A Boosted Supervised Semantic Indexing
for Reranking

Takuya Makino® and Tomoya Iwakura

Fujitsu Laboratories Ltd., Kawasaki, Japan
{makino.takuya, iwvakura.tomoya}@jp.fujitsu.com

Abstract. This paper proposes a word embedding-based reranking
algorithm with a boosting. The algorithm converts queries and docu-
ments into sets of word embeddings represented by vectors and reranks
documents according to a similarity defined with the word embeddings
as in Latent Semantic Indexing (LSI) and Supervised Semantic Indexing
(SSI). Compared with LSI and SSI, our method uses top-n irrelevant
documents of a relevant document of each query for training a rerank-
ing model. Furthermore, we also propose application of a boosting to
the reranking model. Our method uses the weights of training samples
decided by AdaBoost as coefficients for updating model, therefore, highly
weighted samples are aggressively learned. We evaluate the proposed
method with datasets created from English and Japanese Wikipedia
respectively. The experimental results show that our method achieves
better mean average precision than LSI and SSI.

1 Introduction

Learning to rank is a machine learning-based method for ranking of information
retrieval. With a given training data, learning to rank methods learn weights of
features such as rankings given by search engines and content similarities between
a query and a document. Documents are ranked based on the scores given by
the learned model. One of the approaches of learning to rank uses hand-crafted
features [8,12], such as tf-idf, the title, URL, PageRank and other information.
Another approach is a way of learning a model by considering pairs of words
between the two texts. The difficulty is that such feature spaces are very large.
In order to deal with the difficulty, Supervised Semantic Indexing (SSI) [1] was
proposed. For training a ranker, SSI uses a pairwise learning to rank approach
that maps a word into a low dimensional vector, which is called as a word
embedding, for calculating score. By mapping words into word embeddings, SSI
can solve the feature space problem. The SSI approach is suitable for queries
represented by natural language used in systems such as an FAQ search and
patent searches.

However, the training of SSI does not meet the setting of reranking. The
original SST only handles a negative document for each relevant document of each
query (Fig. 1a). In other words, the training setting is different from reranking
of top-n search engine results.

© Springer International Publishing AG 2017
W.-K. Sung et al. (Eds.): AIRS 2017, LNCS 10648, pp. 16-28, 2017.
https://doi.org/10.1007/978-3-319-70145-5_2

A Boosted Supervised Semantic Indexing for Reranking 17

Pairwise loss

|Inner product| |Inner productl
|Inner productl
(@ee) (€ee) (GO0)
©, Q.) []
©,)

|Lookup V| |Lookup U| | Lookup V| £ >

I T I | Lookup V| |Lookup U| | Lookup V|
df df .diy @142 Qg di d; ..diy L] [) .

Relevant document Query Irrelevant document df dy .. dn-i\ Q12 gl | C1C2 - e I
Relevant document Query Irrelevant documents
(a) original SSI (b) proposed method

Fig. 1. Overviews of a training of original SSI and our reranking model. @ is an element
wise addition of vectors. V is common for relevant and irrelevant documents.

In order to improve the SSI for reranking, we propose the following:

— A training of SSI with irrelevant documents for each relevant document of
each query. In our setting, a relevant document and its irrelevant documents
are used as a training sample and the training aims at learning a model that
gives the highest score to relevant document of each training sample (Fig. 1b).

— Application of a boosting: In addition, in order to get further improved rank-
ing accuracy, we also propose an application of an AdaBoost, which is a
boosting algorithm, to the proposed SSI for reranking. Our method uses
the weights of training samples decided by the AdaBoost as coefficients for
updating model. Therefore, training samples with high weights given by the
AdaBoost are aggressively learned.

We first introduce SSI in Sect. 2, then, we propose Reranking SSI with a
boosting in Sect.3. We report the evaluation results of the proposed method
with data sets that are created from Japanese and English Wikipedia in Sect. 4.
The experimental results show that our method achieves better mean average
precision than SSI.

