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Abstract. The ability to solve spatial tasks is crucial for everyday life and
therefore of great importance for cognitive agents. In artificial intelligence
(AI) we model this ability by representing spatial configurations and spatial
tasks in the form of knowledge about space and time. Augmented by appropriate
algorithms, such representations enable the generation of knowledge-based
solutions to spatial problems. In comparison, natural embodied and situated
cognitive agents often solve spatial tasks without detailed knowledge about
underlying geometric and mechanical laws and relationships. They directly
relate actions and their effects through physical affordances inherent in their
bodies and their environments. Examples are found in everyday reasoning and
also in descriptive geometry. In an ongoing research effort we investigate how
spatial and temporal structures in the body and the environment can support or
even replace reasoning effort in computational processes. We call the direct use
of spatial structure Strong Spatial Cognition. Our contribution describes cog-
nitive principles of an extended paradigm of cognitive processing. The work
aims (i) to understand the effectiveness and efficiency of natural problem
solving approaches; (ii) to overcome the need for detailed representations
required in the knowledge-based approach; and (iii) to build computational
cognitive systems that make use of these principles.

Keywords: Cognitive systems � Spatial cognition � Spatial problem solving �
Strong spatial cognition

1 Introduction: AI and Cognitive Systems

Cognitive agents – be they humans, animals, or autonomous robots – comprise brains
or computers connected to sensors and actuators. These components are arranged in the
agents’ bodies in ways that allow them to interact with one another and with their
spatial environments. In this paper, we consider the entire aggregate (cognitive agent
including its body and the environment) as a full cognitive system (Fig. 1). We
investigate how spatial processes performed by an agent in the environment can sup-
port computational processes.

Consider the distribution, coordination, and execution of spatial tasks among the
system components of spatially situated cognitive agents. In a pure information
processing/AI approach, the elements of the spatial problem outside the brain or
computer would be considered “outside the system.” Inside the system they are
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described in terms of some knowledge representation language or pattern. This allows
the computer to perform formal reasoning (or other computational processing) on the
knowledge representation. To obtain this knowledge representation, physical, topo-
logical, and geometric relations in the problem configuration must be transformed into
abstract information. The tasks then can be performed entirely on the information
processing level, where physical, topological, and geometric relations and physical
affordances no longer persist.

However, the classical information-processing oriented division between (a) brain
or computer and (b) perception, action, body, and environment, is only one way of
distributing the activities involved in cognitive processing. As in natural problem
solving approaches, we can include the spatial problem domain as part of the system
and (1) maintain some of the spatial relations in their original form; (2) simulate spatial
relations and interactions through motion models; or (3) use mild abstraction (Freksa
et al. 2018) for their representation.

One of the pillars of knowledge representation research is that processing structures
of problem solving processes differ within and across types of representation (cf. Marr
1982). Most importantly, certain processing structures facilitate certain forms of pro-
cessing (Sloman 1985; Larkin and Simon 1987). In particular, certain spatial structures
facilitate certain forms of spatial problem solving (Barkowsky et al. 1994; Freksa 2013,
2015a, b; Freksa and Schultheis 2014; Freksa et al. 2016; Furbach et al. 2016). Spatial
problem solving is a particularly interesting and important class of problems that
mobile cognitive agents, such as most animals and autonomous robots, must deal with
all the time. Accordingly, we investigate structures that specifically facilitate solutions
to spatial problems. However, it has been argued that spatial cognition can provide
mechanisms for non-spatial problem solving, as well (e.g. Lakoff and Johnson 1980);
thus, if successful for spatial problem solving, the importance of this research may
extend into other domains of cognition.

From depictive (constructive) geometry we know that certain computation can be
replaced by geometric construction (and vice versa). Often, constructive procedures
appear simpler than the corresponding computations and they also lead more frequently
to insights into the nature of the problem and the solution. Our approach aims at
relating spatial constructions and the corresponding computations in their respective
underlying structures (substrates) in order to assess and compare the spatial problem

Fig. 1. Structure of a full cognitive system. (Adapted from Freksa 2015b, p. 11)
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solving processes in the framework of a full cognitive system that comprises both
spatial and computational operations.

