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Abstract. This paper introduces a novel spatial feature for human
action recognition and analysis. The positions and orientations of body
joints relative to a reference point are used to build an occupancy map
of the 3D space that was occupied during the action execution. The
joint data is acquired with the Microsoft Kinect v2 sensor and under-
goes a pose invariant normalization process to eliminate body differences
between different persons. The body related occupancy map (BROM)
and its 2D views are used as feature input for a random forest classifier.
The approach is tested on a self-captured database of 23 human actions
for game-play. On this database a classification with an F1-score of 0.84
is achieved for the front view of the BROM from the complete skeleton.
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1 Introduction

Due to recent development of low-cost and dependable sensor technologies, sig-
nificant research effort has been made into human action recognition. The strong
interest into this research field is further enhanced by the many possible applica-
tion areas such as intelligent visual surveillance [10], Human-Computer Interac-
tion (HCI) [9], automatic annotation [2] and behavioral biometrics [7]. In particu-
lar, marker-less vision-based systems have great potential to deliver inexpensive,
non-obtrusive solutions for human action recognition.

In this paper we introduce a novel way to recognize and analyze human
actions using body related occupancy maps (BROMs). This method is illustrated
on an application for physiotherapy that helps to motivate children in physical
rehabilitation or a fitness program. It is not always easy for the children to
sustain their efforts and keep up with their exercises. The application is therefore
designed as a platform for exergaming which combines exercising with gaming.
Not only does the platform present a fun way to exercise, it also offers the
possibility of remote monitoring and coaching the subject in an e-environment.
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The application framework consists of a gross motoric exergame where the child
controls the game by performing the required exercises in front of a Kinect sensor.
Automatic human action recognition is therefore a key part of the application.

In our approach to human action recognition and analysis, we measure how
the subject uses the space around him during the action. The philosophy behind
this idea is that different actions require the use of different zones in the personal
space around the human body. For example, waving your arms takes primarily
place next to the torso. In contrast, pushing something away with both arms
happens in front of the torso. We look at the areas that are occupied by the
person while the action is being performed. The occupied areas are indicated by
an occupancy map, which is then utilized to classify the performed action with
a general classifier. We will find that actions can already, for the most part, be
recognized by only registering how a person uses the space around him.

In our approach, instead of considering the body as a whole, we also investi-
gate the division of the human body into different body parts. In this paper we
will research which particular division strategy is most useful. We will find that,
when we classify simple actions, the separation into body parts is most fruitful
when it is applied in a hierarchic way. Furthermore, to eliminate the differences
of same actions performed in different postures, we only look at the positions
of the body parts relative to a reference point. This means that the absolute
position of the subject in the world coordinate system is replaced by the relative
position in the reference coordinate system.

The BROMs look at a human action in a way that strongly differs from
other action recognition methods. We will show that we can recognize a big set
of actions by simply registering how a person utilizes the space around himself.
Furthermore, some actions can even be recognized by considering only a few
selected joints of the human body.

The rest of the paper is structured in the following manner. We start by
introducing some related work that involves human posture or action recognition
using the skeletal information of the Kinect sensor. Next we discuss some issues
with the existing methods for action recognition. In Sect.4 the skeletal data
obtained with the Kinect sensor is explained. The section thereafter explains the
different stages of our approach to human action recognition. The final section
discusses the results of the experiments on the self-captured database for the
game application. The paper is completed with our conclusions.

2 Related Work

Since the release of the Microsoft Kinect sensor, it has been extensively used for
vision based human posture, gesture and action recognition as the user’s skele-
tal information is accurately generated by the sensor from its depth images. The
skeletal data acquired by the Kinect is usually transformed to extract impor-
tant features. Common features are the locations, the angles and the velocities
of the skeleton joints. The features are used to classify the human posture or
action. General classifiers, such as Support Vector Machines (SVM), or template-
matchers are commonly used for recognition of static gestures (i.e. postures,
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sitting, lying, standing,...). Dynamic gestures however (i.e. running, walking,
jumping,. ..), include a temporal dimension and are typically handled by Hid-
den Markov Models (HMM) or motion based models. Some existing methods for
human posture and action recognition are here summarily explained.

The method by Zhang et al. [11] utilizes the Kinect skeletal information to
generate 9 normalized vectors representing different body parts. With an opti-
mized SVM they identify 22 pre-defined postures. Through principle component
analysis (PCA) they found that in the reduced feature space of the three main
orthogonal principle components, most body postures were well separated from
each other. An accuracy of 99.14% was achieved.