2 Supervised Semantic Indexing

2.1 Preliminary

Equation (1) is a naive score function of SSI, which calculates a similarity
between a query q € RV*! and a document d € RV,

fla,d) =q''Wd, (1)

18 T. Makino and T. Iwakura

N is the size of a vocabulary, which is a set of words, and W € RV*N ig a
weight matrix of a pair of words in a query and a document. g; is the value of
i-th word in a vocabulary for a query. d; is the value of j-th word in a vocabulary
for a document. The values are such as frequency and tfidf. W;; is the weight of
the pair of i-th word and j-th word in a vocabulary.

This function calculates relationship between words in a query and a docu-
ment. However, there are some problems such as data sparseness and memory
requirements (W requires O(N?) space). In order to deal with the space prob-
lem, Bai et al. [1] proposed to decompose W into low dimensional matrices.

W=U'V+I, (2)

where U € REXN V€ REXN and T € RV*N, T is an identity matrix and K
is a dimension of a vector. In other words, U consists of K-dimensional vectors
of words in a query and V consists of K-dimensional vectors of words in a
document. U and V can be viewed as a matrix that consists of word embeddings
and a word is mapped to a word embedding by looking up a corresponding
column vector of those matrices. Equation (1) can be rewritten as follows:

f(@,d)=q" (U'V+1)d,
N N N
= (Z qiug) - (Z div;) + Z qid;,

where u; is the i-th column vector of U and v; is the i-th column vector of V. SSI
calculates a score that is a summation of two terms. The first term (va qiu;) -
(va d;v;) is the inner product between the vector of a query and the vector of
a document in a low dimensional space. The vectors of a query and a document
are the summations of word embeddings of a query and a document weighted
by the value of a corresponding word such as tf-idf. The second term Ziv q;d; is
the surface similarity, which is the inner product between q and d.

For a given query, documents are sorted in a descending order according to
scores that are calculated by a model.

2.2 A Training Method

Let R = {(q;,d;",d;)}, beaset of training samples where i-th training sample
is a tuple of query q;, a relevant document d;" and an irrelevant document d; .
The purpose of training SSI is deriving U and V that minimizes the following
on R:

Z max(0,1 — f(q;, d}) + f(q;,d;)).

+ -
(qi7d1i 7di)GR

Algorithm 1 shows a pseudo code for the training algorithm. At first, U and V
are initialized by normal distribution with mean zero and standard deviation one.

A Boosted Supervised Semantic Indexing for Reranking 19

#Training data: R = {(q;,d},d;)},
#The learning rate: A
#The maximum iteration of SSI: P
Initialize: U, V
p =1 while p < P do
for i=1..m do
if 1 — f(qi,d}) + f(a:,d]) > 0 then
Update U by Eq. (3)
Update V by Eq. (4)
end
end
p++
end
Return U,V
Algorithm 1. A Supervised Semantic Indexing [1].

Then SSI picks up a training sample from R. If SSI gives a higher score to the
pair of a query and an irrelevant document than the pair of the query and a
relevant document, U and V are updated with Egs. (3) and (4):

U=U+)\V(d"—-d)q’, (3)
V=V +\Ud"-d)q’, (4)

where A is a learning ratio.

3 Boosted Supervsed Semantic Indexing for Reranking

In this section, we describe the training algorithm of SSI for reranking (ReSSI).
Then, we describe an application of a boosting to ReSSI (Boosted ReSSI).

3.1 Extension of SSI to Reranking

Algorithm 2 shows a pseudo code for the training algorithm of ReSSI and Fig. 1
shows an overview of ReSSI. Let R’ be a set of training samples and each sample
is a tuple of query q, a relevant document d™ and the set of irrelevant documents
{c"}E_ | where ¢! € RVX1,

ReSSI learns a model to rank the relevant document d* of each query q
higher than its corresponding irrelevant documents {c'}X;.

