
2Syntax

Once you’ve learned to program in one language, learning a similar programming
language isn’t all that hard. But, understanding just how to write in the new language
takes looking at examples or reading documentation to learn its details. In other
words, you need to know the mechanics of putting a program together in the new
language. Are the semicolons in the right places? Do you use begin...end or do you
use curly braces (i.e. { and })? Learning how a program is put together is called
learning the syntax of the language. Syntax refers to the words and symbols of a
language and how to write the symbols down in some meaningful order.

Semantics is the word that is used when deriving meaning from what is written.
The semantics of a program refers to what the program will do when it is executed.
Informally it is much easier to say what a program does than to describe the syntactic
structure of the program. However, syntax is a lot easier to formally describe than
semantics. In either case, if you are learning a new language, you need to learn
something about both the syntax and semantics of the language.

2.1 Terminology

Once again, the syntax of a programming language determines the well-formed or
grammatically correct programsof the language.Semantics describes howorwhether
such programs will execute.

• Syntax is how programs look
• Semantics is how programs work

Many questions we might like to ask about a program either relate to the syntax
of the language or to its semantics. It is not always clear which questions pertain to

© Springer International Publishing AG 2017
K.D. Lee, Foundations of Programming Languages, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_2

31

32 2 Syntax

syntax and which pertain to semantics. Some questions may concern semantic issues
that can be determined statically, meaning before the program is run. Other semantic
issues may be dynamic issues, meaning they can only be determined at run-time.
The difference between static semantic issues and syntactic issues is sometimes a
difficult distinction to make.

The code

a=b+c;

is correct syntax in many languages. But is it a correct C++ statement?

1. Do b and c have values?
2. Have b and c been declared as a type that allows the + operation? Or, do the

values of b and c support the + operation?
3. Is a assignment compatible with the result of the expression b + c?
4. Does the assignment statement have the proper form?

There are lots of questions that need to be answered about this assignment statement.
Some questions could be answered sooner than others. When a C++ program is
compiled it is translated from C++ to machine language as described in the previous
chapter. Questions 2 and 3 are issues that can be answered when the C++ program
is compiled. However, the answer to the first question might not be known until
the C++ program executes in some cases. The answers to questions 2 and 3 can
be answered at compile-time and are called static semantic issues. The answer to
question 1 is a dynamic issue and is probably not determinable until run-time. In
some circumstances, the answer to question 1 might also be a static semantic issue.
Question 4 is definitely a syntactic issue.

Unlike the dynamic semantic issues, the correct syntax of a program is statically
determinable. Said another way, determining a syntactically valid program can be
accomplished without running the program. The syntax of a programming language
is specified by a grammar. But before discussing grammars, the parts of a grammar
must be defined. A terminal or token is a symbol in the language.

• C++, Java, and Python terminals: while, for, (, ;, 5, b
• Type names like int and string

Keywords, types, operators, numbers, identifiers, etc. are all tokens or terminals in
a language.

A syntactic category or nonterminal is a set of phrases, or strings of tokens,
that will be defined in terms of symbols in the language (terminal and nonterminal
symbols).

• C++, Java, orPythonnonterminals:<statement>,<expression>,<if-statement>,
etc.

• Syntactic categories define parts of a program like statements, expressions, dec-
larations, and so on.

2.1 Terminology 33

A metalanguage is a higher-level language used to specify, discuss, describe, or
analyze another language. English is used as a metalanguage for describing pro-
gramming languages, but because of the ambiguities in English, more formal meta-
languages have been developed. The next section describes a formal metalanguage
for describing programming language syntax.

2.2 Backus Naur Form (BNF)

Backus Naur Format (i.e. BNF) is a formal metalanguage for describing language
syntax. Theword formal is used to indicate thatBNF is unambiguous.UnlikeEnglish,
the BNF language is not open to our own interpretations. There is only one way to
read a BNF description.

BNF was used by John Backus to describe the syntax of Algol in 1963. In 1960,
John Backus and Peter Naur, a computer magazine writer, had just attended a confer-
ence on Algol. As they returned from the trip it became apparent that they had very
different views of what Algol would look like. As a result of this discussion, John
Backus worked on a method for describing the grammar of a language. Peter Naur
slightly modified it. The notation is called BNF, or Backus Naur Form or sometimes
Backus Normal Form. BNF consists of a set of rules that have this form:

<syntactic category> ::= a string of terminals and nonterminals

The symbol ::= can be read as is composed of and means the syntactic category is
the set of all items that correspond to the right hand side of the rule.

Multiple rules defining the same syntactic category may be abbreviated using the |
character which can be read as “or” and means set union. That is the entire language.
It’s not a very big metalanguage, but it is powerful.

2.2.1 BNF Examples

Here are a couple BNF examples from Java.

<primitive -type > ::= boolean
<primitive -type > ::= char

BNF syntax is often abbreviated when there are multiple similar rules like these
primitive type rules. Whether abbreviated or not, the meaning is the same.
<primitive -type > ::= boolean | char | byte | short | int | long | float | ...

<argument -list > ::= <expression > | <argument -list > , <expression >

<selection -statement > ::=

if (<expression >) <statement > |

if (<expression >) <statement > else <statement > |

switch (<expression >) <block >

<method -declaration > ::=

<modifiers > <type -specifier > <method declarator > <throws -clause > <method -body > |

<modifiers > <type -specifier > <method -declarator > <method -body > |

34 2 Syntax

<type -specifier > <method -declarator > <throws -clause > <method -body > |

<type -specifier > <method -declarator > <method -body >

This description can be described in English: The set of method declarations is the
union of the sets of method declarations that explicitly throw an exception with those
that don’t explicitly throw an exception with or without modifiers attached to their
definitions. The BNF is much easier to understand and is not ambiguous like this
English description.