Gahlot et al. used spherical angles and angular velocities for action recogni-
tion [4]. The pose of the subject is first estimated by three joints near the torso.
The angles and velocities are then computed in reference to the torso joint.
Horizontal symmetry is incorporated through a motion energy based method to
account for actions performed by either the left or right side of the body. The
classification is finally obtained with an individual HMM for every supported
action. Standing, sitting and bending is classified with an accuracy of 90%.

Hussein et al. [5] use covariance matrices from 3D joint locations to clas-
sify human actions. To account for the temporal dimension, multiple covariance
matrices over sub-sequences of the action are employed in a hierarchical manner.
Normalization of the joint locations is used to make the method scale invariant.
An off-the-shelf SVM classifier was used to validate the descriptor on three dif-
ferent datasets with accuracy ranging from 90.5% to 95.4%.

The sign base recognition method of Martinez et al. [6] is based on body parts
relations and consists of two parallel phases: the recognition based on hand pos-
tures and based on hand gestures. The posture recognition works on basis of
bag-of-words representation constructed from shape context descriptors. Clas-
sification is achieved with a multiclass SVM classifier. The gesture recognition
is based on the relations between the hand and the rest of the joints. A visual
dictionary is constructed and used to form the word sequence that represents a
gesture. HMMs for each sign class are used for classification.

Lastly we discuss our earlier work that was performed for the exergaming
project [3]. We used normalized skeleton joint locations to classify every body
pose with a Random Forest Classifier. The idea behind this was that different
actions show sufficient different body poses to be distinguishable from each other.
A sliding window with the classification results of the last several consecutive
frames decides on the final classification by a majority voting scheme. The strat-
egy obtained an accuracy of 96.7% on the exergame dataset and an accuracy of
98.3% on the Microsoft Research Cambridge-12 Kinect dataset.

The classification methods all show promising results, but every method is
focused on different features and works only on specific poses and actions. The
space that is occupied during an action has not yet been analyzed. This research
is based on the idea that this space contains important features that are not
yet used to classify human action and poses. That is why we propose to use the
occupied space as an addition for human action recognition.
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3 Existing Issues with Human Action Recognition

There are a few issues that are not all handled by the existing solutions. The
features that are extracted from the skeletal data should ideally be insensitive to
small variations in a persons appearance, action execution and camera viewpoint.
At the same time, the features must be sufficiently distinctive to allow for robust
classification. Some methods are sensitive to the general location of the subject
in relation to the sensor. A related problem is that generally the subject has to
be facing the Kinect sensor, making it view-dependent. A last issue is the scale-
invariance. The features have to be independent from the person’s dimensions.

The classification method itself can also introduce some issues. By nature,
posture recognition methods can only classify static actions. Dynamic actions
however contain a temporal dimension that cannot be handled by the posture
recognition systems. A much used solution for this problem is the HMM. How-
ever, the construction of a HMM is a complex and time consuming task. A last
issue that we bring forward is real-time recognition. Many recognition approaches
only work after the entire action is performed. Other designs need the starting
and end point of the action. With online recognition, the actions can begin at
any time and recognition has to be achieved as soon as possible.

The approach that is introduced in this paper tries to account for most of the
problems brought forward with an additional feature that describes the space
that is occupied during the human action performance.

4 Kinect Skeletal Data

We use the skeletal data that the Kinect acquires as input for our action recog-
nition. The skeletal data is delivered at 30 fps and consists of 25 joint positions
and orientations. These joints are head, neck, spine shoulder, spine mid, spine
base and for both left and right: shoulder, elbow, wrist, hand, thumb, hand tip,
hip, knee, ankle and foot. The joints are connected to each other through bones
with each a parent joint and a child joint. The parent joint is the end joint of the
bone that is closest to the reference joint, usually the spine base. For example,
the upper arm bone has the shoulder joint as parent joint and the elbow joint
as child joint. The elbow joint is in turn the parent joint of the lower arm bone.

Not every joint is considered for every BROM. We denote SD = {(p;,q),
it =0,...,n} as the selected skeletal data for a body or body part in a frame with,
for joint i, p; = (z,y,2) the cartesian camera coordinates and q; = (a,b, ¢, d)
the orientation relative to the camera system and n the number of joints.

5 Human Action Recognition

5.1 Pose Invariant Normalization

Before the relative occupancy map can be built, the skeletal data has to be
normalized. The variability across subjects in height and other dimensions has
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to be eliminated to accurately classify the movements of the individual. A too
large difference in body part sizes between different individuals will disturb the
classifier performance. Therefore every (partial) skeleton will be transformed to
a skeleton model with standard dimensions.

