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Abstract. Boolean networks are a widely used qualitative modelling
approach which allows the abstract description of a biological system.
One issue with the application of Boolean networks is the state space
explosion problem which limits the applicability of the approach to large
realistic systems. In this paper we investigate developing a compositional
framework for Boolean networks to facilitate the construction and analy-
sis of large scale models. The compositional approach we present is based
on merging entities between Boolean networks using conjunction and we
introduce the notion of compatibility which formalises the preservation
of behaviour under composition. We investigate characterising compati-
bility and develop a notion of trace alignment which is sufficient to ensure
compatibility. The compositional framework developed is supported by
a prototype tool that automates composition and analysis.
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1 Introduction

In order to study and synthesize complex biological systems a range of quali-
tative modelling techniques have emerged [3,4]. Boolean networks [8,9] are one
such approach which are based on abstractly representing the state of a regu-
latory entity as a Boolean value, where 1 represents the entity is active and 0
inactive. The state of each entity is then regulated by other entities based on
a defined next–state function and their dynamic behaviour results in attractor
cycles that can then be associated with biological phenomena. Entities can either
be updated synchronously, where the state of all entities is updated simultane-
ously, or asynchronously, where entities update their state independently.

Despite their simplicity, Boolean networks have been shown to allow a range
of interesting biological analysis to be performed and have been widely consid-
ered in the literature (for example, see [1,3,10,11,13]). Indeed, it can be seen
that they have an important role to play in advancing our understanding and
engineering capability of complex biological systems. However, one important
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issue that limits the scalable application of Boolean networks is the well–known
state space explosion problem.

In this paper we investigate developing a formal framework for the composi-
tion of Boolean networks to facilitate the construction and analysis of large scale
models. The compositional approach we present is based on merging entities in
Boolean networks using conjunction (though the results presented hold for other
logical connectives). We introduce the notion of compatibility which formalises
the idea of preserving the underlying behaviour of models that are composed.
The compatibility property is problematic as it references the composed model
and so we develop a notion of trace alignment which we show is sufficient to
ensure compatibility. We illustrate the alignment property by presenting results
about the compatibility of composing duplicate copies of a Boolean network.
The compositional framework developed is supported by a prototype tool that
automates the composition process and associated analysis.

This paper is organized as follows. In Sect. 2 we provide a brief introduction to
Boolean networks. In Sect. 3 we develop a compositional framework for Boolean
networks and consider the preservation of behaviour under composition which we
formalise by a notion of compatibility. In Sect. 4 we investigate characterising
compatibility and introduce the property of alignment which avoids directly
considering the composed model. Finally, in Sect. 5 we present some concluding
remarks and discuss future work.

2 Boolean Networks

Boolean networks [8,9] are a widely used qualitative modelling approach for
biological control systems (see for example [1,3,10,11,13]). In this section we
introduce the basic definitions for Boolean networks needed in the sequel and
provide illustrative examples.

A Boolean network consists of a set of regulatory entities G = {g1, . . . , gn}
which can be in one of two possible states, either 1 representing the entity is
active (e.g. a gene is expressed or a protein is present) or 0 representing the
entity is inactive (e.g. a gene is not expressed or a protein is absent). The state
of each entity is regulated by a subset of entities in the Boolean network and we
refer to this subset as the neighbourhood of an entity (an entity may or may not
be in its own neighbourhood). An entity updates its state by applying a logical
next–state function to the current states of the entities in its neighbourhood.

We can define a Boolean network more formally as follows.