In order to use L documents as negative samples for a query, we propose a
training method for reranking. ReSSI uses the irrelevant document cf that has
the highest score f(qi7c§) as c¢; in the irrelevant documents {cé}le of query
q;- If (1 — f(qi,d") + f(qi,c;) > 0) is satisfied, a current model is updated by
Egs. (5) and (6):

U=U+\;V(d] —¢;)q,/, (5)
V=V-+)\eiU(d;r — ci_)q»T, (6)

12

20 T. Makino and T. Iwakura

#Training data: R’ = {(qi,d;", {ci}e1) iy
#The maximum iteration of SSI: P
#The weights of samples: {¢; }i%;
#The learning ratio: A
R' = {(qi,df, {Cé}lL:I) =1
Initialize: U, V
p=1
while p < P do
for i=1..m do
Ci_ = argmaxg. f(thi) if 1— f(q’mdj—) + f(q7«7cl_) > 0 then
Update U 1by Eq. (5)
Update V by Eq. (6)
end
end
p++
end
Return U,V
Algorithm 2. A Supervised Semantic Indexing for reranking: ReSSI
(Rlv P, {Gi}’:ila)‘)

where {e}, are the weights of training samples. We set ¢; =
for ReSSI without boosting. If we use L = 1 and ¢; =1 (1 <4
equivalent to the original SSI.

3.2 Application of Boosting

We apply a variant of AdaBoost [9] to ReSSI. The original AdaBoost was
designed for the classification problem. Here, we propose to apply the method
designed for structured prediction [11] to a learning to rank.

We show a pseudo code of the application of the boosting to ReSSI in Algo-
rithm 3. In the first iteration, ReSSI is trained with the initial weights of samples
6 =1/m(l <i<m).

Then, the boosting learner updates the weights of training samples. The
boosting learner assigns larger weights to training samples that are incorrectly
ranked. To realize this, we define a loss for a training sample (q;,d;, {c!}£)
as follows:

St(qi7dj7 {Ci}lllzl) = ft(qhdj) - ft(qiacz>7

where, ¢;” = argmax filai,cl) and fi(q;,ct) = q, (U] V, +ID)ct.
After the boosting learner learns a weak learner at time ¢, it searches a
confidence-value «; that satisfies Z;(a;) < 1:

m
5/~ _a At gl L
Zt(at) — E wy e atse(qi,d; ,{01}1:1)’

i=1

A Boosted Supervised Semantic Indexing for Reranking 21

#Training data: R’ = {(qi,d;", {c;}e1) 1y
#The iteration of SSI training: P
#The learning ratio of SSI training: A
Initialize: U = {}, V.={}, A={}
t=1
set initial value: wy,,; = % (for 1 <i<m)
while t < T do
Ut, Vt = RESSI(R/, P7 {’wt,i}ﬁl,)\)
Find &: that satisfies Zt(&t) < 1.
V —VU{V:}
A— AU {a}
for i =1..m do

| Update sample weights by Eq. (7)
end

t++
end

Return U, V, A
Algorithm 3. A Boosted Supervised Semantic Indexing

where w; ; is the weight of i-th sample at time ¢ and e is Napier’s constant. We
find &; with the same method used in [11].
After obtaining a4, the weight of each sample is updated as follows:
e*atst(Qi’d:’{Ci}szl)

Zt (Olt)

(7)

We41,i = Wty

After training a boosting learner, we obtain ¢ ReSSI models and their con-
fidence values. Given a query and a document, a final ranker calculates scores
by using all ReSSI models. The score of a document given by a final ranker is a
summation of scores given by ReSSI models.

T
fHad) =) afi(ad).
t=1

4 Experiments

4.1 Dataset

We conduct our experiments on datasets generated from English Wikipedia and
Japanese Wikipedia as in [1] with the following steps'.

