Modeling undefined behaviour semantics for
checking equivalence across compiler
optimizations

Manjeet Dahiya and Sorav Bansal

Indian Institute of Technology Delhi,
{dahiya, sbansal}@cse.iitd.ac.in

Abstract. Previous work on equivalence checking for synthesis and trans-
lation validation has usually verified programs across selected optimiza-
tions, disabling the ones that exploit undefined behaviour. On the other
hand, modern compilers extensively exploit language level undefined
behaviour for optimization. Previous work on equivalence checking for
translation validation and synthesis yields poor results, when such opti-
mizations relying on undefined behaviour are enabled.

We extend previous work on simulation-based equivalence checking, by
adding a framework for reasoning about language level undefined be-
haviour. We implement our ideas in a tool to compare equivalence across
compiler optimizations produced by GCC and LLVM. Testing these com-
piler optimizations on programs taken from the SPEC integer benchmark
suite, we find that modeling undefined behaviour semantics improves suc-
cess rates for equivalence checking by 31 percentage points (from 50%
to 81%) on average, almost uniformly across the two compilers. This
significant difference in success rates confirms the widespread impact of
undefined behaviour on compiler optimization, something that has been
ignored by previous work on equivalence checking. Further, our work
brings insight into the relative significance of the different types of C
undefined behaviour on compiler optimization.

1 Introduction

Programming languages have erroneous conditions in the form of erroneous pro-
gram constructs and erroneous data. Language standards do not impose require-
ments on all such erroneous conditions. The erroneous conditions on which no
requirements have been imposed by the standard, i.e., whose semantics have not
been defined are called undefined behaviour (UB). Since the standard does not
impose any requirements on UB, compilers are permitted to generate code of
their choice in presence of the same. In other words, compilers can assume the
absence of UB in the target program, and are free to produce code without the
checks for UB conditions. Further, they can produce more aggressive optimiza-
tions under such assumptions. For example, the C language standard states that
writing to an array past its size is undefined. Hence, C compiler writers do not
need to check the sanity of the array index during an array access. Moreover,

© Springer International Publishing AG 2017
O. Strichman and R. Tzoref-Brill (Eds.): HVC 2017, LNCS 10629, pp. 19-34, 2017.
https://doi.org/10.1007/978-3-319-70389-3_2

20 M. Dahiya and S. Bansal

aggressive compilers may even remove a sanity check if the same has been added
by the programmer in her C program.

C language contains hundreds of undefined behaviours [14]. All modern com-
pilers like GCC, LLVM and ICC are known to extensively exploit UB while gener-
ating optimized code (we provide some evidence in this paper). Further, previous
work on optimization-unstable code detection [26] reported that 40% of the 8575
C/C++ Debian Wheezy packages they tested, contain unstable code: unstable
code refers to code that may get discarded during optimization due to the pres-
ence of UB. Undefined behaviour is clearly widespread. The need for UB has
also been widely debated. On one hand, many textbook optimizations rely on
UB semantics. For example, consider a simple for loop in C: for (int i=0;
i<=n; ++1). Now if n equals INT_MAX, then this loop would never terminate,
and it would be possible for i to be negative inside the loop body (because i
would wrap around after INT_MAX). However, several optimizations would like
to depend on the loop termination property, and the loop invariant that i >= 0
inside the loop body. Fortunately, these invariants are valid, because signed inte-
ger overflow is undefined in C (thus yielding the assumption that ++i can never
wrap around, indirectly implying that it is illegal for n to be equal to INT_MAX).
On the other hand, programmers are often annoyed by these “counter-intuitive”
optimizations, and some of them go to the extent of disabling certain types
of UB through flags provided by the compiler. For example, the Linux kernel
build process disables signed integer overflow and type based strict aliasing UB
assumptions in GCC [23,24].

Undefined behaviour semantics and their exploitation by compilers for op-
timization means that the compiler verification tools (e.g., translation valida-
tion) must model these semantics for more precise results. Similarly, synthesis
tools and superoptimizers (e.g., [2]) must model such semantics, while com-
paring equivalence of the target program with the candidate synthesized pro-
gram, for better optimization opportunity. An equivalence checking algorithm
results in a false negative, i.e., incorrect equivalence failure if it does not model
the UB. Previous work on simulation-based equivalence checking across com-
piler optimizations has primarily been done in the context of translation vali-
dation [11,17,18,21,25,27] across selected compiler optimizations, disabling the
ones that exploit language level UB. This prior work yields poor results when
equivalence checks are performed across the optimizations that exploit UB. This
paper addresses this issue and makes the following contributions:

— We extend the simulation relation by adding assumptions at each row of the
simulation relation table, to model language level UB semantics. Equivalence
is now computed under these assumptions, i.e., the original program and
the transformed program need to be equivalent only if the corresponding
assumptions are true. If the assumptions are false, the programs are still
considered equivalent even if their implementations diverge. We call this the
extended simulation relation.

Modeling undefined behaviour semantics 21

1 . be bo'

%nt A[256]; p=A p=A;i=1

int suml = 0; long* sum2; i=1 rl=suml
r2=*sum2

void sum(int n) {
intx p = A;
for (int i=1;i<n+1;++1i) {

b3

suml = suml + *p;
*sum2 = *sum2 + *p; suml+=*p, rl=*p,
p+t+; *Sum2+=*p, r2+=*p,
} i++;p+=4 i++;p+=4
}
(a) Unoptimized (b) Optimized

Fig.1: An example function. sum2 Fig.2: Unoptimized and optimized, abstracted
is allocated by the caller. versions of the program in Fig. 1.