Definition 1. A Boolean Network BN is a tuple BN = (G,N,F ) where:

(i) G = {g1, . . . , gk} is a non-empty, finite set of entities;
(ii) N = (N(g1), . . . , N(gk)) is a tuple of neighbourhoods, such that N(gi) ⊆ G

is the neighbourhood of gi; and
(iii) F = (F (g1), . . . , F (gn)) is a tuple of next-state functions, such that the

function F (gi) : B|N(gi)| → B defines the next state of gi.
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Fig. 1. Example of a Boolean network BNEx1 consisting of: (A) Wiring diagram; (B)
Equational definition of next–state functions for BNEx1; (C) Synchronous state graph

As an example, consider the Boolean network BNEx1 = (GEx1, NEx1, FEx1)
defined in Fig. 1. It consists of three entities GEx1 = {g1, g2, g3} with neigh-
bourhoods NEx1(g1) = {g2}, NEx1(g2) = {g1}, and NEx1(g3) = {g1, g2}. The
next-state functions FEx1 are defined equational in Fig. 1(B), where we use [gi]
to represent the next state of an entity gi.

A global state of a Boolean network BN with n entities is represented by a
tuple of Boolean states (s1, . . . , sn), where si ∈ B represents the state of entity
gi ∈ BN . Note as a notational convenience we often use s1 . . . sn to represent a
global state (s1, . . . , sn). When the current state of a Boolean network is clear
from the context we allow gi to denote both the name of an entity and its
corresponding current state. The state space of a Boolean network BN , denoted
SBN , is therefore the set of all possible global states SBN = B

|G|.
The state of a Boolean network can be updated either synchronously [9,16],

where the state of all entities is updated simultaneously in a single update step,
or asynchronously [6], where entities update their state independently. In the
following we focus on the synchronous update semantics which has received
considerable attention in the literature (see for example [1,2,8,9,12,16]). Given
two states S1, S2 ∈ SBN , let S1 → S2 represent a (synchronous) update step
such that S2 is the state that results from simultaneously updating the state of
each entity gi using its associated update function F (gi) and the appropriate
neighbourhood of states from S1. As an example, consider the global state 011
for BNEx1 (see Fig. 1), where entity g1 = 0, g2 = 1, and g3 = 1. Then 011 → 101
is an update step in BNEx1.

The sequence of global states through SBN from some initial state is called a
trace. Note that in the case of the synchronous update semantics such traces are
deterministic and infinite. However, given that the global state space is finite,
this implies that a trace must eventually enter a cycle, known formally as an
attractor cycle [9,14]. Attractor cycles are very important biologically where
they are seen as representing different biological states or functions (e.g. different
cellular types such as proliferation, apoptosis and differentiation [7]). We define a
finite canonical representation for synchronous traces σ(S), for S ∈ SBN , which
specifies the infinite behaviour of a trace up to the first repeated state. The set



28 H. Alkhudhayr and J. Steggles

of all traces Tr(BN ) = {σ(S) | S ∈ SBN } therefore completely characterizes the
behaviour of a Boolean network BN under the (synchronous) update semantics.
For example, in BNEx1 the trace σ(011) = 〈011, 101, 010, 101, 010, 101, . . .〉 is
denoted by

σ(011) = 〈011, 101, 010, 101〉
It can be seen that BNEx1 has three attractors: two point attractors 〈000, 000〉
and 〈110, 110〉; and a cyclic attractor 〈101, 010, 101〉.

The behaviour of a Boolean network can be concisely represented by a state
graph in which the nodes are the global states and the edges are precisely the
synchronous update steps allowed. We let SG(BN ) = (SBN ,→) denote the state
graph for a Boolean network BN under the synchronous trace semantics. As an
example, consider the synchronous state graph SG(BNEx1) for BNEx1 presented
in Fig. 1(C).

3 Compositional Framework

In this section we introduce definitions for composing two Boolean networks by
merging entities and prove some simple results such as commutativity. We then
consider what it means for the behaviour of an individual Boolean network in a
composed model to be preserved and formulate a notion of compatibility.

BN 1 BN 2g

C

BN 1 BN 2gc

g

Fig. 2. Pictorial representation of composing BN 1 and BN 2 to form a new Boolean
network C by merging entities g ∈ BN 1 and g′ ∈ BN 2 into a new entity gc

In the sequel, let BN 1 = (G1, N1, F1) and BN 2 = (G2, N2, F2) be two
Boolean networks such that G1 = {g, g1, . . . , gn} and G2 = {g′, g′

1, . . . , g
′
m} are

disjoint sets, for some n,m ∈ N.
We formally define the composition of two Boolean networks BN 1 and BN 2

based on using conjunction (see Fig. 2). (Note all results presented also hold
using disjunction.)

