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Abstract. This paper presents a novel decentralized control approach
for modular and reconfigurable robots (MRRs) with uncertain environ-
ment contact under a learning-based optimal compensation strategy.
Unlike the known optimal control methods that are merely suitable for
specific classes of robotic systems without implementing dynamic com-
pensations, in this investigation, the dynamic model of the MRR system
is described as a synthesis of interconnected subsystems, in which the
obtainable local dynamic information is utilized effectively to construct
the feedback controller, thus making the decentralized optimal control
problem of the MRR system be formulated as an optimal compensation
issue of the model uncertainty. A policy iteration algorithm is employed
to solve the Hamilton-Jacobi-Bellman (HJB) equation with a modified
cost function, which is approximated by constructing a critic neural net-
work, and then the approximate optimal control policy can be derived.
The asymptotic stability of the closed-loop MRR system is proved by
using the Lyapunov theory. At last, simulations are performed to verify
the effectiveness of the proposed decentralized optimal control approach.

Keywords: Modular and reconfigurable robots · Decentralized control ·
Adaptive dynamic programming · Optimal control · Neural networks

1 Introduction

Modular and reconfigurable robots (MRRs) are comprised of the robot modules,
which contain power supplies, processing systems, actuators and sensors. These
modules are assembled to desirable configurations with standard electromechan-
ical interfaces to satisfy the requirements of various tasks with complex working
environments. Furthermore, MRRs need appropriate control systems that taking
into consideration of both control precision and power consumption.
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To ensure the stability and accuracy of trajectory tracking of the robotic
systems, and simultaneously taking into account the optimal realization of the
composite of control performance and power consumption have attached wide-
spread attention in the robotics community. As an effective tool to address the
optimal control problems in nonlinear systems, the adaptive dynamic program-
ming (ADP) methodology has been considered as one of the key directions for
the researches on designing discrete-time, continuous-time and data driven-based
intelligent systems. In the past few years, numerous studies have been carried
out on analytical description of robot manipulator systems under the ADP-based
optimal control [1–4]. However, these methods are concentrated on centralized
control, indeed, a centralized controller designed on the basis of an entire sys-
tem may hardly be applicable for controlling MRRs. To avoid these problems,
Liu et al. presented an online learning-based decentralized stabilization method
[5,6] to deal with the decentralized optimal control problems of the classical
nonlinear systems. However, the application of these methods are limited to
address the optimal control problems of specific classes of robotic systems with-
out implementing optimal dynamic compensation. Therefore, it is meaningful to
investigate the decentralized optimal control approach by combining the model-
based compensation control method and ADP-based optimal control policy for
MRRs.

In this paper, a novel learning-based optimal control method is constructed to
attain the decentralized controller design for MRRs with uncertain environment
contact. The dynamic model of MRRs is described as a synthesis of intercon-
nected subsystems, and the decentralized optimal control problem of the whole
robotic system is reformulated as an optimal compensation issue of the model
uncertainty. Moreover, a policy iteration-based learning algorithm is employed
to solve the HJB equation with a modified cost function, and then a critic neural
network is used to approximate the cost function, so that the approximate opti-
mal control policy can be derived. Based on the Lyapunov theory, the asymp-
totic stability of the closed-loop robotic system are proved. Finally, simulations
are conducted for 2-DOF MRRs with different configurations to investigate the
effectiveness of the proposed decentralized optimal control approach.

2 Dynamic Model Formulation

By referencing the dynamic model of n-DOF MRR, which is proposed in our
previous investigation [7], and the modeling approach for the robot manipulator
with torque sensing [8], the dynamic model of the MRR system is described as a
synthesis of interconnected subsystems, in which the subsystem dynamic model
is formulated as:

Imiγiθ̈i + fi(θi, θ̇i) + Zi(θ, θ̇, θ̈) +
τfi

γi
= τi, (1)
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where the subscript “i” represents the ith module, Imi is the moment of inertia of
the rotor about the axis of rotation, γi denotes the gear ratio, θ, θ̇ and θ̈ represent
the angular position, velocity and acceleration respectively, fi(θi, θ̇i) represents
the frictional torque, Zi(θ, θ̇, θ̈) indicates the interconnected joint coupling, τfi

denotes the joint torque that including the dynamic information of the load
torque and the external environment contact torque, and τi is the motor output
torque. The friction term fi(θi, θ̇i) in (1), which is considered as a function of
the joint position and velocity, is defined as:

fi(θi, θ̇i) = b̂fiθ̇i +
(
f̂ci + f̂sie

(−f̂τiθ̇
2
i )

