Adaptively Indistinguishable Garbled Circuits

Zahra Jafargholi' ™), Alessandra Scafuro?, and Daniel Wichs?

1" Aarhus University, Aarhus, Denmark
zahra@cs.au.dk
2 North Carolina State University, Raleigh, USA
ascafur@ncsu.edu
3 Northeastern University, Boston, USA
wichs@ccs.neu.edu

Abstract. A garbling scheme is used to garble a circuit C' and an input
z in a way that reveals the output C(z) but hides everything else. An
adaptively secure scheme allows the adversary to specify the input x
after seeing the garbled circuit. Applebaum et al. (CRYPTO ’13) showed
that in any garbling scheme with adaptive simulation-based security, the
size of the garbled input must exceed the output size of the circuit.
Here we show how to circumvent this lower bound and achieve signif-
icantly better efficiency under the minimal assumption that one-way
functions exist by relaxing the security notion from simulation-based
to indistinguishability-based.

We rely on the recent work of Hemenway et al. (CRYPTO ’16) which
constructed an adaptive simulation-based garbling scheme under one-
way functions. The size of the garbled input in their scheme is as large
as the output size of the circuit plus a certain pebble complezity of the
circuit, where the latter is (e.g.,) bounded by the space complexity of the
computation. By building on top of their construction and adapting their
proof technique, we show how to remove the output size dependence in
their result when considering indistinguishability-based security.

As an application of the above result, we get a symmetric-key func-
tional encryption based on one-way functions, with indistinguishability-
based security where the adversary can obtain an unbounded number of
function secret keys and then adaptively a single challenge ciphertext.
The size of the ciphertext only depends on the maximal pebble complex-
ity of each of the functions but not on the number of functions or their
circuit size.

1 Introduction

Garbled Circuits. A garbling scheme [Yao82,Yao86] can be used to garble a
circuit C' and an input x to derive a garbled circuit C' and a garbled input
Z. It’s possible to evaluate C on Z and get the correct output C(x). However,

Z. Jafargholi—Supported by the European Research Council (ERC) under the Euro-
pean Unions’ Horizon 2020 research and innovation programme under grant agree-
ment No. 669255 (MPCPRO).
D. Wichs—Supported by NSF grants CNS-1314722, CNS-1413964.

© International Association for Cryptologic Research 2017

Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 40-71, 2017.
https://doi.org/10.1007/978-3-319-70503-3_2

Adaptively Indistinguishable Garbled Circuits 41

the garbled values C, % should not reveal anything else beyond this. In many
applications, the garbled circuit C' can be computed in an off-line pre-processing
phase before the input is known and therefore we are not overly concerned with
the efficiency of this procedure. On the other hand, once the input x becomes
available in the on-line phase, creating the garbled input x should be extremely
efficient. Therefore, the main efficiency measure that we consider here is the
on-line complexity of a garbling scheme, which is the time it takes to garble an
input z, and hence also a bound on the size of .

Security of Garbled Circuits. There are several natural notions of garbled circuit
security that one can consider.

Firstly, we can consider either selective or adaptive security. For selective
security, we consider a scenario where the adversary chooses the circuit C' and
the input « first and only then gets the garbled versions C,z. For adaptive
security, we consider a scenario where the adversary first gets the garbled circuit
C' and can then adaptively chooses the input = to be garbled. Adaptive security
is the natural notion in the on-line/off-line setting where we envision the garbled
circuit to be created first in an earlier stage before the input is selected.

Secondly, we can consider either simulation-based or indistinguishability-
based definitions of security. In the simulation-based setting, we require that the
garbled circuit and the garbled input can be simulated given only the output of
the computation and the topology of the circuit. In the indistinguishability-based
setting, we require that the adversary cannot distinguish between a garbling of
Co, zo or C1,x1 as long as Cy(zo) = C1(x1) and Cy, C; have the same topology.

Prior Work. Yao’s construction of garbled circuits under one-way functions
already achieves essentially optimal on-line complexity, where the time to garble
an input 2 and the size of Z are only linear in the input size |z|, independent of
the circuit size.! However, it was only shown to satisfy selective simulation-based
security [LP09].

Recently, the work of Hemenway et al. [HJO+16] showed how to modify
Yao’s construction and get adaptive simulation-based security under one-way
functions. The on-line complexity of their scheme depends linearly on a certain
“pebble complexity” t of the circuit, its input size n and output size m. Further-
more, they showed that the pebble complexity ¢ is upper bounded by the circuit
width which is in turn bounded by the space complexity of the computation.
The work of [JW16] also shows that even Yao’s original garbled circuit construc-
tion already achieves adaptive simulation-based security via reduction with a 2!
security loss as long as the mapping between output labels and the bits they
represent is only given in the garbled input.

In both of the above works, the online complexity is always at least as large
as the output size m. The work of Applebaum et al. [ATIKW13] (see also [HW15])

! More precisely, in Yao’s garbled circuits, the garbled input is of size |x| - poly(\)
where A is the security parameter. The work of Applebaum et al. [ATKW13] shows
how to reduce this to |z| + poly(\) assuming stronger assumptions such as DDH,
RSA or LWE.

42 Z. Jafargholi et al.

gives a lower bound showing that this is inherent for adaptive simulation-secure
garbled circuits.

Our Results. In this work, we show how to construct adaptively secure garbling
schemes based on one-way functions, where the on-line complexity of our scheme
can be smaller than the output size of the circuit. This necessarily requires us to
give up on simulation-based security and instead we achieve indistinguishability-
based security. In more detail, we propose a new garbling scheme which builds on
top of the ideas of [HJO+16] but essentially removes the output size dependence
in their construction, making the on-line complexity only linear in the pebble
complexity ¢ and the input size n, but independent of the output size m.

As an application of the above result, we consider the scenario where we
garble a circuit C which consists of many disjoint boolean sub-circuits C1, ..., Cy
which all take the same input 2 but do not share any other wires/gates except for
the input wires. In that case, although the output size of C' is ¢ (which we think
of as large) the pebble complexity of C' is just ¢ = max{t;} where t; denote the
pebble complexities of the individual circuits C;, and therefore is independent
of the number of circuits £. We can also think of the above as allowing us to
construct an adaptively indistinguishable private-key functional encryption (FE)
scheme by thinking of the garbled versions of the circuits C; as function secret
keys and the garbled input as a ciphertext. The size of the ciphertext is linear
in the size of the input x and the maximal pebble complexity of the individual
functions, which we can bound by their space complexity, but is independent of
the number of function secret keys ¢ or even their circuit size.

Finally it bears mentioning that an adaptively indistinguishable scheme is
also adaptively secure under the simulation-based security definition for any
efficiently invertible function.? Therefore for this class of functions our construc-
tion provides a simulation-based adaptively secure garbling scheme with online
complexity independent of the output size.

1.1 Our Techniques

Before we can explain our techniques, we first review Yao’s garbled circuit con-
struction, the issue with adaptive security and the technique of [HJO+16]. The
discussion below is adapted from [HJO+16].

Yao’s Scheme. First, let’s start by recalling Yao’s garbled circuits. For each
wire w in the circuit, we pick two keys kO kL for a symmetric-key encryption
scheme. For each gate in the circuit computing a function g : {0,1}% — {0,1}
and having input wires a, b and output wire ¢ we create a garbled gate consisting

of 4 randomly ordered ciphertexts created as:

o0 = Enckg(Enck(b;(kg(O,O))) o = Ean;(EanS(kg(l’O))),

Co1 = Enckg(Enck;(kg(O’l))) c11 = Encké(Enckg(kg(l’l)))

(1)

2 More generally, any function f for which, given any image element y it is possible
to efficiently find a canonical pre-image x.

Adaptively Indistinguishable Garbled Circuits 43

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C
consists of all of the gabled gates, along with an output map

{kw — 0k, — 1}

which maps the keys to the bits they represent for each output wire w. To garble
an n-bit value x = x1x5 - - - x,, the garbled input Z consists of the keys ki, for
the n input wires w;.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt
exactly one ciphertext in each garbled gate and get the key kﬁ(w) corresponding
to the bit v(w) going over the wire w during the computation C(x). Once the
keys for the output wires are computed, it’s possible to recover the actual output
bits by looking them up in the output map.

To prove the selective simulation-based security of Yao’s scheme, we have a
simulator that gets the output y = y1y2 - - ym = C(z) and must produce C, Z.
The simulator picks random keys k9, k1 for each wire w just like the real scheme,
but it creates the garbled gates as follows:

Co,0 = Eang(Eang(kg)) C1,0 = Ean(ll(Eang (k?g)), 9
co,1 = Encyo (Encyy (k2)) c1,1 = Ency (Encyy (kD)) @

where all four ciphertext encrypt the same key kU. It then sets the output map
as {k% — yuw, kL — 1—y,} by “programming it” so that the key k¥ corresponds
to the correct output bit y,, for each output wire w. This defines the simulated
garbled circuit C'. To create the simulated garbled input Z the simulator simply
gives out the keys kO for each input wire w. Note that, when evaluating the
simulated garbled circuit on the simulated garbled input, the adversary only
sees the keys kO, for every wire w.

Proof of Security and Issues with Adaptivity. There are two main issues with
proving adaptive security of Yao’s construction.

The first issue is that, in the simulation-based security setting, the simulator
now cannot “program” the output map since it is given as part of the garbled
circuit before the output y1,...,ym is defined. This can be fixed by modifying
the construction and moving the output map from the garbled circuit to the
garbled input, at the cost of raising the on-line complexity to depend on the
output size. In the simulation-based setting we know this to be inherent, but
one could hope to avoid this in the indistinguishability-based setting.