— We discuss the assumptions produced by different types of UB semantics
and experimentally determine the types of UB that are most consequential
to compiler-based optimization.

— To model aliasing based UB, which we find is heavily exploited by compilers
for optimization, we present an algorithm to compute aliasing information at
the IR /assembly level. Computation of aliasing information at the assembly
level is necessary because the programs emitted by the compilers are in
assembly. The aliasing information computed through this algorithm is used
for generating UB assumptions for the extended simulation relation.

We test our ideas by comparing equivalence across unoptimized and opti-
mized implementations of programs derived from the SPEC CPU Integer bench-
mark suite. The equivalence tests are performed at function granularity, i.e., an
unoptimized implementation of a C function (treated as the program specifica-
tion) is compared against an optimized implementation of a C function. The
optimized implementations are generated using GCC and LLVM with -02 flag.
The optimizations enabled by —02, are commonly enabled by almost all software.
Our overall success rate for equivalence checking across these optimizations is
81%, i.e., we successfully generate an equivalence proof, in the form of a provable
simulation relation, for 81% of the equivalence checks. The success rate drops to
50% if the UB modeling is removed. Our results emphatically confirm the im-
portance of modeling UB for checking equivalence for validation and synthesis
of compiler optimizations.

2 Motivating example

Fig. 1 shows a C program which computes the sum of the first n elements of
a global array A and stores the result in a global variable suml and at an address
sum2. We have deliberately used two different types of accumulators (suml and
xsum2) and i<n+1 in the for loop, to demonstrate three different types of
C undefined behaviour in the same example. Fig. 2a, 2b show the abstracted

22 M. Dahiya and S. Bansal

unoptimized and optimized versions of the same program compiled by gcc -00
and —02 respectively. The original programs are in x86 assembly, and many other
optimizations are present in the optimized version; for exposition and brevity, we
have abstracted them into a C like syntax and only the UB related optimizations
are shown.

The first optimization we discuss through this example, is a peephole op-
timization involving substitution of the check i<n+1 by a faster check i<=n,
avoiding the need to compute n+1. However, as such, the substitution may not
seem correct because the two programs are not equivalent when n=INT_MAX. For
n=INT_MAX, the loop of unoptimized program takes zero iterations (INT_MAX+1
wraps around to a negative number INT_MIN), while that of the optimized pro-
gram loops forever (because i will always be <INT_MAX). Interestingly however,
it is legal and common for C compilers to perform this optimization. This trans-
formation is legal due to the signed integer overflow (SIO) assumption, that
forms a part of the C undefined behaviour semantics. As per this assumption,
signed integer arithmetic shall not' overflow (i.e., it is an illegal program if it
causes signed integer arithmetic to overflow), and hence, the compiler need not
worry about the case when overflow takes place.

The second interesting optimization in this example is the register alloca-
tion of suml and *sum2 to registers r1 and r2 respectively, throughout the
execution of the loop. These registers containing the accumulated sum values,
are written back to their respective memory locations at loop exit. Again, as
such, these transformations may not seem correct: it is possible for the pointer
p, which can belong to [A,A+4xn) to alias with either (or both) of &suml
and sum2, in which case, the values stored at p may get modified as the loop
executes, making register allocation of suml and *sum2 incorrect. It is how-
ever legal (and common) for C compilers to perform such register allocations.
This is due to UB related to the following aliasing assumptions: 1) Type based
strict aliasing assumptions (TBSA): Pointers of different types (e.g., longx and
int«) shall not alias with each other (with the exception of charx). 2) Out-
of-bounds variable access assumptions (OBVA): A program shall not access a
memory location beyond the region of an object (variable). In our example, the
TBSA assumptions guarantee that sum2 (of type Long«) and p (of type int«)
cannot alias. Similarly, sum2 cannot alias with & suml (of type int). Further,
the OBVA assumptions guarantee that p cannot point beyond the object A, i.e.,
p must belong to [A, A+4%256). This implies that p cannot alias with &suml,
as suml and A are distinct regions. With these assumptions, it is indeed legal
to register-allocate suml and *sum2 throughout the loop execution.

The programs in Fig. 2a, 2b can be shown to be equivalent only if the UB
assumptions are modeled and used in the simulation-based proof. In this pa-
per, we contribute algorithms to model and use these UB assumptions in a
simulation-based proof, and show their effectiveness for computing equivalence
across compiler transformations on a general purpose code. Sec. 3 discusses the
notion of the extended simulation relation that uses undefined behaviour as-

! Phrasing is taken from the C standard.

Modeling undefined behaviour semantics 23

sumptions to correctly decide equivalence in the presence of UB. Sec. 4 discusses
algorithms to generate these UB assumptions, for use in the extended simulation
relation.