2.2.2 Extended BNF (EBNF)

Since a BNF description of the syntax of a programming language relies heavily on
recursion to provide lists of items, many definitions use these extensions:

1. item? or [item] means the item is optional.
2. item* or {item} means zero or more occurrences of an item are allowable.
3. item+ means one or more occurrences of an item are allowable.
4. Parentheses may be used for grouping

2.3 Context-Free Grammars

ABNF is a way of describing the grammar of a language.Most interesting grammars
are context-free, meaning that the contents of any syntactic category in a sentence are
not dependent on the context in which it is used. A context-free grammar is defined
as a four tuple:

G = (N , T ,P,S)

where

• N is a set of symbols called nonterminals or syntactic categories.
• T is a set of symbols called terminals or tokens.
• P is a set of productions of the form n → α where n ∈ N and α ∈ {N ∪ T }∗.
• S ∈ N is a special nonterminal called the start symbol of the grammar.

Informally, a context-free grammar is a set of nonterminals and terminals. For each
nonterminal there are one or more productions with strings of zero or more non-
terminals and terminals on the right hand side as described in the BNF description.
There is one special nonterminal called the start symbol of the grammar.

2.3 Context-Free Grammars 35

2.3.1 The Infix Expression Grammar

A context-free grammar for infix expressions can be specified as G = (N , T ,P,E)

where

N = {E, T, F}
T = {identi f ier, number, +,−, ∗, /, (,)}
P is defined by the set of productions

E → E + T | E − T | T
T → T ∗ F | T / F | F
F → (E) | identi f ier | number

2.4 Derivations

A sentence of a grammar is a string of tokens from the grammar. A sentence belongs
to the language of a grammar if it can be derived from the grammar. This process
is called constructing a derivation. A derivation is a sequence of sentential forms
that starts with the start symbol of the grammar and ends with the sentence you are
trying to derive. A sentential form is a string of terminals and nonterminals from
the grammar. In each step in the derivation, one nonterminal of a sentential form,
call it A, is replaced by a string of terminals and nonterminals, β, where A → β

is a production in the grammar. For a grammar, G, the language of G is the set of
sentences that can be derived from G and is usually written as L(G).

2.4.1 A Derivation

Here we prove that the expression (5∗ x)+ y is a member of the language defined by
the grammar given in Sect. 2.3.1 by constructing a derivation for it. The derivation
begins with the start symbol of the grammar and ends with the sentence.

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ (E) + T ⇒ (T) + T ⇒ (T ∗ F) + T

⇒ (F ∗ F) + T ⇒ (5 ∗ F) + T ⇒ (5 ∗ x) + T ⇒ (5 ∗ x) + F ⇒ (5 ∗ x) + y

Each step is a sentential form. The underlined nonterminal in each sentential form is
replaced by the right hand side of a production for that nonterminal. The derivation
proceeds from the start symbol, E, to the sentence (5 ∗ x) + y. This proves that
(5 ∗ x) + y is in the language L(G) as G is defined in Sect. 2.3.1.

36 2 Syntax

Practice 2.1 Construct a derivation for the infix expression 4 + (a − b) ∗ x .
You can check your answer(s) in Section 2.17.1.

2.4.2 Types of Derivations

A sentence of a grammar is valid if there exists at least one derivation for it using
the grammar. There are typically many different derivations for a particular sentence
of a grammar. However, there are two derivations that are of some interest to us in
understanding programming languages.

• Left-most derivation - Always replace the left-most nonterminal when going from
one sentential form to the next in a derivation.

• Right-most derivation - Always replace the right-most nonterminal when going
from one sentential form to the next in a derivation.

The derivation of the sentence (5 ∗ x) + y in Sect. 2.4.1 is a left-most derivation. A
right-most derivation for the same sentence is:

E ⇒ E + T ⇒ E + F ⇒ E + y ⇒ T + y ⇒ F + y ⇒ (E) + y ⇒ (T) + y

⇒ (T ∗ F) + y ⇒ (T ∗ x) + y ⇒ (F ∗ x) + y ⇒ (5 ∗ x) + y

Practice 2.2 Construct a right-most derivation for the expression x ∗ y + z.
You can check your answer(s) in Section 2.17.2.

2.4.3 Prefix Expressions

Infix expressions are expressions where the operator appears between the operands.
Another type of expression is called a prefix expression. In prefix expressions the
operator appears before the operands. The infix expression 4 + (a − b) ∗ x would
be written +4 ∗ −abx as a prefix expression. Prefix expressions are in some sense
simpler than infix expressions because we don’t have to worry about the precedence
of operators. The operator precedence is determined by the order of operations in
the expression. Because of this, parentheses are not needed in prefix expressions.

2.4.4 The Prefix Expression Grammar

Acontext-free grammar for prefix expressions can be specified as G = (N , T ,P,E)

where

2.4 Derivations 37

N = {E}
T = {identi f ier, number, +,−, ∗, /}
P is defined by the set of productions

E → + E E | − E E | ∗ E E | / E E | identi f ier | number

Practice 2.3 Construct a left-most derivation for the prefix expression +4 ∗
−abx .

You can check your answer(s) in Section 2.17.3.