The second and more serious issue is the sequence of hybrids used to prove
security. At a high level, the selective proof proceeds via a series of carefully
defined hybrid games that switch the distribution of one garbled gate at a time,
starting with the input level and proceeding up the circuit level by level. In
addition to the two modes of creating garbled gates defined above, we also define
an additional mode where the garbled gate is set to:

€0,0 = Eang(E”Ckg(kg(c))) c1,0 = Ency (Encyo (kg“))),

c — Enc (E kv(c) —E E kv(c) (3)
0,1 k9 an;(c) e nc (nckg(e)

44 Z. Jafargholi et al.

where v(c) is the correct value of the bit going over the wire ¢ during the compu-
tation of C'(z). Let us give names to the three modes for creating garbled gates
that we defined above: (1) is called RealGate mode, (2) is called SimGate mode,
and (3) is called InputDepSimGate mode, since the way that it is defined depends
adaptively on the choice of the input x. The proof of selective security of Yao’s
garbled circuits proceeds in a sequence of hybrids where the way we garble a
gate goes from RealGate mode to InputDepSimGate mode to SimGate mode in
some carefully chosen order. The problem with adapting this technique to the
adaptive setting is that the InputDepSimGate mode is not (even syntactically)
well defined; in this mode the way that we garble the gate depends on the value
that the output wire takes on during the computation C'(z) but in the adaptive
setting the input z is not yet defined when we create the garbled circuit.

The Technique of [HJO+16]. Essentially, the work of [HJO+16] proves adaptive
security by leveraging two ideas.

Firstly, they encrypt the entire Yao garbled circuit under an additional layer
of encryption using a special “somewhere equivocal encryption scheme”, and give
the decryption key as part of the garbled input. Such a scheme can be used to
create a simulated ciphertext given only some but not all of the plaintext blocks
(think of the unknown blocks as “holes”) and later create a secret key that
decrypts all the known blocks correctly but “plugs the holes” with arbitrarily
specified values. The size of the secret key only depends on the number of holes
and not the entire size of the plaintext. By leveraging this type of encryption,
they can define hybrid games where some of the gates are in InputDepSimGate
mode (which is not well defined when the circuit is created) by putting “holes”
in place of all such gates when creating the garbled circuit and then coming up
with a decryption key that opens the holes to the correct value when creating
the garbled input (at which point InputDepSimGate is well defined).

Secondly, the above idea requires the number of holes (and therefore the size
of the garbled input) to scale with the number of gates in InputDepSimGate mode
in any hybrid. Therefore, to get a non-trivial result, we need a sequence of hybrids
that minimizes the number of gates in InputDepSimGate mode at any point in time.
Recall that we start with all gates in RealGate mode and want to end with all gates
in SimGate mode. We are allowed to make the following changes:

— We can change a gate from RealGate to InputDepSimGate (and back) as long
as its predecessors are in InputDepSimGate mode (or it is at the input level).
This is because, in this case, only one of the keys for each input wire appears
in the game.

— We can change a gate from InputDepSimGate to SimGate (and back) as long as
all of its successors are in SimGate mode (or it is at the output level). This is
because the two keys associated with the output wire are used interchangeably
in the game.

The work of [HJO+16] connects the above with a pebbling game over the circuit,
where the goal is to change all the gates from RealGate to SimGate subject to
the above rules while minimizing the number of gates in InputDepSimGate mode

Adaptively Indistinguishable Garbled Circuits 45

at any point in time: this latter number is defined to be the pebble complexity
of the circuit. For example, they show that the pebble complexity of a circuit is
bounded by its width which in turn corresponds to the space complexity of the
computation. The size of the garbled input in their scheme is the maximum of
the pebble complexity of the circuit and the input/output size.

Our Construction and Proof Technique. One could hope to get rid of output
dependence in the construction of [HJO+16] by simply sending the output map
(the mapping between the keys of the output wires and the bits they represent)
with the garbled circuit rather than with the garbled input. Although we know
that such a construction cannot achieve adaptive simulation security, one could
conjecture it to achieve adaptive indistinguishability security. Unfortunately, we
do not know how to prove such a construction secure. Essentially, the issue is that
the only reason we can change output gates from InputDepSimGate to SimGate
in the proof of [HJO+16] is that we can “program” the output map after the
actual output of the computation is known; if the output map is sent with the
garbled circuit this is no longer possible. Instead, we come up with a modified
construction which we are able to prove secure.

Our new garbling construction leverages that of [HJO+16] and proceeds
as follows. To garble a circuit C we use the scheme of [HJO+16] and garble
two copies of C completely independently: we call the resulting garbled circuits
CL, Cr. These are just Yao garbled circuits (without an output map) encrypted
under an additional layer of somewhere equivocal encryption. We choose one
of the two garbled circuits at random to be the “active” one: active «— {L, R}.
Then we merge the two garbled circuits by creating a layer of garbled “selection
gates” (s-gates): for each output bit i € [m] we create an s-gate that takes the
7’th output wire from both garbled circuits, and outputs the value on the wire
coming from the active circuit (the output of the garbled s-gate is a bit in the
clear rather than a wire key). The garbled circuit consists of C' = (Cy, Cg, sgate).
To garbled an input = we use the scheme of [HJO+16] to garble two copies of it
for the left and right garbled circuit. The evaluation procedure does the natural
thing by evaluating both Ci, Cg respectively, and using the output wire keys on
the garbled s-gates to recover the output bits in the clear. Ideas similar to the
use of two circuits along with a selection layer have appeared in prior works,
e.g., [PST14].

To prove security, we consider an adversary that chooses Cy, C1, gets a gar-
bled version of Cj, then adaptively chooses xg, 21 such that Co(zg) = Ci(x1),
and gets a garbled version of x;,. We want to show that the adversary cannot dis-
tinguish between b = 0 and b = 1. We show security via the following sequence
of hybrids.

1. We start with the security game where the challenge bit is b = 0. In this
case, both C_, Cg garble Cy and both garbled inputs correspond to zg. Let
active € {L, R} be the identity of the active circuit. We use the notation
Cactive; Cpassive to denote the active and passive garbled circuits respectively.

2. We change the passive garbled circuit Cpassive and the garbled input for it
to be simulated. This change essentially follows the proof of [HJO+16]. In

46 Z. Jafargholi et al.

particular, we rely on the fact that the keys associated with the bits 0 and
1 for the output wires of Cpassive are used symmetrically by the s-gates (since
the s-gates are ignoring the output of the passive circuit) and therefore we
can safely change the garbled output gates of Cpassive from InputDepSimGate
to SimGate.

3. We change the passive garbled circuit Cpassive and the garbled input for it
from being simulated to being a garbling of Cj,x;. This follows from the
same argument as the previous step.

4. We now modify the s-gates one-by-one to output the value of the passive
circuit instead of the active circuit. This is the most delicate part of the
proof. It essentially follows via a sequence of steps where, for each output
i € |m], we use the proof strategy of [HJO+16] to change the i’th output
gate of both Cyctive; Cpassive to be in InputDepSimGate mode. This means that
these garbled gates aren’t really created until the on-line phase when the
garbled input is given out. Furthermore, when they are created in the on-line
phase, each of these garbled gates only contains one key for the output wire
corresponding to the correct bit going over that wire during the computation
(either both corresponding to 0 or both to 1 since Cy(xg) = Ci(x1)). This
allows us to change the encrypted value in 2 out 4 of the ciphertexts in the
garbled s-gate so as to switch it from outputting the value of the active circuit
to the one of the passive circuit.

5. We now repeat steps 2 and 3 for C,ive to switch it from a garbling Co, xg,
to simulated, to a garbling of C7,x;. Finally, we are left with the original
security game with the challenge bit b = 1.

The above steps — except for step 4 — rely on the adaptive security of the
underlying garbling scheme in a blackbox manner. It remains an open problem
whether it is possible to show a more general transformation from garbled cir-
cuits with adaptive security (and maybe other natural properties) to garbled
circuits with indistinguishability based adaptive security and online complexity
independent of the output size.

2 Preliminaries

General Notation. For a positive integer n, we define the set [n] := {1,...,n}.
We use the notation z <+ X for the process of sampling a value = according to
the distribution X. For a vector m = (my,mz, -+ ,my,), and a subset P C [n],
we use (m;);cp to denote a vector containing only the values m; in positions
i € P and L symbols in all other positions. We use (m;);¢p as shorthand for

(mi)ie[n]\P~

Circuit Notation. A boolean circuit C' consists of gates gate,, ..., gate, and wires
Wi, We, ..., wy. A gate is defined by the tuple gate; = (g, w,,ws, w.) where
g : {0,1}2 — {0,1} is the function computed by the gate, w,,w; are the
incoming wires, and w, is the outgoing wire. Although each gate has a unique
outgoing wire w,, this wire can be used as an incoming wire to several different

Adaptively Indistinguishable Garbled Circuits 47

gates and therefore this models a circuit with fan-in 2 and unbounded fan-out.
We let g denote the number of gates in the circuit, n denotes the number of input
wires and m denote the number of output wires. The total number of wires is
p =n+ ¢ (since each wire can either be input wire or an outgoing wire of some
gate). For convenience, we denote the n input wires by iny,...,in, and the m
output wires by outy,...,out,. For z € {0,1}" we write C(x) to denote the
output of evaluating the circuit C' on input z.

Definition 1. Two distributions X and Y are (T, €)-indistinguishable, denote
Dr [X,Y] = e if for any probabilistic algorithm A, running in time T,

Pr[A(X) = 1] — Pr[A(Y) = 1]| <.

For two games GAME and GAME' we say they are (T'(A\),e(N))- indistin-
guishable, Dp(y) [GAME, GAME'] = ()), if for any adversary A running in time
),

|Pr [GAME4 = 1] — Pr[GAaME/, = 1]| < g(N).

Let games GAME(X) and GAME'()\) be parametrized by the security parameter X.
If for any polynomial function T'(N), there exists a negligible function e(\), such
that for all A, Dp(y) [GAME(A), GAME' ()] < e(X), we say the two games are

computationally indistinguishable and denote this by GAME(\) = GAME'()).