3 Extended simulation relation (with assumptions)

A simulation relation [17, 18] between two programs can be used to establish
equivalence across the two programs. It has been used extensively in previous
work on equivalence checking and translation validation [11,17,18, 20, 27]. A
simulation relation is a witness of the equivalence between two programs. Given
a valid simulation relation, proving equivalence is straight-forward; however the
construction of a simulation relation is undecidable in general. We leverage previ-
ous work on automatic construction of a simulation relation across two programs,
where the second program is the compiler-optimized version of the first program.
In addition, we extend previous work to model and use UB assumptions, to allow
equivalence computation in the presence of UB semantics. Equivalence is now
conditional on these assumptions, i.e., the equivalence proof may fail if these
assumptions are discounted.

The relevant assumptions are computed at each program location of the un-
optimized program specification. These assumptions are based on a best-effort
static analysis of the program: for example, if the program involves arithmetic
on a signed integer variable, then the corresponding SIO assumption is inferred
at that program location. Some assumptions can be inferred directly from pro-
gram syntax, while others may require a deeper static analysis. In general, the
sophistication of the static analysis required to infer the undefined behaviour
assumptions, ought to match the sophistication of the analyses used by the op-
timizer. SIO and TBSA assumptions are examples of assumptions that can be
inferred through straight-forward syntactic analysis of the program, while the
OBVA assumptions usually require a deeper alias analysis, the kind used by
modern compilers for optimization. We discuss this latter analysis in Sec. 4. In
this section, we assume that such assumptions are already available at the re-
spective program locations, and we discuss their effect on the required simulation
relation.

Let Proga be the unoptimized program specification and Progg be the op-
timized implementation. Proga specification also includes a map from the pro-
gram locations to the corresponding UB assumptions (Assum). An extended
simulation relation is represented as a table, where each row is a tuple ((La,
Lg), Assum[L4], P) such that L4 and Lpg are program locations in Progs and
Progp respectively, Assum[L 4] is the set of assumptions in Proga at location
L4, and P is a set of invariants on the live program variables at locations L 4
and Lg. A tuple ((La, Lg), Assum][L 4], P) represents that the invariants P hold
whenever the two programs are at L4 and Lp respectively, assuming all the UB
assumptions at all Progy program locations (Assum) hold.

An extended simulation relation is valid if the invariants at each location pair
are inductively provable from invariants and UB assumptions at the predecessor

24 M. Dahiya and S. Bansal

Location |Assumption [Tnvariants (P)

(b0,b0%) |True na =np,As = Ap,&sumls = &sumlp, sum24 =
sum2p,Ma =A Mp
(b1,b1’) |(na #INT_-MAX) A |sla(Ma,&sumla) =rlp,

(&sumla # pa) A sla(Ma,sum24) =1r2p,na =np,ia =ip,

(sum2a # pa) A Aa = Ap,pa = pB,&sumlas = &sumlp,

(sum2a4 # &sumla) |sum2a = sum2p, Ma =AU{gsum14,sum24} MB
(b3,b3’) |True Ma =a Mp

Init: ng =np,As = Ap,&sumla = &sumlp,sum2a = sum2p, Ma =a Mp

Fig. 3: Extended simulation relation for the programs in Fig. 2. (b0, b0’) and (b3, b3’)
are the entry and exit rows respectively. A4 and &sumla are the base addresses of
the globals A and suml respectively in Proga. sla(M, addr) represents 4 bytes of data
read in memory (M) at address addr. =a represents equivalent memory states except
at A; A represents the stack region. Init represents equivalence of inputs.

location pairs. Notice that the UB assumptions do not need to be proven. Invari-
ants at the entry location (pair of entry locations of the two programs) represent
the equivalence of program inputs (Init); the base case of this inductive proof.
Finally, if we can thus inductively prove equivalence of the return values at exit
location (pair of exits of the two programs), we have established the programs
to be equivalent. For C functions, the return values include the state of the heap
and global variables. Formally, an extended simulation relation is valid if:

Init < invariants iy 4, eneryp)

/
v Assum|[L 4] A invariants 1 = invariants g , o)

! !
L L La.L
(@ L) (L a.Lp) B (alp)>@als)

Here invariantsr, 1) represents the conjunction of invariants in the extended
simulation relation for the location pair (L4, Lg), Init is the input equivalence
condition at the entry of the two programs, L, and Ly are predecessors of

L4 and Lp in programs Progas and Progp respectively, and = T Al s)

represents implication over the paths L/A — L and LIB — Lp in programs
Proga and Progp respectively.

Fig. 3 shows an extended simulation relation which establishes the equiv-
alence across the programs in Fig. 2a and 2b. The exit row of this extended
simulation relation denotes equivalence of memory states (modulo stack and lo-
cal variables) at exit, representing the equivalence of globals variables {sum1, A}
and values at pointer sum2 and the remaining unused heap. This simulation re-
lation is only provable when the UB assumptions are used in the inductive proof.
For example, without the assumptions, the invariant sly(Ma,&sumly) = rlg
of the second row is not provable on edge (b1, bl’) — (b1, b1’) (sl4 represents
the memory-read of four bytes; see Fig. 3 caption).

Modeling undefined behaviour semantics 25

Type of undefined behaviour [Description

Signed integer overflow (SIO) Signed integer arithmetic cannot overflow

Type based strict aliasing (TBSA)|Pointers of different types cannot alias (barring ex-
ceptions like char «)

Dereferenced addresses not null An address that has been dereference cannot be zero

Shift operand bounds If a value X is shifted left/right by another value S,

number of bits used to represent X)

then S > 0 and S < numbits(X) (numbits(X) is the

Type alignment A value X of type T must be aligned to the size of T

No divide by zero The divisor of a division operation cannot be zero

Table 1: Examples of types of C undefined behaviour that can be modeled through
syntactic analysis of the program.