Since action recognition must be independent of absolute positions, a joint
is chosen as reference point. The entire skeleton is re-positioned and rotated so
the reference joint lies at the origin and its orientation coincides with the axes.

This normalization process is done in several phases. Given a SD = {(p;,q;)}
with joint (ppaf, dyef) @s the reference joint, the normalized skeletal data is then
denoted by N(SD) = {(x;,r;); ¢ = 1,...,n} with x; the normalized cartesian
coordinates and r; the quaternion of the normalized orientation of joint 4.

First, the joints are translated so the reference joint lies in the origin. The
translated skeletal data is:

SDirans = (Pi — Prefr Qi) (1)

The next step is the rotation of the translated skeletal data with the conjugate
of the orientation of the reference joint: (1)

SDyot = ((Pi — Pref)Q;efv QiQ;ef) = (Pi rot 9irot)- (2)

In the last phase, the dimensions of the skeleton are normalized to the dimen-
sions of a standard skeleton model. The standard model is based on the mid-sized
male aviator [8].

P;rot — Pparent,,rot

N(SD) = (

l; +x ,q; = (x;,1;), (3)
||Pi,rot *Pparentl,rotH ’ parent, z,fOt) v

where [; is the length of the limb that has p; as child joint in the standard
model skeleton. As can be seen in (3), the normalized position of the parent
joint has to be known to calculate the normalized position of a joint. The order
for transforming the joints is therefore crucial: parent joints before child joints.
The very first joints to be transformed, are the child joints of the reference joint,
since the normalized position of the reference joint is by definition the origin.
The skeleton is now normalized to a template that not only removes the
individual body differences, but also the differences in the global positioning and
orientation of the body. The normalization process makes it therefore possible
to represent both adults and children with the same model despite the sizable
differences in body shape. This is illustrated in Fig.1 where the skeleton of a
nine-year old child is compared to the skeleton of an adult before, during and
after the pose invariant normalization process. Both subjects are standing in the
T-pose while looking in different directions (Fig. 1a). In Fig. 1b the skeletons were
translated and rotated in reference to their own spine base joint. The orientation

! The product of two quaternions is called the Hamilton product. The product of a
vector and a quaternion is calculated by using the quaternion representation of the
vector and then taking the Hamilton product of the two quaternions.
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of the reference joint now coincides with the axes of the coordinate space. After
remodeling the skeletons to the standard sized skeleton, the T-poses are clearly
similar (Fig. 1c).

Fig. 1. Overview of the skeleton normalization process for a child (cyan) vs. an adult
(magenta). The orientation of the reference joint, the spine base, is depicted by its x, y
and z axes. (a) The original skeletons, (b) the skeletons in reference to the spine base
joint, (c) the skeleton after the complete pose invariant normalization process.

5.2 Body Related Occupancy Map

The purpose of the body related occupancy map (BROM), is to keep track of
which areas in the space around the skeleton were occupied during the action
performance and how much of the time they were occupied.

The BROM can be constructed relative to a room, a specific object in space,
a specific joint of a skeleton, or even relative to a body part that belongs to
another person present in the room. The proposed method is broad enough to
handle each of these cases. The skeletal data is re-oriented in reference to the
chosen point. The process is essentially the same as the first two steps of the
normalization of the skeletal data. If the reference point is the same as the
reference joint in the normalization phase, the re-orientation can be skipped. If
the entire skeleton is analyzed, the optimal reference is the spine base joint.

To build the BROM, we first divide the space around the skeleton into adjoin-
ing cells according to a rectangular grid, a spherical grid or a cylindrical grid
depending on the application. For the test case in this paper we opted for divid-
ing the space into cells by means of a rectangular grid. The reference point of
the occupancy map always lies in the center cell of the grid. The cells form the
foundation of the occupancy map that is filled frame by frame.

For every frame, the occupation of the 3D cells is considered. A cell is occu-
pied if a joint from the skeletal data lies within its boundaries. Counters in the
BROM for the current frame keep track of the number of joints that occupy
every cell. The BROMs for every frame of the performed action are then added
together and divided by the total number of frames for normalization:

BROMj(u,v,w) = Y 1withi=0,...,n. (4)

T;i€Cy, v, w
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F
BROM (u,v,w) = % ];1 BROM;{(u,v,w), (5)
where BROM(u,v,w) is the occupancy counter for cell (u,v,w) for frame f,
Cu,v,w the 3D space corresponding to the grid cell (u,v,w) in the reference space,
F' the number of frames in the sequence and BROM the occupancy map for the
sequence. The values in the complete BROM thus represent the occupancy level
of the cells by the human skeleton joints during the action.

