Chapter 2
Maximum-Entropy Ensembles of Graphs

Whereof one cannot speak, thereof one must be silent.

—Ludwig Josef Johann Wittgenstein, Logisch-Philosophische
Abhandlung

Abstract In this chapter we describe the core method that will be used throughout
the rest of the book, i.e. the construction of a constrained maximum-entropy ensem-
ble of networks. This procedure requires the definition of the entropy of a network
ensemble, the specification of structural properties to be enforced as constraints, the
calculation of the resulting maximum-entropy probability of network configurations,
and the maximization of the likelihood, given the empirical values of the enforced
constraints. We describe this procedure explicitly, after giving some general motiva-
tions. In particular, we discuss the crucial importance of enforcing local constraints
that preserve the (empirical) heterogeneity of node properties. The maximum-entropy
method not only generates the exact probabilities of occurrence of any graph in the
ensemble, but also the expectation values and the higher moments of any quantity of
interest. Moreover, unlike most alternative approaches, it is applicable to networks
that are either binary or weighted, either undirected or directed, either sparse or dense,
either tree-like or clustered, either small or large. We also discuss various likelihood-
based statistical criteria to rank competing models resulting from different choices
of the constraints. These criteria are useful to assess the informativeness of different
network properties.

2.1 Constructing Constrained Graph Ensembles:
Why and How?

In Chap. 1 we already anticipated that various problems of great importance in net-
work science may be (re)formulated in such a way that similar underlying concepts
are invoked and a common toolkit is employed. In particular, we gave a series of
motivations for addressing three specific problems that will be discussed in detail in
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Fig.2.1 Abstract construction of a constrained ensemble of networks. (1) First, a particular network
(for instance, an observed real-world one) is considered. (2) Then, a set of topological properties
(in the example shown, the different numbers of connections of nodes) is chosen as a constraint
and measured on the network. (3) Finally, an ensemble of networks induced by the measured
constraints is constructed according to some rule resulting in a probability distribution over the
space of allowed configurations. In the problem of pattern detection (see Chap.3), the average
properties of the constrained ensemble are then compared to those of the original network in order
to detect statistically significant patterns in the latter. In the problem of network reconstruction (see
Chap.4), one actually does not have empirical access to the original network, but only to a set of its
properties; the procedure therefore starts at step 2) by treating these properties as constraints and
then produces an ensemble of inferred possible configurations for the unknown network. Finally,
in various problems in graph combinatorics (see Chap.5), one is interested in correctly sampling
and/or enumerating the configurations from the induced ensemble

the following chapters of this book, namely the detection of statistically significant
structural patterns in real networks (Chap. 3), the reconstruction of networks from
partial empirical information (Chap.4) and the sampling or enumeration of graphs
with specified topological properties (Chap. 5). These three different problems, while
unrelated at first sight, require in fact a common framework: the construction of an
ensemble of random graphs with given constraints [1-23]. In the case of pattern
detection, the constraints represent null hypotheses used as a reference to identify
empirical patterns. In the case of network reconstruction, they represent pieces of
incomplete data used to infer missing information. In the case of graph combinatorics,
they represent topological properties of the network configurations to be sampled or
enumerated.

A pictorial representation of the construction of a constrained ensemble of graphs
is givenin Fig. 2.1. In general, the procedure may go through three steps: we may start
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from a specific (real-world) network, then measure the topological properties we want
to preserve, and finally impose these properties as a constraint in the construction of
the ensemble. In all the cases considered in this book, we impose that the graphs in
the ensemble all have exactly the same number of nodes as the original network. It
should at this point be noted that, at least conceptually, we may skip the first step
and start directly with the specification of the constraints themselves (in such a case,
the number of nodes in the original network should also be known, if not already
evident from the constraints themselves). Whether one can actually skip the first step
depends on the particular technical implementation, not on the theoretical definition
of the ensemble. For instance, in certain computational pattern-detection approaches
that aim at iteratively randomizing a real-world network while preserving some of
its properties (explicit examples are given below in Sect.2.1.2), one has to start
from the first step. By contrast, in other cases (e.g. when only partial information is
available about the original network, as in the problems considered in Chap.4), one
is forced to start from the second step. This implies that, in order to be useful for
multiple purposes, ‘good’ ensemble constructions should be able to take (only) the
values of the chosen constraints as input. Of course, this requires that such values
are graphic,' i.e. realizable in at least one graph. If the constraints come from the
observation of some network (including the case when they are the only information
available about some unknown underlying network), their graphicality is of course
always guaranteed.

In general, the third step in the construction of an ensemble of constrained graphs,
i.e. the specification of a (satisfactory) graph probability, is the most challenging one.
The reason is twofold, as briefly explained below.

e Firstly, not all choices of the constraints lead to equally easy ways of constructing
the resulting ensemble. In fact, the most important and useful constraints turn
out to be node-specific, which implies that the local properties of nodes have
to be preserved separately. This requirement complicates the construction of the
probability distribution. This point is discussed in detail in Sect.2.1.1.

e Secondly, not all probability distributions satisfying the chosen constraints are
equally acceptable from a theoretical point of view. For instance, a key requisite is
that they assign the same probability to all graphs that have the same value of the
constraints, because there is no reason to prefer any one such graph over any other
such graph. This point is illustrated in Sect.2.1.2 for the case of computational
methods and in Sect.2.1.3 for the case of analytical methods.

In the rest of this chapter, we explain in detail the two points above, first by
highlighting the importance of imposing local constraints (Sect.2.1.1) and then by
emphasizing how most computational (Sect.2.1.2) and analytical (Sect.2.1.3) meth-
ods proposed in the literature fail to correctly sample the resulting ensembles. Then,
in Sect.2.2 we introduce a rigorous methodology to produce a graph probability

I'A topological property f, where S (G) is the value of the property in graph G, is said to evaluate
to a graphic (or graphical) value f if there exist at least one graph G that realizes such value, i.e.
for which f(G) = f.
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meeting all the desired requirements. The methodology is based on the maximiza-
tion of the entropy subject to a set of chosen constraints (this step fixes the functional
form of the probability distribution) and the subsequent maximization of the likeli-
hood (this step fixes the numerical values of the probability distribution). We will
see that the maximum-entropy formulation solves all the highlighted problems in
an elegant and mathematically explicit way, a result that will come as a relief. This
procedure represents the core of the formalism that will be used repeatedly in this
book.