Our work studies spatial problems, identifies principles of solving spatial problems
inside the spatial domain, and compares spatial approaches with purely computational
approaches. We also investigate how to determine a suitable approach for solving a
spatial problem from a problem specification and how to control spatial actions to solve
spatial problems in a goal-oriented manner.

2 State of the Art in Spatial Problem Solving

Spatial problem solving has been a fundamental research topic in AI from the very
beginning. Initially, spatial relations were treated like other features: task-relevant
aspects of the domain were formalized and represented in some kind of data structure;
general computation and reasoning methods were applied; and the result of the com-
putation was interpreted in terms of the target domain. Taking into account the ubiquity
of space and time in real environments, approaches have been developed that give
spatial and temporal relations a special status and that are specifically tailored towards
specific aspects of space (such as topology, orientation, and distance). In the following
overview we consider five perspectives that have been taken for solving spatial
problems. Most approaches take into account several of these perspectives.

2.1 Knowledge-Based Perspectives (K)

Knowledge-based approaches have dominated AI for most of the past 60 years. In such
approaches, facts and relations about space in general and about specific problem
domains are encoded as knowledge that describes the domain. Problem solving is then
performed by computation that operates on the description level. Ontologies have
become a much-used approach to formally describe properties of domains (e.g.,
Bateman et al. 2010 for the spatial domain). Commonsense reasoning, being one of the
oldest research areas of AI, makes extensive use of formalized spatial knowledge. Yet,
as Davis and Marcus (2015) point out, progress in the field has been slow. Qualitative
spatial reasoning (Egenhofer and Franzosa 1991; Freksa 1991b; Cohn and Renz 2008;
Dylla et al. 2017) has been an active research area since the late 1980s; specific
knowledge about spatial relations and spatial operations defines spatial structures and
makes up spatial calculi for reasoning on the basis of human-understandable spatial
concepts. Some cognitive robotics approaches include qualitative spatial calculi
(Mansouri and Pecora 2013; Wolter and Wallgrün 2012) to provide knowledge-based
support for object identification, spatial orientation, and robot actions in space.

2.2 Computational Adaptation and Learning (L)

As manual encoding of extensive knowledge is cumbersome, learning algorithms have
been developed that generate spatial information from sensor data (e.g. SLAM - Thrun
et al. 2005; Frese et al. 2005) or generate new knowledge about spatial actions from
rudimentary knowledge (Wörgötter et al. 2015). Deep Learning (Goodfellow et al.
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2016) and ‘cognitive computing’ (Modha et al. 2011; Kelly 2015) approaches combine
a multitude of methods in order to derive new knowledge from vast amounts of data.
Whereas SLAM specifically exploits spatial structure in the sensor data, the latter two
approaches do not necessarily require perceptual or other spatial input; they are mainly
used for processing knowledge in an abstract form. Adaptation and learning approaches
typically make use of large amounts of behavioral correlations rather than relying on
the internal domain structure.

2.3 Analogical Representation and Analogical Reasoning (A)

Analogical reasoning pays particular attention to the structure of the represented
domain and to the processes operating on them. Sloman (1971, 1975) analyzed
structural characteristics in comparison to descriptive (‘Fregean’) representations as
well as effects of representational structures on the processing characteristics. In the
spirit of analogical representation and reasoning and in recognition of the power of
two-dimensional visualization and perception, the field of Diagrammatic Reasoning
evolved (Glasgow et al. 1995; Goel et al. 2010). This research area was motivated by
(i) papers by mathematicians and other theoreticians who confessed that they obtain
their insights and understanding of problems not by looking at formulas but by drawing
and studying diagrams; and by (ii) influences of cognitive psychology that acknowl-
edge essential differences between processing 2D layouts and processing their lin-
earized descriptions. In his famous book How to solve it, Polya (1956) analyzed
cognitive processes that lead from problem statements to their solutions. Diagrams
visualize spatial and spatialize non-spatial situations to make them accessible to visual
perception and spatial analysis. In AI, Funt (1980) and Chandrasekaran (2006) have
proposed retina-like and more general perceptual representational structures that make
certain aspects of spatial configurations – such as spatial neighborhood, shape, or size –
directly accessible to computational processes.