The BROM can be partitioned into slices to make visualization as a 2D
projection of the map possible. The front view (FV), side view (SV) and top
view (TV) of the occupancy map are obtained by adding the 2D slices together
and normalizing the resulting 2D grid. Only the formula for the FV is given as
the SV and TV are similarly calculated.

FV(u,v) = %ZBROM(u,U,w) (6)

Examples of the FV projection of a BROM are shown in Fig. 2 for the action
“flying with big arm moves”. Due to the normalization of the skeletons, the FVs
for a child and for an adult are indistinguishable from each other. It is also clear
from the FVs that the action is primarily performed by the arms.
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View_Front of flying with big arm movements View_F
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View_Front of flying with big arm movements View_Front of flying with big arm movements View_Front of flying with big arm movements

(a) (b) (c)

Fig. 2. Front view projections of the BROMs during the action “flying with big arm
moves” for a child (top) and an adult (bottom). (a) FV for the entire skeleton, (b) for
the arms, (c) for the legs.
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6 Results

6.1 Evaluation Method

The proposed strategy is evaluated on the self-captured dataset for the exergame
application. The actions are characterized by the sequence of frames from their
start frame until their end frame. The BROM for the actions are built from the
frame sequences.

The BROM discretizes the 3D cartesian coordinate space into 20 x 20 x 20
bins with linear spacing. The entire map contains a volume of 2m X 2m X 2m
with the reference point in the center. Each bin thus has a resolution of 10 cm.

We have opted for random forest (RF) as the classification model for the
BROMs. A RF, is a low-bias, low-variance ensemble classifier, trained with bag-
ging and random feature selection. It has been proven that RF’s are almost
invariant to overfitting and are robust against noise.

The classifiers are trained on the leave-one-subject-out principle [1]. The data
of all the subjects except one are used as training data for the classifier. The
classifier is then evaluated on the data of the subject left out. This process
is repeated for every subject in the database. Moreover, every experiment is
repeated ten times to account for outliers that may result from the randomness
in the RF classifiers. The overall evaluation of the classification method is the
average of the results. The Fl-score is used to evaluate each classifier.

6.2 Action Dataset

The action dataset was recorded with the Microsoft Kinect v2 sensor at the
Sportlab of the department of Movement and Sport Sciences at Ghent University
in Belgium. It consists of four male and one female subjects performing 22 specific
actions three times with in between the neutral action standing still with arms
along the body (24256 samples). The entire action list be found in Table 2.

6.3 Whole Body Classification Versus Body Part Classification

The classification performance of several BROM constructions are compared
against each other. In the first experiment, the entire action set is classified by
BROMSs constructed from the complete skeleton body and BROMs constructed
from different body parts. Table 1 gives an overview of the different body parts
with their reference joint and included joints that are used in the BROMs.

The left side of Table 2 shows the resulting Fl-scores per action. It is clear
that the BROMs of the partial skeletons are not enough on their own for a
reliable classification of the entire action set. But it gives a first indication of
which actions are best classified by which body part. To make it more clear, the
F1l-scores that are greater than or equal to 0.75 were highlighted in green. The
F1-scores between 0.5 and 0.75 were highlighted in orange. The classification of
the BROM with the complete skeleton, results in a Fl-score of an acceptable
0.80.
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Table 1. Different body parts with their reference joint and included joints.

Body part | Reference joint | Included joints

All body | Spine_base Spine_mid, Spine_shoulder, Neck, Head,
Shoulder_left, Elbow_left, Wrist_left, Hand_left,
Shoulder_right, Elbow_right, Wrist_right, Hand_right,
Hip_left, Knee_left, Ankle_left, Foot_left, Hip_right,
Knee_right, Ankle_right, Foot_right

Left arm | Shoulder_left | Elbow_left, Wrist_left, Hand_left

Right arm | Shoulder_right | Elbow_right, Wrist_right, Hand_right

Arms Spine_shoulder | Shoulder_left, Elbow _left, Wrist_left, Hand left,
Shoulder_right, Elbow_right, Wrist_right, Hand _right

Left leg Hip_left Knee_left, Ankle_left, Foot_left

Right leg | Hip_right Knee_right, Ankle_right, Foot_right

Legs Spine_base Hip_left, Knee_left, Ankle_left, Foot_left, Hip_right,
Knee_right, Ankle_right, Foot_right

Table 2. Fl-scores for the classification of the BROMs of different body parts for the
complete action set (left) and for different action subsets (right).