We say C is leveled, if each gate has an associated level and any gate at level
[has incoming wires only from gates at level [— 1 and outgoing wires only to
gates at level [+ 1. We let the depth d denote the number of levels and the width
w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gate, = (g, wq, wp, w).
We use @(C) to refer to the topology of a circuit - which indicates how gates
are connected, without specifying the function implement by each gate. In other
words, ¢(C) is the list of sanitized gate tuples g/aaei = (L, wq, wp, w.) where the
function g that the gate implements is removed from the tuple.

3 Definitions

The bulk of this section defining what garbled circuits are and presenting Yao’s
construction, is taken verbatim from [HJO+16]. We now give a formal definition
of a garbling scheme. There are many variants of such definitions in the literature,
and we refer the reader to [BHR12] for a comprehensive treatment.

Definition 2. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit,
Glnput, Eval) such that:

- (5’, k) & GCircuit(1*,C): takes as input a security parameter \, a circuit
C:{0,1}™ — {0,1}™, and outputs the garbled circuit C, and key k.

— & « Glnput(k, x): takes as input, x € {0,1}"™, and key k and outputs .

-y = Eval(é,i:): giwven a garbled circuit C and a garbled input T output y €
{0,1}™.

48 Z. Jafargholi et al.

Correctness. There is a negligible function v such that for any A € N, any
circuit C and input x it holds that Pr[C(z) = Eval(C,Z)] = 1 — v(\), where
(C, k) « GCircuit(1*,0), ¥ « Glnput(k, 7).

Adaptive Security (Based on Simulation). There exists a PPT simulator

Sim = (SimC, SimIn) such that, for any PPT adversary A, there exists a negligible
function € such that:

Pr[Exp2 gt em (X, 0) = 1] — Pr[Exp s, (A1) = 1] < £())

where the experiment Expff’(?g’v;m(/\, b) is defined as follows:

1. The adversary A specifies C' and gets C where C is created as follows:
—if b=0: (C, k) « GCircuit(1*,C),
—if b=1: (C,state) « SimC(1*,&(C)).
2. The adversary A specifies © and gets T created as follows:
- ifb=0, Z < Glnput(k, z),
—ifb=1, Z < SimIn(C(z), state).
3. Finally, the adversary outputs a bit b', which is the output of the experiment.

In other words, we say GC is adaptively secure if
Dr(y) [ExpEeine (1, 0), Expegim (A 1)] = (M.

Adaptive Security (Based on Indistinguishability). For any PPT adver-
sary A, there exists a negligible function € such that:

Pr[Exp? g g (A 0) = 1] — Pr[Exp?lgd oy (A 1) = 1] < e())
where the experiment Expffipjt’ilﬁ (X, b) is defined as follows:

1. A specifies two circuits Cy,Cy of the same topology, and gets back Cp —
GCircuit(1*, Cy).

2. A specifies xg, x1 such that Cy(zg) = C1(x1) and gets T, — Glnput(k, xy).

3. Finally, the adversary outputs a bit b, which is the output of the experiment.

In other words, we say GC is adaptively indistinguishable if
DT(/\) Expgdca,lljrt\ic\j/e(/\’ 0), EXP?;dca,ﬁZe()\v 1)} =e(M).

On-line Complexity. The time it takes to garble an input z, (i.e., time com-
plexity of Glnput(+,)) is the on-line complezity of the scheme. Clearly the on-line
complexity of the scheme gives a bound on the size of the garbled input Z. Ideally,
the on-line complexity should be much smaller than the circuit size |C].

Projective Scheme. We say a garbling scheme is projective if each bit of
the garbled input Z only depends on one bit of the actual input z. In other
words, each bit of the input, is garbled independently of other bits of the input.

Adaptively Indistinguishable Garbled Circuits 49

Projective schemes are essential for two-party computation where the garbled
input is transmitted using an oblivious transfer (OT) protocol. Our constructions
will be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition
may reveal the topology of the circuit C. However, there is a way to transform
any such garbling scheme into one that hides everything, including the topology
of the circuit, without a significant asymptotic efficiency loss. More precisely,
we rely on the fact that there is a function HideTopo(-) that takes a circuit C
as input and outputs a functionally equivalent circuit C’, such that for any two
circuits C1,Cy of equal size, if C; = HideTopo(Cy) and C} = HideTopo(Cy),
then @(C1) = @(C%). An easy way to construct such function HideTopo is by
setting C’ to be a universal circuit, with a hard-coded description of the actual
circuit C'. Therefore, to get a topology-hiding garbling scheme, we can simply
use a topology-revealing scheme but instead of garbling the circuit C' directly,
we garble the circuit HideTopo(C).

4 Construction of [HJO-+16]

In our construction (presented in the following section), we will use the construc-
tion of [HJO+16], as a building block. Furthermore we will need the details of
this construction in order to proceed with the proof of security of our construc-
tion. Therefore in this section we present the construction of [HJO+16] which
consists of two simple steps: (1) garble the circuit using Yao’s garbling scheme;
(2) hide the garbled circuit (without the output tables) under an outer layer of
encryption instantiated with a somewhere-equivocal encryption scheme. In the
on-line phase, the garbled input consists of Yao’s garbled input plus the output
tables. Next we provide the formal description of the scheme of [HJO+16] which
contains the details of Yao’s garbling scheme.

Let C be a leveled boolean circuit with fan-in 2 and unbounded fan-out, with
inputs size n, output size m, depth d and width w. Let ¢ denote the number of
gates in C. Recall that wires are uniquely identified with labels wi,ws, ..., wp,
and a circuit C is specified by a list of gate tuples gate = (g, wq, wp, we).
The topology of the circuit ¢(C') consists of the sanitized gate tuples g/aaei =
(L, wgq, wy, w.). For simplicity, we implicitly assume that &(C) is public and
known to the circuit evaluator without explicitly including it as part of the gar-
bled circuit C. To simplify the description of our construction, we first describe
the procedure for garbling a single gate, that we denote by GarbleGate.

Let I' = (Gen, Enc, Dec) be a CPA-secure symmetric-key encryption scheme
satisfying the special correctness property defined in Appendix A. GarbleGate is
defined as follows.

— g « GarbleGate(g, {k7, k7, k7 } se0,13): This function computes 4 ciphertexts
Cop,0r © 00,01 € {0,1} as defined below and outputs them in a random order
as g = [Cla C2,C3, C4]'

50 Z. Jafargholi et al.

co0 < Encyg (Encip (k£ ”))co 1 — Encyg (Encyy (k£))

C1,0 < Ean}l(Eang (kg(l’o)))qJ - Enck}l(Eang (kg(l,l)))

Let IT = (seKeyGen, seEnc, seDec, SimEnc, SimKey) be a somewhere-equivocal
symmetric-encryption scheme as defined in Appendix B. Recall that in this prim-
itive the plaintext is a vector of n blocks, each of which has s bits. In this con-
struction the following parameters are used: the vector size n = ¢ is the number
of gates and the block size s = |g] is the size of a single garbled gate. The equiv-
ocation parameter ¢ is defined by the strategy used in the security proof and will
be specified later. The garbling scheme is formally described in Fig. 1.

GCircuit(1*, C)

1. Garble Circuit: //Yao’s scheme
— (Wires) kg, « Gen(1*) for i € [p], o € {0,1}.
(Input wires) K = (ki) , ki,)icn)-
— (Gates) For gate, = (g, wq, wp, w,) in C:
gi < GarbleGate (g, {k3, , k3, . k3 }oeio.1})-

— (Output tables) For j € [m]: J] = Kk‘gutj — 0)) (kl — 1)}

out;
2. Outer Encryption: key < seKeyGen(1*), C' < seEnc(key, (g1, .- - , 4,))-
3. Output C, k = (K, key, (@)je[m])

Glnput(z, k)

1. (Select input keys) K% = (kfflll,,ki")

2. Output 7 = (Km, key, (dj)je[m])'

Fig. 1. Adaptively secure garbling scheme: GCircuit and Glnput functions. See Fig.2
for function Eval.

4.1 Adaptive Simulator

The adaptive security simulator for [HJO+16] is essentially the same as the
selective security simulator for Yao’s scheme (as in [LP09]), with the only dif-
ference that the output table is sent in the on-line phase, and is computed
adaptively to map to the correct output. Note that the garbled circuit simulator
does not rely on the simulation properties of the somewhere equivocal encryption
scheme - these are only used in the proof of indistinguishability.

More specifically, the adaptive simulator (SimC,SimIn) works as follows.
In the off-line phase, SimC computes the garbled gates using procedure
GarbleSimGate, that generates 4 ciphertexts that encrypt the same output key.

Adaptively Indistinguishable Garbled Circuits 51

Eval(C, i)
1. Parse & = (K, key, (cfivj)je[m}).
2. Decrypt Outer Encryption: (g;)ieq < seDec(key, 0).
3. Evaluate Circuit:
— Parse K = (kin,, .-+, kin,,)-
— For each level j = 1,...,d, and each g/a\tei = (L, wq, wp, w.) at level j:
e Let g; = [c1,co,¢3,ca]; for 6 € [4], let k;, < Decy,, (Decy,, (cs))
o If ki, # L then set ky, := ki, .
4. Decrypt output: For j € [m],
— parse (Ij = [(k‘o —0), (k& — 1)|, Set y; = b iff ko, = k‘gutj.

out; out;

5. Output y1,...,Ym.

Fig. 2. Adaptively secure garbling scheme: Eval function.

More precisely,

— GarbleSimGate({k, ,k{, }oc{o.1}, K1,) takes both keys for input wires wq, wy
and a single key for the output wire w,, that we denote by &, . It then
output g. = [e1, ca, ¢3, c4] where the ciphertexts, arranged in random order,
are computed as follows.
co.0 Encig (Encyg (K))er0 — Encis (Encyg ()

co,1 — Encpo (Encyy (kL))er,1 < Encya (Encyo (k7))

The simulator invokes GarbleSimGate on input k., = kU. It then encrypts the
garbled gates so obtained by using the honest procedure for the somewhere
equivocal encryption.

