-
erator under consideration.

Remark 1. Problem constraints (9) are different in terms of the time required
to verify them. For example, checking each of the first n constraints in (9) (let’s
call these constraints geometric)

ωi−1(1 + α) − ωi(1 − α) ≤ 0, 1 ≤ i ≤ n,

requires performing only three operations with real numbers. Testing other con-
straints (we will call them the main constraints)

|u(ti, ω, c∗(ω)) − qi| ≤ δ, i = 1, 2, 3,

max
t∈[a,b]

u(t, ω, c∗(ω)) − min
t∈[a,b]

u(t, ω, c∗(ω)) ≤ δ

is far more labor-intensive. First, this requires producing a system of linear
equations to solve the problem (7) (∼m(2n + 2)2 computing of sin and cos).
Second, this system needs to be solved (∼ 2

3 (2n+2)3 operations on real numbers).
Third, two one-dimensional optimization problems need to be solved at the last
constraint in (9) (∼100 computing of sin and cos).

Remark 2. The problems are characterized by multiextremal constraints,
which form a non-convex feasible domain. For example, Fig. 2 show level lines
for the functions in the right-hand sides of the main constraints for one of the
problems, while Fig. 3 shows level lines of the objective function. These lines are
provided within the feasible domain of the geometric constraints.
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Fig. 2. Level lines for the main constraints

Fig. 3. Level lines for the objective function
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Remark 3. Increasing the frequency change range results in new solutions
appearing in an area of higher frequencies; the feasible domain of the optimiza-
tion problem becomes multiply connected. For example, Fig. 4 shows two trajec-
tories, the solid line corresponds to the vector ω = (0.01, 0.902, 1.023, 1.139) and
solution

u(t) = 34.997 sin(0.01t − 0.061) + 11.323 sin(0.902t − 0.777)
− 19.489 sin(1.023t + 0.054) + 9.147 sin(1.139t + 0.633)

obtained at ωi ∈ [0.01, 2], 0 ≤ i ≤ 3, dashed line corresponds to the frequency
vector ω = (1.749, 1.946, 2.151, 2.377) and solution

u(t) = 5.434 sin(1.749t + 0.832) + 12.958 sin(1.946t + 0.241)
+ 11.844 sin(2.151t − 1.377) + 4.302 sin(2.377t + 0.501)

obtained at ωi ∈ [0.01, 4], 0 ≤ i ≤ 3. Obviously, the second solution is better, as
the trajectory at the last point has the largest slope.

Fig. 4. Solutions with different frequencies

These optimization problem properties allow us to conclude that this gener-
ator may be applied for testing parallel global optimization algorithms. Inter-
ested readers may find the review of approaches to parallelization of optimiza-
tion algorithms in [18]. In this study we will use a parallel algorithm based on
information-statistical approach [5,19].
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4 Parallel Global Optimization Index Algorithm

Let’s consider a multiextremal optimization problem in the form

ϕ(y∗) = min {ϕ(y) : y ∈ D, gj(y) ≤ 0, 1 ≤ j ≤ m}, (10)

where the search domain D is represented by a hyperparallelepiped

D =
{
y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N

}
. (11)

Suppose, that the objective function ϕ(y) (henceforth denoted by gm+1(y)) and
the left-hand sides gj(y), 1 ≤ j ≤ m, of the constraints satisfy Lipschitz condi-
tion

|gj(x1) − gj(x2)| ≤ Lj ‖y1 − y2‖ , 1 ≤ j ≤ m + 1, y1, y2 ∈ D.

with respective constants Lj , 1 ≤ j ≤ m + 1, and may be multiextremal. Then,
it is suggested that even a single computing of a problem function value may
be a time-consuming operation since it is related to the necessity of numerical
modeling in the applied problems (see, for example, [20,21]).