2.1.1 Definition and Importance of Local Constraints

To characterize the structure of a given network, arbitrarily many topological prop-
erties can be defined. Among these, the simplest and most important properties are
local quantities, i.e. functions of only the immediate neighbourhood of each node.
Let us introduce some notation to define these local properties, before discussing
their importance.

A binary undirected graph® with N vertices is completely specified by a sym-
metric N X N adjacency matrix A. The entries of the latter are such that a;; = 1
if the vertices i and j are connected and a;; = 0 otherwise. For each node i, the
degree ki(A) = i Gij is defined as the number of connections of that node, and

is therefore a local node-specific property. The degree sequence k(A) = {k; (A)}Y_,
is the N-dimensional vector of degrees of all nodes.

In case of weighted® undirected graphs, a network is specified by a symmetric
N x N weight matrix W where the entry w;; quantifies the intensity of the link
connecting nodes i and j. This includes the case w;; = 0 corresponding to nodes i
and j being not connected. Besides the degree (which is still defined as the number
of connections of a node, irrespective of their intensity), another local property that

can be introduced in this case is the strength s;(W) = > i Wij> defined as the sum

of the weight of all links of vertex i. The strength sequence s(W) = {s; (W)}iN= Y

the N-dimensional vector of strengths of all nodes.

2 An undirected graph (or network) is a graph where no direction is specified for the edges. An
undirected graph is binary or simple if each pair of nodes i and j (with i # j) is connected by at
most one edge, i.e. if there are no multiple edges between the same two nodes. We will also assume
the absence of self-loops (edges starting and ending at the same node) throughout the book.

3 A weighted graph (or network) is a graph where links may carry different intensities. When dealing
with weighted networks, throughout the book we will assume non-negative integer link weights
(i.e. wjj = 0,1,2--- + 00) for simplicity. This corresponds to the assumption that an indivisible
unit of measure of link weights has been preliminary specified. Under this assumption, a weighted
network can also be regarded as a graph that is in general not simple, i.e. where multiple links of unit
weight are allowed between the same two nodes. We will still exclude the possibility of self-loops.
Ideally, one may think of link weights becoming continuous as the unit of measure is chosen to be
vanishingly small.
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In case of (either binary of weighted) directed* graphs, the matrices A and W are in
general not symmetric, and each node admits an in-degree kf "A) = i @jiranout-
degree k' (A) = Zj#l- a;j, an in-strength si" (W) = Zj# w; and an out-strength
s (W) = 2, wij. Correspondingly, we can introduce the in-degree sequence
k"(A) = {k"(A)}Y,, the out-degree sequence k™' (A) = {k?'(A)}Y,, the in-
strength sequence s (W) = {s!" (W)}, and the out-strength sequence s”"' (W) =
{57 (W)Y

The degree(s) and strength(s) defined above are in some sense the immediate, first-
order structural properties that can be measured in any network. For these reason, we
will refer to the degree and strength sequences as the local topological properties of
a network. To speak in general terms more easily, we will denote a generic sequence
of such local constraints with the vector C(G), where G denotes a generic graph
(either binary or weighted, either directed or undirected) and C denotes a generic
sequence of constraints (e.g. k or s) or a concatenation of more sequences (e.g. the
concatenation of k? and k', or of s°*/ and s").

The importance of local topological properties comes from the fact that, in most
situations, they directly reflect the effects of ‘size’ or ‘importance’ of nodes. For
instance, more popular people naturally have a higher degree in a social network, and
more wealthy companies or countries naturally have a higher strength in an economic
network. Clearly, one expects the size and/or importance of nodes to have a strong
impact on the realized patterns of connections. For various reasons, one would like to
characterize this effect quantitatively by constructing (ensembles of) networks that
have the same local properties of a given real-world network. For instance, if one has
empirical access only to the degrees and/or strengths of nodes of a network, then the
best guess one can make about the unknown network is given by a suitable ensem-
ble of graphs matching the empirical local properties. This is the problem of network
reconstruction that will be treated extensively in Chap. 4. Another example is encoun-
tered when looking for higher-order patterns in a real network, i.e. for topological fea-
tures that cannot be explained or replicated starting from the knowledge of only the
local properties. In this case, which is the problem of pattern detection that will be
treated extensively in Chap. 3, one requires a benchmark model constructed from only
the local properties themselves. Both challenges require the introduction of ensem-
bles of networks with given local properties.

Having clarified the importance of constructing graph ensembles tailored on the
empirical values of the degrees and/or strengths of nodes, one might at this point won-
der whether such values may be produced as random fluctuations around a common
average value (in which case the model would only require the average value as a
parameter, besides a choice of the probability distribution of the random fluctuations

4 A directed graph is a graph where a direction is specified for each edge (self-loops are not allowed
in this case as well). A directed graph is binary (or simple) if any two nodes i and j are connected
in one of the following four mutually-exclusive ways: via only a directed link from i to j, via only
a directed link from j to i, via both such links, or via no link at all. A directed graph is weighted if
links can carry different intensities, including when they are pointing in opposite direction between
the same two nodes. Again, we will assume non-negative integer weights.
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around it) or whether more complicated and higher-dimensional models, controlling
the local constraints for each node separately, are needed. The answer to this question
has been given over decades of extensive empirical analyses which have conclusively
shown that the empirical values of the degrees and the strengths observed in most real-
world networks are in some sense ‘irreducible’ to the outcome of any simple homo-
geneous model. For instance, in most real-world networks both the empirical degree
distribution’® and the empirical strength distribution® turn out to be very broad, and
typically with a right tail decaying as a power law of the form P(x) o« x77, with
2 < y < 3. In the abstract limit where the number of nodes becomes infinite, the
variance of these distributions diverges while the mean remains finite, implying that
the average value is not representative of the value of individual nodes. This signals
the absence of a typical scale for the degree or strength of nodes. For this reason, most
empirical networks are called scale-free [24]. The degree and strength distribution of
these networks is much broader than would be obtained under a simple homogeneous
network formation model with just a global constraint on e.g. the average degree or
the average strength of nodes, even after including noise or stochasticity.