In the on-line phase, Simln, on input y = C(x) adaptively computes the
output tables so that the evaluator obtains the correct output. This is easily
achieved by associating each bit of the output, y;, to the only key encrypted in
the output gate gout,, which is kgutj. For the input keys, SimlIn just sends keys

k. for each i € [n]. The detailed definition of (SimC, SimIn) is provided in Fig. 3.

5 Owur Construction

Let ¢cGC = (cGCircuit,cGlnput,cEval) be the adaptive garbling scheme of
[HJO+16], with simulator cSim = (cSimC, cSimIn). In this section we construct
a new garbling scheme, using cGC as a building block. See Fig.5 for a formal
description of our construction. The new garbling scheme creates two copies of
the garbled circuit (called Ci, Cr). It chooses one at random to be the “active”
one (active = R or active = L). Then for each output bit ¢ € [m], it creates
a selection gate that takes the output wire 7 from both garbled circuits, and

52 Z. Jafargholi et al.

Simulator

SimC(1*, 6(C))

— (Wires) kg, « Gen(1*) for i € [p], o € {0,1}.
— (Garbled gates) For each gate gate; = (L, w,, wy, w,) in &(C):
g; — GarbleSimGate ({kﬁ,a,kgb}ae{ml},k%c).

— (Outer Encryption): key & seKeyGen(1*), C « seEnc(key, g, ... +0q)-
— Output C, state = ({kg, 1, key).

SimlIn(y, state)

— Generate output table: sd; — [(kgue, — 0), (ke — D)ljefm)- // ensures

out;
0 .
koutj —Yj

— Output 7 = ((kQ,)icin)- key, (5d;) jefm))-

Fig. 3. Simulator for adaptive security.

selects the value on the wire coming from the active circuit. We call these selec-
tion gates, s-gates, to distinguish them from the output gates of the two original
garbled circuits. Let £ and 7 be the output wires of C| and Cg, then s-gate (for
each output bit) is defined as in Fig. 4.

sgatep sgate,

Enceo (Enc,.1(1))|Encgo (Enc,.1(0))
Encyo (Enc,.0(0))|Encgo (Enc,.0(0))
Ency, (Enc,1(1))|Encpi (Enc,a (1))
Eanl(EnCTO (0)) Eanl(EnCTO(l))

Fig. 4. s-gates. sgate, (sgate) outputs the value associated with the wire coming form

Ci, (Cr).

Note that Cictive and Cpassive are encrypted Yao garbled circuits. But the
output wires and the output map are not encrypted and are part of the key k
which is an output of cGCircuit(-, -).

6 Hybrid Games

adaptive

Overview. We need to prove that GAMEg = Exp; Ncc ing(A,0) and GAME; =

Expffa,\‘l’géelnd()\, 1) are indistinguishable. Namely, we need to show a strategy to

move from GAME(, where (Cpassive; Cactive) are both garbling of Cy and (Zactive,

Adaptively Indistinguishable Garbled Circuits 53

N Garbling Scheme
NGCircuit(1*, C).

1. active «— {L, R}. If active = L then passive = R else passive = L.
2. (CL, kz) « cGCircuit(1*,C) and
(Cr, kgr) « cGCircuit(1*, C)
3. Parse k, into (Ka, key,,, ((:Zla,i)ie[mo for € {L, R}
4. For i € [m] let sgate, computed as sgate,;,. (Figure 4) with the ith

—

output wire of Cg and C_ as input. Let sgate = (sgatey, ...,sgate,,)
5. C = (CL,CR,sg”:Tte).

6. kL = (K}, keyL), kR = (KR,keyR)7 k.= (kL,kR)
7. Output C, k.

NGlnput(z, k)

. (select keys) K7 = SelGlnput(z, K1).
. (select keys) K% = SelGlnput(z, Kg).
Tp = (Kfa keyL)wi‘R = (Klgﬁ keyR)

. Output Z = (Z1,ZR)

=W N =

NEval(C, Z)

) {wa,i}ie[m] := cEval (Cq, Z,), for a € {L, R}
. Parse sgate, ..., sgate,, «— sg/_:}c/e.

. Use keys {waq,;} | to evaluate gates sgate,, ..., sgate,, and obtain .
. Output y.

N R

i€[m

Fig. 5. New garbling scheme

Tpassive) are garblings of zo; to GAME; where (Cpassive; Cactive) are garbling of C4
and (Zactive, Tpassive) are garblings of z.

At high-level, the proof strategy is the following: starting from GAME, (1)
first we change Cpassive, Tpassive t0 be the garbling of C1,x1, (2) then we change
the selection gates so that they select outputs from Cpassive, (3) finally we change
Cactives Tactive t0 be the garbling of Cy, x;.

For step (1) and (3), we switch from garbling Cy,zo to garbling C1,z; by
using simulated circuits, namely first we change Cpassive into a simulated circuit,
and then we switch it into a real garbling of Cj. Indistinguishability of this
steps follows directly from the adaptive simulation-based security of the under-
lying garbling scheme in a black-box manner (we discuss this next in Sect.6.1).
Changing the selection gates (Step 2) instead requires a surgical proof, where we
selective simulate one output gate of Cpassive, Cactive at the time, and this enable us
to change (switch) the content of the selection gates, from selecting the output
of Cpassive instead of Cycive (or viceversa). Following the language of [HJO+16],

54 Z. Jafargholi et al.

this means that we need to place black pebbles on the output gates of circuits
Cpassive; Cactive- We discuss this in details in Lemma 3.

6.1 Hybrid Games Template

The hybrid games are parameterized by the distributions of C,ctive, Cpassive, their
respective INputs Zactive, Tpassive and a flag a € {active, passive} denoting the fact
that s-gates are selecting the output of C,

For example the original GAME, is described as:

— GAMEq = ((cGCircuit(1*, Cy), o), (cGCircuit(1*, Cp), z¢)) , active)
— GAME; = ((cGCircuit(l)‘,Cl),xl)7 (cGCircuit(l)‘,C’l),zl)) ,active)

Note that when the active and passive garbled circuit distributions are the same,
it does not make a difference whether oo = active or a = passive. However in our
hybrid argument we will sometimes set o = passive when these distributions are
different. We use cSimC(1*,®(C)) to denote a simulated circuit. Since the simu-
lated garbling of any circuit only depends on its topology and not the function
it computes, the output of the simulation has the same distribution for Cy and
C1, thus for simplicity we write cSimC(1*, &(C)).

Using this template we define 4 new hybrid games: HybA through HybD.
See Fig.6. The changes in these hybrids follow a two-step simulate and switch
approach. In HybA the passive circuit is simulated. Note that the garbled input to
a simulated circuit is created independent of the input, therefore its distribution
does not change whether it’s x(that is garbled or z;. In HybB the passive circuit
is switched from simulation to real garbling of C;. Now with both active and
passive circuits outputing the same value y = Cy(zg) = C1(z1), we go to the
next hybrid. In HybC we change the content of the s-gates to output the passive
circuit. Then we turn the active circuit into a garbling of Cy with input x1, by
first simulating it (HybD) and then changing it to a garbling of Cy with input
z1 (GAME;). The transitions from GAME(to HybA then to HybB are identical
to the ones going from GAME; to HybD and then to HybC. Thus we only prove

comp

it once for GAME “xP HybA =~ HybB.

Hybrids GAMEq HybA HybB

Cactive, Tactive | cGCircuit(1*, Cy), x| cGCircuit(1*, Cy),x0| cGCircuit(1*, Cy),xo
Chpassive, Lpassive cGCircuit(1*, Cp), xo| cSimC(1*, #(C)),z1 | cGCircuit(1*, Cy),x1
sgate outputs | active active active

Hybrids HybC HybD GAME;

Cactives Tactive | cGCircuit(1*, Cp), 2| cSimC(1*,®(C)),x1 | cGCircuit(1*, 1),z
Chpassive, Lpassive cGCircuit(1*, Cy), 1| cGCircuit(1*, Cy),z1| cGCircuit(1*, Cy),x1
sgate outputs | passive passive passive

Fig. 6. Hybrids.

Adaptively Indistinguishable Garbled Circuits 55

From GAMEy to HybA. To prove this, we are going to need a special property
that is enjoyed by the garbling scheme cGC. We define the special property
below.

Definition 3 (Output-key Security). We say that an adaptively simulation-
secure garbling scheme is output-key secure if it is adaptively secure even when
the output keys (e.g., {wa,i}ie[m]) —without the output mapping— are sent together

with the garbled circuit C.

Proposition 1. Under the same assumptions as [HJO+16], the garbling scheme
cGC is adaptively secure and output-key secure.

[Proof Sketch/. Intuitively this is true because throughout the proof of security
for cGC we rely on the CPA security of the encryption scheme used to garble
the gates, to prove the adversary does not learn the content of any gates, before
getting the garbled input, and even after seeing the garbled input he can only
decipher one ciphertext from each garbled gate. During these reductions, we
can even let the adversary choose the keys encrypted in a garbled output gate
(as in the game for the CPA security, the adversary can choose any message to
be encrypted). Furthermore the output keys are not used as an encryption key
somewhere else in the same garbled circuit, therefore revealing the output key
does not jeopardize the adaptive security of cGC.

Now that we have defined the property above, we can prove the following
Lemma.

Lemma 1. If cGC is adaptively secure and output-key secure, then GAMEq and
HybA are computationally indistinguishable.