Definition 2. (Composition) Let C (BN 1,BN 2, g, g′) denote the Boolean net-
work constructed by merging BN 1 and BN 2 on entities g and g′ defined as
follows:
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1. Entities: the finite set of entities G = (G1/{g}) ∪ (G2/{g′}) ∪ {gc}, where
gc denotes the new entity created by merging g and g′.

2. Neighbourhood: for any entity hi ∈ G, the neighbourhood N(hi) is defined
as follows:

N(hi) =

⎧
⎪⎨

⎪⎩

N1(hi)[g/gc], if hi ∈ G1

N2(hi)[g′/gc], if hi ∈ G2

N1(g)[g/gc] ∪ N2(g′)[g′/gc], if hi = gc

where S[f/e] represents set S with all occurrences of element f replaced by e.
3. Functions: for any hi ∈ G, the next-state function F (hi) is defined:

F (hi) =

⎧
⎪⎨

⎪⎩

F1(hi), if hi ∈ G1

F2(hi), if hi ∈ G2

F , if hi = gc

where F : B|N(gc)| → B is defined using four cases as follows:

(i) If g /∈ N1(g) and g′ /∈ N2(g′), where N1(g) = {l1, ..., lp} and N2(g′) =
{l′1, ..., l

′
q}, then F(l1, ..., lp, l′1, ..., l

′
q) = F1(g)(l1, ..., lp) ∧ F2(g′)(l′1, ..., l

′
q);

(ii) If g ∈ N1(g) and g′ /∈ N2(g′), where N1(g) = {g, l1, ..., lp} and
N2(g′) = {l′1, ..., l

′
q}, then F(gc, l1, ..., lp, l′1, ..., l

′
q) = F1(g)(gc, l1, ..., lp) ∧

F2(g′)(l′1, ..., l
′
q);

(iii) If g /∈ N1(g) and g′ ∈ N2(g′), where N1(g) = {l1, ..., lp} and
N2(g′) = {g′, l′1, ..., l

′
q}, then F(gc, l1, ..., lp, l′1, ..., l

′
q) = F1(g)(l1, ..., lp) ∧

F2(g′)(gc, l′1, ..., l
′
q);

(iv) If g ∈ N1(g) and g′ ∈ N2(g′), where N1(g) = {g, l1, ..., lp} and N2(g′) =
{g′, l′1, ..., l

′
q}, then

F(gc, l1, ..., lp, l′1, ..., l
′
q) = F1(g)(gc, l1, ..., lp) ∧ F2(g′)(gc, l′1, ..., l

′
q).

In the sequel, we let gc denote the new entity created by merging g and g′ and
assume that C (BN 1,BN 2, g, g′) has global states (gc g1 ... gn g′

1 ... g′
m) ∈ SC .

g4 g5
[g4] = g5
[g5] = g4

00

11

01 10

Fig. 3. A second Boolean network example BNEx2 containing the wiring diagram,
next–state equations, and state graph

As an example, consider composing BNEx1 (Fig. 1) and BNEx2 (Fig. 3) on
entities g1 and g4. The resulting Boolean network C(BNEx1,BNEx2, g1, g4) is
depicted in Fig. 4.

The following results shows that composition is commutative.
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g1 g4
gc

g3

g2

g5

[gc] = g2g5
[g2] = gc

[g3] = gcg2
[g5] = gc

Fig. 4. Boolean network C(BNEx1,BNEx2, g1, g4) resulting from the composition of
BNEx1 and BNEx2 on entities g1 and g4

Lemma 3. For any Boolean networks BN 1 and BN 2 and entities g ∈ BN 1 and
g′ ∈ BN 2 we have C (BN 1,BN 2, g, g′) = C(BN 2,BN 1, g

′, g).

Proof. Straightforward based on the commutativity of conjunction. 	