)
sgn(θ̇i) + fpi(θi, θ̇i) + Y (θ̇i)F̃i, (2)

where bfi, fci, fsi, fτi and fpi(θi, θ̇i) are the nominal values of the friction model

parameters, F̃i =
[
bfi − b̂fi, fci − f̂ci, fsi − f̂si, fτi − f̂τi

]T
indicates the para-

metric uncertainty vector of the friction, b̂fi, f̂ci, f̂si and f̂τi represent the esti-
mated values of the friction parameters, and the vector Y (θ̇i) is defined as

Y (θ̇i) =
[
θ̇i, sgn(θ̇i), e(−f̂τiθ̇

2
i ) sgn(θ̇i), −f̂siθ̇

2
i e(−f̂τiθ̇

2
i ) sgn(θ̇i)

]
. (3)

where
∣∣∣F̃i

∣∣∣ ≤ ρFil (l = 1, 2, 3, 4) and
∣∣∣fpi(θi, θ̇i)

∣∣∣ ≤ ρfpi are the known up-bounds.
Moreover, according to the torque estimation method proposed in [9], one can
estimate the joint torque τfi by substituting the position measurements into a
control-oriented harmonic drive model, which is represented as

τfi =
1
cf

tan
(

cfkf0

(
Δθi − sgn(τwi)(1 − e−cw|τwi|)

γicwkw0

))
, (4)

where Δθi = θfOi − θwIi/γi is the harmonic drive torsional angle θwIi and θfOi

denote the motor-side angular position and the link-side angular position, which
are measured by using the motor-side and the link-side encoders respectively, τwi

denotes the wave generator torque, which can be obtained by using the motor
torque command, cf , cw, kf0 and kw0 are positive constants to be determined.
Additionally, the interconnected joint coupling term Zi(θ, θ̇, θ̈) in (1) is defined
as follows:

Zi(θ, θ̇, θ̈) = Imi

i−1∑
j=1

zT
mizlj θ̈j + Imi

i−1∑
j=2

j−1∑
k=1

zT
mi (zlk × zlj)θ̇kθ̇j , (5)

where zmi, zlj and zlk are the unity vectors along the axis of rotation of the ith
rotor, jth joint and kth joint respectively. In order to facilitate the analysis of
the interconnected joint couplings, rewriting Imi

∑i−1
j=2

∑j−1
k=1 zT

mi (zlk × zlj) θ̇kθ̇j

and Imi

∑i−1
j=1 zT

mizlj θ̈j as

Imi

i−1∑
j=1

zT
mizlj θ̈j =

i−1∑
j=1

U i
j , (6)
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Imi

i−1∑
j=2

j−1∑
k=1

zT
mi (zlk × zlj)θ̇kθ̇j =

i−1∑
j=2

j−1∑
k=1

V i
kj . (7)

where
∣∣∣∑i−1

j=1 U i
j

∣∣∣ ≤ ρUj and
∣∣∣∑i−1

j=2

∑j−1
k=1 V i

kj

∣∣∣ ≤ ρV j are the known up-bounds.

Define the system state vector xi =
[
xi1, xi2

]T =
[
θi, θ̇i

]T ∈ R2×1, and
the control input ui = τi ∈ R1×1, i = 1, 2, . . . n. Then, the state space of ith
subsystem is formulated as follows:

Si

⎧
⎪⎨
⎪⎩

ẋi1 = xi2

ẋi2 = − (φi(xi, ẋi) + hi(x, ẋ, ẍ)) + Biui

y = xi1

. (8)

where φi(θi, θ̇i) = Bi

(
b̂fiθ̇i +

(
f̂ci + f̂sie

(−f̂τiθ̇
2
i )

)
sgn(θ̇i) + τfi

γi

)
represents the

modeled and estimated part of the dynamic model, Bi = (Imiγi)
−1 ∈ R+,

and hi(θ, θ̇, θ̈) = Bi

(
Y (θ̇i)F̃i + fpi(θi, θ̇i) +

∑i−1
j=1 U i

j +
∑i−1

j=2

∑j−1
k=1 V i

kj

)
is the

model uncertainty term.