Proof. 1If a PPT adversary A distinguishes GAMEy and HybA with advantage ¢,
we construct adversary B that breaks the adaptive security of cGC with the same
advantage €. B will receive Cy, C from A, and sends Cy to its challenger, and
gets back C*, which is (C*,k) < cGCircuit(1*,Cp) if b = 0 and (C*, state) «—
cSimC(1*,®(C)) if b = 1. B then sets (Caetive, ko) + cGCircuit(1*,Cp) and
Cpassive = C*. Next, B creates the s-gates so that they would reveal the out-
put of C,ctive- Note that B does not need the output map of C* to create s-gates,
it only needs the keys encrypted in the output level gates of C*. Which we
assume are given as part of the garbled circuit, without jeopardizing the secu-

rity of cGC (due to output-key security). Finally B sends C = (CL, Cr, sg/gt/e)

to A and gets back zg,x1. B sends z(to the challenger and gets back #* which
is * « cGlnput(zo, k) if b = 0 and &* < SimIn(Cy(xo),state) if b = 1. The
reduction will set Zactive «— cGInput(zo, kactive), Tpassive = Z* and sends (Zr,,ZrR)
to A and outputs A’s final output, b’. Note, since SimlIn does not even take in the
input x1 or xg, it only gets the output of the computation in order to create the
appropriate output map. And in this application, the output wires are treated
the same way, regardless of whether they are mapped to 0 or 1, it doesn’t matter
which input is garbled by the simulator (Fig. 7).

56 Z. Jafargholi et al.

Reduction B

Receive Cy, C7 from A.

active < {L, R}. If active = L then passive = R else passive = L.
Send Cy to the challenger and get back Cr.

Follow the steps for creating NGCircuit(1*, Cy) with one exception;
use C* as Cpassive-

- o=

Send C := (CL, CR,Sg/Et/e) to A and receive xg, 1

Send x(to the challenger and get back z*.
(select keys) K®0 = SelGlnput(zo, Kactive)-
Tactive = (Kmoy keyact;ve)7 jpassive ="

Send T = (Z1,ZR) to A and receive b’ from A
Output b’

Sowue o

Fig. 7. Reduction of Lemma 1

Lemma 2. If cGC is adaptively secure and output-key secure, then HybA and
HybB are computationally indistinguishable.

Proof. Tt follows from a similar reduction to the one used in the proof of
Lemma 1, with the difference that C7,x; are sent to the challenger instead of
Co,xo.

Lemmas 1 and 2 prove that:
GAMEg A~ HybA “~" HybB and HybC “~" HybD =" GAME;.
From HybB to HybC. Recall the distribution of hybrid HybB and HybC

— HybB = ((cGCircuit(1*, Cy), z¢), (cGCircuit(1*,Cy), x1)) , active)
— HybC = ((cGCircuit(1*, Co), x), (cGCircuit(1*,C1), 1)) , passive)

The difference between these two hybrids is only in the s-gates: instead of
selecting the output from C,eive (in HybB), now s-gates will select the output
from Cpassive (in HybC). Recall the description of s-gate in Fig. 4. Changing the
s-gates from active to passive entails changing 2 of the encryptions. In order
to argue that these changes are indistinguishable, we must rely on the CPA
security of the encryption. However the keys used to create these ciphertexts are
not independent, since they are used in the garbling of the output gates of C_
and Cr. Therefore, if we want to change even one encryption, we need to remove
those keys from the correspondent gates in C| and Cgr. In other words, those
two gates need to be simulated. Now, in order to change one gate at the time
from real to simulated, we need to leverage the details of the proof provided in
[HJO+16].

Proof Strategy in [HJO+416]. We now give an overview of the proof strategy of
[HJO+16]; we rely on specific components of the strategy in our proof. For more

Adaptively Indistinguishable Garbled Circuits 57

details see Appendix C. In [HJO+16] hybrid games are parametrized by a circuit
configuration, that is, a vector indicating the way the gates are garbled. There
are three modes for how each gate can be garbled: RealGate, InputDepSimGate,
SimGate. There are also rules that allow one to indistinguishably move from one
configuration to another. These configurations/rules are summarized via a peb-
bling game where we associate RealGate mode to a gate not having a pebble on
it, InputDepSimGate mode is associated with a gate having a black pebble, and
SimGate mode is associated with a gate having a grey pebble. The indistinguisha-
bility rules are then translated to rules for the pebbling game:

Pebbling Rule A. We can place or remove a black pebble on a gate as long as
both predecessors of that gate have black pebbles on them (or the gate is an
input gate).

Pebbling Rule B. We can replace a black pebble with a grey pebble on a gate
as long as all successors of that gate have black or grey pebbles on them (or
the gate is an output gate).

We can follow the same rules for the two garbled circuits Cyctive; Cpassive With
one major difference: we cannot replace a black pebble with a grey pebble on the
output gates (this part relied on the fact that the output map, which specified
the correspondence between wire keys at the output level and the bits they
correspond to, was only sent in the on-line phase; in our case this correspondence
is needed to create the s-gates in the off-line phase, at least for the active circuit).

We rely on one more property (*): if a gate has an output wire w which is
associated with keys kU, kl and we garble the gate in InputDepSimGate mode
then we only use one key (k2 where b is the bit that the wire takes on during
the computation C'(x)) when creating this garbled gate in the on-line phase.

Let us define C [y,] to be the class of circuits C' such that we can place a
black pebble on any single output gate of C' in v pebbling steps and using at most
t black pebbles at each step. For the following lemma, theorem and corollaries,
assume:

1. The adversary selects Cy, Cy € C [, t].

2. IT = (seKeyGen, seEnc,seDec, SimEnc, SimKey) is a somewhere equivocal
encryption scheme with equivocation parameter ¢.

3. I' = (Gen,Enc,Dec) is an encryption scheme secure under chosen double
encryption.

Lemma 3. HybB and HybC are computationally indistinguishable.

Proof. Let m be the output size of the circuits Cy, C; selected by the adversary.
For i =1,...,m, we rely on the following sequence of sub-hybrids:

1. Via a sequence of sub-sub-hybrids, change the configurations of both C,ctive
and Cpassive S0 that the i’th output gate is in InputDepSimGate mode (has a
black pebble on it). This follows using the same argument as in [HJO+16].

58 Z. Jafargholi et al.

2. Change the i'th s-gate from sgate, e t0 sgate,,qive (See Fig.4). This change
relies on property (*) and the CPA-security of the encryption scheme I" used
to garble the gates. In particular, this change requires changing the contents of
the ciphertexts Encgo (Enc,1(?)) and Ency, (Enc,o(?)) in s-gate. However, since
Co(zo) = C1(x1) by property (*) the only keys that are used as plaintexts in
other garbled gates in this hybrid are either (¢°,71) or (¢*,r°). In either case,
we can rely on encryption security to change the contents of the above two
ciphertexts.

3. Via a sequence of sub-sub-hybrids, change the configurations of both C,ctive
and Cpassive back so that all gates are in RealGate mode (no pebbles). This is
the same as step 1 in reverse.

From Lemmas 1, 2, 3, it follows that GAMEy and GAME; are computationally
indistinguishable which proves our main result, summarized in the following
theorem.

Theorem 1. Assuming the ezistence of one-way functions, NGC is adap-
tively indistinguishable with online complexity (n + t)poly(\) for all circuits in

C [poly(A), t].

Using the pebbling strategies from [HJO+16] summarized in AppendixD we
get the following bounds.

Lemma 4. Any circuit C of depth d, width w, with input size n and output size
m, is in the class C [y, t] with either of the following two settings of -y, t:

o v = 2@ steps using t = 2d black pebbles.
o v =4|C| steps using t = 2w black pebbles.

Plugging the above lemma into Theorem 1 we get the following corollary.

Corollary 1. Assuming the existence of one-way functions, NGC is adaptively
indistinguishable with online complexity n - poly(\) for all circuits with either
linear width w = O(n) or logarithmic depth d = O(logn).

Note that any computation which can be performed in linear space can be repre-
sented by a circuit with linear width. Therefore the above covers all linear space
computations.

7 Application: Private-Key Adaptively Secure
Functional Encryption

Overview. Our new garbling scheme can be used to implement a private-key
functional encryption [SW05,BSW11] based on one-way functions, with indis-
tinguishability based security where the adversary can obtain an unbounded
number of function secret keys and then adaptively a single challenge ciphertext
(the formal definition is provided in Sect.7.1).

Adaptively Indistinguishable Garbled Circuits 59

In our scheme (described in Fig.8), the functional keys are garbled circuits
computed according to (a slightly modified version of) NGCircuit, and the cipher-
text for a message m corresponds to the garbling of the input m. Since a single
garbled input should be used to evaluate multiple garbled circuits, we slightly
tweak the construction of our garbling scheme so to allow an initial state that is
used upon each invocation of the garbling function. We explain this modification
in greater length in Sect.7.2.

7.1 Definition

A private-key functional encryption scheme [1, over a message space M =
{M}» and a circuit space C = {C\} is a tuple of PPT algorithms (I.FE.Setup,
MN.FE.KeyGen, M.FE.Enc, FE.Dec) defined as follows:

— MN.FE.Setup(1*): The setup algorithm takes as input the unary representation
of the security parameter, and outputs a secret key MSK.

— MN.FE.KeyGen(MSK, C): The key-generation algorithm takes as input a secret
key MSK and a circuit C € Cy and outputs a functional key sk¢.

— M.FE.Enc(MSK,m): The encryption algorithm takes as input a secret key
MSK and a message m € M) and outputs a ciphertext CT.

— MN.FE.Dec(skc, CT) The decryption algorithm takes as input a functional key
skc and a ciphertext CT, and outputs m € M, U{L}.

The correctness property requires that there exists a negligible function negl(-)
such that for all sufficiently large A € IV, for every message m € M, and for
every circuit C' € Cy it holds that:

Pr[FE.Dec(MN.FE.KeyGen(MSK, C), FE.Enc(MSK, m)) = C(m)] > 1 — negl(})

where MSK = FE.Setup(1*) and the probability is taken over the random choices
of all algorithms.