! We used https://dumps.wikimedia.org/jawiki/20160407 /jawiki-20160407-pages-art
icles.xml.bz2 and https://dumps.wikimedia.org/enwiki/20160901 /enwiki-20160901-
pages-articles.xml.bz2. Retrieved October 14, 2016.

https://dumps.wikimedia.org/jawiki/20160407/jawiki-20160407-pages-articles.xml.bz2
https://dumps.wikimedia.org/jawiki/20160407/jawiki-20160407-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/20160901/enwiki-20160901-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/20160901/enwiki-20160901-pages-articles.xml.bz2

22

T. Makino and T. Iwakura

(d1) Preprocessing: Before generating data sets, we removed markup from
articles in Wikipedia by using regular expressions. For extracting words from
English articles, we used white space. For tokenizing Japanese articles, we
used MeCab?, which is a Japanese morphological analyzer.

(d2) Selecting Wikipedia articles as queries: 10,000 articles for training and
1,000 articles for test are randomly sampled from each Wikipedia archive as
queries.

(d3) Collecting positive samples of queries: We used Wikipedia articles linked
by each query Wikipedia article collected at (d2) as positive samples of the
query.

(d4) Collecting negative samples of queries: We collected negative samples
by searching articles in each Wikipedia archive with words in each query
article. We used a full text search engine Elasticsearch®. OR search of words
in each query article was used for collecting irrelevant articles as negative
samples. We collected L = 10 articles other than positive documents for each
query. In the training phase, for generating training data for a query that
has multiple relevant documents, we assign the same irrelevant documents
obtained with the query to each relevant document. For evaluation, a set of
the relevant documents and the L irrelevant documents of each query is given
to a ranking algorithm.

Table 1. Size of training and test data sets.

English Japanese
Train | Test | Train | Test
72,816 | 7,820 | 243,600 | 25,358

Table 1 lists the size of training data. Average numbers of words that are in

vocabulary of training data and test data are 241 and 465 respectively.

4.2 Methods to Be Compared

The following algorithms are compared with our methods; ReSSI and Boosted
ReSSI.

tfidf. Documents are sorted in descending order based on an inner product

2
3

between a vector of query and a vector of a document. The weight of each
word in a query and a document is normalized tfidf. A normalized tfidf is an
original tfidf divided by the number of words in the query and the document
respectively.

https://github.com/taku910/mecab. Retrieved October 14, 2016.

https://www.elastic.co/downloads/past-releases/elasticsearch-1-7-1, Retrieved
October 14, 2016.

https://github.com/taku910/mecab
https://www.elastic.co/downloads/past-releases/elasticsearch-1-7-1

A Boosted Supervised Semantic Indexing for Reranking 23

Table 2. Evaluation results on enwiki and jawiki. The scores with * significantly differs
with ones of Boosted ReSSI with p < 0.01. The scores with T significantly differs with
ones of ReSSI with p < 0.01.

MAP

enwiki | jawiki
tfidf 0.016*" | 0.011*1
LSI 0.314* | 0.069**
SSI 0.573*1 | 0.392*"
ReSSI 0.623* | 0.482"
Boosted ReSSI| 0.634" | 0.4977

LSI. Latent Semantic Indexing [6]. LSI is an unsupervised dimensional reducing
model. We used SVDLIBC*:5 for obtaining latent parameters. Documents are
sorted in descending order based on inner product with the vector of a query
in a latent space.

SSI Algorithm 1. Original paper randomly selected a negative sample of each
relevant document. In this paper, we select a negative sample from the doc-
ument that has the highest score in a search result obtained with a query of
each relevant document.

ReSSI. This is our proposed reranking-based SSI. The negative sample of each
query is selected from the top 10 search result of a search engine obtained
with the query.

Boosted ReSSI. This is the boosting version of ReSSI.