4 Modeling undefined behaviour assumptions

We now discuss how to obtain the UB assumptions for the simulation relation.
We first generate these assumptions on the unoptimized program specification
Progy, for each location, through static analysis of the program. At the time of
the construction of the simulation relation, for every row (L, Lg), the assump-
tions corresponding to L 4 are added in the simulation relation. In other words,
the UB assumptions are inferred for the unoptimized program, and used during
the construction and proof of the simulation relation.

The algorithm to infer the UB assumptions, depends on the type of the
UB. For example, the assumptions for many types of UB can be inferred purely
syntactically — see Table 1 for some examples. Such syntactic analysis and
modeling of UB has also been used previously for the verification of manually
written peephole optimizations in LLVM [16].

The OBVA undefined behaviour assumptions are an example of UB that
require a relatively deeper static alias analysis. This is because the production
quality compilers typically implement a similar alias analysis for better optimiza-
tion opportunity. The static alias analysis provides a may-alias relation between
program pointers and program wvariables. The program variables include all the
global and local variables defined by the programmer. Further, to model aliasing
in heap and stack, we include two special “variables”, called “stack” and “heap”.
Thus, a pointer value in the program may alias with one or more of the user-
defined variables, and/or with the stack/heap?. Based on this analysis, we infer
assumptions indicating that a program pointer must point within the memory
regions belonging to the variables with which it may alias:

aliasing_assumptions, < \/ (P > Vpegin AD < Vend)
ve{u:may-alias(p,u)}

2 While a stack is not a part of the program’s language level semantics, it gets intro-
duced by the compiler in the assembly implementation.

26 M. Dahiya and S. Bansal

Here p represents a pointer value, v is a program variable p, and [Vbegin, Vend)
represents the region of memory occupied by variable v. Further, invariants en-
coding the mutual-disjointness of regions associated with each program variable,
and for the stack and heap, are added through conditions on the respective vyegin
and ve,q values.

In our running example of Fig. 1, the alias analysis infers that p may alias
with only the array variable A. Further, because A and suml are different vari-
ables, their memory regions are mutually disjoint, thus implying that p cannot
alias with suml.

This alias analysis, to infer the variables with which a program pointer may
alias, is similar to the previous work on alias analysis for assembly code [4]. The
alias analysis need not be precise, but needs to be sound, i.e., the may-alias
relation for a pointer p must be include all variables that a pointer may actually
alias with (over-approximation). We next describe the two analyses used by us
to infer the may-alias relation.

4.1 May-alias analysis

To compute the may-alias relation, we first compute two relations, linearly-
related (Ir) and may-depend-on (dep) between program pointers and program
variables (including stack and heap). The Ir relation indicates the variable with
which a program pointer is linearly-related, i.e., based-on. In other words, if a
program pointer is at an offset from the address of a program variable then it
is Ir with that program variable. For example, a pointer p=v+10 or p=v+i (for
some arbitrary variable i) are both Ir with the variable address v. On the other
hand, p=+v is not Ir with v (even though p may depend on v, as we discuss
later). In our running example of Fig. 1, p is Ir with A. The C type system
guarantees that a pointer may be Ir with at most one program variable?. Also,
if a program pointer p is Ir with a program variable A, then p may alias with A,
and cannot alias with any other variable (including stack/heap). A pointer can
at most be Ir with one variable.

In addition to the Ir relation, we compute another relation called “may-
depend-on” dep. This relation indicates the variables on which a program pointer
may depend on, i.e., the variables whose address may potentially influence the
value of this program pointer. If the address of a variable may not influence
the value of a pointer, then that pointer may be assumed to not alias with the
aforementioned variable. Note that ir(p,v) implies dep(p, v).

The may-alias relation between a pointer p and program variable v is com-
puted in terms of the linearly-related and may-depend-on relations as follows:

may_alias(p,v) < dep(p,v) A /\ (=lr(p,w))
we(V—v)

3 A violation of this type-system, through type-punning for example, falls into the
realm of UB.

Modeling undefined behaviour semantics 27

Here V is the set of all program variables. In other words, we assume that
a pointer p may alias with a variable v if it may depend on v, and it is not
linearly-related to any other variable w # v in V4.

4.2 Computing linearly-related and may-depend-on relations

Computing both [r and dep relations involves a forward dataflow analysis on the
program’s control flow graph. These relations are initialized at program entry
with conservative assumptions, and they are computed at each intermediate
program location by analyzing transfer functions of the incoming control-flow
edges. In our setting, each program represents a C function body, and the calling
conventions of the compiler are used to initialize the relations at the entry node,
i.e., we assume that the function arguments may depend on any of the global
variables and/or the heap, but are independent of the stack and local variables
of the function. Further, we assume that the function arguments are not Ir with
any global variable. Together, these assumptions at program entry specify that
the function arguments may alias with all the program’s global variables and
the heap, but cannot alias with the function’s stack/local variables.