Many Functions Single Message Adaptive Security. For any PPT adver-
sary A, there exists a negligible function e such that:

Pr{Expiiiing (A, 0) = 1] = PrExpling o (A, 1) = 1] < e(N)
where the experiment Expi{j‘,’ﬁaefFE(/\, b) is defined as follows:

1. Query. The adversary A specifies circuits C*,C?,.... It then obtain func-
tional keys ski, sks, ... which are created as follow:
— Run MSK = N.FE.Setup(1*).
— Let g be the number of queries. Vi € [q], sk; = N.FE.KeyGen(MSK, C*%).
2. Challenge. The adversary A specifies messages mq, m1, such that for all
i € [q], C'(mp) = C*(my) and obtains CT, which is created as follows:
— CT = N.FE.Enc(MSK, my)
3. Output. Finally, the adversary outputs a bit &', which is the output of the
experiment.

60 Z. Jafargholi et al.

7.2 Construction

Our private-key functional encryption scheme is depicted in Fig. 8. The FE.Setup
algorithm generates the keys that need to be shared by all garbled circuits. Such
keys are: (1) the keys for the input wires (i.e., K1, Kr) (2) the keys for the outer
somewhere-equivocal encryption seEnc (i.e., key;, key). The FE.Setup also sets
the flag active.

The FE.KeyGen algorithm generates a garbled circuit according to proce-
dure NGCircuit® which is a slight modification of NGCircuit (shown in Fig. 4)
that enables to use a single garbled input to evaluate many garbled circuits
generated at different times. The modifications are: (1) instead of running pro-
cedure GCircuit(1*,C) (described in Fig.1) — which would select fresh keys for
the input wires and for the outer encryption — it runs a slightly modified pro-
cedure GCircuit*(1*, C, Input keys) which takes such keys as an external input;
(2) the encryption algorithm seEnc used in GCircuit, is also slightly modified so
that it allows blocks to be encrypted in a streaming fashion (that is, instead of
having a one-time encryption of n blocks, we allow for many encryptions, where
the total number of encrypted blocks is overall <N where IV is an upperbound
(e.g., 2*)). In Appendix B we discuss why this modification (that we call seEnc*)
follows naturally from the implementation of seEnc provided in [HJO+16].

The FE.Enc algorithm takes in input a message m and simply runs the pro-
cedure Glnput(m, Input keys) to select the keys for m. The ciphertext then
consists of the keys for the garbled inputs, and the keys for the outer encryption
keyp, key;,. Note that the size of the ciphertext depends on the length of the
input and the length of the keys keyp, key; for somewhere-equivocal encryption.
Finally the decryption algorithm simply consists of the evaluation of the garbled
circuits.

7.3 Security Proof

In this section we show that protocol in Fig. 8 is a private-key functional encryp-
tion scheme that is adaptively secure for many function queries and a single
message query (according to Sect.7.1). .

Let GAME(, be the experiment Expf{:‘ﬁffﬁgFE()\,O) where the adversary

receives encryption of mg, and let GAME; be the experiment Expf‘{j‘ﬁifﬁgFE(A, 1).
The proof of security consists of a sequence of hybrid games from GAME(to
GAME7, and each hybrid is computational indistinguishable. We now argue that
this sequence of hybrids follows exactly the hybrids provided in the proof of
Theorem 1. _

Recall that in the security experiment Expi{f‘ﬁﬁﬁgFE()\, b), A sends all function

queries C',C?,...,C9 at the beginning in one-shot. Concretely, by instantiating
the experiment with M, when A sends functional queries C',C?,...,CY, she
obtains:

Functional Keys: ([C.', Cr',SG"],...,[CL?, Cr%, SGY])

—

where SG? is the selection circuit sgate associated to C 7, Cg?.

Adaptively Indistinguishable Garbled Circuits 61

1. Select active garbled circuit.

2. Select keys for input wires:
in; 7 "ving

(rigth circuits) Kr = (k-o’p

Private-Key Functional Encryption IN.FE.Setup(\).

active — {L, R}. If active = L then passive = R else passive = L.

)ie[n]’

BaP)
i€[n]
with k3% < Gen(A) for i € [n], 0 € {0,1}, a € {L, R}.

3. Select keys for outer encryption:
(left /right circuits) key,, key ; where key, & seKeyGen(\), o € {L, R}.
4. Output MSK := {K, key;, Kr, keyp, active}.

(left circuits) K = (k-o’a ki@

in; »"Ving

MN.FE.KeyGen(MSK, C').

1. C':= NGCircuit*(C, MSK)
2. Ouput skg = Cp.

FE.Dec(sk¢c, CT).
1. Output m = NEval (sk¢, CT).

M.FE.Enc(MSK,m).

1. Z = NGInput(m, MSK).
2. Output CT =7 = (K7, key;, K§, keyp)

Fig. 8. Private-key FE

In the challenge phase, A receives the garbling of message m;,. Specifically:
Ciphertext: & = (K, key;, Kr, keyg)

Now, note that, because the functional keys (i.e., the garbled circuits) are
sent all at once, and they will be evaluated with the same garbled input z, we

can conceptually think of C', C?,.

.., 07 as disjoint sub-circuits (which have no

wires in common) of one big circuit C. Let us define C = [C1,C?,...,C1].
Next, we observe that the garbling function NGCircuit* is such that garbling
circuits (C1,C?,...,09) one at the time will generate a garbled circuit which
is equivalent to the one obtained by garbling C as a single circuit. To see why,
note that the garbling function NGCircuit® operates by encrypting one gate at
the time, and only connected gates have correlated keys. As (C1,C?,...,C9) are
disjoint, they are encrypted separately regardless of whether they are presented
as a single circuit C or as many independent circuits. Therefore, we can group

the view of adversary as follows:

Cr=(Ch,...,CL7
Cr = (Cr%,...,CrY)
S. = (SG',...,SG%)
T = (K, keyy, Kg, keyg).

62 Z. Jafargholi et al.

Finally, recall that the flag active is set once and for all in FE.Setup (Fig.8)
That is, either L = active and R = passive, or viceversa. Therefore, we can
further represent the view of the adversary as follows:

Cactive7 Lactive

Cpassivea jpassive

S

This view fits the template of high-level hybrids shown in Fig. 6. The exact
same arguments then follow to show that GAMEg and GAME; are indistinguish-
able. In GAMEp, Tactive ald Tpassive are both garbling of my,.

Following the same template, the proof strategy is to move from GAMEy,
where Zactive and Tpassive are garbling of mg, to intermediate games where Zpassive
is a garbling of m; and finally change Z,ctve into garbling of m; and thus reaching
GAME; .

Theorem 2. Assuming the existence of one-way functions, I is a many func-
tions single message adaptive secure private-key functional encryption, for all
circuits in C [poly(N), t], with ciphertext size (n+t)poly()\), where n is the length
of the plaintext.

Proof. 1t follows from the proof of Theorem 2 applied to the circuit C defined
above.

7.4 Extensions

We leave as an extension to consider a full adaptive security definition for func-
tional encryption where the adversary can choose the functional queries adap-
tively [ABSV15]. Concretely, this means that the adversary can choose functions
adaptively based on the garbled circuits received so far.

To prove security of our construction in this setting, one needs to prove that
the underlying garbling scheme (NGCircuit®, NGInput, NEval) satisfies a stronger
adaptivity property that we call many-time adaptive security. That is, in the
security experiment the adversary is allowed to adaptively ask for many garbled
circuits and then choose an single input to evaluate all of them.

Showing that (NGCircuit*, NGInput, NEval) achieves this stronger property
amounts to show that the underlying new somewhere-equivocal encryption
scheme (Definition 6) achieves a stronger security property where the adversary
can choose the plaintexts adaptively on the ciphertexts received so far.

A Symmetric-Key Encryption with Special Correctness
[LP09]

In our construction of the garbling scheme, we use a symmetric-key encryption
scheme I" = (Gen, Enc, Dec) which satisfies the standard definition of CPA secu-
rity and an additional special correctness property below (this is a simplified
and sufficient variant of the property described in from [LP09]). We need this
property to ensure the correctness of our garbled circuit construction.

Adaptively Indistinguishable Garbled Circuits 63

Definition 4 (Special Correctness). A CPA-secure symmetric-key encryp-
tion I' = (Gen, Enc, Dec) satisfies special correctness if there is some negligible
function € such that for any message m we have:

Pr[Decy, (Ency, (m)) # L : ki, kg < Gen(1%)] < g(\).

Construction. Let F' = {fi} be a family of pseudorandom functions where f, :
{0,1}* — {0,133, for k € {0,1}* and s is a parameter denoting the message
length. Define Enc(m) = (r, fx(r) ©@ m0*) where m € {0,1}*, r & {0,1}* and
m0* denotes the concatenation of m with a string of Os of length A. Define
Decy(c) which parses ¢ = (r, z), computes w = z @ fi(r) and if the last A bits of
w are 0’s it outputs the first s bits of w, else it outputs L.

It’s easy to see that this scheme is CPA secure and that it satisfies the special
correctness property.

Double Encryption Encryption Security. For convenience, we define a notion of
double encryption security, following [LP09]. This notion is implied by standard
CPA security but is more convenient to use in our security proof of garbled
circuit security.
Definition 5 (Double-encryption security). An encryption scheme I' =
(Gen, Enc, Dec)

- is (T'(N),e(X))-secure under chosen double encryption if
Dry) [Bxp™™ (2, 0), Bxp®™**(\, 1) | = £(1).

— is secure under chosen double encryption if
EXdeUble()\, 0) cogp Expdouble()\7 1)
— 15 sub-exponentially secure if

3v>0,¥ () € poly(\) Dy [Expd°“ble()\, 1), Exp®™ (A, 0)} <e(n) =172,

where the experiment Expff“ble is defined as follows.
Experiment Exp%"®(\, b)

1. The adversary A on input 1 outputs two keys kq and ky of length X and two
triples of messages (o, Yo, 20) and (x1,y1,21) where all messages are of the
same length.

2. Two keys k,, k;, & Gen(1*) are chosen.

9. Ak (0B Oy given the challenge ciphertexts c, « Ency, (Encyy (1)),
¢y < Ency (Ency, (1)), ¢ < Ency; (Encyy (25)) as well as oracle access to
Enci (-) and Ency (-).

4. A outputs b which is the output of the experiment.

The following lemma is essentially immediate - see [LP09] for a formal proof.