2.5 Parse Trees

A grammar, G, can be used to build a tree representing a sentence of L(G), the
language of the grammar G. This kind of tree is called a parse tree. A parse tree is
anotherwayof representing a sentence of a given language.Aparse tree is constructed
with the start symbol of the grammar at the root of the tree. The children of each
node in the tree must appear on the right hand side of a production with the parent
on the left hand side of the same production. A program is syntactically valid if there
is a parse tree for it using the given grammar.

While there are typically many different derivations of a sentence in a language,
there is only one parse tree. This is true as long as the grammar is not ambiguous.
In fact that’s the definition of ambiguity in a grammar. A grammar is ambiguous if
and only if there is a sentence in the language of the grammar that has more than one
parse tree.

The parse tree for the sentence derived in Sect. 2.4.1 is depicted in Fig. 2.1. Notice
the similarities between the derivation and the parse tree.

Practice 2.4 What does the parse tree look like for the right-most derivation
of (5 ∗ x) + y?

You can check your answer(s) in Section 2.17.4.

Practice 2.5 Construct a parse tree for the infix expression 4 + (a − b) ∗ x .
HINT: What has higher precedence, “+” or “∗”? The given grammar auto-

matically makes “∗” have higher precedence. Try it the other way and see
why!

You can check your answer(s) in Section 2.17.5.

38 2 Syntax

Fig. 2.1 A parse tree

Practice 2.6 Construct a parse tree for the prefix expression +4 ∗ −abx .
You can check your answer(s) in Section 2.17.6.

2.6 Abstract Syntax Trees

There is a lot of information in a parse tree that isn’t really needed to capture the
meaning of the program that it represents. An abstract syntax tree is like a parse tree
except that non-essential information is removed. More specifically,

• Nonterminal nodes in the tree are replaced by nodes that reflect the part of the
sentence they represent.

• Unit productions in the tree are collapsed.

For example, the parse tree from Fig. 2.1 can be represented by the abstract syntax
tree in Fig. 2.2. The abstract syntax tree eliminates all the unnecessary information
and leaves just what is essential for evaluating the expression. Abstract syntax trees,
often abbreviated ASTs, are used by compilers while generating code and may be
used by interpreters when running your program. Abstract syntax trees throw away
superfluous information and retain only what is essential to allow a compiler to
generate code or an interpreter to execute the program.

2.6 Abstract Syntax Trees 39

Fig. 2.2 An AST

Practice 2.7 Construct an abstract syntax tree for the expression 4+(a−b)∗x .
You can check your answer(s) in Section 2.17.7.

2.7 Lexical Analysis

The syntax ofmodern programming languages are definedvia grammars.Agrammar,
because it is awell-definedmathematical structure, canbeused to construct a program
called a parser. A language implementation, like a compiler or an interpreter, has
a parser that reads the program from the source file. The parser reads the tokens,
or terminals, of a program and uses the language’s grammar to check to see if the
stream of tokens form a syntactically valid program.

For a parser to do its job, it must be able to get the stream of tokens from the
source file. Forming tokens from the individual characters of a source file is the job
of another program often called a tokenizer, or scanner, or lexer. Lex is the Latin
word for word. The words of a program are its tokens. In programming language
implementations a little liberty is taken with the definition of word. A word is any
terminal or token of a language. It turns out that the tokens of a language can be
described by another language called the language of regular expressions.

2.7.1 The Language of Regular Expressions

The languageof regular expression is definedbya context-free grammar.The context-
free grammar for regular expressions is RE = (N , T ,P,E) where

N = {E, T, K , F}
T = {character, ∗, +, ., (,)}
P is defined by the set of productions

40 2 Syntax

E → E + T | T
T → T .K | K
K → F∗ | F
F → character | (E)

The + operator is the choice operator, meaning either E or T, but not both. The
dot operator means that T is followed by K. The ∗ operator, called Kleene Star
for the mathematician that first defined it, means zero or more occurrences of F.
The grammar defines the precedence of these operators. Kleene star has the highest
precedence followed by the dot operator, followed by the choice operator. At its most
primitive level, a regular expression may be just a single character.

Frequently, a choice between many different characters may be abbreviated with
some sensible name. For instance, letter may be used to abbreviate A + B + · · · +
Z + a + b + · · · z and digit may abbreviate 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9.
Usually these abbreviations are specified explicitly before the regular expression is
given.

The tokens of the infix grammar are identifier, number, +, −, ∗, /, (, and). For
brevities sake, assume that letter and digit have the usual definitions. We’ll also
put each operator character in single quotes so as not to confuse them with the
metalanguage. Then, these tokens might be defined by the regular expression

letter.letter* + digit.digit* + ‘+’ + ‘−‘ + ‘∗’ + ‘/’ + ‘(‘ + ‘)’

From this regular expression specification a couple of things come to light. Identifiers
must be at least one character long, but can be as long as we wish them to be.
Numbers are only non-negative integers in the infix expression language. Floating
point numbers cannot be specified in the language as the tokens are currently defined.

Practice 2.8 Define a regular expression so that negative and non-negative
integers can both be specified as tokens of the infix expression language.

You can check your answer(s) in Section 2.17.8.

2.7.2 Finite State Machines

A finite state machine is a mathematical model that accepts or rejects strings of
characters for some regular expression. A finite state machine is often called a finite
state automaton. Theword automaton is just anotherword formachine. Every regular
expression has at least one finite state machine and vice versa, every finite state
machine has at least one matching regular expression. In fact, there is an algorithm
that given any regular expression can be used to construct a finite state machine for
it.

Formally a finite state automata is defined as follows.