2.4 Biology-Inspired Approaches (B)

Alternative autonomous systems inspired by biological role models have been pro-
posed in biocybernetics and AI research. Such systems perceive their environment and
act in a goal-oriented manner. For example, Braitenberg’s (1984) vehicles demonstrate
smart spatial behavior without requiring explicit symbolic representation of spatial
information; these vehicles directly replicate specific aspects of neural sensory-motor
connectivity that implicitly responds to spatial arrangements and inherent spatial
structures. From an engineering perspective, Brooks (1991) proposed the subsumption
architecture to implement intelligent reactive systems without representing knowledge
about the domain. Like Braitenberg, Brooks emphasizes physical interaction with the
environment as a primary source of constraints on the design of intelligent systems. He
argues for focusing on the interface to the real world, in order to avoid the need for
reliance on a representation. In their elaborate book, Pfeifer and Scheier (1999)
describe this class of approaches as a new way of understanding intelligence (Nouvelle
AI). Goel et al. (2012) use biological role models for conceiving design systems that
manifest cognitive, collaborative, conceptual, and creative characteristics.
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2.5 Cognition-Based Approaches (C)

In The design of everyday things, Norman (2013) distinguishes ‘knowledge in the
world’ from ‘knowledge in the head’. Maintaining features and relations in their
original form and context corresponds to what Norman calls knowledge in the world.
Use of knowledge in the world involves the use of perception in order to solve
problems. He explains why people need both types of knowledge to manage everyday
tasks. Gibson (1979) introduced the notion of affordance to characterize conditions that
permit actions in physical environments. As Gibson developed his theory in the context
of visual perception, the notion was understood by various authors (including initially
by Norman) to refer exclusively to conditions that can be perceptually identified;
different uses of the notion affordance have caused considerable confusion in the
cognitive science community that seems to have scared some researchers away from
what is a highly beneficial notion, if used in a well-defined manner.

Qualitative spatial relations have provided a conceptual framework to comprehend
space-specific structures and processes underlying topological and geometric affor-
dances (Freksa 1991a; Gooday and Cohn 1994; Egenhofer and Mark 1995). Winter-
mute and Laird (2008) proposed to augment qualitative representation and reasoning in
cognitive architectures by quantitative simulations of spatial relations and interactions,
in order to make physical affordances accessible to computational approaches.
A Dagstuhl Seminar (Rome et al. 2008) approached the topic of affordance-based robot
control as a perspective on directly coupling perception, action, and reasoning in
real-time. Raubal and Moratz (2008) present an extended theory of affordances that
differentiates between different kinds of affordances in order to characterize functional
models of affordance-based agents. Kirsh (2013) discusses human imagination and the
role of (i) physical interaction; (ii) thinking with brain and body; (iii) physically per-
forming vs. watching; and (iv) thinking with things for effective cognition and for
finding answers to sometimes long-standing questions. In our work we address these
issues with a constructive approach and theoretical analysis.

3 Spatial Solutions to Spatial Problems

The Strong Spatial Cognition team at the Bremen Spatial Cognition Center1 has studied
example problems from the literature such as the shortest route problem (Dreyfus and
Haugeland 1974), Archimedes’ volume comparison problem (Vitruvius 2007), and
classical geometric construction problems. We demonstrated or outlined spatial pro-
cedures to solving these problems (Freksa 2013, 2015a, b; Freksa and Schultheis 2014;
Freksa et al. 2016, 2018). In collaboration with other universities we started to
investigate approaches to compare formal and spatial solutions to solving spatial
problems (Furbach et al. 2016).

Previously, in the framework of the CRC/TR 8 Spatial Cognition, the team had
investigated spatial relations in geographic maps and varieties of formal representa-
tions. Mild abstraction (Freksa et al. 2018) was identified as a form of analogical

1 http://bscc.spatial-cognition.de.
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representation employed in geographic paper maps to facilitate physical operations
such as perception, route-following with a finger, and manipulation in similar ways as
in the represented real-world domain. Mild abstraction may abstract only from few
aspects, while preserving structural spatial properties Perception is required to use
mildly abstracted representations – but the perception task typically is easier than the
same task under real-world conditions, for example due to the modified scale.