Lemma 5. If (Gen, Enc, Dec) is CPA-secure then it is secure under chosen dou-
ble encryption with the same security parameter.

64 Z. Jafargholi et al.

B Somewhere Equivocal Symmetric-Key Encryption
[HJO+16]

Definition 6. A somewhere equivocal encryption scheme with block-length s,
message-length n (in blocks), and equivocation-parameter ¢ (all polynomials in
the security parameter) is a tuple of probabilistic polynomial algorithms II =
(seKeyGen, seEnc,seDec, SimEnc, SimKey) such that:

— The key generation algorithm seKeyGen takes as input the security parameter
1" and outputs a key: key < seKeyGen(1%).

— The encryption algorithm seEnc takes as input a vector of n messages m =
my,...,my, with m; € {0,1}%, and a key key, and outputs ciphertext ¢ «—
seEnc(key, m).

— The decryption algorithm seDec takes as input ciphertext ¢ and a key key and
outputs a vector of messages m = myq,...,m,. Namely, m «— seDec(key, ¢).

— The simulated encryption algorithm SimEnc takes as input a set of indexes
I C [n], such that |I| < t, and a vector of n—|I| messages (m;);¢; and outputs
ciphertext ¢, and a state state. Namely, (state,¢) « SimEnc((m;);gr, I).

— The simulated key algorithm SimKey, takes as input the variable state and
messages (m;)icr and outputs a key key’. Namely, key’ « SimKey(state,

(mi)ier)-
and satisfies the following properties:

Correctness. For every key « seKeyGen (1), for every m € {0,1}**™ it holds
that:

seDec(key, (seEnc(key,m)) = m

Simulation with No Holes. We require that the distribution of (¢, key) com-
puted via (¢, state) — SimEnc(m,) and key «— SimKey(state, 0)) to be identical
to key « seKeyGen(1*) and ¢ « seEnc(key,m). In other words, simulation
when there are no holes (i.e., I = 0) is identical to honest key generation and
encryption.

Security. For any PPT adversary A, there exists a negligible function v = v(\)
such that:

Pr(ExpS{"7(1*,0) = 1] — Pr[Expy5 (1%, 1) = 1] < v())

where the experiment Expfm‘}"c is defined as follows:

Experiment ExpfilTE"C(lA, b)
1. The adversary A on input 1* outputs a set I C [n] s.t. |I| < t, vector (m;)gr,
and a challenge index j € [n]\ I. Let I' =T U j.
2. — Ifb=0, compute as follows: (state,c) < SimEnc((m;);¢r,).
~ Ifb=1, compute ¢ as follows: (state,¢) « SimEnc((m;);g;,1').
3. Send ¢ to the adversary A.

Adaptively Indistinguishable Garbled Circuits 65

4. The adversary A outputs the set of remaining messages (m;)icy-
- If b =10, compute key as follows: key < SimKey(state, (m;);cr)-
- Ifb=1, compute key as follows: key < SimKey(state, (m;)ics’).
5. Send key to the adversary A.
6. A outputs b’ which is the output of the experiment.

In [HJO+16], a somewhere equivocal encryption is constructed from one-way
functions, proving the following theorem.

Theorem 3. Assuming the existence of one-way functions, there exists a some-
where equivocal encryption scheme for any polynomial message-length n, block-
length s, and equivocation parameter t, having key size t-s-poly(\) and ciphertext
of size n - s bits.

Extension. Such construction naturally extends to a modified encryption algo-

rithm seEnc”®, that instead of taking in input the entire vector m = my, ..., My,
it takes in input a few blocks that arrive in a streaming fashion. Namely, seEnc*
takes as input an upperbound NN, a vector of j > 1 messages m = mq,...,m;,

and a key key and it outputs j encryptions, while keeping a counter on the num-
ber of encryptions computed so far. The messages are encrypted as long as the
counter is less than the upper bound N.

To see why the implementation provided in [HJO416] also supports the
modified version seEnc*, note that their encryption is performed by xoring the
output of a special pseudo-random function (PRF) with the plaintext. To encrypt
n blocks, one evaluates the PRF on inputs 1,2,...,n and then xor the result
with the blocks. Naturally, one can encrypt any number of blocks at different
times. The construction will still work provided that the algorithm is stateful
and remembers the last index on which the PRF has been evaluated on (so that
the same PRF evaluation is not used twice).

Concering security, for our application it suffices that seEn_c* satisfies the
same “non-adaptive” definition of security as in experiment Exp®™"® where the
adversary needs to commit to the entire vector (m;);¢; in advance.

C Hybrid Games of [HJO+16]

Gate/Circuit Configuration. We start by defining a gate configuration. A gate
configuration is a pair (outer mode, garbling mode) indicating the way a gate
is computed. The outer encryption mode can be {EquivEnc, BindEnc} depend-
ing on whether the outer encryption contains a “hole” in place of that gate or
whether it is binding on that gate. The garbling mode can be {RealGate, SimGate,
InputDepSimGate} which corresponds to the distributions outlined in Fig.9. We
stress that, if the garbling mode of a gate is InputDepSimGate then we require
that the outer encryption mode is EquivEnc. This means that there are 5 valid
gate configurations for each gate.

A circuit configuration simply consists of the gate configuration for each gate
in the circuit. More specifically, we represent a circuit configuration by a tuple
(I, (mode;);c[q) Where

66 Z. Jafargholi et al.

RealGate SimGate InputDepSimGate
co,0 < Encyo (Encko(kqm"o))) €0,0 < Enckg(E”Ckgf(kg)) co,0 < Encyo (EanO (ke (C)))
co1 — Encyg (En%;(kKEOD)) || con — Encyg (Encra (k) | |eos — Ency (Encké (k)
10 Enciy (Encyg (K20)) || er0 Eneyy (Encyy (2)) | ex.0 — Encyy (Ency (K)))
c11 < Encpy (Enckll)(A 1>)) c1,1 — Enck}l(Enck% (ED) | |e1q — Encys (Enck% (kZ(C)))

Fig.9. Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate
(right). The value v(c) depends on the input and corresponds to the bit going over
the wire ¢ in the computation C(z).

— Set I C [q] contains the indices of the gates i whose outer mode is EquivEnc.
— The value mode; € {RealGate, SimGate, InputDepSimGate} describes the gar-
bling mode of gate i.

A walid circuit configuration is one where all indexes i such that mode; =
InputDepSimGate satisfy i € I.

The Hybrid Game Hyb(I,(mode;);ciq). Every valid circuit configuration
I, (mode;);c[q defines a hybrid game Hyb(I, (mode;);c|q) as specified formally
Fig. 10 and described informally below. The hybrid game consists of two proce-
dures: GCircuit’ for creating the garbled circuit C' and Glnput’ for creating the
garbled input T respectively. The garbled circuit is created by picking random
keys kf, for each wire wj. For each gate 7, such that mode; € {RealGate, SimGate}
it creates a garbled gate g; using the corresponding distribution as described in
Fig.9. The garbled circuit C is then created by simulating the outer encryp-
tion using the values g; in locations ¢ ¢ I and “holes” in the locations I. The
garbled input is created by first sampling the garbled gates g; for each ¢ such
that mode; = InputDepSimGate using the corresponding distribution in Fig.9
and using knowledge of the input x. Then the decryption key key is simulated
by plugging in the holes in locations I with the correctly sampled garbled gates
gi- There is some subtlety about how the input labels K[i] and the output label
maps (Z are created when computing z:

— If all of the gates having in; as an input wire are in SimGate mode, then
Kli] := ky), else K[i] := ki’
— If the unique gate having out; as an output wire is in SimGate mode, then we

give the simulated output map J = [(kgjta — 0), (k:i;tf] — 1)] else the real

one d; = [(kQy, — 0), (kby, — 1)].

Real game and Simulated Game. By definition of adaptively secure gar-
bled circuits (Definition2), the real game Expffgg:’;m(lk,O) is equivalent to

Hyb(I = 0, (mode; = RealGate);c|,) and the simulated game Expffé’g:';m(l)‘ 1)

Adaptively Indistinguishable Garbled Circuits

67

Game Hyb(7, (mode;);c[q])
Garble Circuit C'

— Garble Gates
(Wires) kg, < Gen(1*) for i € [p], o € {0,1}.
(Gates) For each gate, = (g, wa, wp, we) in C.
— If mode; = RealGate: run g; « GarbleGate(g, {k7,,, k%, , k. foego,13)-
— if mode; = SimGate: run g; < GarbleSimGate({k7,, k%, }oe(0,1}5 k?uc).
— Outer Encryption.
1. (state,C) «— SimEnc((gi)igr,I)-

2. Output C.

Garble Input z:

(Compute adaptive gates)
For each i € I s.t. mode; = InputDepSimGate:

Let gate; = (gi, wa, ws, we), and let v(c)
be the bit on the wire w. during the computation C(z).
Set gi — GarbleSimGate((kf,, , k%,)oc{o,1} kﬁ,&c)).
(Decryption key) key’ < SimKey(state, (§i)icr)
(Output tables) Let y = C(x). For j =1,...,m:
Let i be the index of the gate with output wire out;.
— If mode; # SimGate, set d; = [(kgutj —0), (kéutj — 1)],
~ else, set d; = [(kiih, — 0), (kau” — 1)].
(Select input keys) For j =1,...,n:

— If all gates ¢ having in; as an input wire satisfy mode; = SimGate, then

set K[i] == ki),
— else set K[i] := k.

Output 7 := (K, key’, {cﬁlvj}je[m]).

Fig. 10. The hybrid game.

is equivalent to Hyb(I = (), (mode; = SimGate);c|y). Therefore, the main aim is

to show that these hybrids are indistinguishable.?