2.7 Lexical Analysis 41

M = (�, S, F, s0, δ) where � (pronounced sigma) is the input alphabet (the characters
understood by the machine), S is a set of states, F is a subset of S usually written as
F ⊆ S, s0 is a special state called the start state, and δ (pronounced delta) is a function
that takes as input an alphabet symbol and a state and returns a new state. This is usually
written as δ : � × S → S.

A finite statemachine has a current state which initially is the start state. Themachine
starts in the start state and reads characters one at a time. As characters are read, the
finite state machine changes state. Each state has transitions to other states based
on the last character read. Each time the machine transitions to a new state, another
character is read from the stream of characters.

After reading all the characters of a token, if the current state is in the set of final
states, F , then the token is accepted by the finite state machine. Otherwise, it is
rejected. Finite state machines are typically represented graphically by drawing the
states, transitions, start state, and final states. States in a graphical representation are
depicted as nodes in a graph. The start state has an arrow going into it with nothing at
the back side of the arrow. The transitions are represented as arrows going from one
state to another and are labelled with the characters that trigger the given transition.
Finally, final or accepting states are denoted with a double circle.

Fig. 2.3 A finite state machine

42 2 Syntax

Figure2.3 depicts a finite statemachine for the language of infix expression tokens.
The start state is 1. Each of states 2 through 9 are accepting states, denoted with a
double circle. State 2 accepts identifier tokens. State 3 accepts number tokens. States
4 to 9 accept operators and the parenthesis tokens. The finite state machine accepts
one token at a time. For each new token, the finite state machine starts over in state 1.

If, while reading a token, an unexpected character is read, then the streamof tokens
is rejected by the finite state machine as invalid. Only valid strings of characters are
accepted as tokens. Characters like spaces, tabs, and newline characters are not
recognized by the finite state machine. The finite state machine only responds with
yes the string of tokens is in the language accepted by the machine or no it is not.

2.7.3 Lexer Generators

It is relatively easy to construct a lexer by writing a regular expression, drawing a
finite state machine, and then writing a program that mimics the finite state machine.
However, this process is largely the same for all programming languages so there
are tools that have been written to do this for us. Typically these tools are called
lexer generators. To use a lexer generator you must write regular expressions for the
tokens of the language and provide these to the lexer generator.

A lexer generator will generate a lexer program that internally uses a finite state
machine like the one pictured in Fig. 2.3, but instead of reporting yes or no, for each
token the lexer will return the string of characters, called the lexeme or word of
the token, along with a classification of the token. So, identifiers are categorized as
identifier tokens while ‘+’ is categorized as an add token.

The lex tool is an example of a lexical generator for the C language. If you are
writing an interpreter or compiler using C as the implementation language, then
you would use lex or a similar tool to generate your lexer. lex was a tool included
with the original Unix operating system. The Linux alternative is called flex. Java,
Python, Standard ML, and most programming languages have equivalent available
lexer generators.

2.8 Parsing

Parsing is the process of detecting whether a given string of tokens is a valid sentence
of a grammar. Every time you compile a program or run a program in an interpreter
the program is first parsed using a parser. When a parser isn’t able to parse a program
the programmer is told there is a syntax error in the program. A parser is a program
that given a sentence, checks to see if the sentence is a member of the language of
the given grammar. A parser usually does more than just answer yes or no. A parser
frequently builds an abstract syntax tree representation of the source program. There
are two types of parsers that are commonly constructed.

2.8 Parsing 43

Fig. 2.4 Parser data flow

• A top-down parser starts with the root of the parse tree.
• A bottom-up parser starts with the leaves of the parse tree.

Top-down and bottom-up parsers check to see if a sentence belongs to a grammar by
constructing a derivation for the sentence, using the grammar. A parser either reports
success (and possibly returns an abstract syntax tree) or reports failure (hopefully
with a nice error message). The flow of data is pictured in Fig. 2.4.

2.9 Top-Down Parsers

Top-down parsers are generallywritten by hand. They are sometimes called recursive
descent parsers because they can bewritten as a set ofmutually recursive functions. A
top-downparser performs a left-most derivation of the sentence (i.e. source program).

A top-down parser operates by (possibly) looking at the next token in the source
file and deciding what to do based on the token and where it is in the derivation.
To operate correctly, a top-down parser must be designed using a special kind of
grammar called an LL(1) grammar. An LL(1) grammar is simply a grammar where
the next choice in a left-most derivation can be deterministically chosen based on the
current sentential form and the next token in the input. The first L refers to scanning
the input from left to right. The second L signifies that while performing a left-most
derivation, there is only 1 symbol of lookahead that is needed to make the decision
about which production to choose next in the derivation.

2.9.1 An LL(1) Grammar

The grammar for prefix expressions is LL(1). Examine the prefix expression grammar
G = (N , T ,P,E) where

N = {E}
T = {identi f ier, number, +,−, ∗, /}
P is defined by the set of productions

44 2 Syntax

E → + E E | − E E | ∗ E E | / E E | identi f ier | number

While constructing any derivation for a sentence of this language, the next production
chosen in a left-most derivation is going to be obvious because the next token of the
source file must match the first terminal in the chosen production.