Composition gives a means of constructing new Boolean networks from well–

understood and analysed Boolean networks. In particular, we would like to be
able to infer properties and behaviour of a composed system from the underlying
Boolean networks that have been composed. Being able to do this would allow us
to construct large Boolean models with known properties without the limitations
imposed by the state space explosion problem. The following definitions formalize
the idea that the original behaviour of the underlying Boolean networks can be
preserved in their composition.

We begin by defining projection operators which are able to extract states
and traces from a composed system.

Definition 4. (Projections) Let C = C (BN 1,BN 2, g, g′) be the new Boolean
network constructed by composing BN 1 and BN 2 on entities g and g′. Let S =
(gc g1 ... gn g′

1 ... g′
m) ∈ SC be a global state in the composed system. Then we

define the left P1 : SC → SBN 1 and right P2 : SC → SBN 2 projection operators
by

P1(S) = (gc g1 ... gn), P2(S) = (gc g′
1 ... g′

m)

We can extend the projection operators to traces σ = 〈S1, S2, . . .〉 ∈ Tr(C) by

P1(σ) = 〈P1(S1),P1(S2), . . .〉, P2(σ) = 〈P2(S1),P2(S2), . . .〉
and let P1(Tr(C)) and P2(Tr(C)) represent the sets of projected traces derived
by projecting each trace in Tr(C).

Note that projected traces may not be well–defined traces in their corre-
sponding Boolean network, i.e. Pj(Tr(C)) �⊆ Tr(BN j) may hold, for j ∈ {1, 2}.

We are interested in situations where composing two Boolean networks pre-
serves their behaviour and define a notion of compatibility.

Definition 5. (Compatibility) Let C = C (BN 1,BN 2, g, g′) be the Boolean net-
work resulting from composing BN 1 and BN 2 on entities g and g′. Then we say
that BN 1 and BN 2 are compatible on g and g′ iff Tr(BN 1) ⊆ P1(Tr(C)) and
Tr(BN 2) ⊆ P2(Tr(C)).



Framework for Composing Qualitative Models of Biological Systems 31

To illustrate the definition of compatibility consider composing BNEx1 and
BNEx2 to produce C = C(BNEx1,BNEx2, g1, g4) (see Fig. 4). Then examples of
projected traces in P2(Tr(C)) (assuming state order (gc g2 g3 g5)) will be

P2(〈0100, 1011, 0100〉) = 〈00, 11, 00〉 P2(〈0001, 0001〉) = 〈01, 01〉
P2(〈1001, 0100, 1011, 0100〉) = 〈11, 00, 11〉 P2(〈1100, 1100〉) = 〈10, 10〉

It can be seen that Tr(BNEx2) ⊆ P2(Tr(C)) and so since we can also show
Tr(BNEx1) ⊆ P1(Tr(C)) we know BNEx1 and BNEx2 are compatible on g1
and g4.

The following results show that composition is associative and so given
Lemma 3 (commutativity) this means that the order in which multiple Boolean
networks are composed does not affect the resulting model.

Lemma 6. Let BN 1, BN 2 and BN 3 be three Boolean networks, and let g1 ∈
BN 1, g2, g3 ∈ BN 2, g2 �= g3, and g4 ∈ BN 3. Then we have

C(C (BN 1,BN 2, g1, g2) ,BN 3, g3, g4) = C(BN 1, C(BN 2,BN 3, g3, g4), g1, g2)

Proof. Let C2 = C (BN 1,BN 2, g1, g2), C3 = C(C2,BN 3, g3, g4), and let C4 =
C(BN 2,BN 3, g3, g4), C5 = C(BN 1, C4, g1, g2). Let gc2 be the entity representing
the merge of g1 and g2, and gc4 the merge of g3 and g4. Then by Definition 2 it
suffices to show: (1) FC3(g

c
2) = FC5(g

c
2); and (2) FC3(g

c
4) = FC5(g

c
4).

