
Preface

A career in computer science is a commitment to a lifetime of learning. You will not
be taught every detail you will need in your career while you are a student. The goal
of a computer science education is to give you the tools you need so you can teach
yourself new languages, frameworks, and architectures as they come along. The
creativity encouraged by a lifetime of learning makes computer science one of the
most exciting fields today.

There are engineering and theoretical aspects to the field of computer science.
Theory often is a part of the development of new programming languages and tools
to make programmers more productive. Computer programming is the process of
building complex systems with those tools. Computer programmers are program
engineers, and this process is sometimes called software engineering. No matter
what kind of job you end up doing, understanding the tools of computer science,
and specifically the programming languages you use, will help you become a better
programmer.

As programmers it is important that we be able to predict what our programs will
do. Predicting what a program will do is easier if you understand the way the pro-
gramming language works. Programs execute according to a computational model.
A model may be implemented in many different ways depending on the targeted
hardware architecture. While there are currently a number of popular hardware
architectures, most can be categorized into one of two main areas: register-based
central processing units and stack-based virtual machines. While these two types of
architectures are different in some ways, they also share a number of characteristics
when used as the target for programming languages. This text develops a stack-based
virtual machine based on the Python virtual machine called JCoCo.

Computer scientists differentiate programming languages based on three paradigms
or ways of thinking about programming: object-oriented/imperative programming,
functional programming, and logic programming. This text covers these three para-
digms while using each of them in the implementation of a non-trivial programming
language.

v



It is expected that most readers of this text will have had some prior experience
with object-oriented languages. JCoCo is implemented in Java (hence the J), pro-
viding a chance to learn Java in some detail and see it used in a larger software
project like the JCoCo implementation. The text proceeds in a bottom-up fashion by
implementing extensions to JCoCo using Java. Then, a full-featured functional
language called Small is implemented on top of the JCoCo virtual machine. The
Small language is a subset of Standard ML. Standard ML is first introduced in this
text and then used to implement the Small subset of the Standard ML language,
which really is not that small afterall. Finally, late in the text a type inference system
for Small is developed and implemented in Prolog. Prolog is an example of a logic
programming language.

The text is meant to be used interactively. You should read a section, and as you
read it, do the practice exercises. Each of the exercises is meant to give you a goal
in reading a section of the text.

The text Web site http://www.cs.luther.edu/*leekent/PL includes code and
other support files that may be downloaded. These include the JCoCo virtual
machine and the MLComp compiler/type inference system.

I hope you enjoy reading the text and working through the exercises and practice
problems. Have fun with it and get creative!

Acknowledgements

I have been fortunate to have good teachers throughout high school, college, and
graduate school. Ken Slonneger was my advisor in graduate school, and this book
came into being because of him. He inspired me to write a text that supports the
same teaching style he used in his classroom. I’d also like to thank Eric Manley of
Drake University for working with me by trying the projects with his students and
for the valuable feedback he provided to me during the development of this text.
Thanks, Eric.

I’m also fortunate to have good students working with me. Thanks go to
Jonathan Opdahl for his help in building the Java version of CoCo, a virtual
machine used throughout this text, and named JCoCo both because it is imple-
mented in Java and because Jonathan helped me build it. Thank you Jonathan for
your work on this project. It is greatly appreciated.

For Teachers

This book was written to fulfill two goals. The first is to introduce students to three
programming paradigms: object-oriented/imperative, functional, and logic pro-
gramming. To be ready for the content of this book, students should have some
background in an imperative language, probably an object-oriented language such

vi Preface



as Python, Java, or C++. They should have had an introductory course and a course
in data structures as a minimum. While the prepared student will have written
several programs, some of them fairly complex, most probably still struggle with
predicting exactly what their program will do. It is assumed that ideas such as
polymorphism, recursion, and logical implication are relatively new to students
reading this book. The text assumes that students have little or no experience with
the functional and logic programming paradigms.

The object-oriented language presented in this book is Java. C++ has many
nuances that are worthy of several chapters in a textbook. The first edition of this
text did cover C++ as the object-oriented language, but Java is better suited to the
JCoCo virtual machine implementation presented in this text. However, significant
topics of C++ are contrasted to Java in this text. Notably, the pass-by-value and
pass-by-reference mechanisms in C++ create considerable complexity in the lan-
guage. In addition, the ability of C++ programs to create objects both on the
run-time stack and in the heap is contrasted to Java. Of course the standard
object-oriented concepts including polymorphism and inheritance and a comparison
of templates from C++ and interfaces from Java are covered in this text.

The text uses Standard ML as the functional language. ML has a polymorphic
type inference system to statically type programs of the language. In addition, the
type inference system of ML is formally proven sound and complete. This has some
implications in writing programs. While ML’s cryptic compiler error messages are
sometimes hard to understand at first, once a program compiles it will often work
correctly the first time. That’s an amazing statement to make if your past experience
is in a dynamically typed language such as Lisp, Scheme, Ruby, or Python.

The logic language used in this text is Prolog. While Prolog has traditionally
been an Artificial Intelligence language, it originated as a metalanguage for
expressing other languages. The text concentrates on using Prolog to implement a
type inference system. Students learn about logical implication and how a problem
they are familiar with can be re-expressed in a logic programming language.

The second goal of the text is to be interactive. This book is intended to be used
in and outside of class. It is my experience that we almost all learn more by doing
than by seeing. To that end, the text encourages teachers to actively teach. Each
chapter follows a pattern of presenting a topic followed by a practice exercise or
exercises that encourage students to try what they have just read. These exercises
can be used in class to help students check their understanding of a topic. Teachers
are encouraged to take the time to present a topic and then allow students time to
reflect and practice the concept just presented. In this way, the text becomes a
lecture resource. Students get two things out of this. It forces them to be interac-
tively engaged in the lectures, not just passive observers. It also gives them
immediate feedback on key concepts to help them determine whether they under-
stand the material or not. This encourages them to ask questions when they have
difficulty with an exercise. Tell students to bring the book to class along with a
pencil and paper. The practice exercises are easily identified.

Preface vii



This book presents several projects to reinforce topics outside the classroom.
Each chapter of the text suggests several non-trivial programming projects that
accompany the paradigm being covered to drive home the concepts covered in that
chapter. The projects and exercises described in this text have been tested in
practice, and documentation and solutions are available upon request.

Decorah, USA Kent D. Lee

viii Preface



http://www.springer.com/978-3-319-70789-1




