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Abstract. Recently, both supervised and unsupervised deep learning
techniques have accomplished notable results in various fields. However
neural networks with back-propagation are liable to trapping at local
minima. Genetic algorithms have been popular as a class of optimization
techniques which are good at exploring a large and complex space in an
intelligent way to find values close to the global optimum.

In this paper, a variable length chromosome genetic algorithm
assisted deep autoencoder is proposed. Firstly, the training of autoen-
coder is done with the help of variable length chromosome genetic algo-
rithm. Secondly, a classifier is used for the classification of encoded data
and compare the classification accuracy with other state-of-the-art meth-
ods. The experimental results show that the proposed method achieves
competitive results and produce sparser networks.

Keywords: Neural networks · Genetic algorithm · Variable length chro-
mosome · Deep autoencoder

1 Introduction

Neural network researchers had wanted for eras to train deep multi-layer neural
networks [1,2], which is inspired by the architectural depth of the human brain
but before 2006 no successful attempts were reported. Positive experimental
results were reported by researchers with usually one or two hidden layers
but training deeper networks repeatedly returned poorer results. Hinton et al.
introduced Deep Belief Networks [3], with an unsupervised learning algorithm
Restricted Boltzmann Machine (RBM) [4] that greedily trains one layer at a
time. Later, autoencoders based algorithms were proposed [5,6], actually taking
advantage of the same principle using of unsupervised learning to train of mid-
dle layer at each level [7]. More recently, other algorithms for deep learning were
proposed using neither autoencoder nor RBMs but using the same principle [8,9].

Since 2006, deep learning have been applied on various tasks such as dimen-
sionality reduction [10], classification [5,11,12], modeling textures [13], collabo-
rative filtering [14], regression [15], object segmentation [16], natural language
processing [8,17] and information retrieval [18,19].
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In this paper we describe a variable length chromosome genetic algorithm
(VLC-GA) for training deep autoencoder. We use VLC-GA for training deep
autoencoder that not only succeeds in its task but outperforms backpropaga-
tion (the standard training algorithm) and another approach in [20] on MNIST
handwritten digits dataset [21].

The rest of paper is organized as follow: In Sect. 2, related work is briefly
reviewed. In Sect. 3, the proposed method is explained. In Sect. 4, experiments
are presented. The contributions of this paper are concluded in Sect. 5.

2 Related Work

Neural networks (NNs) and genetic algorithms both have the ability to solve
complex problem. The idea of combination of neural networks and genetic algo-
rithms came up first in the late 80s, which is inspired from the nature. In real
life, a successful person not only depends on his knowledge and expertise, which
he gained through experience (the neural network training), but also depends
on his inborn inheritance (set by the genetic algorithm) [22].

Since 1980, genetic algorithms have been effectively used for training neural
networks. Genetic algorithms have been used as a replacement for the back-
propagation algorithm, or in combination with backpropagation to increase the
entire performance of the neural network [23]. A large number of problems have
been examined by using various Genetic Algorithm Neural Networks (GANN)
techniques, such as classification [24], face recognition [25], color recipe predic-
tion [26], animates [27], etc.

In 2014, Omid E. David and Iddo Greental used a GA-assisted approach
for training deep autoencoder which improved the performance of deep autoen-
coder and produced a sparser neural network [20]. In [28], Montana, David J.,
and Lawrence Davis used a different genetic algorithm for training feed for-
ward networks which is not only prospers in its job but surpassed the standard
training algorithm backpropagation on different datasets. In regards of genetic
algorithm they showed a real world application of genetic algorithm to a big and
difficult problem. They also show that adding domain specific information to
genetic algorithm improves its performance. Philipp and Koehn [26] in their the-
sis, survey how genetic algorithms can be used to enhance the network topology,
learning rate and initial weight of neural networks. They also inspect how vari-
ous encoding strategies influence the combination of GANN. Besides this, many
researchers used variable length genetic algorithm instead of constant length
genetic algorithm for different problems [20,29–32].

3 Methodology

3.1 Deep Autoencoder

An autoencoder, also called auto-associator or diabolo, network is an artificial
neural network. Autoencoder were first introduced in 1980s by Hinton and Par-
allel Distributing Processing (PDP) group by using input data as a teacher to
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solve the problem of backpropagation without mentor [33]. Autoencoder is used
for unsupervised learning that sets the target values to be equal to its inputs, i.e.
the number of neurons at the input and output layers is equal, and the optimiza-
tion goal for output neuron i is set to xi = x̂i. Between input and output layers
one or more hidden layers are used. Generally the number of neurons in hidden
layer is less compared to input or output layers, thus making a bottleneck.

Fig. 1. Basic structure of autoencoder.