We prove (1) as follows. By Definition 2 we know

FC3(g
c
2) = FC2(g

c
2), and FC2(g

c
2) = F1(g1) ∧ F2(g2)

where F1(g1) ∧ F2(g2) represents the function formed by the conjunction of the
results of the two subfunctions F1(g1) and F2(g2). Then it follows from above
that

FC3(g
c
2) = F1(g1) ∧ F2(g2) (I)

Again, by Definition 2 we know

Fc4(g2) = F2(g2), and Fc5(g
c
2) = F1(g1) ∧ Fc4(g2)

and so it follows that

Fc5(g
c
2) = F1(g1) ∧ F2(g2) (II)

The result therefore follows by (I) and (II). The proof of (2) follows along similar
lines to above. 	

Lemma 7. Let BN 1, BN 2 and BN 3 be three Boolean networks, and let g1 ∈
BN 1, g2 ∈ BN 2, and g4 ∈ BN 3. Then we have

C(C (BN 1,BN 2, g1, g2) ,BN 3, g
c
2, g4) = C(BN 1, C(BN 2,BN 3, g2, g4), g1, gc4)

where gc2 is the entity representing the merge of g1 and g2, and gc4 the merge of
g2 and g4.
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Proof. Let C2 = C (BN 1,BN 2, g1, g2), C3 = C(C2,BN 3, g
c
2, g4), and gc3 be the

entity representing the merge of gc2 and g4. Let C4 = C(BN 2,BN 3, g2, g4), C5 =
C(BN 1, C4, g1, g

c
4), and gc5 be the entity representing the merge of g1 and gc4. To

show that C3 = C5 we need to show that Fc3(g
c
3) = Fc5(g

c
5). By Definition 2 we

know
Fc3(g

c
3) = Fc2(g

c
2) ∧ F3(g4), and Fc2(g

c
2) = F1(g1) ∧ F2(g2)

and so it follows that

Fc3(g
c
3) = (F1(g1) ∧ F2(g2)) ∧ F3(g4) (III)

Again, by Definition 2 we know

Fc5(g
c
5) = F1(g1) ∧ Fc4(g

c
4), and Fc4(g

c
4) = F2(g2) ∧ F3(g4)

and so it follows that

Fc5(g
c
5) = F1(g1) ∧ (F2(g2) ∧ F3(g4)) (IV)

Then the result follows by (III), (IV) and the associativity of ∧. 	


4 Compatibility and Alignment

In this section we investigate how to infer compatibility without using the com-
posed model. We formalise the property of alignment which we show is sufficient
for obtaining compatibility. We use this result to show that duplicate Boolean
networks are compatible under composition of corresponding entities.

For any Boolean network BN with entities G = {g1, . . . , gn}, global state
S = (s1 . . . sn) ∈ SBN and any entity gi ∈ BN we define ρgi(S) = si. Then ρgi(σ)
denotes the projected trace of entity gi ∈ BN on trace σ = 〈S1, S2, . . .〉 ∈ Tr(BN )
defined by ρgi(σ) = 〈ρgi(S1), ρgi(S2), . . .〉. We let ρgi(Tr(BN )) = {ρgi(σ)| σ ∈
Tr(BN )}. As an example, consider projecting the traces of BNEx2 (Fig. 3) on
g4 which gives ρg4(Tr(BNEx2)) = {〈0, 1, 0〉, 〈0, 0〉, 〈1, 1〉, 〈1, 0, 1〉}.

We can now define the property of alignment as follows.

Definition 8. (Alignment) Let BN 1 and BN 2 be two Boolean networks and
let g ∈ BN 1 and g′ ∈ BN 2. Then we say that BN 1 and BN 2 are aligned on g
and g′ iff ρg(Tr(BN 1)) = ρg′(Tr(BN 2)).