3 Learning-Based Decentralized Optimal Control Method

3.1 Problem Transformation

Let the desired position, velocity and acceleration of the ith joint be xid, ẋid

and ẍid respectively. Then, consider the MRR system (8) with an continuously
differentiable infinite horizon cost function written as:

Ji (si (ei)) =
∫ ∞

0

{
Ui(si (ei(τ)) , ui(τ)) + DT

i Di

}
dτ, (9)

where si(ei) is defined as si(ei) = αeiei + ėi, in which ei = xi1 − xid and
ėi = ẋi1 − ẋid denote the position and velocity tracking error of the ith joint
respectively, αei is a determined constant, Ui(si(ei), ui) = sT

i Qisi + uT
i Riui

represents the utility function, in which Qi = QT
i and Ri = RT

i are determined
positive constant matrixes, Di ∈ R+ denotes the up-bound function, then we
can give a specifies form for the term Di as:

Di = Bi (|Y (ẋi)| ρFil + ρUi + ρV i + ρfpi) l = 1, 2, 3, 4, (10)

Obviously, the model uncertainty term hi and the up-bound function Di

satisfy the relation hT
i hi ≤ DT

i Di. Then, for the MRR system (8) with the
cost function (9), one can define the Hamiltonian function and the optimal cost
function as

Hi (si, ui, ∇Ji) = Ui(si, ui) + ∇Ji(si)
T ( − φi − hi + Biui + αeiėi − ẍid

)
+ DT

i Di, (11)



A Learning-Based Decentralized Optimal Control Method 15

J∗
i (si) = min

ui

∫ ∞

0

{
Ui(si(ei(τ)), ui(τ)) + DT

i Di

}
dτ, (12)

where ∇Ji(si) = ∂Ji(si)/∂si .
If the solution of J∗

i is existent and continuously differentiable, the optimal
control law of the MRR system (8) can be computed as:

u∗
i = −1

2
R−1

i BT
i ∇J∗

i (si). (13)

Rewriting the decentralized optimal control law u∗
i as the form ofu∗

i = ui1 +
u∗

i2 to deal with the terms of φi and hi in (8) respectively, then one can modify
the HJB equation as follows:

0 = Ui(si, u
∗
i ) + ∇J∗

i (si)
T ( − φi − hi + Biui1 + Biu

∗
i2 + αeiėi − ẍid

)
+ DT

i Di. (14)

Note that the terms αeiėi and ẍid are measurable and known, as well as
the term φi includes the certain part of the dynamic model, which is directly
obtainable, so that the feedback control law ui1 can be designed as

ui1 = b̂fiẋi +
(
f̂ci + f̂sie

(−f̂τiẋ
2
i )

)
sgn(ẋi) +

τfi

γi
− B−1

i (αeiėi) + B−1
i ẍid, (15)

to compensate the modeled and estimated terms of the dynamic model.

3.2 Policy Iteration-Based Learning Algorithm

In this part, the online policy iteration-based learning algorithm is implemented
to derive the solution of the HJB equation. The policy iteration algorithm con-
sists of policy evaluation based on (13) and policy improvement based on (14).
Specifically, the iterative procedure of the policy iteration algorithm with cost
function (9) can be described in [10].

3.3 Neural Network Implementation

Neural network is a well-known tool for approximating nonlinear functions. Since
the cost function is highly nonanalytic and nonlinear, in this part, the cost
function Ji (si) is approximated by using a single hidden layer neural network,
which is defined as follows:

Ji (si) = WT
ciσci (si) + εci, (16)

where Wci is the ideal weight vector, σci (si) denotes the activation function, and
εci is the approximation error of neural network. Then, the gradient of ∇Ji (si)
is given as:

∇Ji (si) = (∇σci (si))
T
Wci + ∇εci, (17)
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where ∇σci (si) =∂σci (si)/∂si and ∇εci are the gradients of the activation func-
tion and the approximation error respectively. Since the ideal weight Wci is
always unknown, a critic neural network is built with approximated weight Ŵci

to estimate the cost function as:

Ĵi(si) = ŴT
ciσci (si) . (18)

According to the definition of Hamiltonian (11) and the HJB equation (14),
the Hamiltonian is further expressed by

Hi (si, ui,Wci) = Ui(si, ui) + DT
i Di +

(
WT

ciσci (si)
)

· (−φi − hi + Biui1 + Biui2 + αeiėi − ẍid) − ecHi

, (19)

where ecHi is the residual error that is brought from the neural network approx-
imation error, and defined as follows:

ecHi = −∇εT
ci (−φi − hi + Biui1 + Biui2 + αeiėi − ẍid) . (20)