We set the size of the dictionary to N = 30,000, and the maximum iteration
number for SST and ReSSI to P = 30. For the proposed method, we set the max-
imum iteration number for boosting to 7' = 5. Dimensions of word embeddings
in SSI, ReSSI and Boosted ReSSI are set to K = 50. U and V are initialized by
normal distribution with mean zero and standard deviation one. The learning
ratios of each algorithm is following. For SSI and ReSSI, we used A = 0.01. For
Boosted ReSSI, we used A = 0.01 x m this is because the larger m is given, the
less weight is given for each training sample by the AdaBoost. We implemented
SSI, ReSSI and Boosted ReSSI with C++.

4.3 Evaluation Metric

We use Mean Average Precision (MAP), the mean of average precision over a
collection of questions, as our evaluation metric. For evaluation, a set of the r;
relevant documents and the L irrelevant documents of each query q; is ranked
with a reranking algorithm first. Let [d},...,d7" "] be a list of documents of

* https://tedlab.mit.edu/~dr/SVDLIBC/. Retrieved October 14, 2016.
5 We used following options: —d 50 —i 5 —e 1le—30 —a las2 —k le—6.

https://tedlab.mit.edu/~dr/SVDLIBC/

24 T. Makino and T. Iwakura

Nl Jii 5T
::/ oy /

(a1 1
< ..l !) N
= : : : PP I 5 A TN AN S SO .
S S — /
/ | —=— Boosted ReSSI o1 —&— Boosted ReSSl |
o I"-2¢- ReSSI] -3~ ReSSI
o [| ¢~ ssi | o —¢- SSI
[20000 40000 60(')00 EO(I)OO 100'000 120‘000 0 100000 200000 300000 400‘000 500‘000 600‘000
time [sec] time [secl]
(a) enwiki (b) jawiki

Fig. 2. Accuracy on each training time. MAPs are calculated on test data.

q; ranked by a reranking algorithm. d} is the top ranked document for q;. We
calculate MAP as follows:

C r;+L
1 =20 Pig

MAP:GZT,

i=1

where, C' is the size of test data, P; ; is the precision if the j-th document of q;
is relevant, otherwise zero. F; ; is calculated as follows:
R;

P ;= —[[df is a relevant document]],
J

where R; is the number of relevant documents in the top-j documents and [[n]]
is 1 if a proposition 7 holds and 0 otherwise.

r;+L

2 by

=1 is 1 if all r; relevant documents of q; are ranked in top-r; for all

questions, otherwise it becomes smaller than 1.

4.4 Accuracy

Table 2 shows main result of our experiments on enwiki and jawiki. We see that
ReSSI shows higher accuracy than tfidf, LSI and SSI. Furthermore, Boosted
ReSSI outperforms all the other methods. For significance test, we used paired
t-test. For calculating p-value, we used average precision for each query. There
are significant differences between ReSSI and tfidf, LSI and SSI. Furthermore,
there are also significant differences between Boosted ReSSI and the others. MAP
of tfidf is lower than other methods. This indicates that predicting link relation
between a query and a document based on surface word matching similarity is
difficult.

A Boosted Supervised Semantic Indexing for Reranking 25

4.5 Transition of Accuracy by Training Time

We compared MAPs for each model with different sizes of training data. In Fig. 2,
we plot MAP of test data on each epoch in the training phase. We use the seconds
of epoch as horizontal axis instead of the number of epochs. For the boosting
algorithm, we use the sum of the seconds by each boosting round as horizontal
axis. SSI converges faster than ReSSI since SSI fixes negative examples. However,
the performance of ReSSI is better than SSI.

4.6 Accuracy on Different Training Data Size

Figure 3 shows the results of different sizes of training data. For both datasets,
we can see that our proposed methods show higher accuracy than SSI not only
the larger training data set but also smaller training data sets.