Architecturally, feedforward is the simplest form of an autoencoder. An
autoencoder comprises of two parts encoder and decoder. As shown in Fig. 1,
encoder consists of layer L1 and L2 while decoder consists of layer L2 and L3.
The layer L1 is input layer, L2 is a hidden layer consisting of two neurons and
each neuron represents by a function:

a(x) = f(Wx + b) (1)

where W , b are weight matrix and bias vector respectively and f(·) is an activa-
tion function that can be sigmoid, hyperbolic, sine, gaussian function etc. And
L3 is the output layer that represents by a function h(x) ≈ x:

h(a) = f ′(W ′a + b′) (2)

where f ′(·), W ′ and b′ of decoder may differ from encoder depending upon the
design of autoencoder. Training of autoencoder is accomplished by reducing the
reconstruction error (such as squared error):

E(x, x̂) = ‖x − x̂‖2 = ‖x − f ′(W ′f(Wx + b) + b′)‖2 (3)

A deep autoencoder consists of several layers of autoencoders such that the
outputs of each layer are bound to the inputs of the next layer [19]. A greedy
layer-wise procedure is used for obtaining good parameters for deep autoencoder.
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3.2 Backpropagation Learning

Backpropagation is a technique of training artificial neural networks used in
combination with an optimization method such as gradient descent. The algo-
rithm has two main phases, propagation and weight update. The input data
is transmitted forward layer by layer from the input layer to the output layer.
Using a cost function, the desired output is compared to the output of network.
At the output layer, for every neuron an error value is calculated. Starting from
the output, the error values are then transmitted towards back and every single
neuron takes its associated error value which shows its part in the original out-
put. Later backpropagation uses these error values to compute the gradient of
the cost function with respect to the weights in the network.

3.3 The Proposed Method

In this paper we propose a VLC-GA assisted approach which improves the per-
formance of an autoencoder, and produce a sparser network. The autoencoder is
trained with tied weights. We store various sets of weights W for a layer. That is,
in our GA population each chromosome is one set of weights for an autoencoder.
In this paper, the term of weights and chromosomes are used interchangeably.
For creation of variable length chromosome, the chromosome size is multiplied
with a variable v. This variable shows the maximum percent variation of the
chromosome. For example if v is 20% and chromosome size is 392000, then the
maximum variation in chromosome can be 78400 by choosing a number randomly
between 0 and 78400. The same method is applied for the whole population of
chromosome. The generation of variable length chromosome is also shown in
Algorithm 1. While training the data, for each chromosome (which represents
the weights of an autoencoder) the root mean squared error (RMSE) is cal-
culated of training dataset m. The fitness of each chromosome is defined by a
fitness function [20] as:

fitness(i) = 1/√∑m
i=1(xi−x̂i)

2

m

(4)

After calculating the fitness of all chromosomes, the least fit chromosomes are
removed from the population and update the remaining chromosomes using
backpropagation. After removing the least fit chromosomes, we used Roulette
selection method for the selection of parent chromosomes from the rest popula-
tion and then use uniform crossover method to create offspring. The offspring is
mutated from the best chromosomes using specified mutation probability. The
mutation process is described in Algorithm 2. The whole process (Algorithm 3)
is run for a specific number of iterations and returns the best chromosomes. The
same process applied on all layers and stacked all the layers to make a deep
autoencoder.

To classify the compressed dimensional feature vector, softmax regression
is used. As we are concerned in multi-class classification so it takes k different
values instead of two (as in binary classification) and the equation becomes:
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Algorithm 1. Creation of Variable Length Chromosome
1: chromosomeSize ← input * hiddenNodes
2: variation ← ν * chromosomeSize
3: for i = 1 to populationSize do
4: r1 = randi([1 variation])
5: for j = 1 to r1 do
6: r2 = randi([1 chromosomeSize])
7: chromosomei(j, r2) = 0
8: end for
9: end for

hθ(x)i =
1

∑k
j=1 eθT

j x(i)

⎡

⎢
⎢
⎢
⎢
⎣

eθT
1 x(i)

eθT
2 x(i)

...

eθT
k x(i)

⎤

⎥
⎥
⎥
⎥
⎦

(5)

Here θ1, θ2, · · · , θk are the parameters of model and
∑k

j=1 eTj x(i) normalizes
the distribution, so that it sums to one. After training all the layers of deep
autoencoder, the encoded data and labels pass to sofmax layer to train it with
supervised fashion.

As backpropagation method are accountable for trapping at local minima.
Our proposed method supports backpropagation in this regards, by decreasing
the possibility of trapping at local minima. Moreover making the chromosomes
(weights) variable produce sparser network (few active weights).

Algorithm 2. Mutation of Offspring
1: mutationRate = mutationProb ∗ chromosomeSize
2: for i = 1 to mutationRate do
3: r = randi([1 chromosomeSize])
4: offspring(i r) = bestChromosome([i r])
5: end for

4 Experiments

4.1 Data

In order to access the performance of the proposed approach, MNIST handwrit-
ten digits dataset [21] is used in all experiments of all methods. Each sample in
the dataset is a 28 ∗ 28 image having a grey scale value between 0–255. More-
over each sample holds a target classification label between 0–9, which is used
in supervised classification. The training dataset contains 60,000 samples and
testing dataset contains 10,000 samples.
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Algorithm 3. Training of Layer li
1: initialize population of real values chromosomes.
2: convert chromosomes to variable length.
3: epoch = 1
4: while (epoch >= MaxEpoch) do
5: calculation of fitness of chromosomes.
6: removing of least fit chromosomes.
7: using backpropagation to update the best chromosomes.
8: selection of parents chromosomes to produce an offspring.
9: mutation of offspring.