C.1 Rules for Indistinguishable Hybrids

Next, we provide rules that allow us to move from one configuration to another

and prove that the corresponding hybrid games are indistinguishable. We define

three rules that allow us to do this. We define mode %' (mode;)ie[q-

3 Note that, the games Hyb(---) use the simulated encryption and key generation

procedures of the somewhere equivocal encryption, while the games Expjagtcivgim

(1%,b)

only use the real key generation and encryption procedures. However, by definition,

these are equivalent when I = () (no “holes”).

68 Z. Jafargholi et al.

Indistinguishability Rule 1: Changing the Outer Encryption Mode
BindEnc <+ EquivEnc. This rule allows to change the outer encryption of a single
gate. It says that one can move from a valid circuit configuration (I, mode) to
a circuit configuration (I', mode) where I’ = I U j. Thus one more gate is now
computed equivocally (and vice versa).

Lemma 6. Let (I,mode) be any valid circuit configuration, let j € [g] \ I and
let I' = TUj. Then Hyb(I, mode) =P Hyb(I’, mode) are computationally indis-
tinguishable as long as I = (seKeyGen, seEnc,seDec, SimEnc, SimKey) is a

somewhere equivocal encryption scheme with equivocation parameter t such that
|7 < t.

Definition 7 (Predecessor/Successor/Sibling Gates [HIO+16]). Given
a circuit C' and a gate j € [q] of the form gate; = (g, wa, wp, w,) with incoming
wWires Wq, Wy and outgoing wire w.:

— We define the predecessors of j, denoted by Pred(j), to be the set of gates
whose outgoing wires are either w, or wy. If wg,wy, are input wires then
Pred(j) = 0, else |Pred(j)| = 2.

— We define the successors of j, denoted by Succ(j) to be the set of gates that
contain w. as an incoming wire. If w. is an output wires then Succ(j) = 0.

— We define the siblings of j, denoted by Siblings(j) to be the set of gates that
contain either w, or wy as an incoming wire.

Indistinguishability Rule 2. Changing the Garbling Mode RealGate <
InputDepSimGate. This rule allows us to change the mode of a gate j from
RealGate to InputDepSimGate as long as j € I and that gate; = (g, wa, ws, we)
has incoming wires w,, wp that are either input wires or are the outgoing wires
of some predecessor gates both of which are in InputDepSimGate mode.

Lemma 7. Let (I,mode = (mode;);c(q) be a walid circuit configuration and let
j € I be an index such that mode; = RealGate and for all i € Pred(j): mode; =
InputDepSimGate. Let mode’ = (mode;);c(q be defined by mode; = mode; for all

i # j and mode; = InputDepSimGate. Then the games Hyb(I, mode) = Hyb
(I,mode’) are computationally indistinguishable as long as I' = (Gen, Enc, Dec)
18 an encryption scheme secure under chosen double encryption.

Indistinguishability Rule 3. Changing the Garbling Mode:
InputDepSimGate «» SimGate. This rule allows us to change the mode of a gate
j from InputDepSimGate to SimGate under the condition that all successor gates
1 € Succ(y) satisfy that mode; € {InputDepSimGate, SimGate}.

Lemma 8. Let (I,mode = (mode;);c(q) be a walid circuit configuration and
let 5 € I be an index such that mode; = InputDepSimGate and for all i €
Succ(j) we have mode; € {SimGate, InputDepSimGate}. Let mode’ = (mode;);c(q)
be defined by mode; = mode; for alli # j and mode; = SimGate. Then the games
Hyb(I, mode) = Hyb(I,mode’) are identically distributed.

Adaptively Indistinguishable Garbled Circuits 69

C.2 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration
(I, mode). We also gave 3 rules, which describe ways that allow us to indistin-
guishably move from one configuration to another. Now our goal is to use the
given rules so as to define a sequence of indistinguishable hybrid games that
takes us from the real game Hyb(I = (), (mode; = RealGate);c[4) to the simula-
tion Hyb(I = (), (mode; = SimGate);c[q)).

Pebbling Game. We show that the problem of finding such sequences of hybrid
games can be captured by a certain type of pebbling game on the circuit C.
Each gate can either have no pebble, a black pebble, or a gray pebble on it (this
will correspond to RealGate, InputDepSimGate and SimGate modes respectively).
Initially, the circuit starts out with no pebbles on any gate. The game consist of
the following possible moves:

Rule A. We can place or remove a black pebble on a gate as long as both
predecessors of that gate have black pebbles (or the gate is an input gate).
Rule B. We can replace a black pebble with a gray one, only if successors of

that gate have black or gray pebbles on them (or the gate is an output gate).

A pebbling of a circuit C is a sequence of v moves that follow rules A and B
and that end up with a gray pebble on every gate. We say that a pebbling uses
t black pebbles if this is the maximal number of black pebbles on the circuit at
any point in time during the game.

From Pebbling to Sequence of Hybrids. In next theorem we prove that any peb-
bling of a circuit C results in a sequence of hybrids that shows indistinguishability
of the real and simulated games. The number of hybrids is proportional to the
number of moves in the pebbling and the equivocation parameter is proportional
to the number of black pebbles it uses.

Theorem 4. Assume that there is a pebbling of the circuit C' in v moves.
Then there is a sequence of 2 - v + 1 hybrid games, starting with the real
game Hyb(I = (), (mode; = RealGate);c[q)) and ending with the simulated game
Hyb(I = 0, (mode; = SimGate);c[q)) such that any two adjacent hybrid games in
the sequence are indistinguishable by rules 1,2 or 8 from the previous section.
Furthermore if pebbling uses t* black pebbles then every hybrid Hyb(I, mode) in
the sequence satisfies |I| < t*. In particular, indistinguishability holds as long as
the equivocation parameter is at least t*.

D Pebbling Strategies [HJO-+16]

In this section we give two pebbling strategies for arbitrary circuit with width
w, depth d, and ¢ gates. The first strategy uses O(g) moves and O(w) black
pebbles. The second strategy uses O(g2¢) moves and O(d) black pebbles.

70 Z. Jafargholi et al.

Strategy 1. To pebble the circuit proceed as follows:

Pebble(C):
1. Put a black pebble on each gate at the input level (level 1).
2. For i =1 to d — 1, repeat:
(a) Put a black pebble on each gate at level i 4 1.
(b) For each gate at level 4, replace the black pebble with a gray pebble.
(¢) i —i+1.
3. For each gate at level d, replace the black pebble with a gray pebble.

This strategy uses 7 = 2¢ moves and t* = 2w black pebbles.

Strategy 2. This is a recursive strategy defined as follows.

— Pebble(C):
For each gate ¢ in C starting with the gates at the top level moving to the
bottom level:
1. RecPutBlack(C, 7)
2. Replace the black pebble on gate ¢ with a gray pebble.
— RecPutBlack(C, 7): // Let LeftPred(C,¢) and RightPred(C,) be the two pre-
decessors of gate i in C.
1. If gate 7 is an input gate, put a black pebble on i and return.
2. Run RecPutBlack(C, LeftPred(C, 7)), RecPutBlack(C, RightPred(C,)).
3. Put a black pebble on gate 1.
4. Run RecRemoveBlack(C, LeftPred(C, 7)) and
RecRemoveBlack(C, RightPred(C, 7)).
— RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead
of putting a black pebble on gate 7, in steps 1 and 3, we remove it.

The above gives us a strategy to pebble any circuit with at most v = ¢4¢
moves and t = 2d black pebbles.

References

[ABSV15]

[ATKW13]

[BHR12]

[BSW11]

Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657-677. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48000-7-32

Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions
with constant online rate or how to compress garbled circuits keys. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 166—
184. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_10
Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.), 19th Conference on Computer
and Communications Security, ACM CCS 2012, Raleigh, NC, USA, 16-18
October 2012, pp. 784-796. ACM Press (2012)

Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253-273.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_16

http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-642-40084-1_10
http://dx.doi.org/10.1007/978-3-642-19571-6_16

[HJO+16]

[HW15]

[TW16]

[LP0Y]

[PST14]

[SW05]

[Yao82]

[Yao86]

Adaptively Indistinguishable Garbled Circuits 71

Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149-178. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53015-3_6

Hubacek, P., Wichs, D.: On the communication complexity of secure func-
tion evaluation with long output. In: Roughgarden, T. (ed.) 6th Innovations
in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, 11-13 Janu-
ary 2015, pp. 163-172. Association for Computing Machinery (2015)
Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In:
Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 433-458.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53641-4_17

Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161-188 (2009)

Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500-517. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44371-2_28

Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457-473. Springer, Heidelberg
(2005). doi:10.1007/11426639-27

Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
3-5 November 1982, pp. 160-164. IEEE Computer Society Press (1982)
Yao, A.C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto,
Ontario, Canada, 27-29 October 1986, pp. 162-167. IEEE Computer Soci-
ety Press (1986)

http://dx.doi.org/10.1007/978-3-662-53015-3_6
http://dx.doi.org/10.1007/978-3-662-53641-4_17
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://dx.doi.org/10.1007/11426639_27

2 Springer
http://www.springer.com/978-3-319-70502-6

Theory of Cryptography

15th International Conference, TCC 2017, Baltimore,
MD, USA, November 12-15, 2017, Proceedings, Part Il
Tauman Kalai, ¥.; Reyzin, L. (Eds.)

2017, XV, 778 p. 39 illus., Softcover

ISBEMN: 978-3-319-70502-6

	Adaptively Indistinguishable Garbled Circuits
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	3 Definitions
	4 Construction of [HJO+16]
	4.1 Adaptive Simulator

	5 Our Construction
	6 Hybrid Games
	6.1 Hybrid Games Template

	7 Application: Private-Key Adaptively Secure Functional Encryption
	7.1 Definition
	7.2 Construction
	7.3 Security Proof
	7.4 Extensions

	A Symmetric-Key Encryption with Special Correctness [LP09]
	B Somewhere Equivocal Symmetric-Key Encryption [HJO+16]
	C Hybrid Games of [HJO+16]
	C.1 Rules for Indistinguishable Hybrids
	C.2 Pebbling and Sequences of Hybrid Games

	D Pebbling Strategies [HJO+16]
	References