Using a continuous single-valued mapping y(x) (Peano-type space-filling
curve) of the interval [0, 1] onto D from (11), a multidimensional problem (10)
can be reduced to a one-dimensional problem

ϕ(y(x∗)) = min {ϕ(y(x)) : x ∈ [0, 1], gj(y(x)) ≤ 0, 1 ≤ j ≤ m}, (12)

The reduction of dimensionality matches the multidimensional problem with
a Lipschitzian objective function and Lipschitzian constraints with a one-
dimensional problem where the respective functions satisfy the uniform Hölder
condition (see [5]), i.e.

|gj(y(x1)) − gj(y(x2))| ≤ Kj |x1 − x2|1/N
, x1, x2 ∈ [0, 1], 1 ≤ j ≤ m + 1.

Here N is the dimensionality of the original multidimensional problem, and the
coefficients Kj are related to Lipschitz constants Lj with formulae

Kj ≤ 2Lj

√
N + 3, 1 ≤ j ≤ m + 1.

The issues around the numeric construction of a Peano-type curve and the cor-
responding theory are considered in detail in [5,19]. Here we can just state that
the numerically computed curve (evolvent) is an approximation of the theoreti-
cal Peano curve with a precision at least 2−m for each coordinate (the parameter
m is called the evolvent density).

Let’s introduce the classification of points x from the search domain [0, 1]
using the index ν = ν(x). This index ν is determined by the following conditions:

gj(y(x)) ≤ 0, 1 ≤ j ≤ ν − 1, gν(y(x)) > 0,
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where the last inequality is negligible if ν = m + 1, and meets the inequalities
1 ≤ ν = ν(x) ≤ m + 1. This classification produces a function

f(y(x)) = gν(y(x)), ν = ν(x),

which is determined and computed along the interval [0, 1]. Its value in a point
x is either the value of the left part of the constraint violated at this point (in
the case, when ν ≤ m), or the value of the objective function (in the case, when
ν = m + 1). Therefore, determining the value f(y(x)) is reduced to a sequential
computation of the values

gj(y(x)), 1 ≤ j ≤ ν = ν(x),

i.e. the subsequent value gj+1(y(x)) is only computed if gj(y(x)) ≤ 0. The com-
putation process is completed either when the inequality gj(y(x)) > 0 becomes
true, or when the value of ν(x) = m + 1 is reached.

The procedure called trial at point x automatically results in determining
the index ν for this point. The pair of values

z = gν(y(x)), ν = ν(x), (13)

produced by the trial in point x ∈ [0, 1], is called the trial result.
A serial index algorithm for solving one-dimensional conditional optimization

problems (12) is described in detail in [6]. This algorithm belongs to a class of
characteristical algorithms (see [7]). It can be parallelized using the approach
described in [7] for solving unconstrained global optimization problems. Let’s
briefly describe the rules of the resulting parallel index algorithm (PIA).

Suppose we have p ≥ 1 computational elements (e.g., CPU cores), which
can be used to run p trials simultaneously. In the first iteration of the method,
p trials are run in parallel at various random points xi ∈ (0, 1), 1 ≤ i ≤ p.
Suppose n ≥ 1 iterations of the method have been completed, and as a result
of which, trials were carried out in k = k(n) points xi, 1 ≤ i ≤ k. Then the
points xk+1, . . . , xk+p of the search trials in the next (n + 1)-th iteration will be
determined according to the rules below.

1. Renumber the points x1, . . . , xk from previous iterations with lower indices,
lowest to highest coordinate values, i.e.

0 = x0 < x1 < . . . < xi < . . . < xk < xk+1 = 1, (14)

and match them with the values zi = gν(y(xi)), ν = ν(xi), 1 ≤ i ≤ k,
from (13), calculated at these points; points x0 = 0 xk+1 = 1 are introduced
additionally; the values z0 zk+1 are indeterminate.

2. Classify the numbers i, 1 ≤ i ≤ k, of the trial points from (14) by the number
of problem constraints fulfilled at these points, by building the sets

Iν = {i : 1 ≤ i ≤ k, ν = ν(xi)} , 1 ≤ ν ≤ m + 1, (15)
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containing the numbers of all points xi, 1 ≤ i ≤ k, with the same values of
ν. The end points x0 = 0 and xk+1 = 1 are interpreted as those with zero
indices, and they are matched to an additional set I0 = 0, k + 1.
Identify the maximum current value of the index

M = max {ν = ν(xi), 1 ≤ i ≤ k} . (16)

3. For all values of ν, 1 ≤ ν ≤ m + 1, calculate the values

μν = max

{
|zi − zj |

(xi − xj)
1/N

: i, j ∈ Iν , j < i

}
. (17)

If the set Iν contains less than two elements or μν from (17) equals zero, then
assume μν = 1.