4.7 Reranking Speed

We compared the times of reranking of ReSSI and Boosted ReSSI. For measur-
ing times, we used models that are trained on 50% samples that are randomly
sampled from enwiki and jawiki respectively. Times are measured on Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40 GHz and we used a single CPU for each model.
Table 3 shows the average seconds of predicting of our proposed methods over
test queries. The time of reranking of Boosted ReSSI is almost five times, which
is the number of boosting round in our experiments, times larger than ReSSI.

For the AdaBoost to structured perceptron [11], merging weak learners by
addition is effective. However, for Boosted ReSSI, the approach is not effective.
This is because the boosting learner needs to calculate the product of matrices
U; and V; when merging a weak learner by addition and it requires O(N?)
memory complexity and O(|q||d|N) computational complexity where |q| and
|d| are the number of non zero values in q and d respectively.

0.6 e

0.5

0.4 03
/ o
0.3 Z

02 /

MAP

—=— SSI
<- ReSSI|

&1 <~ ReSSI

Fig. 3. Transition of Accuracy with different sizes of training data. We randomly sam-

0.0

/ —&— SSI 01

—{>- Boosted ReSSI

0.2 . 0.4) 0.6 0.8 1.0
Size of training data

(a) enwiki

—{(~- Boosted ReSSI

0.2 . 0.4) 0.6 0.8 1.0
Size of training data

(b) jawiki

pled 10% and 50% of training data from enwiki and jawiki respectively.

26 T. Makino and T. Iwakura

However, if we have multiple CPU or multicores, we can easily improve the
reranking speed by distributing the calculation because we can independently
calculate scores given by each model created in boosting.

Table 3. Average seconds of reranking

enwiki | jawiki
ReSSI 0.081 |0.234
Boosted ReSSI | 0.386 | 1.101

5 Related Works

For obtaining word vectors, there are ways such as matrix factorization based
approach and learning to predict words given context. Latent Semantic Indexing
[6], probabilistic Latent Semantic Analysis [2] and Latent Dirichlet Allocation
[4] are well-known matrix factorization based vector space models without hand-
crafted features. These models can map a word into a low dimensional vector
for calculating a score between a query and a document. Skip-gram, CBOW
and GloVe [14,16] learns to predict words given context words. For predicting
a word, these methods calculate inner product between a word and its context
word. In contrast, our method learns word embeddings and models to rank a
relevant document higher than an irrelevant document.

Supervised learning to rank models that map a word into a low dimensional
vector are proposed in various tasks such as sentiment classification and image
retrieval task [3,10,15,18]. Our focus is training methods of a reranking model
for the pair of a query and a document.

For updating a ranking model, Bespalov et al. [3] proposed WARP loss that is
based on the rank of a relevant document. Recent works of optimization methods
for learning parameters of neural networks modifies a learning ratio based on
square of gradient [7,13,21]. Our method uses the sample weight decided by a
boosting. These methods can be applied to improve our proposed method.

RankBoost [8] and AdaRank [19] are boosting algorithms for ranking prob-
lem. Since these methods use a ranking feature or a decision tree as a weak
learner, it is not scalable when the dimension of a feature space is large like our
experimental setting. AdaMF [17] is similar with our proposed method. This
method is an application of boosting to matrix factorization for a recommender
system. AdaMF uses a point-wise learning to rank approach that predict the
rate of an item by a user. Our method belongs to a pairwise learning to rank
approach, such as [5].

ABCNN [20] is a convolution neural network with attention for question
answering as a classification rather than reranking and shows high mean average
precision. We can integrate attention mechanism into our methods for obtaining
higher mean average precision.

6

A Boosted Supervised Semantic Indexing for Reranking 27

Conclusion

We proposed a embeddings-based reranking with a boosting. Our embeddings-
based reranking model learns to rank a relevant document higher with a similar-
ity defined calculated word emmbeddings. Experimental results on English and
Japanese Wikipedia showed that the proposed method outperformed SSI.

References

10.

11.

12.

13.

14.