The Ir analysis across a control-flow edge involves a simple syntactic analysis
of the expression trees of the transfer function on that edge. This syntactic anal-
ysis involves inference rules of the type: Ir(p,v) = lr(p® X, v). i.e., if p is known
to be Ir with v, then p ® X (for any expression X that may potentially depend
on other variables w # v) is also Ir with v. “®” represents the addition and
subtraction operators; we further generalize these rules to operations involving
bitwise masking of lower-order bits of a pointer (a common operation in compiled
code). If these inference rules cannot decide a pointer p to be Ir with a variable
v, then we conservatively assume that p is not Ir with v (over-approximation).
At all internal nodes (except the start node), we initially assume all pointers
to be Ir with all variables (T), and refine the relations iteratively till a fixed
point is reached. As discussed earlier, at the start node, we assume that none
of the function arguments are [r with any of the variables. This information on
lr relations flows from the program entry to all intermediate program locations,
through transfer functions. The meet operator for this Ir dataflow analysis is
intersection, i.e., a pointer is Ir with a variable only if it is I on all possible
program paths.

Similarly, the dep analysis across a control-flow edge also involves a syntactic
analysis on the expression trees of the corresponding transfer function. The syn-
tactic analysis involves inference rules of the type: dep(p, v) = dep(OP(...,p,...)
, V). L.e., if p may depend on v, then any value derived from p (through any op-
eration OP that uses p as an argument) may also depend on v. At the entry
node, we conservatively assume that the function arguments may depend on any
of the global variables or on the heap. At all intermediate nodes, we initialize
by assuming that the pointers do not depend on any of the variables (T). At

4 As discussed earlier, the C type system ensures that if p is linearly-related to a
variable w, then p cannot alias with any other variable v # w.

28 M. Dahiya and S. Bansal

each iteration, we refine this may-depend-on relation at every node by analyzing
the expression trees of the transfer function of each incoming edge. The meet
operator for the dep relation is union, i.e., a pointer may depend on a variable
if it depends on that variable on any program path.

Unlike compilers, our alias analysis needs to work for assembly code where
pointer arithmetic is much more common. The [r relation is intended to cap-
ture such pointer arithmetic. Also, the modeling of stack is unique to assembly
code. Our algorithm, which over-approximately computes the may-alias relation
through Ir and dep relations, is sound and efficient (polynomial in the size of
the program and quite fast in practice), and captures the common patterns in
compiled code. A more expensive analysis can potentially yield more precise
may-alias relations.

5 Inferring the simulation relation

Automatic construction of the simulation relation has been well studied in prior
work [5,11,17,18,20,27]. Much previous work attempts to first discover a cor-
respondence between program locations across the two programs (correlation
(La, Lp)) in a first pass, and then attempts to find invariants (P) over the
locations in a best-effort second pass. In contrast, our algorithm searches for the
correlation simultaneously with the search for the invariants, resulting in a more
flexible and robust system. We succinctly outline here, our correlation algorithm
to automatically construct a provable simulation; a more detailed discussion is
available in [3].

Our algorithm incrementally constructs a joint transfer function graph (JTFG)
representing the partial simulation relation computed so far. A JTFG is a graph
with nodes and edges. A JTFG node (L 4, Lp) represents a pair of program nodes
Ly and Lp (indicating that Proga is at Ly and Progg is at Lg). Similarly, a
JTFG edge (L4, L) — (La,Lp), represents a pair of transitions L, — L4
and L/B — Lp in Proga and Progp respectively. Thus, a transition across a
JTFG edge encodes transitions in the two programs respectively. Each JTFG
node (L4, Lp) contains invariants relating the live variables at locations L4 and
Lp in the two programs respectively. To model UB, the JTFG nodes further
encode the UB assumptions. Recall that these assumptions have already been
computed through static analysis for locations in Proga; the assumptions at
location L4 in Progs appear in all JTFG nodes containing L 4. Further, for
each JTFG edge, edge conditions (edgecond) of its two individual constituent
program control-flow edges (belonging to Progs and Progp resp.) should be
equivalent. An edge condition represents the condition under which that edge is
taken, as a function of the live variables at the source location of that edge.

The algorithm for constructing a JTFG is presented in Algorithm 1. The
JTFG is initialized with a single node, representing the pair of entry locations of
the two programs. The CorrelateEdges () function picks one Progg edge, say
edgep, at a time and tries to identify paths in the unoptimized program (Prog,)
that have an equivalent path condition to edgep’s edge condition. Several candi-

Modeling undefined behaviour semantics 29

Function CorrelateEdges(jtfg, edgess)
if edgesp is empty then
| return LiveValuesAtExitAreEquivalent(jtfg)

end

edgep < RemoveFirst(edgesr)

edgesa + GetEdgesTillUnroll(Proga,edges,u)

foreach edges in edgesa do
jtfg’ = AddEdge(jtfe, edgea, edgen)
PredicatesGuessAndCheck(jtfg’)

if IsEqualEdgeConditions(jtfg’) A CorrelateEdges(jtfg’, edgesp) then
| return true

end
end
return false

Algorithm 1: Algorithm to construct the JTFG (simulation relation). edgesg is a list
of edges in Progp in depth-first search order. The AddEdge () function returns a new
JTFG jtfg’, formed by adding the edge to the old JTFG jtfg.