4. For all non-empty sets Iν , 1 ≤ ν ≤ m + 1, determine the values

z∗
ν =

{
−εν , ν < M,

min {gν(xi) : i ∈ Iν}, ν = M,
(18)

where M is the maximum current value of the index, and the vector

εR = (ε1, . . . , εm) , (19)

with positive coordinates is called the reserve vector and is used as a para-
meter in the algorithm.

5. For each interval (xi−1, xi),1 ≤ i ≤ k + 1, calculate the characteristic R(i):

R(i) = Δi +
(zi − zi−1)2

(rνμν)2Δi
− 2

zi + zi−1 − 2z∗
ν

rνμν
, ν = ν(xi−1) = ν(xi),

R(i) = 2Δi − 4
zi − z∗

ν

rνμν
, ν(xi−1) < ν(xi) = ν,

R(i) = 2Δi − 4
zi−1 − z∗

ν

rνμν
, ν = ν(xi−1) > ν(xi).

where Δi = (xi − xi−1)1/N , and the values rν > 1, 1 ≤ ν ≤ m + 1, are used
as parameters in the algorithm.

6. Reorder the characteristics R(i), 1 ≤ i ≤ k + 1, from highest to lowest

R(t1) ≥ R(t2) ≥ . . . ≥ R(tk) ≥ R(tk+1) (20)

and choose p largest characteristics with interval numbers tj , 1 ≤ j ≤ p.
7. Carry out p new trials in parallel at the points xk+j , 1 ≤ j ≤ p, calculated by

the formulae

xk+j =
xtj

+xtj−1

2 , ν(xtj−1) 	= ν(xtj
),

xk+j =
xtj

+xtj−1

2 − sign(ztj
−ztj−1)

2rν

[ |ztj
−ztj−1|
μν

]N

, ν(xtj−1) = ν(xtj
) = ν.
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The algorithm stops if the condition Δtj
≤ ε becomes true for at least one

number tj , 1 ≤ j ≤ p; here ε > 0 has an order of magnitude of the desired
coordinate accuracy.

Let’s formulate the conditions for algorithm convergence. For this, in addition
to the exact solution y∗ of the problem (10), we will also consider the ε-reserved
solution, determined by the conditions

ϕ(yε) = min {ϕ(y) : y ∈ D, gj(y) ≤ −εj , 1 ≤ j ≤ m},

where ε1, . . . , εm are positive numbers (“reserves” for each constraint). Let’s also
introduce the set

Yε = {y ∈ D : gj(y) ≤ 0, ϕ(y) ≤ ϕ(yε)} (21)

of all feasible points for the problem (10), which are no worse (in terms of the
objective function’s value) than ε-reserved solution.

Using this notation, the convergence conditions can be formulated as the
theorem below.

Theorem. Suppose the following conditions are true:

1. The problem (10) has ε-reserved solution yε.
2. Each function gj(y), 1 ≤ j ≤ m + 1, satisfies Lipschitz condition with the

respective constant Lj .
3. The parameters εj , 1 ≤ j ≤ m, from (19) have the values of the respective

coordinates from the reserve vector εR.
4. For the values μν from (17) starting from a certain iteration, the following

inequalities are true:

rνμν > 23−1/NLν

√
N + 3, 1 ≤ ν ≤ m + 1.

5. Each iteration uses a fixed number of computational elements p, 1 < p < ∞,
and each trial is completed by a single computational element within a finite
time.

Then any accumulation point ȳ of the sequence
{
yk

}
generated by parallel

index method while solving the problem (10) is admissible and satisfies the
conditions

ϕ(ȳ) = inf
{
ϕ(yk) : gj(yk) ≤ 0, 1 ≤ j ≤ m, k = 1, 2, . . .