The approximate Hamiltonian function, in the same manner, is given as:

Ĥi

(
si, ui, Ŵci

)
= Ui(si, ui) + DT

i Di +
(
ŴT

ciσci (si)
)

· (−φi − hi + Biui1 + Biui2 + αeiėi − ẍid)
. (21)

Define the error function eci = Ĥi

(
si, ui, Ŵci

)
− Hi (si, ui,Wci), and the

weight estimation error W̃ci = Wci − Ŵci, by combining (19) and (21), one
obtain the expression of eci in terms of W̃ci as

eci = ecHi − W̃T
ci∇σci (si) · (−φi − hi + Biui1 + Biui2 + αeiėi − ẍid). (22)

For the purpose of training and adjusting the weight information of the critic
neural network, we employ the objective function Eci = 1

2eT
cieci, which is mini-

mized by Ŵci. Moreover, the neural network weight is updated by using

˙̂
W ci = −αci

(
∂Eci

∂Ŵci

)
, (23)

where αci > 0 denotes the learning rate of the critic neural network.
When implementing the online policy iteration algorithm to accomplish the

policy improvement, one obtain the approximate optimal control law û∗
i2 as:

û∗
i2 = −1

2
R−1

i BT
i (∇σci (si))

T
Ŵci. (24)

From (24), one concludes that the optimal control law is derived depending
on only critic neural network, unlike the conventional method that also relay on
training of action neural network. Then, combining (15) and (24), the proposed
decentralized optimal control law u∗

i is given as

u∗
i = b̂fiẋi +

(
f̂ci + f̂sie

(−f̂τiẋ
2
i )

)
sgn(ẋi) +

τfi

γi
− B−1

i (αeiėi) + B−1
i ẍid

− 1
2
R−1

i BT
i (∇σci (si))

T
Ŵci

. (25)
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Theorem. Given an environmental contacted modular and reconfigurable robot
comprised of n modules, with the joint dynamic model as formulated in (1),
and the model uncertainties that exist in (2), (6) and (7) with the up-bound
function (10). The closed-loop robotic system is asymptotically stable under the
decentralized optimal control law designed by (25), with the weight update law
given by (23).

Proof. Select the Lyapunov function candidate as

V (t) =
n∑

i=1

Vi(t) =
n∑

i=1

(
1
2
sT

i si + J∗
i (si)

)
. (26)

The time derivative of (26) is obtained as

V̇ (t) =

n∑

i=1

s
T
i

( − φi − hi + Biui1 − ẍid

+ Biu
∗
i2 + αeiėi

)
+

n∑

i=1

∇J
∗
i (si)

T

( − φi − hi + Biui1

+ Biu
∗
i2 + αeiėi − ẍid

)
. (27)

It is noted that the control law ui1 is designed as (15) for the purpose of
compensating the certain terms φi, αeiėi and ẍid in the HJB equation (14),
then, one can rewrite V̇ (t) as

V̇ (t) =
n∑

i=1

(
sT

i (−hi + Biu
∗
i2) − sT

i Qisi − u∗T
i Riu

∗
i − DT

i Di

)
. (28)

By Young’s inequation, we know the (28) can be reformulated as:

V̇ (t) ≤
n∑

i=1

(
1
2
‖si‖2 +

1
2
‖hi‖2 +

1
2
‖si‖2 +

1
2
‖Bi‖2‖u∗

i2‖2
)

−
n∑

i=1

(
λmin(Qi)‖si‖2 + λmin(Ri)‖ui1‖2

)
−

n∑
i=1

(
λmin(Ri)‖u∗

i2‖2 + ‖Di‖2
),

(29)
where λmin(Qi) and λmin(Ri) denotes the minimum eigenvalue of Qi and Ri

respectively. Since hi and Di satisfy the relation hT
i hi ≤ DT

i Di, then one obtains

V̇ (t) ≤ −
n∑

i=1

(λmin(Qi) − 1) ‖si‖2 −
n∑

i=1

1
2
‖Di‖2

−
n∑

i=1

(
λmin(Ri) − 1

2
‖Bi‖2

)
‖u∗

i2‖2 −
n∑

i=1

λmin(Ri)‖ui1‖2
. (30)

Therefore, one concludes that V̇ (t) ≤ 0 if the following condition holds
{

λmin(Qi) ≥ 1 λmin(Ri) ≥ 1
2I2miγ

2
i

. (31)
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Besides, (30) also implies that V̇ (t) < 0 for any si �= 0 when the condition (31)
is hold, therefore, according to the Lyapunov theory, we conclude that the closed-
loop MRR system is asymptotically stable under the proposed decentralized
optimal control in (25). This concludes the proof of the Theorem.