date paths are attempted up to an unroll factor ;1 (GetEdgesTillUnroll ()).
All candidate paths must originate from a Proga location that has already been
correlated with the source location of edgep. The path condition of a path is
formed by appropriately composing the edge conditions of the edges belonging to
that path. The edge edgep is chosen in depth-first search order from Progg, and
also dictates the order of incremental construction of the JTFG. The equivalence
of the edge condition of Progp with the path condition of Progs is computed
based on the invariants inferred so far at the already correlated JTFG nodes
(IsEqualEdgeConditions ()). These invariants, inferred at each step of the
algorithm, are computed through a Houdini-style [7] guess-and-check procedure.
The guesses are synthesized from a grammar, through syntax-guided synthesis
of invariants [1] (PredicatesGuessAndCheck). The unroll factor p allows
equivalence computation across transformations involving loop unrolling.
These correlations for each edge (edgep) are determined recursively to allow
backtracking (see the recursive call to CorrelateEdges ()). If at any stage, an
edge (edgep) cannot be correlated with a path in Proga, the function returns
with a failure, prompting the caller frame in this recursion stack, to try another
correlation for a previously correlated edge. In theory, this backtracking can
be exponential in the number of edges, but in practice, backtracking is rare,
especially because we prioritize the candidate source paths for correlation, in
increasing order of their unrolling factor. Because most compiler transformations
do not involve unrolling, backtracking is rare in this scenario.
PredicatesGuessAndCheck () synthesizes invariants through the follow-
ing grammar of guessing: G = { x4 ® xp, M4 =+, uxz; Mp }, where operator
@ € {<,>,=,<,>} and x4 and xp represent the program values (represented as
symbolic expressions) appearing in Proga and Progp respectively. The guesses
are formed through a Cartesian product of values in Progs and Progp using

30 M. Dahiya and S. Bansal

the patterns in G. Our checking procedure is a fixed point computation which
keeps eliminating the unprovable predicates, until only provable predicates re-
main (similar to Houdini). At each step, for each guessed predicate at each node,
we try to prove it from every predecessor node using the current invariants and
assumptions at the predecessor node (as also described in Sec. 3).

For our running example in Fig. 2a, 2b, the JTFG nodes and edges deter-
mined through our algorithm are {(b0,b0’), (b1,b1’), (b3,b3")} and {(b0,b0’)
— (b1,b1’), (b1,b1’) — (b1,b1’), (b1,b1’) — (b3,b3’)} respectively. Further, the
algorithm is able to infer the required invariants (shown in the last column of
Fig. 3) to complete the equivalence proof.

6 Implementation and Experiments

To demonstrate the impact of undefined behaviour assumptions on compiler
optimization, we compute equivalence of C functions across unoptimized (-O0)
and optimized (-O2) x86 binaries produced by compiling C programs through
production compilers, GCC and LLVM with and without UB models. We disable
function inlining during compilation, as our prototype implementation cannot
reason about inter-procedural optimizations. Even after disabling inlining, the
average speedup across the compiler optimizations on these programs is 1.72x
over clang-00. To be able to reconstruct the C-level information, required for
modeling UB and equivalence checking, we enable a few additional flags during
the compilation (namely —g and -reloc) to generate debug information and
relocation headers respectively. We assume that the binaries contain the symbol
table (i.e., are unstripped), which along with relocation headers allow accurate
renaming of memory addresses to global variable symbols. Further the debug
information provides the signature and types of the variables and functions.
Both GCC and LLVM support these compile-time options, and these options
have no impact on the runtime of the executable.

The functions are drawn from four SPEC benchmarks: bzip2 (compres-
sion utility), gzip (compression utility), mcf (combinatorial optimization) and
parser (word processing). The number of global variables in these benchmarks
is 100, 212, 43 and 223 respectively. We compiled each program with both com-
pilers to produce 16 binaries (8 unoptimized and 8 optimized), representing a
total of 1058 pairs of unoptimized and optimized assembly functions (ignoring
the identical glibc functions). Among these pairs, 714 functions had at least
one loop in them (cyclic functions). The average number of assembly LOC and
C-LOC for these functions is 112 and 35 respectively. We ignored the functions
containing floating point operations (14 functions), as our semantic model for
x86 floating point instructions is incomplete.

We performed experiments to demonstrate the significance of the three types
of UB discussed in Sec 2, namely SIO, TBSA, and OBVA assumptions. We esti-
mate the presence of UB based optimizations for each benchmark and compiler
option, by performing the equivalence check twice, for each function, with and
without using the UB assumption. If an equivalence check for a function pair

Modeling undefined behaviour semantics 31

3 Passed cyclic [Passed acyclic

100

[=)]
o

4

o

Success rate (%)

N
o

GG

=

=

=

s =
3
gcc bzip2-clang mcf-gcc mcf-clang parser-gcc parser-clang

<

<

<

<

TBSA

<
&z @
o

TBSA
TBSA

<
oz
o

TBSA
OBVA

) @

TBSA
OBVA
TBSA

g Q
4o
=

OBVA

< « 0 <
5 3 290 3
o = o
n ip2-gc

gzip-gcc gzip-clang bzip

Fig. 4: For every benchmark-compiler option, the first bar shows the success rates
when we model all three UB. The remaining three bars show the success rates when
a particular type of UB among three (TBSA, SIO, OBVA) is not modeled. Each bar
individually shows the contribution to the success rates by cyclic and acyclic functions.