} ≤ ϕ(yε).

i.e., ȳ belongs to the set Yε from (21).
These convergence conditions proceed from the theorem of convergence of

the serial index algorithm [5] and the theorem of convergence of a synchronous
characteristical algorithm [7].
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5 Results of Numerical Experiments

The procedure applied to evaluate the efficiency of the algorithm uses an oper-
ating characteristics method, originally described in [22], which consists of the
following.

Suppose a problem from the series under consideration be solved by a certain
algorithm. The problem is associated with the sequence of trial points

{
y(xk)

}

produced by the algorithm. The sequence is truncated either when a trial point
falls (for the first time) into a certain ε-vicinity of the solution y∗ or when a
certain number of trials K does not produce such a point. In our experiments
we used K = 106.

The results obtained by solving all problems in a series by means of the
algorithm is represented by the function P (k) defined as the fraction of problems
in which some trial point fall within the given ε-neighborhood of the solution
in the first k steps. This function is called the operating characteristic of the
algorithm.

Since the specification of an ε-vicinity requires that y∗ be known, its value
was estimated in advance (for each problem) by searching through all nodes of a
uniform grid (defined on the search domain), e.g. with a step 10−2 by coordinates.

As discussed above (see Remark 1 from Sect. 3), the constraints in the prob-
lem being addressed have a different nature. The first three constraints are geo-
metric, and checking whether they are feasible is not hard. Checking other con-
straints is far more labor-intensive. Therefore, when building operating charac-
teristics for this class of problems, we will only consider the trials that resulted
in checking labor-intensive constraints. The trials that were completed while
checking geometric constraints are not included in the total number of trials.

The experiments were carried out for the parallel index algorithm (PIA)
described above, with the number of used cores p varying from 1 to 8. The
parameters used were rν = 2.5, 1 ≤ ν ≤ 8. Components of the reserve vector
from (19) were selected adaptively under the rule εν = 0.005μν , 1 ≤ ν ≤ 7,
where μν is from (17) (see [5] for a justification of this component selection
for the reserve vector). Computing experiments were carried out on one of the
nodes of a high-performance cluster of the Nizhny Novgorod State University.
The cluster node includes Intel Sandy Bridge E5-2660 2.2 GHz CPU and 64 Gb
RAM. For implementation of the parallel algorithm OpenMP was used.

The algorithm’s operating characteristics when using different number of
computing cores p obtained with a series of 100 problems, are shown in Fig. 5.
The location of the curves shows that any of the parallel algorithms solve 100%
of the problems in less than 7 · 105 trials, with more than 80% of the problems
completing within 2 · 105 trials. The operating characteristics also show that the
algorithm is non-redundant – the number of trials in the parallel algorithm does
not grow (compared to serial algorithm) when additional cores are employed.

Now let’s evaluate the speedup achieved by using a parallel index algorithm,
depending on the number p of computing cores used. Table 1 shows the aver-
age number of iterations n(p) performed by the algorithm when solving a series
of 100 problems, and speedup by the iterations s(p) of a parallel algorithm.
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Fig. 5. Operating characteristics of PIA, which uses p cores

Table 1. Speedup of the algorithm

p n(p) s(p)

1 241239 –

2 94064 2.56

4 45805 5.27

8 22628 10.66

The results show that the speedup is greater than the number of cores used
(hyper-acceleration). This situation is explained by the fact that the algorithm
performs an adaptive evaluation of the behavior of the objective function (calcu-
lating the lower bounds for the Lipschitz constant (17) and the current minimum
value (18)). For example, if the Lipschitz constant is better estimated in a paral-
lel version, then the parallel algorithm using p cores can be accelerated by more
than p times.

6 Conclusion

In summary, we must note that the method proposed in this work to generate
multidimensional conditional global optimization problems allows:

– clear visualization of the best current estimate and the final solution to the
problem, regardless of the number of variables;

– increased dimensionality of the optimization problem being addressed by
varying the original approximation problem;

– control of the feasible domain by adding extra non-convex constraints.
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The functions included in the optimization problem are computationally inten-
sive, which also differentiates the mechanism proposed from other known mech-
anisms.

The proposed generator was used to build and subsequently solve 100 prob-
lems using a parallel index algorithm. The operating characteristics of the par-
allel algorithm have been built, clearly demonstrating its non-redundancy.
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