15.

Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Chapelle,
O., Weinberger, K.: Supervised semantic indexing. In: Proceedings of the 18th
CIKM (CIKM 2009), pp. 187-196 (2009)

Berger, A., Lafferty, J.: Information retrieval as statistical translation. In: Proceed-
ings of the 22nd SIGIR (SIGIR 1999), pp. 222-229 (1999)

Bespalov, D., Bai, B., Qi, Y., Shokoufandeh, A.: Sentiment classification based
on supervised latent n-gram analysis. In: Proceedings of the 20th CIKM (CIKM
2011), pp. 375-382 (2011)

Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993-1022 (2003)

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hul-
lender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd
International Conference on Machine Learning (ICML 2005), pp. 89-96 (2005)
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391-407 (1990)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Technical report UCB/EECS-2010-24. EECS Depart-
ment, University of California, Berkeley, March 2010

Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res. 4, 933-969 (2003)

Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119-139 (1997)
Grangier, D., Bengio, S.: A discriminative kernel-based model to rank images from
text queries. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 30, 1371-1384
(2008)

Iwakura, T.: A boosted semi-markov perceptron. In: Proceedings of the 17th
CoNLL, pp. 47-55 (2013)

Joachims, T.: Optimizing search engines using click through data. In: Proceedings
of the 8th KDD (KDD 2002), pp. 133-142 (2002)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

Mikolov, T'., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Burges, C.J.C., Bot-
tou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems, vol. 26, pp. 3111-3119. Curran Associates, Inc.
(2013)

Min, K., Zhang, Z., Wright, J., Ma, Y.: Decomposing background topics from
keywords by principal component pursuit. In: Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management (CIKM 2010),
pp. 269-278 (2010)

28

16.

17.

18.

19.

20.

21.

T. Makino and T. Iwakura

Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532-1543 (2014)

Wang, Y., Sun, H., Zhang, R.: AdaMF: adaptive boosting matrix factorization
for recommender system. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.)
WAIM 2014. LNCS, vol. 8485, pp. 43-54. Springer, Cham (2014). doi:10.1007/
978-3-319-08010-9_7

Weston, J., Bengio, S., Usunier, N.: Large scale image annotation: learning to rank
with joint word-image embeddings. In: European Conference on Machine Learning
(2010)

Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: Pro-
ceedings of the 30th SIGIR (SIGIR 2007), pp. 391-398 (2007)

Yin, W., Schiitze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional
neural network for modeling sentence pairs. TACL 4, 259-272 (2016)

Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701
(2012)

http://dx.doi.org/10.1007/978-3-319-08010-9_7
http://dx.doi.org/10.1007/978-3-319-08010-9_7

2 Springer
http://www.springer.com/978-3-319-70144-8

Information Retrieval Technology

13th Asia Information Retrieval Societies Conference,
AIRS 2017, Jeju lsland, South Korea, Movember 22-24,
2017, Proceedings

sung, W.-K.: Jung, H.: XU, S.; Chinnasarn, K.; Sumiya, K.
Lee, |.; Dou, Z.; Yang, G.H.; Ha, ¥.-G.; Lee, S. (Eds.)
2017, Xll, 235 p. 53 illus., Softcover

ISEM: 978-3-319-70144-8

	A Boosted Supervised Semantic Indexing for Reranking
	1 Introduction
	2 Supervised Semantic Indexing
	2.1 Preliminary
	2.2 A Training Method

	3 Boosted Supervsed Semantic Indexing for Reranking
	3.1 Extension of SSI to Reranking
	3.2 Application of Boosting

	4 Experiments
	4.1 Dataset
	4.2 Methods to Be Compared
	4.3 Evaluation Metric
	4.4 Accuracy
	4.5 Transition of Accuracy by Training Time
	4.6 Accuracy on Different Training Data Size
	4.7 Reranking Speed

	5 Related Works
	6 Conclusion
	References