passes with the UB assumption but fails without the assumption, then we as-
sume that the compiler has exploited the respective undefined behaviour towards
optimizing the function. The plot in Fig. 4 shows the success rates for each
compiler and each benchmark for four different cases: the first bar represents
the success rate when all three undefined behaviours are modeled; the second,
third and fourth bars represent the cases when TBSA, SIO and OBVA assump-
tions are not modeled respectively. For SIO and TBSA, we employ the compiler
flags fno-strict-overflow and fno-strict-aliasing to differentially
estimate the impact of these assumptions. These flags enable/disable the SIO
and TBSA assumptions while performing optimizations. If our equivalence check
passes when these assumptions are disabled by the compiler, but fails when these
assumptions are enabled by the compiler, we assume that the compiler is lever-
aging these assumptions for optimization. For OBVA, we simply turn on/off our
alias analysis (Sec. 4) to determine the effect of OBVA assumptions.

The overall average success rates for equivalence checking across the four
cases are 81%, 76%, 77% and 50%. As expected, the success rates are lower when
a certain type of UB is not modeled. The drop in success rates, when a UB is not
modeled with respect to the first bar (where all three types of UB are modeled),
indicates the impact of the respective type of UB on compiler optimization. The
drop in success rates due to non-modeling of OBVA assumptions is 31 percentage
points. In contrast, the drop due to non-modeling of SIO and TBSA assumptions
is only 4 and 5 percentage points respectively. These experiments confirm (a) the
widespread impact of undefined behaviours on compiler optimizations and (b)
throw light on the relative impact of different types of C undefined behaviour
on optimization.

Our experiments also led to the discovery of a bug in GCC-4.1.0 related to
the semantics of fno-strict-aliasing [8]. This flag is used to disable the
optimizations related to TBSA. However, for certain functions, GCC-4.1.0 was
using TBSA assumptions even while compiling with this flag.

32 M. Dahiya and S. Bansal

7 Related Work

Modeling of UB for verification has previously been studied in Alive [16], where
acyclic peephole optimization patterns of the InstCombine pass in LLVM are
verified. These optimizations could potentially involve UB assumptions, and
hence modeling of UB becomes necessary. The typical verification target for
Alive is a few lines of optimization pattern representing a single optimization.
In contrast, our verification targets involve concrete programs (with up to 1000s
of lines) and containing multiple composed compiler optimizations. Alive mod-
els UB involving undefined values, poison values and instruction attributes like
nsw (signed integer overflow), the kind that can be modeled through a simple
syntactic analysis of the LLVM peephole optimization pattern. For example, the
presence of UB attributes like nsw, undef, etc., in the optimization pattern
directly indicates the UB assumptions. Aliasing based UB involving OBVA re-
quires an alias analysis, and Alive did not consider this in their work. Our work
is directed towards studying the common transformations in end-to-end com-
piler optimization, and we find that UB involving OBVA is the most commonly
exploited for optimization in both GCC and LLVM. We believe that our alias
analysis can also benefit Alive interested in capturing aliasing based UB assump-
tions. Another major difference between Alive and our work is that Alive verifies
acyclic optimization patterns, while we generalize the ideas to simulation-based
equivalence across programs containing loops.

Our work overlaps with previous work on detection of unstable code, STACK
[26]. STACK classifies unstable code as the code whose semantics are sensitive
to UB. The underlying assumption of this work is that if an optimizer discard-
s/modifies the (unstable) code due to the presence of UB, the resulting logic
may behave differently from what the programmer intended. While STACK iden-
tifies certain important types of unstable code through static pattern-matching
on LLVM IR, it also leaves out many. Aliasing based UB stands out as an ex-
ample of UB not considered by STACK. It should be straight-forward to extend
STACK by employing an alias analysis similar to our work. Our simulation-based
equivalence proof construction approach is in contrast with the largely syntac-
tic pattern matching approach adopted by STACK. It would be instructive to
study the merits of applying a semantic procedure like ours, to the detection of
unstable code.

Our Ir and dep analyses, resemble previous work on alias analysis for ex-
ecutable code by Debray et. al. [4]. The authors of this work noted that alias
analysis for executable code requires reasoning about pointer arithmetic, and
hence proposed special modeling for the add and mult opcodes, as these were
the most commonly encountered opcodes for pointer manipulation on the RISC
architecture they considered. However, because their analysis is syntactic in na-
ture, it introduces imprecisions in common situations involving store and sub-
sequent load of a pointer to/from memory. In such situations where a syntactic
analysis does not provide enough information, the alias information would be
conservatively widened to L in their approach. Their empirical evaluations re-
flect these imprecisions. Our approach works on de-sugared expressions obtained

Modeling undefined behaviour semantics 33

from machine opcodes, involving standard bitvector and boolean operators. Also,
our memory model allows reasoning about stores followed by loads to identical
locations (without other intervening conflicting stores), thus capturing the com-
mon pattern of pointers getting saved to stack slots for future reference. This
semantic treatment lends robustness to our analysis, and makes it independent
of the underlying machine ISA. In another related work on alias analysis, Fer-
nandez and Espasa [6] attempted to remove the imprecisions discussed in [4], by
sacrificing soundness guarantees. Sacrificing soundness is not acceptable in our
setting. The authors of both these previous works on alias analysis for executable
code were interested in link-time optimizations; unlike us, they do not describe
a model for reasoning about UB using this obtained aliasing information.