For instance, the oldest and most popular random graph model, the Erd6s-Rényi
(ER) model [25], constructs a simple binary random graph with N nodes by connect-
ing each (distinct) pair of these nodes with a given probability p. Since each node
has N — 1 potential other nodes to connect to, and since the same value p of the
probability is used for all pairs of nodes, it immediately follows that the expected’
degree of each node i has the same value (k;) = p(N — 1). This is already an indi-
cation of the complete homogeneity of the ER model. Moreover, it is easy to show
that, for each node i, the probability for the degree k; taking a particular value k
is distributed binomially in k around the above expected value p(N — 1). Since a
binomial distribution is much narrower than typical empirical degree distributions,
it is intuitively clear that the latter cannot be regarded as typical realizations of the
ER model. This argument can be confirmed in various statistically rigorous ways,
although we will not focus on this issue in this book. Note that the parameter p has
a direct control on the expected total number of links (L) = pN(N — 1)/2, where
N(N — 1)/2 is the number of pairs of N nodes (i.e. the maximum possible number
of edges). Therefore one can regard the ER model as an ensemble of random graphs
with a global constraint on the expected total number (L) of links, or equivalently on
the expected average degree® (k) = 2(L)/N = p(N — 1). It is then clear that such
a global, overall constraint would not produce realistic network configurations. This

5The empirical degree distribution is defined, for a given network, as the fraction P (k) of nodes
that have degree k.

SThe empirical strength distribution is defined, for a given network, as the fraction P (s) of nodes
that have strength s.

TThroughout the book, by expected value (or expectation) of a topological property we mean the
average of that property over the ensemble of random graphs under consideration. We denote
expectation values with angular brackets (-). The rigorous definition is given later in Eq. (2.7).
8The average degree in a simple undirected graph with N nodes is defined as k = N~! ZIN:1 ki
and necessarily equals 2L /N, where L is the total number of links.
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calls for more complicated models where the (expected) degree of each node can be
controlled independently of the degree of the other nodes.

An almost identical argument holds for the strengths. One can define the weighted
random graph model (WRG) [19] as the weighted counterpart of the ER model, where
the only constraint is now the expected total weight (W) of all links in the network, or
equivalently the expected average strength’ (5) = 2(W)/N. It can be shown that this
constraint can be implemented by going over all pairs of nodes and placing an edge of
weight w according to a geometric probability distribution having the same parameter
value for all node pairs. The resulting strength of all nodes is distributed according
to a negative binomial distribution with the same expected value. Empirical strength
distributions are therefore incompatible with typical realisations of the WRG. More
complicated models of weighted networks, with separately controllable strenghts,
are needed in order to restore compatibility with the heterogeneity of real-world
networks.

The above discussion clarifies that, in order to construct ensembles of constrained
networks that are both practically useful and theoretically sound, one should intro-
duce a way of controlling each local property (i.e. each degree and/or strength)
separately. It is useful at this point to look back at Fig.2.1. We denote the particular
initial graph (step 1) by G* and the corresponding numerical value of the constraints
(step 2) by C* = C(G*). The third step will generate a collection of many graphs
{G} which include G* itself. It should be noted that the constraints C define the suf-
ficient statistics of the problem: the construction of the ensemble should be possible
by knowing only the value C* (i.e. skipping step 1) and no other property of the
graph G*. While this idea is conceptually simple, implementing it correctly is very
challenging. Understanding the origins of this difficulty is a key step towards the
appreciation of the maximum-entropy method that will be described in Sect. 2.2. For
this reason, in the rest of this section we briefly review the problem by discussing
various alternative attempts at the construction of ensembles of graphs with local
constraints.

2.1.2 Computational Approaches

For concreteness, let us consider the case of binary undirected graphs, which is by
far the most frequently explored situation. We will consider many other ensembles
later in the book. The ensemble of binary undirected graphs with specified degree
sequence C* = k* is known as the binary configuration model (BCM) [1, 2, 23].
Given a real-world binary undirected network G* = A*, an entirely ‘bottom-
up’ computational approach to the generation of the associated binary configuration
model with degree sequence k* = k(A*) consists in initially assigning each vertex
i a number of ‘edge stubs’ equal to the target degree k7. Then, pairs of stubs are

9The average strength in a weighted undirected graph with N nodes is defined as § = N ! Z,N:1 S
and necessarily equals 2W /N, where W is the total weight of all links in the network.
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randomly matched avoiding the formation of self-loops and multiple links, until all
degrees reach their desired values (edge stub connection). Looking back at Fig. 2.1,
this implementation has the desirable property that one can start from ‘step 2’ in the
ensemble construction. Indeed, the edge stubs are precisely the half-edges portrayed
inside the second box in the picture. Unfortunately, if the values of the degrees are
too heterogeneous, this procedure is known to get stuck in configurations where ver-
tices requiring additional connections have no more eligible partners [1, 2]. Typical
realizations of the procedure share this problem, which therefore cannot be eas-
ily circumvented by simply aborting the unsuccessful realizations and starting over
again.

A popular alternative method is based on a ‘top-down’ implementation where the
entire real network A* is taken as the initial configuration, and a family of randomized
variants is generated by iteratively applying a local rewiring algorithm (LRA). In
the LRA, two edges (A, B) and (C, D) are randomly selected and replaced by the
two edges (A, D) and (C, B), if the latter are both not already present [1, 2] (see
Fig. 2.2 for an illustration). Technically, the above procedure generates an ensemble
where all randomized networks have exactly the same degree sequence as the original
network. This method has been applied to various networks, including the Internet [2],
cellular networks [3] and food webs [8], in order to detect higher-order patterns
(such as clustering and motifs) not merely due to local constraints. Unfortunately,
this approach is time-consuming since many (a number R much larger than the
observed number of links L [1, 20], even if not rigorously specified) iterations of
the LRA are required to obtain a single randomized network, and the entire process
must be repeated several times to produce a large number M (again unspecified)
of randomized networks, on each of which any topological property X of interest
must be measured explicitly and averaged at the end to obtain an estimate for (X).
The computational time required to obtain (X) is therefore of the order O (M -
Tr - R) + O(M - Tx), where Ty is the average time required to perform a single
successful rewiring step and T is that required to compute X on a single network
in the randomized set. Moreover, even if the sufficient statistics of the problem is
the degree sequence k(A*) alone, the above approach requires the entire original
network A* (or any other network with the same degree sequence, which is however
difficult to obtain from scratch due to the problems discussed above) as the starting
configuration, thus making use of much more information than required in principle.

Besides these practical limitations, the main problem of the LRA is the fact that
it is biased, i.e. it does not sample the desired ensemble uniformly. This has been
rigorously shown relatively recently [21, 26, 27]. For undirected networks, unifor-
mity has been shown to hold, at least approximately, only when the degree sequence
is such that [27] o

Kmax - K2/ (k)* < N 2.1)

where k., is the largest degree in the network, k is the average degree, k2 is the
second moment, and N is the number of vertices. Clearly, the above condition sets
an upper bound for the heterogeneity of the degrees of vertices, and is violated if the
heterogeneity is strong. This is another indication that the available methods break
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Fig. 2.2 An illustration of
the local rewiring algorithm

whose iteration allows to e G
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down for ‘strongly heterogeneous’ networks. As we discuss later, most real-world
networks are found to fall precisely within this class.