Complete action set Subsets of actions |
all body[left arm[right arm[arms]left leg[right leg[legs [left arm[right arm[arms][left legright leg[legs |
neutral 0.89 0.74 0.70 0.74 0.72 0.68 0.87|0.99 0.98 0.98 0.91 0.90 0.90
walking 0.56 0.00 0.02 0.01 0.33 0.46 0.69 0.31 0.46 0.61
running 0.48 0.21 0.13 0.20 0.56 0.08 0.43 0.44 0.14 0.40
step left 0.75 0.03 0.05 0.07 0.62 0.41 0.65 0.62 0.53 0.68
step right 0.72 0.17 0.00 0.00 0.67 0.31 0.53 0.64 0.32 0.60
bowing 0.57 0.27 0.25 0.35 0.59 0.51 0.69 0.60 0.52 0.61
bow left 0.81 0.15 0.45 0.52 0.78 0.36 0.65 0.77 0.36 0.67
bow right 0.81 0.08 0.06 0.35 0.19 0.62 0.74 0.21 0.61 0.74
little jump 0.15 0.04 0.02 0.00 0.20 0.20 0.19 0.17 0.18 0.33
big jump 0.68 0.33 0.15 0.16 0.69 0.65 0.75 0.73 0.66 0.71
little jump hands up|0.39 0.47 0.41 0.35 0.13 0.22 0.31]0.49 0.41 0.40 0.19 0.28 0.37
big jump hands up |0.82 0.67 0.65 0.65 0.14 0.35 0.25 |0.71 0.61 0.71 0.19 0.31 0.27
climbing 0.79 0.61 0.51 0.74 0.24 0.20 0.52 |0.62 0.55 0.72
hummingbird 0.94 0.67 0.89 0.88 0.02 0.00 0.01 |0.72 0.85 0.90
flying small moves |0.90 0.76 0.86 0.92 0.09 0.04 0.02 10.81 0.86 0.89
flying big moves 0.88 0.84 0.84 0.88 0.00 0.00 0.01 |0.84 0.82 0.87
punch left 0.84 0.59 0.02 0.80 0.00 0.18 0.01 ]0.61 0.79
punch right 0.92 0.23 0.73 0.87 0.00 0.00 0.03 0.72 0.88
pushing forward 0.85 0.73 0.62 0.84 0.40 0.11 0.01 |0.77 0.68 0.90
high kick left 0.25 0.29 0.02 0.02 0.42 0.04 0.25 0.46 0.42
high kick right 0.48 0.00 0.34 0.04 0.55 0.68 0.65 0.71 0.79
low kick left 0.50 0.04 0.07 0.10 0.62 0.09 0.27 0.66 0.47
low kick right 0.71 0.01 0.15 0.01 0.11 0.78 0.63 0.77 0.74
total 0.80 0.56 0.51 0.62  0.55 0.49 0.62 |0.91 0.90 0.93 0.76 0.73 0.78

Most of the mislabeled samples (57%) are classified as the neutral action.
Especially the little jump shows this behavior as it is almost always misclassified
as the neutral action. This is however not surprising as this action consists of
only a slight bending of the knees as seen from the spine_center joint. 26% of
the mislabeled samples are classified as an action that has a highly similar use
of the space around the subject. Walking and running are two such actions that
are frequently switched. Unfortunately, the biggest difference between these two
actions is the speed of execution which is lost in the construction of the BROM.
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This was an intentional choice in the design of the BROM because normalizing
on the execution time, meant that, for example, slow flying and fast flying are
both classified as flying.

The computational time for creating the BROMs of the entire body took 54's
for the complete dataset (in Python on a Intel Core i7 processor). This averages
to 2.23 ms/sample or 83.17 ms/BROM. A notable 94% of this time was spent on
the pose invariant normalization of the skeletons. The computational time was
reduced to 0.42 ms/sample or 15.74 ms/BROM when the BROM was created for
only the leg or the arm.