2.9.2 A Non-LL(1) Grammar

Some grammars are not LL(1). The grammar for infix expressions is not LL(1).
Examine the infix expression grammar G = (N , T ,P,E) where

N = {E, T, F}
T = {identi f ier, number, +,−, ∗, /, (,)}
P is defined by the set of productions

E → E + T | E − T | T
T → T ∗ F | T / F | F
F → (E) | identi f ier | number

Consider the infix expression 5 ∗ 4. A left-most derivation of this expression would
be

E ⇒ T ⇒ T ∗ F ⇒ F ∗ F ⇒ 5 ∗ F ⇒ 5 ∗ 4

Consider looking at only the 5 in the expression. We have to choose whether to use
the production E → E + T or E → T . We are only allowed to look at the 5 (i.e.
we can’t look beyond the 5 to see the multiplication operator). Which production do
we choose? We can’t decide based on the 5. Therefore the grammar is not LL(1).

Just because this infix expression grammar is not LL(1) does not mean that infix
expressions cannot be parsed using a top-down parser. There are other infix expres-
sion grammars that are LL(1). In general, it is possible to transform any context-free
grammar into an LL(1) grammar. It is possible, but the resulting grammar is not
always easily understandable.

The infix grammar given in Sect. 2.9.2 is left recursive. That is, it contains the
production E → E + T and another similar production for terms in infix expressions.
These rules are left recursive. Left recursive rules are not allowed in LL(1) grammars.
A left recursive rule can be eliminated in a grammar through a straightforward
transformation of its production.

Common prefixes in the right hand side of two productions for the same nontermi-
nal are also not allowed in an LL(1) grammar. The infix grammar given in Sect. 2.9.2
does not contain any common prefixes. Common prefixes can be eliminated by intro-
ducing a new nonterminal to the grammar, replacing all common prefixes with the
new nonterminal, and then defining one new production so the new nonterminal is
composed of the common prefix.

2.9 Top-Down Parsers 45

2.9.3 An LL(1) Infix Expression Grammar

The following grammar is an LL(1) grammar for infix expressions. G = (N , T ,

P,E) where

N = {E, Rest E, T, RestT, F}
T = {identi f ier, number, +,−, ∗, /, (,)}
P is defined by the set of productions

E → T Rest E
Rest E → + T Rest E | − T Rest E | ε

T → F RestT
RestT → ∗ F RestT | / F RestT | ε

F → (E) | identi f ier | number

In this grammar the ε (pronounced epsilon) is a special symbol that denotes an empty
production. An empty production is a production that does not consume any tokens.
Empty productions are sometimes convenient in recursive rules.

Once common prefixes and left recursive rules are eliminated from a context-free
grammar, the grammar will be LL(1). However, this transformation is not usually
performed because there are more convenient ways to build a parser, even for non-
LL(1) grammars.

Practice 2.9 Construct a left-most derivation for the infix expression 4+ (a −
b) ∗ x using the grammar in Sect. 2.9.3, proving that this infix expression is in
L(G) for the given grammar.

You can check your answer(s) in Section 2.17.9.

2.10 Bottom-Up Parsers

While the original infix expression language is not LL(1) it is LALR(1). In fact, most
grammars for programming languages are LALR(1). The LA stands for look ahead
with the 1 meaning just one symbol of look ahead. The LR refers to scanning the
input from left to rightwhile constructing a right-most derivation.A bottom-up parser
constructs a right-most derivation of a source program in reverse. So, an LALR(1)
parser constructs a reverse right-most derivation of a program.

Building a bottom-up parser is a somewhat complex task involving the computa-
tion of item sets, look ahead sets, a finite state machine, and a stack. The finite state
machine and stack together are called a pushdown automaton. The construction of
the pushdown automaton and the look ahead sets are calculated from the grammar.
Bottom-up parsers are not usually written by hand. Instead, a parser generator is used

46 2 Syntax

Fig. 2.5 Parser generator data flow

to generate the parser program from the grammar. A parser generator is a program
that is given a grammar and builds a parser for the language of the grammar by
constructing the pushdown automaton and lookahead sets needed to parse programs
in the language of the grammar.

The original parser generator forUnixwas called yacc, which stood for yet another
compiler compiler since it was a compiler for grammars that produced a parser for
a language. Since a parser is part of a compiler, yacc was a compiler compiler. The
Linux version of yacc is called Bison. Hopefully you see the pun that was used
in naming it Bison. The Bison parser generator generates a parser for compilers
implemented in C, C++, or Java. There are versions of yacc for other languages
as well. Standard ML has a version called ml-yacc for compilers implemented in
Standard ML. ML-yacc is introduced and used in Chap.6.

Parser generators like Bison produce what is called a bottom-up parser because
the right-most derivation is constructed in reverse. In other words, the derivation is
done from the bottom up. Usually, a bottom-up parser is going to return an AST
representing a successfully parsed source program. Figure2.5 depicts the dataflow
in an interpreter or compiler. The parser generator is given a grammar and runs once
to build the parser. The generated parser runs each time a source program is parsed.

A bottom-up parser parses a program by constructing a reverse right-most deriva-
tion of the source code. As the reverse derivation proceeds the parser shifts tokens
from the input onto the stack of the pushdown automaton. Then at various points
in time it reduces by deciding, based on the look ahead sets, that a reduction is
necessary.

2.10.1 Parsing an Infix Expression

Consider the grammar for infix expressions as G = (N , T ,P,E) where

N = {E, T, F}
T = {identi f ier, number, +,−, ∗, /, (,)}
P is defined by the set of productions

http://dx.doi.org/10.1007/978-3-319-70790-7_6

2.10 Bottom-Up Parsers 47

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → number
(6) F → (E)

Now assume we are parsing the expression 5 ∗ 4 + 3. A right-most derivation for
this expression is as follows.