For directed networks, where links are oriented and the constraints to be met are
the numbers of incoming and outgoing links (in-degree and out-degree) separately,
a condition similar to Eq. (2.1) holds, but there is also the additional problem that
the LRA is non-ergodic, i.e. it is in general not able to explore the entire ensemble of
networks [26]. The violation of uniformity and ergodicity in the LRA implies that the
average quantities over the graphs it generates are biased, i.e. they do not correspond
to the correct expectations.

It has been shown that, in order to restore ergodicity, it is enough to introduce
an additional ‘triangular move’ inverting the direction of closed loops of three ver-
tices [26]. However, in order to restore uniformity, one must do something much
more complicated: at each iteration, the attempted ‘rewiring move’ must be accepted
with a probability that depends on some complicated property of the current network
configuration [21, 26, 27]. Since this property must be recalculated at each step, the
resulting algorithm is extremely time consuming.

Other recent alternatives [28—30] rely on theorems, such as the Erdos-Gallai [31]
one, that set necessary and sufficient conditions for a degree sequence to be graphic,
i.e. realized by at least one graph. These ‘graphic’ methods exploit such (or related)
conditions to define biased sampling algorithms in conjunction with the estima-
tion of the corresponding sampling probabilities, thus allowing one to statistically
reweight the outcome and sample the ensemble effectively uniformly [28-30]. Del
Genio et al. [28] show that, for networks with power-law degree distribution of the
form P (k) ~ k~7, the computational complexity of sampling one graph using their
algorithm is O(N?) if y > 3. However, when y < 3 the computational complexity
increases to O (N%?) if

kmax < VN (2.2)
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andto O(N?) ifkyyay > +/N.The upper bound VNis aparticular case of the so-called
‘structural cut-off” that we will discuss in more detail later. For the moment, it enough
for us to note that Eq. (2.2) is another indication that, for strongly heterogeneous
networks, the problem of sampling gets more complicated. As we will discuss later,
most real networks violate Eq. (2.2) strongly.

So, while ‘graphic’ algorithms do provide a solution for every network, their
complexity increases for networks of increasing (and realistic) heterogeneity. A more
fundamental limitation is that they can only handle the problem of binary graphs
with given degree sequence. The generalization of these methods to other types of
networks and other constraints is not straightforward, as it would require the proof
of more general ‘graphicality’ theorems, and ad hoc modifications of the algorithm.

For what concerns weighted networks, the available ‘hard’ algorithms regard
each link weight as an integer multiple w of a fundamental unit of weight, transform
each edge of weight w into w edges of unit weight and rewire the latter as in the
unweighted case, now ensuring that the strength of each vertex is preserved. This
means replacing a list of L* < N(N — 1)/2 weighted links, summing up to a total
weight W* = >, wi;, with W* 3> N(N —1)/2 unweighed links. As real networks
have broadly distributed weights summing up to a large W*, this procedure becomes
very time consuming as unfeasibly many rewiring steps per randomized variant must
be performed. Moreover, much less is known about the potential bias produced by
this algorithm in the case of weighted networks.

2.1.3 Analytical Approaches

In contrast with computational methods, analytical approaches seek to provide
explicit mathematical expressions that directly estimate the ensemble averages of
topological properties, without generating the ensemble computationally. Two main
approaches exist. One makes use of generating functions for the relevant probability
distributions [23]. For the binary configuration model, the key quantity is the gen-
erating function g(z) = >, ZF P (k) of the degree distribution. Unfortunately, this
method assumes the network to be infinite and locally tree-like (even if in some
cases this approximation turns out to perform unexpectedly well even beyond its
formal range of applicability [32]), and is thus in general inappropriate if the size
of the network is small and if the input degree distribution can only be realized by
dense and/or clustered networks. In this approach, clustered or dense networks can
only be generated by imposing additional constraints besides the degree sequence,
such as the number of triangles attached to vertices [33], thus leading to a different
ensemble which is not the one we are seeking to characterize. A different approach
looks for an analytical expression for the probability p;; that the vertices i and j
are connected in the randomized ensemble [4]. Due to its probabilistic nature, this
approach generates an ensemble with soft constraints, i.e. where graphs violating
the constraints are present and assigned non-zero probabilities. The constraints are
still realized on average, i.e. the expectation value (C) of C is still equal to C*. The
popular expression used for p;; is
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kik:
C 2L

Dij (2.3)

where L* = L(A*) = >, ki(A%)/2 = ij a;; is the total number of links.
While the expected degree (k;) = ; pij generated by the above formula coincides
(approximately, as we discuss below) with the desired degree k', the probability p;;
may exceed 1 for pairs of highly connected nodes such that k?*k;f > 2L*. In general,

only if the degree sequence is such that

ki <~2LF = >kt Vi 2.4
J

then using Eq. (2.3) on the real network A* will not lead to the above problem. While
the above condition is typically obeyed by networks with narrow degree distribu-
tion it is generally violated by scale-free networks displaying a power-law degree
distribution P (k) ~ k=7, and this violation becomes stronger and stronger as the
density of the network increases. In particular, it is easy to see that in order to ensure
Eq. (2.4) the maximum degree k. = max; k" in the network should not exceed the
so-called structural cut-off k. ~ N'/? [34]. This is particularly evident for sparse
networks where the average degree k = > ki/N = 2L/N remains constant as N
increases, so that Eq. (2.4) remains valid only if k4, < V2L ~ N2, By contrast,
extreme value theory shows that in networks with degree distribution P (k) ~ k7
the maximum degree scales as k¥, ~ N~V so thatif y < 3 (as observed in
most real-world scale-free networks) then k%, > N!/? which exceeds k..

Loosely speaking, the meaning of p;; being larger than 1 for some pairs of vertices
in Eq. (2.3) is that i and j should be connected by more than one undirected edge
in order to actually realize the desired degree sequence. Also, since the desired
equality (k;) = k;" is only ensured if one lets the sum in > i Pij = (k;) run over all
vertices including i itself, one must allow the presence of self-loops in the randomized
networks. Thus, even if this is not evident at a first glance, the ensemble generated
by Eq. (2.3) does not only contain binary and loop-less undirected graphs and is thus
not a proper null model for an empirical binary loop-less network A* with degree
sequence k* violating Eq. (2.4), as is typically the case for real-world networks with
broad degree distributions.