4 The Strong Spatial Cognition Paradigm

Our work largely builds on the perspectives A, B, and C outlined in the state-of-the-art
section. Also, K is important for the meta-level of planning and organizing sub-tasks of
spatial problem solving. L only peripherally plays a role, as we prescribe spatial
structure that learning approaches would derive. In our approach, we specifically target
the direct use of spatial structure. For example, we study the concept of a ‘string’ as a
deformable 1D spatial entity whose length is invariant under shape transformations
(Freksa et al. 2016). A certain class of spatial problems requires length comparison,
while absolute length is irrelevant (e.g., the shortest path problem). Arbitrarily shaped
strings are difficult to compare with regards to their length. Simple spatial pull and
align operations, however, can transform arbitrarily shaped strings into straight and
aligned strings that are easily compared through perceptual operations. Similar oper-
ations can be found for other aspects of space, such as angles.

With our work, we take an important step beyond the state of the art and introduce a
paradigm shift: we aim at preserving spatial structure and directly exploit features of
simultaneous spatial transformations. Initially we represent spatial objects and con-
figurations using the objects and configurations themselves or their physical models,
rather than via abstract representations. The core advantages of this approach are:
information loss due to early representational commitments is avoided; and no decision
needs to be made beforehand about which aspects of the world to represent in a certain
way, which aspects to abstract away, and which spatial reference frame to use. This can
be decided partly during the problem solving process. Then, additional contextual
information may become available that can guide the choice of the specific abstraction
to be used.

Even more important: objects and configurations frequently are aggregated in a
natural and meaningful way; for example, a chair may consist of a seat, several legs,
and a back; if I move or deform one component of a chair, I automatically (and
simultaneously!) move or deform other components and the entire chair, and vice versa
(cf. the frame problem, McCarthy and Hayes 1969). This property is not intrinsically
given in abstract representations of physical objects; but it is an extremely important
property from a cognitive point of view, as no computational processing cycles are
required for simulating the physical effects or for reasoning about them. Thus,
manipulability of physical structures may become an important feature of cognitive
processing, and not merely a property of physical objects.

Our approach is to isolate and simplify the specific spatial problem to be solved,
e.g. by removing task-irrelevant entities and features from the spatial configuration or
by reconstructing the essence of the spatial configuration through mild abstraction. In
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general, it will be difficult to prescribe the precise preprocessing steps for solving a
problem; but for the special case of spatial problems it is feasible to provide useful
heuristics. These can serve as meta-knowledge which can be used to control actions on
the physical level. After successful preprocessing, it will be possible in certain cases to
‘read’ an answer to the problem through perception directly off the resulting config-
uration; in other cases, the resulting spatial configuration may be a more suitable
starting point for a knowledge-based approach to solving the problem.

A main hypothesis of our approach is that the ‘intelligence’ of cognitive systems is
located not only in specific abstract problem-solving approaches, but also – and per-
haps more importantly – in the capability of recognizing characteristic problem
structures and of selecting particularly suitable problem-solving approaches for given
tasks. Formal representations may not facilitate the recognition of such structures, due
to a bias inherent in the abstraction. This is where mild abstraction can help.

The insight that spatial relations and physical operations are strongly connected to
cognitive processing may lead to a different division of labor between the perceptual,
the representational, the computational, and the locomotive parts of cognitive inter-
action than the one we currently pursue in AI systems: rather than putting all the
‘intelligence’ of the system into computing, our approach aims at putting more intel-
ligence into the interactions between components and structures of the full cognitive
system. More specifically, we aim at exploiting intrinsic structures of space and time in
order to simplify the tasks to be solved.

We hypothesize that the flexible assignment of physical and computational
resources for cognitive problem solving may be closer to the workings of natural
cognitive systems than an almost exclusively computational approach. For example,
when we as cognitive agents search for a certain object in our environment, we have at
least two strategies at our disposal: we can represent the object in our mind and try to
imagine and mentally reconstruct where it could or should be – the classical AI
approach; or we can visually search for the object in our physical environment. Which
is better (or more promising) depends on a variety of factors including memory,
physical effort, the size of the physical environment, etc.; frequently a clever combi-
nation of both approaches will be best.