E ⇒ E +T ⇒ E + F ⇒ E +3 ⇒ T +3 ⇒ T ∗ F +3 ⇒ T ∗4+3 ⇒ F ∗4+3 ⇒ 5∗4+3

Abottom-up parser does a right-most derivation in reverse using a pushdown automa-
ton. It can be useful to look at the stack of the pushdown automaton as it parses the
expression as pictured in Fig. 2.6. In step A the parser is beginning. The dot to the left
of the 5 indicates the parser has not yet processed any tokens of the source program
and is looking at the 5. The stack is empty. From step A to step B one token, the 5 is
shifted onto the stack. From step B to C the parser looks at themultiplication operator
and realizes that a reduction using rule 5 of the grammar must be performed. It is
called a reduction because the production is employed in reverse order. The reduction
pops the right hand side of rule 5 from the stack and replaces it with the nonterminal
F. If you look at this derivation in reverse order, the first step is to replace the number
5 with F.

The rest of the steps of parsing the source program follow the right-most derivation
either shifting tokens onto the stack or reducing using rules of the grammar. In step
O the entire source has been parsed, the stack is empty, and the source program is
accepted as a valid program. The actions taken while parsing include shifting and
reducing. These are the two main actions of any bottom-up parser. In fact, bottom-up
parsers are often called shift-reduce parsers.

Practice 2.10 For each step in Fig. 2.6, is there a shift or reduce operation
being performed? If it is a reduce operation, then what production is being
reduced? If it is a shift operation, what token is being shifted onto the stack?

You can check your answer(s) in Section 2.17.10.

Practice 2.11 Consider the expression (6 + 5) ∗ 4. What are the contents of
the pushdown automaton’s stack as the expression is parsed using a bottom-up
parser? Show the stack after each shift and each reduce operation.

You can check your answer(s) in Section 2.17.11.

48 2 Syntax

Fig. 2.6 A pushdown automaton stack

2.11 Ambiguity in Grammars 49

2.11 Ambiguity in Grammars

A grammar is ambiguous if there exists more than one parse tree for a given sentence
of the language. In general, ambiguity in a grammar is a bad thing. However, some
ambiguity may be allowed by parser generators for LALR(1) languages.

A classic example of ambiguity in languages arises from nested if-then-else state-
ments. Consider the following Pascal statement:

i f a<b t h e n
i f b<c t h e n

w r i t e l n ("a<c")
e l s e

w r i t e l n ("?")

Which if statement does the else go with? It’s not entirely clear. The BNF for an
if-then-else statement might look something like this.

<statement > ::= if <expression > then <statement > else <statement >
| if <expression > then <statement >
| writeln (<expression >)

The recursive nature of this rule means that if-then-else statements can be arbitrarily
nested. Because of this recursive definition, the else in this code is dangling. That is,
it is unclear if it goes with the first or second if statement.

When a bottom-up parser is generated using this grammar, the parser generator
will detect that there is an ambiguity in the grammar. The problem manifests itself
as a conflict between a shift and a reduce operation. The first rule says when looking
at an else keyword the parser should shift. The second rule says when the parser is
looking at an else it should reduce. To resolve this conflict there is generally a way
to specify whether the generated parser should shift or reduce. The default action is
usually to shift and that is what makes the most sense in this case. By shifting, the
else would go with the nearest if statement. This is the normal behavior of parsers
when encountering this if-then-else ambiguity.

2.12 Other Forms of Grammars

As a computer programmer you will likely learn at least one new language and
probably a few during your career. New application areas frequently cause new
languages to be developed to make programming applications in that area more
convenient. Java, JavaScript, and ASP.NET are three languages that were created
because of the world wide web. Ruby and Perl are languages that have become
popular development languages for database and server side programming.Objective
C is another language made popular by the rise of iOS App programming for Apple
products. A recent trend in programming languages is to develop domain specific
languages for particular embedded platforms.

50 2 Syntax

Programming language manuals contain some kind of reference that describes
the constructs of the language. Many of these reference manuals give the grammar
of the language using a variation of a context free grammar. Examples include CBL
(Cobol-like) grammars, syntax diagrams, and as we have already seen, BNF and
EBNF. All these syntax metalanguages share the same features as grammars. They
all have some way of defining parts of a program or syntactic categories and they all
have a means of defining a language through recursively defined productions. The
definitions, concepts, and examples provided in this chapter will help you understand
a language reference when the time comes to learn a new language.

2.13 Limitations of Syntactic Definitions

The concrete syntax for a language is almost always an incomplete description. Not
all syntactically valid strings of tokens should be regarded as valid programs. For
instance, consider the expression 5 + 4/0. Syntactically, this is a valid expression,
but of course cannot be evaluated since division by zero is undefined. This is a
semantic issue. The meaning of the expression is undefined because division by zero
is undefined. This is a semantic issue and semantics are not described by a syntactic
definition. All that a grammar can ensure is that the program is syntactically valid.

In fact, there is no BNF or EBNF grammar that generates only legal programs in
any programming language including C++, Java, and StandardML. ABNF grammar
defines a context-free language: the left-hand side of each rules contains only one
syntactic category. It is replaced by one of its alternative definitions regardless of the
context in which it occurs.

The set of programs in any interesting language is not context-free. For instance,
when the expression a + b is evaluated, are a and b type compatible and defined
over the + operator? This is a context sensitive issue that can’t be specified using a
context-free grammar. Context-sensitive features may be formally described as a set
of restrictions or context conditions. Context-sensitive issues deal mainly with dec-
larations of identifiers and type compatibility. Sometimes, context-sensitive issues
like this are said to be part of the static semantics of the language.