An elegant proof that the correct ensemble probability p;; for loop-less graphs with
no multiple connections differs from Eq. (2.3) has been proposed [5] and re-derived
within the framework of maximum-entropy graph ensembles [10]. An independent
proof of the inadequacy of Eq. (2.3) is that it does not generate the graph A* with
maximum likelihood [35]. These results show that the functional form of p;; in
Eq. (2.3) is intrinsically problematic and does not give highest likelihood to A* and
to all other graphs with the same degree sequence as k*.

We can briefly make a similar comment for weighted networks with given strength
sequence s*, an ensemble known as weighted configuration model [11] (and discussed
at length in Sect.2.2.3 and Chaps.3 and 4). A (naive, yet widely used) generaliza-
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tion [11, 36] of the (naive, yet widely used) expression (2.3) states that the expected
weight of the link between nodes i and j in this ensemble is

sks*

)= 2.5
{wij) Wi (2.5)

where Wi, = W,,, (W*) => . 5;(W*)/2 =3, _ ; wj; is the total weight. The above
expression has been shown to have as many limitations as its binary counterpart, and
to be incorrect [18]. A simple signature of this inadequacy is the fact that, although
Eq. (2.5) is treated as an expected value, there is no indication of the probability
distribution from which it is derived. Therefore, it is impossible to derive the expected
value of topological properties that are nonlinear functions of the weights.

Therefore, while the available analytical methods are useful to characterise arti-
ficially generated networks with special properties, they cannot be used to correctly
describe ensembles of networks that are realistically small, clustered, or dense. Unfor-
tunately, the above limitations are generally ignored, and Egs. (2.3) and (2.5) are
frequently used beyond their limits of applicability to estimate connection probabil-
ities and expected link weights. Analogous problems exist in the case of directed
networks.

2.2 The Maximum-Entropy Method

The discussion in the previous section highlights that none of the above implemen-
tations succeeds in obtaining the properties of ensembles of constrained networks
such that two requests are met simultaneously:

e the method is general and works for any network, even if displaying small size,
high density and large clustering;

e expected values across the ensemble are unbiased and can be computed analyti-
cally, without sampling the configuration space explicitly.

In this section, we introduce a different method that fulfills the above criteria. The
method is based on the maximum-entropy principle and leads to exact expressions for
the probability of occurrence of any graph. It therefore allows us to calculate, correctly
and analytically, the expected topological properties of graphs in the ensemble. We
first illustrate the methodology in full generality, i.e. by considering an abstract
choice of topological constraints, and then work out two explicit examples in detail.
More examples will be given throughout the rest of the book when needed to address
specific problems.

Looking again at Fig.2.1, let us denote by G a generic network in the ensemble,
and by G* the particular original network (we may think of it as the empirical network
we need to randomize). The chosen constraint is C* = C(G*). The ensemble consists
of all possible networks {G} with the same number N of nodes and of the same type
(undirected/directed, binary/weighted, etc.) as G*, and includes G* itself. Note that



2.2 The Maximum-Entropy Method 19

G can always be thought of as a matrix with entries {g;;}, where g;; represents the
(either binary or non-negative) weight of the edge (i, j). Any topological property X
evaluates to X (G) when measured on the particular network G, i.e. it is an (arbitrarily
complicated) function of the entries {g;;}.

Each graph G in the ensemble has an occurrence probability P (G) whose form is
determined by the particular constraints enforced. This probability must always be
such that

Z PG) =1 (2.6)
G

where the sum runs over all graphs in the ensemble. The expectation or mean value
of any topological property X is the ensemble average

(X) =D X(G)P(G). @.7)
G

At this point, we look for the probability distribution that maximizes the Shannon-
Gibbs entropy

S(P)=-> P(G)InP(G) 2.8)
G

subject to the normalization condition (2.6) and to the desired constraints C*. The
entropy S(P) is a measure of the level of uncertainty, or randomness, in the outcome
of the random variable described by the probability distribution P. Variables that
have a certain outcome, i.e. whose probability is one for such outcome and zero for
all other outcomes, correspond to zero entropy. On the contrary, variables that are
maximally uncertain, i.e. for which every possible outcome has exactly the same
probability, yield the maximum value'” of the entropy. Maximizing the entropy sub-
ject to constraints is widely used in statistical mechanics and information theory, and
in general for problems with incomplete information [37-40]. The deep meaning
of constrained entropy maximization is that, in absence of any information other
than the knowledge of C*, the probability should make the outcome of the random
variable (C in this case) maximally uncertain provided that the constraints are met.
Otherwise, the probability would be favouring specific configurations, making them
more predictable than others and introducing an unjustified bias. Now, the solution
to the entropy maximization problem depends on whether we want the constraints
C* to be hard or soft.

Enforcing hard constraints means that we only allow (i.e. assign non-zero prob-
ability) the graphs that match the constraints exactly, i.e. such that C(G) = C(G").
This means that, in the above definition of entropy, we can restrict the sum to such
configurations only. It is easy to see that the resulting maximum-entropy distribution,
which is known as the microcanonical ensemble in statistical physics, is uniform over

19The maximum value of the entropy S(P) depends on the total number of configurations over
which the sum in Eq. (2.8) runs. This number can be rescaled to one for all probability distributions,
upon normalizing S(P) by the maximum value itself.
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the set of graphs that match the hard constraints:

1/Q2¢ if C(G) = C(GY)

Pric(G) = 0 otherwise

(2.9)

where §2¢- denotes the number of graphs for which C(G) = C*. An intuitive picture
of microcanonical ensembles of graphs is given in Fig. 2.3. Since £2¢- is a combinato-
rial quantity, the above result establishes an important connection between statistical
physics, probability theory and combinatorics. This connection will be explored in
detail in Chap.5. At this point, one should note that, while for simple constraints
(such as the total number of links) it is easy to compute §2¢+, for more complicated
constraints (including the degree sequence and the other local constraints we are
interested in this book) this can become a very hard task. For instance, enumerat-
ing the number of graphs with a given degree sequence k* is an open problem, and
asymptotic expressions are known only in some restricted regime of density of the
graph, i.e. under certain conditions that k* must obey. For this reason, microcanonical
graph ensembles are hard to deal with analytically and they are most often sampled
computationally using the techniques we described in Sect.2.1.2. However, as we
discussed, these techniques are either computationally unfeasible or affected by the
problem of bias, i.e. they do not sample the space of graphs according to the correct
uniform probability (2.9). The computational difficulties are therefore related to the
difficulties in calculating £2¢+ explicitly.