10: epoch = epoch + 1
11: end while
12: return best chromosome (weights).

4.2 Setup

MATLAB R2015a is used for the realization of code. In all experiments we used
a deep neural network (autoencoder) of five layers. Initially the biases bli are set
to zero and weights W l

ij are set to random numbers generated uniformly from

the interval {−
√

6
(nin+nhu+1) ,

√
6

(nin+nhu+1)}, where nin is the number of inputs

to the layer and nhu is the number of neurons (units) in the layer. The first layer
is the input layer consists of 784 units (neurons), followed by four hidden layers
consisting of 500, 250, 100 and 50 units. Each layer is trained independently.
First we train 784 − 500 layer and used the output of that layer as input for
the next 500 − 250 layer. Secondly we train 500 − 250 layer and used its output
for the next layer input. Using the same manner we train the remaining layers
(250−100 and 100−50). We used sigmoid function (6) for activation of neuron.

f(z) =
1

1 + e−1
(6)

For VLC-GA implementation we used a population of 8 chromosomes. In each
generation the 3 least fit chromosomes are substituted by the remaining 5 chro-
mosomes offspring. We used a uniform crossover method and mutation probabil-
ity of 0.01. For classification of the data we attach softmax regression classifier
at the end of last layer and trained it for 100 generations. The parameters setup
for all methods are summarized in the Table 1.

4.3 Results

To compare the performance of the proposed method with other methods we did
the following experiments. In all experiments we set learning rate α and weight
decay parameter λ to 0.5 and 0.003 respectively. Each result is the average of 10
experiments.



Training Deep Autoencoder via VLC-Genetic Algorithm 19

Table 1. Comparison of parameters used in all methods

Parameters Proposed method Method in [20] AE using BP

Deep layers 5 5 5

Learning rate 0.5 0.5 0.5

Weight decay 0.003 0.003 0.003

Population size 8 10 -

Chromosome type Variable Constant -

Selection method Roulette wheel Uniformly -

Least fit chromosomes 3 5 -

Mutation From best chromosome Randomly -

Crossover Uniform Uniform -

Experiment-1. In this experiment we change the percentage of v to 10%, 20%,
30% and 40% in the process of generation of variable length chromosomes and
then check its effect on classification accuracy. We used training dataset and
testing dataset of 1, 000 and 10, 000 samples respectively. And train each layer
for 1, 000 generations. The result of this experiment is shown in the Fig. 2-left. We
got best accuracy at v = 20% so we used the same value of v in all experiments.
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Fig. 2. Left-Classification accuracy of proposed method on different population size.
Right-Classification accuracy of proposed method on different population size.

Experiment-2. In this experiment we used a population of 8, 12, 16 and 20
chromosomes in training of our method and check its effect on classification
accuracy. This experiment is performed on 1,000 generations using subset of
MNIST dataset. The subset created randomly by choosing 1,000 samples from
training data. The result is shown in Fig. 2-right. As the number of chromosome
increases the processing time also increases but there is no bigger change in
classification accuracy that’s why we used a population having less number of
chromosomes (i.e. 8 chromosomes) in our experiments.
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Fig. 3. Left-Comparison of classification accuracy of testing data using small training
dataset. Middle-Comparison of classification accuracy of training data using small
training dataset. Right-Comparison of classification accuracy of testing data using
big training dataset.

Experiment-3. In this experiment we used small subset of MNIST dataset by
randomly selecting 1,000 samples from training dataset. We train each method
for 100, 300, 500, 700 and 1000 generations and then apply the classifier on
the encoded data. The comparison of the classification accuracy of the testing
dataset is shown in Fig. 3-left and the comparison of the classification accuracy of
the training dataset is shown in Fig. 3-middle. On testing dataset our proposed
method performs well on 300, 500, 700 and 1,000 generations but on 100 gener-
ations method in [20] perform better. On training dataset our method performs
well on all generations expect 1,000 on which autoencoder using backpropagation
method perform better.

Experiment-4. In this experiment we used the complete MNIST dataset (i.e.
training dataset of 60,000 samples and the testing dataset of 10,000 samples).
Firstly we train each method for 500 generations and compare the classification
accuracy. Secondly we train each method for 1,000 generations and compare the
classification accuracy. As shown in Fig. 3-right, on testing dataset our proposed
method performs better than the other methods on both generations.

5 Conclusion

In this paper we presented a variable length chromosome genetic algorithm
assisted deep autoencoder. We used roulette wheel selection method for the
selection of parent chromosomes from the population. And the offspring are
mutated from best parent chromosome. We used fewer chromosomes as compare
to method in [20], this increase the processing speed of our method. According to
results, our method improves the performance and produce sparser networks as
compare to other methods. Though our implementation used an autoencoder,
the same technique is applied to other forms of deep learning such as RBM,
Convolutional Neural Networks (CNNs) etc. In future we will compare our work
with more methods.
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