While a grammar describes how tokens are put together to form a valid program
the grammar does not specify the semantics of the language nor does it describe the
static semantics or context-sensitive characteritics of the language. Other means are
necessary to describe these language characteristics. Some methods, like type infer-
ence rules, are formally defined.Most semantic characteristics are defined informally
in some kind of English language description.

These are all context-sensitive issues.

• In an array declaration in C++, the array size must be a nonnegative value.
• Operands for the && operation must be boolean in Java.
• In a method definition, the return value must be compatible with the return type

in the method declaration.

2.13 Limitations of Syntactic Definitions 51

• When a method is called, the actual parameters must match the formal parameter
types.

2.14 Chapter Summary

This chapter introduced you to programming language syntax and syntactic descrip-
tions. Reading and understanding syntactic descriptions is worthwhile since you
will undoubtedly come across new languages in your career as a computer scientist.
There is certainly more that can be said about the topic of programming language
syntax. Aho, Sethi, and Ullman [2] have written the widely recognized definitive
book on compiler implementation which includes material on syntax definition and
parser implementation. There are many other good compiler references as well. The
Chomsky hierarchy of languages is also closely tied to grammars and regular expres-
sions. Many books on Discrete Structures in Computer Science introduce this topic
and a few good books explore the Chomsky hierarchy more deeply including an
excellent text by Peter Linz [13].

In the next chapter you put this knowledge of syntax definition to good use learning
a new language: the JCoCo assembly language. JCoCo is a virtual machine for inter-
preting Python bytecode instructions. Learning assembly language helps in having a
better understanding of how higher level languages work and Chap.3 provides many
examples of Python programs and their corresponding JCoCo assembly language
programs to show you how a higher level language is implemented.

2.15 Review Questions

1. What does the word syntax refer to? How does it differ from semantics?
2. What is a token?
3. What is a nonterminal?
4. What does BNF stand for? What is its purpose?
5. What kind of derivation does a top-down parser construct?
6. What is another name for a top-down parser?
7. What does the abstract syntax tree for 3∗ (4+5) look like for infix expressions?
8. What is the prefix equivalent of the infix expression 3 ∗ (4+ 5)? What does the

prefix expression’s abstract syntax tree look like?
9. What is the difference between lex and yacc?

10. Why aren’t all context-free grammars good for top-down parsing?
11. What kind of machine is needed to implement a bottom-up parser?
12. What is a context-sensitive issue in a language? Give an example in Java.
13. What do the terms shift and reduce apply to?

http://dx.doi.org/10.1007/978-3-319-70790-7_3

52 2 Syntax

2.16 Exercises

1. Rewrite the BNF in Sect. 2.2.1 using EBNF.
2. Given the grammar in Sect. 2.3.1, derive the sentence 3∗(4+5) using a right-most

derivation.
3. Draw a parse tree for the sentence 3 ∗ (4 + 5).
4. Describe how you might evaluate the abstract syntax tree of an expression to get

a result? Write out your algorithm in English that describes how this might be
done.

5. Write a regular expression to describe identifier tokens which must start with a
letter and then can be followed by any number of letters, digits, or underscores.

6. Draw a finite state machine that would accept identifier tokens as specified in the
previous exercise.

7. For the expression 3 ∗ (4 + 5) show the sequence of shift and reduce operations
using the grammar in Sect. 2.10.1. Be sure to say what is shifted and which rule
is being used to reduce at each step. See the solution to practice problem2.1 for
the proper way to write the solution to this problem.

8. Construct a left-most derivation of 3 ∗ (4 + 5) using the grammar in Sect. 2.9.3.

2.17 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

2.17.1 Solution to Practice Problem 2.1

This is a left-most derivation of the expression. There are other derivations that would
be correct as well.

E ⇒ E + T ⇒ T + T ⇒ F + T ⇒ 4 + T ⇒ 4 + T ∗ F ⇒ 4 + F ∗ F ⇒ 4 + (E) ∗ F

⇒ 4 + (E − T) ∗ F ⇒ 4 + (T − T) ∗ F ⇒ 4 + (F − T) ∗ F ⇒ 4 + (a − T) ∗ F ⇒
4 + (a − F) ∗ F ⇒ 4 + (a − b) ∗ F ⇒ 4 + (a − b) ∗ x

2.17.2 Solution to Practice Problem 2.2

This is a right-most derivation of the expression x ∗ y + z. There is only one correct
right-most derivation.

E ⇒ E +T ⇒ E + F ⇒ E + z ⇒ T + z ⇒ T ∗ F + z ⇒ T ∗ y + z ⇒ F ∗ y + z ⇒ x ∗ y + z

2.17 Solutions to Practice Problems 53

2.17.3 Solution to Practice Problem 2.3

This is a left-most derivation of the expression +4 ∗ −abx .

E ⇒ +E E ⇒ +4E ⇒ +4 ∗ E E ⇒ +4 ∗ −E E E ⇒ +4 ∗ −aE E ⇒ +4∗
− abE ⇒ +4 ∗ −abx

2.17.4 Solution to Practice Problem 2.4

Exactly like the parse tree for any other derivation of (5 ∗ x) + y. There is only one
parse tree for the expression given this grammar.