On the other hand, enforcing soft constraints means requiring that the desired
value C* is met only on average over the ensemble, or in other words that the
constraint is (C) = C*. This requirement defines what is known as the canonical
ensemble in statistical physics. However, unlike the traditional examples in physics,
where the total energy is the only (scalar) constraint, for the cases of interest here the
number of constraints grows linearly with the number of nodes in the system, since
C is a vector of node-specific quantities. This important difference has enormous
consequences, as we will discuss in Chap. 5. The form of the probability P, in the
canonical ensemble is found by requiring that, in addition to Eq. (2.6), the constraints
are given by

(C) = D C(G)Pen(G) = C". (2.10)
G

It is easy to show [10] that the corresponding solution to the constrained entropy
maximization problem is found by introducing a vector of Lagrange multipliers 6,
one for each of the constraints in C. The resulting conditional (on the value of )
probability reads

—H(G,0)

Pean(Gl0) = 70

@2.11)

where H (G, ) is the so-called graph Hamiltonian defined as the linear combination
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VS

> s

Fig. 2.3 Difference between microcanonical and canonical ensembles. Top: the microcanonical
probability Ppic is non-zero only for the subset of graphs that realize the enforced constraints C*
exactly. Bottom: by contrast, the canonical probability Pc,, is non-zero for all graphs with the
prescribed number of nodes, including those that violate the constraints (thus ranging from the
empty graph to the complete graph), and has a constant value Py, for all graphs for which Ppc is
non-zero. In general, Py, has the same value for all graphs that have the same value of C

H(G,0) = zgacu((;) =0.-CG) (2.12)

and the normalizing quantity Z () is the so-called partition function, defined as

Z(0) = Ze—H(G»‘”. (2.13)
G

The above results show that the graph probability P,y (G|@) always depends on the
value 0, which in turn depends on the constraints considered. As a consequence, we
can rewrite Eq. (2.7) more explicitly as a function of 0:

(X)o = D X(G)Peun(G10) (2.14)
G

where (-)¢ denotes that the ensemble average is evaluated at the particular parameter
choice 6. The above expression clarifies that the expectation value of any topolog-
ical property X depends on the specific enforced constraints through . Different
choices of the constraints imply different values of 8, P(G|0) and (X)g. Impor-
tantly, P.,,(G|@) depends on G only through C(G). This automatically implies that
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the canonical ensemble is unbiased, i.e. graphs with the same value of the constraints
are assigned equal probability. A pictorial representation of this property is given in
Fig.2.3.

Now, a crucial difference between the microcanonical and canonical ensembles
is that, if C* is a vector of local topological constraints, Ppi. cannot be exactly
factorized into probabilities that involve distinct pairs of nodes, whereas P.,, can.
This implies that the exact computation of 6* is feasible even if that of £2¢- is not. For
these reasons, which will be illustrated in explicit examples later on, the canonical
ensemble offers a viable and exact solution to the problem of constructing ensembles
of graphs with local constraints. It will be the main tool we will use throughout the
rest of the book. In statistical physics, results obtained within the canonical ensemble
are generally expected to become equivalent to those that would be obtained within
the microcanonical one in the so-called thermodynamic limit."" This notion is called
ensemble equivalence. Whether or not ensemble equivalence holds also in the case
of local constraints is an intriguing question, and its answer is postponed to Chap. 5.
Here and in Chaps.3 and 4, we assume that enforcing the constraint C* softly is
a perfectly acceptable strategy, for instance because its measured value may have
been corrupted by noise or error, and we are therefore inclined to accept other values
around C* in the ensemble construction.

2.2.1 Maximum-Likelihood Parameter Estimation

Maximum-entropy graph ensembles generated by Eq. (2.11) have been used exten-
sively to characterize mathematically networks with specified properties [5, 7, 10,
17, 18]. However, traditionally the Lagrange multipliers {6,} have been considered
as free parameters, generally drawn from carefully chosen probability densities [10,
17, 18] that allow for analytical results, in terms of which the properties of the net-
work model have been investigated. In most cases, the aim has been to explore the
topological properties in the thermodynamic limit N — oo, where N is the number
of vertices of the network. This means that only generic statistical properties of real
networks, such as a power-law degree distribution with a certain exponent, have been
used to generate the ensemble. However, this implies that the specific properties of a
particular real network (such as deviations of individual vertices from the fitted degree
distribution, the intrinsic finiteness of the system, etc.) have been ignored and, more
importantly, that it has not been possible to establish any correspondence between
the vertices of the real network and those of the model. Thus these approaches have
not allowed maximum-entropy graph ensembles to be considered as null models
of a particular real network in order to detect empirical topological patterns, or to

1n statistical physics, the thermodynamic limit is defined as the limit where the number of fun-
damental units that describe the microscopic configurations of the system diverges. In our graph
ensembles, we regard the nodes as the units and their connections as the interactions.
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reconstruct network topology from partial information, or even to enumerate graphs
compatible with a specified vector of constraints.

Now, following [41], we make a step forward and construct, for a given choice
of the constraints, the particular maximum-entropy graph ensemble representing the
family of correctly randomized counterparts of a given real network G*. Explicitly,
we consider a canonical ensemble of graphs with the same number N of vertices as
the real network, and for a given choice of the constraints we fit the model defined by
Eq. (2.11) to the empirical network G*. To this end, we exploit previous results [35]
showing that maximum-entropy graph ensembles defined by Eq. (2.11) are a par-
ticular class of models for which the maximum-likelihood principle provides an
excellent way to estimate parameters. In particular, it can be easily shown [35] that
the log-likelihood

£() =1In P(G*|0) = —H(G*,0) — In Z(6) 2.15)

is maximized by the particular value #* such that the ensemble average (C,)g~ of
each constraint C, equals the empirical value C,(G*) measured on the real network:

(C)* = (C)g- = D C(G)P(G|#") = C(G") (2.16)
G

where we have used (-)* as a shorthand notation to indicate the ensemble average
()¢~ evaluated at the particular value @*. The above results means that the maximum
likelihood principle indicates, for maximum-entropy graph ensembles, precisely the
parameter choice that ensures that the desired constraints are met. This is not true
in general: in other network models, tuning the average values of the topological
properties of interest to their empirical values requires a parameter choice which
in general does not maximize the likelihood to obtain the real network [35], thus
introducing a bias in the analysis [42—44].