Strong Spatial Cognition research is primarily carried out as basic cognitive sys-
tems research: we identify and relate a set of cognitive principles and ways of com-
bining them to obtain cognitive performance in spatio-temporal domains. We bring
together three areas of expertise: (1) cognitive systems research – to investigate
cognitive architectures and trade-offs between explicit and implicit representations;
(2) theory – to characterize and analyze the resulting structures and operations; and
(3) implementation – to construct and explore various cognitive system configura-
tions.. The Strong Spatial Cognition approach aims at developing and exploring a novel
paradigm for cognitive processing based on the integration of results obtained in
various disciplines of cognitive science.
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5 Example of Strong Spatial Cognition Problem Solving2

Suppose an agent’s task is to identify the shortest route that connects a location A with a
location B given several possible paths in a route network that can be chosen. A classical
knowledge-based approach would (i) represent the lengths of the route sections,
(ii) compute various alternatives of configuring these sections to connect A and B and
(iii) determine the option with the smallest overall length. Note that the lengths of the
route sections need to be known to use this approach although the absolute length of the
resulting route is not of interest. Also note that several alternatives have to be computed
and compared before the one route of interest can be identified.

Dreyfus and Haugeland (1974) describe a spatial approach to this task. Here we
present a mildly abstracted version of a route network: a map in which all regions that
do not correspond to routes are missing; the routes are represented here by colored

(a)

(b)

(c)

Fig. 2. Determining the shortest route from point A to point B by physical manipulation of a
mildly abstracted representation of a route network. (a) The (non-elastic) strings corresponding to
route segments preserve the relative distance relations of the original route segments. The
distance relations are invariant with respect to physical manipulations (pulling apart strings at A’
and B’) which distort angles and shapes of the route network (b) and (c). The shortest route is
identified as the route corresponding to the straight connection between A’ and B’ in (c).

2 This example is adapted from Freksa (2015b) pp. 81–82.
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strings. We obtain a deformable map consisting only of route representations that
preserve the relative lengths of the original route sections (Fig. 2a).

The map permits certain spatial reconfigurations of the network through defor-
mation, while preserving topology and important geometric constraints. In particular,
an agent can (carefully) pull apart the positions A’ and B’ on the string map (Fig. 2b)
that correspond to locations A and B until a string of route sections forms a straight line
between these positions (Fig. 2c); due to the geometric properties of the representa-
tion, the route sections corresponding to the sections on the straight line represent the
shortest route between A and B.

This approach avoids computation by reducing the problem to the relevant single
dimension of length on which a basic geometric principle straight line is shortest
connection can be directly applied. In this example, computational problem solving
operations have been replaced by spatial operations.

6 Conclusions and Outlook

Strong Spatial Cognition sets out to provide answers to research questions of the
following kind:

• How can physical operations replace computation in spatial problem solving?
• How can we characterize the trade-off between computation and physical action?
• What is the scope of application for cognitive operations in the spatial and temporal

domain?
• What are the relations between computational constraints and spatial affordances?
• Which meta-knowledge is needed to control spatial actions for targeted problem

solving?
• How general is the proposed paradigm?

The goal of this research is to develop an implementable theory of spatial problem
solving in the framework of a full cognitive system. The theory will relate and compare
concrete spatial actions and perceptions with abstract operations. It will provide a
control structure to adequately allocate resources in specific problem contexts.

Ultimately, we envision technical applications in cyber-physical systems of phys-
ically supported cognitive configurations, for example in the development of future
intelligent materials (‘smart skin’), where distributed spatio-temporal computation is
required but needs to be minimized with respect to computation cycles and energy
consumption.

Our approach builds on research on spatial and temporal relations, their repre-
sentation in memory, and qualitative spatial and temporal reasoning. We pursue
broadly applicable cognitive principles, which can be configured to help design
tomorrow’s intelligent assistants. Our philosophy is to understand and exploit pertinent
features of space and time as modality-specific properties of cognitive systems. Such
features will enable powerful specialized approaches in the domain of space and time,
as space and time are most basic for perception and action and are ubiquitous in
cognitive processing. Furthermore, there are strong arguments that space and
time-based approaches will not be limited to the spatial and temporal domains, as most
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of human cognition is rooted in the interaction in space and time (e.g. Lakoff and
Johnson 1980). The understanding and use of spatial and temporal structures will be
beneficial for both cognitive science and cognitively inspired systems and AI
approaches.
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