2.17.5 Solution to Practice Problem 2.5

54 2 Syntax

2.17.6 Solution to Practice Problem 2.6

2.17.7 Solution to Practice Problem 2.7

2.17.8 Solution to Practice Problem 2.8

In order to define both negative and positive numbers, we can use the choice operator.

letter.letter* + digit.digit* + ‘-‘.digit.digit* ‘+’ + ‘-‘ + ‘*’ + ‘/’ + ‘(‘ + ‘)’

2.17 Solutions to Practice Problems 55

2.17.9 Solution to Practice Problem 2.9

E ⇒ T Rest E ⇒ F RestT Rest E ⇒ 4 RestT Rest E ⇒ 4 Rest E ⇒
4 + T Rest E ⇒ 4 + F RestT Rest E ⇒ 4 + (E) RestT Rest E ⇒ 4 + (T Rest E)RestT Rest E

⇒ 4 + (F RestT Rest E) RestT Rest E ⇒ 4 + (a RestT Rest E)RestT Rest E ⇒
4 + (a Rest E) RestT Rest E ⇒ 4 + (a − T Rest E) RestT Rest E ⇒
4 + (a − F Rest E) RestT Rest E ⇒ 4 + (a − b Rest E) ⇒ 4 + (a − b) RestT Rest E

⇒ 4 + (a − b) ∗ F RestT Rest E ⇒ 4 + (a − b) ∗ x RestT Rest E ⇒ 4 + (a − b) ∗ x Rest E

⇒ 4 + (a − b) ∗ x

2.17.10 Solution to Practice Problem 2.10

In the parsing of 5 ∗ 4 + 3 the following shift and reduce operations: step A initial
condition, step B shift, step C reduce by rule 5, step D reduce by rule 4, step E shift,
step F shift, step G reduce by rule 5, step H reduce by rule 3, step I reduce by rule
2, step J shift, step K shift, step L reduce by rule 5, step M reduce by rule 4, step N
reduce by rule 1, step O finished parsing with dot on right side and E on top of stack
so pop and complete with success.

2.17.11 Solution to Practice Problem 2.11

To complete this problem it is best to do a right-most derivation of (6 + 5) ∗ 4 first.
Once that derivation is complete, you go through the derivation backwards. The
difference in each step of the derivation tells you whether you shift or reduce. Here
is the result.

E ⇒ T ⇒ T ∗ F ⇒ T ∗ 4 ⇒ F ∗ 4 ⇒ (E) ∗ 4 ⇒ (E + T) ∗ 4 ⇒ (E + F) ∗ 4

⇒ (E + 5) ∗ 4 ⇒ (T + 5) ∗ 4 ⇒ (F + 5) ∗ 4 ⇒ (6 + 5) ∗ 4

We get the following operations from this. Stack contents have the top on the right
up to the dot. Everything after the dot has not been read yet. We shift when we must
move through the tokens to get to the next place we are reducing. Each step in the
reverse derivation provides the reduce operations. Since there are seven tokens there
should be seven shift operations.

1. Initially: . (6 + 5) ∗ 4
2. Shift: (. 6 + 5) ∗ 4
3. Shift: (6 . + 5) ∗ 4
4. Reduce by rule 5: (F . + 5) ∗ 4
5. Reduce by rule 4: (T . + 5) ∗ 4
6. Reduce by rule 2: (E . + 5) ∗ 4
7. Shift: (E + . 5) ∗ 4

56 2 Syntax

8. Shift: (E + 5 .) ∗ 4
9. Reduce by rule 5: (E + F .) ∗ 4
10. Reduce by rule 4: (E + T .) ∗ 4
11. Shift: (E + T) . ∗ 4
12. Reduce by rule 1: (E) . ∗ 4
13. Reduce by rule 6: F . ∗ 4
14. Reduce by rule 4: T . ∗ 4
15. Shift: T ∗ . 4
16. Shift: T ∗ 4 .
17. Reduce by rule 5: T ∗ F .
18. Reduce by rule 3: T .
19. Reduce by rule 2: E .

http://www.springer.com/978-3-319-70789-1

	2 Syntax
	2.1 Terminology
	2.2 Backus Naur Form (BNF)
	2.2.1 BNF Examples
	2.2.2 Extended BNF (EBNF)

	2.3 Context-Free Grammars
	2.3.1 The Infix Expression Grammar

	2.4 Derivations
	2.4.1 A Derivation
	2.4.2 Types of Derivations
	2.4.3 Prefix Expressions
	2.4.4 The Prefix Expression Grammar

	2.5 Parse Trees
	2.6 Abstract Syntax Trees
	2.7 Lexical Analysis
	2.7.1 The Language of Regular Expressions
	2.7.2 Finite State Machines
	2.7.3 Lexer Generators

	2.8 Parsing
	2.9 Top-Down Parsers
	2.9.1 An LL(1) Grammar
	2.9.2 A Non-LL(1) Grammar
	2.9.3 An LL(1) Infix Expression Grammar

	2.10 Bottom-Up Parsers
	2.10.1 Parsing an Infix Expression

	2.11 Ambiguity in Grammars
	2.12 Other Forms of Grammars
	2.13 Limitations of Syntactic Definitions
	2.14 Chapter Summary
	2.15 Review Questions
	2.16 Exercises
	2.17 Solutions to Practice Problems
	2.17.1 Solution to Practice Problem 2.1
	2.17.2 Solution to Practice Problem 2.2
	2.17.3 Solution to Practice Problem 2.3
	2.17.4 Solution to Practice Problem 2.4
	2.17.5 Solution to Practice Problem 2.5
	2.17.6 Solution to Practice Problem 2.6
	2.17.7 Solution to Practice Problem 2.7
	2.17.8 Solution to Practice Problem 2.8
	2.17.9 Solution to Practice Problem 2.9
	2.17.10 Solution to Practice Problem 2.10
	2.17.11 Solution to Practice Problem 2.11