Solving the maximum-likelihood equations only takes a computational time Tg
which is much shorter than the time required to measure any topological property
of typical interest. Moreover, the time required to compute the expectation value
(X)) of a given property X analytically (formally corresponding to an average over a
huge number of randomized configurations) is the same as the time Ty required to
compute the same property on the single original network. The artificial generation
of many randomized variants of the original network is no longer required. Therefore
this method takes only a total time O(Tg + Tx) to obtain (X) analytically, which is
incredibly shorter than the aforementioned time O (M - Tg - R) + O (M - Tx) required
by the LRA to obtain (X) only approximately. Importantly, T is independent of
the complexity of the topological property X to measure, which means that for
complicated properties O (Tg+Tx) = O(Tx). Therefore for any topological property
X which can be measured in a large but still reasonable time O(Ty) on the real
network, the computation of its expectation value (X) will require the same time
O (Tx). If the time required in order to obtain (X) is too large, it is because the time
required to measure X is too large as well. In other words, the property X is too
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complicated to be computed on the real network itself. In such a case, the problem
is not due to the method, but to a demanding choice of X for that particular network.

Note thatin Egs. (2.14) and (2.16) the expectation values and the model parameters
play inverted roles: while in Eq. (2.14) the expectation values are obtained as a
function of the parameters @ which can be varied arbitrarily, in Eq. (2.16) the observed
constraints, which are measured on the particular real network and are therefore
given as an input, are used to fix the model parameters to the values #*. Once the
parameters solving the equations are found, they can be directly used to obtain the
expectation value (X) and standard deviation o [X] of any topological property X
of interest analytically (details on how to calculate standard deviations can be found
in [41]). When useful, this also allows one to obtain a z-score representing the
number of standard deviations by which the randomized value (X) differs form the
observed value X (A*). The possibility to obtain the standard deviations and z-scores
is very important, because it allows one to assess which topological properties X
are consistent with their randomized value (X) within a statistical error, and which
deviate significantly from the null expectation. In the former case, one can conclude
that the enforced constraints completely explain the higher-order property X. In
the latter case, the observed property cannot be traced back to the constraints, and
therefore requires additional explanations or generating mechanisms besides those
required in order to explain the constraints themselves. We will discuss this procedure
in more detail in the next chapter.

2.2.2 A First Worked-Out Example: Binary, Undirected
Networks with Constrained Degree Sequence

In the binary, undirected case, each graph G is completely specified by its (symmetric)
adjacency matrix A. An important ensemble of binary undirected graphs is one
where the constraint is the degree sequence [10]. This null model is also known as
configuration model (CM). In our formalism this model is implemented by defining
the following Hamiltonian:

H(A) =D 6iki(A) = D > (6; +6))a;; 2.17)

i j<i

and one can show [10] that this allows one to write the partition function as

z@®) = "M =TT +xixp) (2.18)

A i j<i

and the graph probability as
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PA) =[]I1r5a—=pp' (2.19)
ioj<i
where g .20
pij = 1 + Xix; ’

(with x; = e~%) is the probability that a link exists between vertices i and j in the
maximum-entropy ensemble of binary undirected graphs characterized by the given
degree sequence as the constraint.

The maximum-likelihood condition [41] prescribes to find the solution {x*}N | to
the equations

XiX;
k) = ) — ki(A) Vi 2.21
(ki) ;Hm] (A%) Vi (2.21)

by choosing the imposed constraint to be the empirical degree sequence {k; (A*)}Y_,
of the particular real network A* or, equivalently, by finding the values of the parame-
ters {x*}N | that maximize the likelihood P (A*) [35, 41]. Inserting the {x*}N , into
Eq. (2.20) allows one to easily compute the expectation value (X )* of any topological
property X analytically, without generating the randomized networks explicitly [41].

Thus, Eq. (2.20) yields the exact value of the connection probability in the ensem-
ble of randomized networks with the same average degree sequence as the empiri-
cal one and Eq. (2.21) shows that, by construction, the degrees of all vertices are
special local quantities whose expected and empirical values are exactly equal:
(ki)* = ki (A*). It follows that the p;; coefficients can be calculated by using any
of the networks in the corresponding degree sequence-constrained microcanonical
ensemble.

The expectation value of any higher-order topological property can be derived
exploiting the fact that (a;;) = p;; and that different pairs of vertices are statistically
independent, which implies (a;;a) = pijpw if (i, j) and (k, ) are distinct pairs of
vertices, whereas (a;jan) = (a;;) = (@) = pij if G, j) = (k, ).

2.2.3 A Second Worked-Out Example: Weighted, Undirected
Networks with Constrained Strength Sequence

In the weighted, undirected case, each graph G is completely specified by its (sym-
metric) non-negative weight matrix W whose entries w;; will be understood as
integer-valued. The ensemble with local constraints is in this case known as weighted
configuration model (WCM) [11] and specifies the strength sequence as the con-
straint. The Hamiltonian therefore reads

HW) =" 60isi(W) = D> (6 + 0)w;; (2.22)

i j<i
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and one can show that this allows to write the partition function as [10]

z@) =D "W T[]0 —xixp™ (2.23)
w

i j<i

and the graph probability as [18]

POW) =[]0 (2.24)
i j<i
where
qij (w) = (xixj)w(l — xin) (2.25)

(with x; = e~%) is the probability that a link of weight w exists between vertices i
and j in the maximum-entropy ensemble of weighted, undirected graphs, subject to
specifying the given strength sequence as the constraint.

If the latter is chosen to be the empirical strength sequence {s; (W*)} of the par-
ticular real network W*, then Eq. (2.25) yields the exact value of the connection
probability in the ensemble of randomized weighted networks with the same aver-
age strength sequence as the empirical one, provided that the parameters {x; },N= | are
set to the values {x/ ,Nz | that maximize the likelihood P (W*) [41]. These values are
the solution of the following set of N coupled nonlinear equations:

(si) =2 ij = 5:(W*) Vi, (2.26)

Once the values {x;};_, are found, they are inserted into Eq. (2.25) which allows to
easily compute the expectation value (X)* of any topological property X analytically.
Equation (2.26) shows that, by construction, the strengths of all vertices are special
local quantities whose expected and empirical values are exactly equal: (s;)* =
5; (W™).