Translation validation infrastructure (TVI) [17] verified five IR passes of com-
pilation of gcc-2.91 and Linux-2.2 by GCC. The passes verified were branch
optimization, common-subexpression elimination (CSE), loop unrolling and in-
version, register allocation, and instruction scheduling. Similarly, value-graph
translation validation for LLVM has been performed in at least two independent
efforts [21,25], albeit only across a known set of nine selected transformations,
namely, dead-code elimination, global value numbering, constant propagation,
loop-invariant code motion, loop deletion, loop unswitching, dead-store elimi-
nation, partial-redundancy elimination, and basic block placement. Neither of
these approaches model UB, or study their significance on compiler optimiza-
tion. Overall, our success rates for equivalence checking are comparable (and
often better) to all these previous efforts, albeit in a much more generalized set-
ting (with almost no assumptions on the transformations that are enabled). To
our knowledge, our experiments are the first to demonstrate the significance of
UB on compiler optimization.

There are more approaches to translation validation and equivalence checking
with different settings and goals (e.g., [5,9,10, 12,13, 15,19, 20, 22, 27, 28]). All
previous simulation-based equivalence checkers can also be extended with UB
assumptions, to capture a larger set of compiler transformations.

There are hundreds of types of UB in C, and some of them have been bitterly
debated in the past [23,24]. We believe that this approach to quantifying the
impact of different types of UB on compiler optimization, can bring some insight
and basis for such debates. For example, our limited investigations in this work
indicate the overwhelming relative significance of out-of-bounds variable access
assumptions (for optimization), compared to other types of UB like signed inte-
ger overflow and type based strict aliasing assumptions. We hope that this work
triggers more such studies across a wider variety of UB in future.

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD, 2013

2. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. ASPLOS
XII (2006)

34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Dahiya and S. Bansal

. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-

tions. In: APLAS ’17 (2017)

. Debray, S., Muth, R., Weippert, M.: Alias analysis of executable code. POPL 98
. Felsing, D., Grebing, S., Klebanov, V., Riiommer, P., Ulbrich, M.: Automating re-

gression verification. ASE ’14 (2014)

. Ferndndez, M., Espasa, R.: Speculative alias analysis for executable code. PACT

’02

. Flanagan, C., Leino, K.: Houdini, an annotation assistant for esc/java. In: FME

2001: Formal Methods for Increasing Software Productivity. LNCS (2001)

. GCC Buggilla - Bug 68480, https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=68480

. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,

Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? static cross-version
compiler validation. ESEC/FSE 2013

Kanade, A.; Sanyal, A., Khedker, U.P.: Validation of gcc optimizers through trace
generation. Softw. Pract. Exper. (2009)

Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. PLDI ’09 (2009)

Lahiri, S., Hawblitzel, C., Kawaguchi, M., Rebelo, H.: Symdiff: A language-agnostic
semantic diff tool for imperative programs. In: CAV ’12 (2012)

Lahiri, S., Sinha, R., Hawblitzel, C.: Automatic rootcausing for program equiva-
lence failures in binaries. In: Computer Aided Verification (CAV’15) (2015)

Lee, J., Kim, Y., Song, Y., Hur, C.K., Das, S., Majnemer, D., Regehr, J., Lopes,
N.P.: Taming undefined behavior in llvm. PLDI 2017 (2017)

Leung, A., Bounov, D., Lerner, S.: C-to-verilog translation validation. In: MEM-
OCODE (2015)

Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with alive. PLDI 2015

Necula, G.C.: Translation validation for an optimizing compiler. PLDI *00 (2000)
Pnueli, A., Siegel, M., Singerman, E.: Translation validation. TACAS 98 (1998)
Poetzsch-Heffter, A., Gawkowski, M.: Towards proof generating compilers. Elec-
tron. Notes Theor. Comput. Sci. (2005)

Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence check-
ing. OOPSLA ’13 (2013)

Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for llvm.
CAV’11 (2011)

Strichman, O., Godlin, B.: Regression verification - a practical way to verify pro-
grams. In: Verified Software: Theories, Tools, Experiments, vol. 4171 (2008)
Torvalds, L.: https://1lkml.org/1kml/2007/5/7/213

Torvalds, L.: https://gcc.gnu.org/ml/gcc/2002-01/msg00395.html
Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for llvm. PLDI ’11

Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: Towards optimization-
safe systems. SOSP 13 (2013)

Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the cross-
product. FM 08 (2008)

Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: Voc: A methodology for the translation
validation of optimizing compilers 9(3) (2003)

2 Springer
http://www.springer.com/978-3-319-70388-6

Hardware and Software: Verification and Testing
13th International Haifa Verification Conference, HVC
2017, Haifa, Israel, November 13-15, 2017,
Proceedings

Strichman, 0.; Tzoref-Brill, R. (Eds.)

2017, XX, 253 p. 47 illus., Softcover

ISBM: 978-3-319-70388-6

	2 Modeling unde�ned behaviour semantics for checking equivalence across compiler
optimizations
	1 Introduction
	2 Motivating example
	3 Extended simulation relation (with assumptions)
	4 Modeling unde�ned behaviour assumptions
	4.1 May-alias analysis
	4.2 Computing linearly-related and may-depend-on relations

	5 Inferring the simulation relation
	6 Implementation and Experiments
	7 Related Work
	References