6.4 Action Subclasses

In the second experiment we investigate how the classification with the BROMs
of the body parts performs if every body part has its own subset of actions
assigned. The action set for each body part is derived from the previous exper-
iment and is assigned according to the main body part that is used to perform
the action. For example, “flying” is mainly performed by the arms. The action
is therefore only classified by the BROMs of the left /right arm and both arms.
The right side of Table 2 gives an overview of the actions that were classified
by the BROMs of each body part and the resulting Fl-scores. A remarkable
improvement in performance of the body part classifiers can be made if they are
classified on their own action subset. The only actions that are still difficult to
classify are running, little jump, little jump hands up and high kick left.

6.5 Combining Body Part Classifiers

The third experiment consists of combining the predictions of the body part
BROM classifiers into one general prediction. There are two obvious ways to com-
bine the classifiers. The first and simplest combination is by taking the majority
vote of the separate classifiers. The second method takes the prediction proba-
bilities for every action from the separate classifiers, adds them up and takes the
action with the highest probability as the final classification.

An extra rule is implemented when the final prediction gives the neutral
action. In the previous experiment, the body part classifiers were also tested on
untrained actions. With very few exceptions, the untrained actions were classified
as the neutral action. This was a welcome result and it means that the classifiers
give either the correct classification or the neutral class back. The extra rule is
based on this finding. If the final classification is the neutral action, the second
most probable class is returned instead, unless all classifiers are unanimous.

The experiment proves that the classification performance decreases when the
body is divided into separate body parts as shown in Table 3. The smaller the
different body parts, the more the performance of the general classifier suffers.
Also, the method of majority voting gains only significance if the number of
classifiers in the combination increases.

In addition, this experiment points us in the direction that a hierarchic clas-
sification is necessary. The whole body BROM can be used to distinguish if the
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Table 3. Fl-scores for the combined classifiers of BROMs of different body parts.

Classifiers Majority | Probability
Combination of 2 Arms, Legs 0.77 0.79
Combination of 4 Left arm, Right arm, Left leg, |0.68 0.67

Right leg

Combination of 6 Left arm, Right arm, Arms, 0.74 0.65

Left leg, Right leg, Legs

action is mainly performed by the arms, the legs or both. The second level in
the hierarchy then only uses the BROM of the main body parts. This way the
BROM of the arms is only used if there is sufficient indication of arm action.

6.6 2D View Classification

The BROM results in a large feature vector for the classifier, the last experiment
studies if this can be reduced through only taking the 2D views of the BROM.
Because the classifier for the whole skeleton proved to be the best classifier, only
the views of this BROM is tested. Table4 shows the results.

Table 4. Classification with the complete BROM versus classification with the 2D
views of the BROM.

Total Fl-score

Complete BROM 0.80
Front view of BROM 0.81
Side view of BROM 0.74
Top view of BROM 0.74

Front, side and top view of BROM | 0.84

Reducing the BROM to its 2D views, increases the performance of the clas-
sifier if the correct combination is chosen. Using the front view of the BROM
raises the Fl-score by 1%. However, using the side view or the top view of the
BROM, reduces the performance by 6%. The best result is obtained when the
three views together are used as the feature input of the classifier. The F1-score
is then boosted by 4% to a value of 0.84.

7 Conclusion

In this paper a new feature for human action classification and analysis was
presented. Skeletal data recorded with the Microsoft Kinect v2 sensor was used
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as the initial input data. The skeletal data was first rotated and translated to a
reference point to make the framework camera view-independent. To account for
individual body differences between people, the skeleton was then transformed to
a standard model. From the transformed skeleton, the entire skeleton or a body
part was selected to build a body related occupancy map. The reference point
formed the center of the occupancy map and all other joints were in relation
to this point. The BROM was built by binning the relative positions from the
joints in a 3D grid for every frame from the performed action and normalizing
the resulting map. The BROM and the top, side and front views were each used
to train a Random Forest classifier to predict the action that was performed.

Four experiments were done on the self-captured action dataset to test the
approach. In the first experiment a classification result of an 0.80 Fl-score was
achieved for the BROM from the complete skeleton with the spine base joint as
reference. The second experiment showed that better classification results could
be achieved on the BROMs of different body parts if each body part was trained
on their own specialized subset of the actions. The classification scores increased
with 16% to 42%. The third experiment determined that the classifiers for the
body parts trained on their own subset of actions, could be combined to form a
general classifier that can predict the complete action set. The last experiment
proves that decreasing the feature vector size can increase the Fl-score to 0.84
if the top view, side view and front view is used as input for the classifier.

With the BROMs it is possible to largely classify a diversified set of human
actions by only looking at the space that the human uses during the action
performance. The BROMs can therefore be used as a great additional feature
for human action classification and analyzation.
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