The expectation value of any higher-order topological property can be derived
exploiting the fact that (w;;) = > wg;j(w) = x;x;/(1 — x;x;), and that different
pairs of vertices are statistically independent, which implies (w;jwi) = (Wi;){(Wk)
if (i — j) and (k — 1) are distinct pairs of vertices, whereas (w;;wy;) = (wizj) if ( —j)
and (k — ) are the same pair of vertices. The expected value of the power of the
weight between vertices i and j is calculated as follows:

(wi) = D wqijw) = (1 — x;x;)Li_q (xix;) (2.27)

w

where Li, (z) denotes the Polylogarithm function defined as
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Liy(z) = D
=1

The adjacency matrix representing the existence of a link (irrespective of its intensity)
between vertex i and vertex j is derived from the weight matrix by setting a;; =
©®(wjj), where ®(x) = 1if x > 0 and ®(x) = 0 otherwise. The probability that
vertices i and j are connected, irrespective of the edge weight, is now (a;;) = p;; =
1 —g;;(0) = x;x;. In analogy with the expectation values of products of weights, we
have (a;jay) = pijpw if (i — j) and (k — [) are distinct pairs of vertices, whereas
(aijan) = (aizj) = (a;j) = p;ij if (i — j) and (k — [) are the same pair of vertices.

| I8

(2.28)

l
e

~

2.3 Comparing Models Obtained from Different
Constraints

The two worked out examples considered above will be used extensively throughout
this book, together with other models. When multiple models are applied to the same
set of network data, one needs a rigorous statistical procedure to compare them and
choose, loosely speaking, the ‘best one’. In fact, judging a model purely on the basis
of its performance in reproducing the observed trends represents a naive way of
proceeding exposed to many risks, the most dangerous one being that of preferring
models that overfit the data via redundant parameters that have high inter-correlations
and provide spurious information on the system [45, 46]. For instance, alternative
models are often compared exclusively in terms of the values of their likelihood
functions evaluated in their stationary points: the higher the value, the better the
model is expected to describe the considered network. However, this procedure lacks
arigorous statistical justification and does not address the parsimony of the models,
e.g. the number of parameters.

On the contrary, we would like to rely on a criterion able to unambiguously identify
not only the most effective null model in explaining empirical data, but also the most
statistically correct one. A more appropriate way of testing the effectiveness of two
competing null models (say N M; and N M;, where N M contains extra parameters
with respect to N M;) is the Likelihood Ratio Test (LRT) [47], which prescribes to
calculate the quantity

Dymynm; = —2(Lym, (07) — Lym;(07)) (2.29)

(where the symbols 8; and @ ; indicate the two different sets of Lagrange multipliers
that maximize the likelihood of the two models) and compare it to some threshold
value determined by some chosen significance level. If Dy, v, is smaller than
the threshold, then model N M should be rejected even though its log-likelihood is
higher than that of N M;.
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However, the LRT suffers from some limitations [47]. One lies in the fact that
the competing null models have to be nested: N M; has to be a special case of NM ;.
Another limitation has to do with the number of models that can be tested: only two
alternative hypoteses at a time can be compared, thus making a global ranking of all
the models in our set impossible.

So, we prefer a criterion which is suitable for more than two, possibly not nested,
competing null models. The Akaike Information Criterion (AIC) [45, 46, 48] is one
such criterion. It prescribes to calculate the quantity

AICY,, = 2Ky, — 2Ly, (07) Vi (2.30)

for every null model in the set and then choose the model with the lowest value.
Since the above quantity is (twice) the difference between the number of parameters
K of null model NM; and its log-likelihood evaluated in its maximum, such pro-
cedure satisfies all our requirements: it is likelihood-based, it discounts the number
of model parameters and allows for a comparison among several (not necessarily
nested) models.

However, whenever the number n of empirical observations becomes too small
with respect to the number of parameters (a rule of thumb being n/Kyy, < 40 [45,
46]) the modified quantity

2Knm, (Kyp, + 1)
n— KNM,- —1

AICcy,, = AICk,, + , (2.31)

providing an extra correction term further penalizing models with many parameters,
should be used. When n > K12v M AlICc converges to AIC and the usual form is
recovered. Notice that 7 has no subscript because the comparison between different
null models has to be carried on the same set of observations: naturally, this holds
true also for AIC and, generally speaking, for all model selection methods. More
precisely, in all the cases of interest for us, our samples will be constituted by the
entries of the adjacency matrix, i.e.n = N (N — 1) /2 observations when dealing with
undirected networks and n = N(N — 1) observations when dealing with directed
networks.

Both AIC and AICc select the most effective model in explaining observations,
avoiding (or, at least, strongly reducing) the risk of choosing overfitting models.
However, to quantify the relative improvement brought about by the best model, the
so called Akaike weights can be computed as follows:

_ A

L — (2.32)

R _ANM,
Zr:l e 2

where Ayy, = AICy,, — min{AIC},, }% |, R being the total number of consid-

i=1
ered null models. The Akaike weight of a specific model is usually interpreted
as the probability that that model is, in fact, the best one. Models with A < 2
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are given substantial statistical support, models with 4 < A < 7 are given less
support and models with A > 10 have essentially no support [45, 46, 48-50]. Con-
fidence intervals can also be defined [45, 46, 48-50].

An alternative criterion to AIC, the Bayesian Information Criterion (BIC) [45, 46,
48-50], has also been proposed and the corresponding weights defined accordingly.
The only, apparently simple but actually substantial, difference lies in the term to be
discounted from the maximized likelihood:

BICk,, = Kyu, Inn — 2%y, (07) Vi. (2.33)

The first addendum does not only account for the number of parameters, Ky, , but
also for the cardinality of the sample, n. Since BIC discounts the sample cardinality
from the very beginning, there is no need to define a corrected Bayesian Information
Criterion analogous to AICc. The Bayesian weights are defined analogously to the
Akaike weights:

Wy, = ——5— (2.34)

She
where now Ay, = BIC},, — min{BIC},, }.,, R being the total number of con-
sidered null models. Criteria to interpret BIC weights follow the same lines stated
for AIC weights [45, 46, 48-50].

Generally speaking, because of the extra term Inn, BIC is believed to be more
restrictive than AIC, as the former favors models with a lower number of parameters
than those favored by the latter [45]. However, which criterion performs best, and
under which conditions, is still debated and other model-selection methods (such
as multimodel inference, where some form of average over different models is per-
formed [45]) have been proposed. In this book we will use both criteria and compare
them when necessary.
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