4 Simulations

In order to verify the effectiveness of the proposed decentralized optimal control
method, in this section, two 2-DOF MRRs with uncertain environment con-
tact is used to conduct the simulations. The dynamic model, friction model
parameters and desired trajectories are adopted by referring our previous inves-
tigation [11], and the parameters of the controller are given in Table 1. Let
Qi = Ri = I (identity matrix), expressing the weigh vector Ŵci (i = 1, 2) as
Ŵc1 =

[
Ŵc11, Ŵc12, Ŵc13

]T
and Ŵc2 =

[
Ŵc21, Ŵc22, Ŵc23

]T
, and setting the

activation function σci (si) (i = 1, 2) as the form of σc1 (s1) =
[
e21, e1s1, s21

]
and

σc2 (s2) =
[
e22, e2s2, s22

]
. Two types of external environment contacts are con-

sidered in the simulations that including continuous time-varying environment
constraint (configuration A) and collision at random time point (configuration
B). The time-varying constraint force and the the constant collision force are
still follow our previous study [12].

Table 1. Parameters of the controller

Name Value Name Value Name Value Name Value Name Value Name Value

Imi 120 f̂si 4.0 kw0 1.33 ρUi 2.37 cw 83.5 f̂τi 80

kf0 8.3e+3 ρV i 2.2519 cf 8.9e-2 f̂ci 3.0 b̂fi 1.2 ρfpi 0.32

ρFi1 0.3 ρFi2 1.0 αei 0.5 ρFi3 0.7 ρFi4 20 αci 0.8

Figure 1 illustrated the position tracking error curves. For configuration A,
in the first 10 s, the tracking errors of both situations are relatively obvious
due to the decentralized optimal controllers require a period of time for train-
ing the critic neural network, after that, the tracking errors may converge to a
small range (less than 10e − 2rad) since the model uncertainty has been com-
pensated accurately. For configuration B, one observes that the instantaneous
position deviations are occurred at the time points of 30 s and 45 s, which can be
attributed to the influence of the environmental collision, after this, the track-
ing errors are converged rapidly under the action of the decentralized optimal
control.
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Fig. 1. Position tracking error curves. (a) Configuration A. (b) Configuration B

Figure 2 shows the control torque curves of the MRRs of configuration A and
B. From this figure, one concludes that the control torques, which are continuous
and smooth motor output torques, are available for implementing in the actual
MRR systems. Besides, benefit from the proposed optimal control strategy, the
torque consumptions are optimized in a suitable range for matching the output
power of the motors in each joint module. Note that the decentralized optimal
controller are suitable for different configurations of MRRs without the needs of
readjusting the control parameters.

Fig. 2. Control torque curves. (a) Configuration A. (b) Configuration B.

During the implementation process of the online policy iteration algorithm
and critic neural network training, for each isolated subsystem, we obtain that
convergence results of the weights have occurred after two seconds for each sit-
uation. Actually, the weights of the critic neural networks converge to

{
Ŵc1A = [33.34 52.99 59.43]

Ŵc2A = [45.66 50.16 46.78]
,

{
Ŵc1B = [23.20 4.70 43.96]

Ŵc2B = [30.65 18.33 34.37]

for configuration A and configuration B respectively.
From the simulation results above, we conclude that the proposed decentral-

ized optimal control method can provide accuracy and stability for MRRs to
satisfy the requirements of various tasks with complex working environment.
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5 Conclusions

This paper focus on investigating of MRRs with uncertain environment con-
tact, and addresses the problem of decentralized control with a learning-based
optimal compensation strategy. The dynamic model of MRRs are formulated as
a synthesis of interconnected subsystems, and the optimal control problem for
the whole robotic system is reformulated as an optimal compensation issue of
the model uncertainty. The policy iteration algorithm is developed to solve the
HJB equation by constructing a critic neural network, and then the approximate
optimal control policy can be derived directly. The Lyapunov theory is used to
prove the asymptotic stability of the closed-loop MRR systems. Finally, simula-
tions are performed for two 2-DOF MRRs with uncertain environment contact
to verify the effectiveness of the proposed decentralized optimal control method.
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