Let C = C (BN 1,BN 2, g, g′), and S1 = (g g1 ... gn) ∈ SBN 1 and S2 =
(g′ g′

1 ... g′
m) ∈ SBN 2 . Then we define S1∧S2 ∈ SC by merging the state of g with

g′, that is S1 ∧ S2 = (g ∧ g′ g1 ... gn g′
1 ... g′

m). Let σ1 = 〈S1
1 , S1

2 , ...〉 ∈ Tr(BN 1)
and σ2 = 〈S2

1 , S2
2 , ...〉 ∈ Tr(BN 2) be two traces. Then we define σ1 ∧ σ2 =

〈S1
1 ∧ S2

1 , S1
2 ∧ S2

2 , ...〉. Note that for any σ1 ∈ Tr(BN 1) and σ2 ∈ Tr(BN 2) we
may have that σ1 ∧ σ2 �∈ Tr(C).

We now prove some useful results about merging aligned traces.

Lemma 9. Let BN 1 and BN 2 be Boolean networks with G1 = {g, g1, . . . , gn}
and G2 = {g′, g′

1, . . . , g
′
m}. Let C = C (BN 1,BN 2, g, g′), and let σ1 ∈ Tr(BN 1)

and σ2 ∈ Tr(BN 2) such that ρg(σ1) = ρg′(σ2). Then we have:
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(i) σ1 ∧ σ2 ∈ Tr(C); and
(ii) P1(σ1 ∧ σ2) = σ1 and P2(σ1 ∧ σ2) = σ2.

Proof. Let σ1 = 〈S1, S2, ...〉 ∈ Tr(BN 1) and σ2 = 〈T1, T2, ...〉 ∈ Tr(BN 2)
such that ρg(σ1) = ρg′(σ2). In the following we consider an arbitrary syn-
chronous update step in the above traces: Si → Si+1 and Ti → Ti+1, where
Si = (si si1 ... sin), Si+1 = (si+1 si+1

1 ... si+1
n ), Ti = (ti ti1 ... tim), and

Ti+1 = (ti+1 ti+1
1 ... ti+1

m ). Note that by our assumption ρg(σ1) = ρg′(σ2) we
know si = ti and so by idempotency of ∧ we have

si ∧ ti = si = ti (V)

(i) To show σ1 ∧ σ2 ∈ Tr(C), it suffices to show

(si si1 ... sin) ∧ (ti ti1 ... tim) → (si+1 si+1
1 ... si+1

n ) ∧ (ti+1 ti+1
1 ... ti+1

m )

is a synchronous update step in C. We do this in three stages by considering
each possible entity h ∈ C. (Note to simplify the proof we assume N1(h1) =
G1 and N2(h2) = G2, for any h1 ∈ G1 and h2 ∈ G2.)
(1) Suppose h = gj ∈ BN 1, for some j ∈ {1, . . . , n}. Then by the definition

of merging states and (V) above we have

F (gj)(si ∧ ti, si1, ..., s
i
n) = F1(gj)(si, si1, ..., s

i
n)

By definition of σ1 we know F1(gj)(si, si1, ..., s
i
n) = si+1

j and so it follows
that

F (gj)(si ∧ ti, si1, ..., s
i
n) = si+1

j

as required.
(2) Suppose h = g′

j ∈ BN 2, for some j ∈ {1, . . . , m}. Then we can prove

F (g′
j)(s

i ∧ ti, ti1, ..., t
i
m) = ti+1

j

using a similar approach to (1) above.
(3) Suppose h = gc ∈ C. Then by Definition 2 and (I) above we have

F (gc)(si ∧ ti, si1, ..., s
i
n, t

i
1, ..., t

i
m) = F1(g)(s

i, si1, ..., s
i
n) ∧ F2(g

′)(ti, ti1, ..., t
i
m)

Then by our assumptions on σ1 and σ2 we have

F1(g)(si, si1, ..., s
i
n) ∧ F2(g′)(ti, ti1, ..., t

i
m) = si+1 ∧ ti+1

and so the result follows as required.
(ii) By definition of merging traces it suffices to show that

P1(Si ∧ Ti) = Si and P2(Si ∧ Ti) = Ti

for any i ∈ N. By definition of merging states we have

P1(Si ∧ Ti) = (si ∧ ti si1 ... sin) and P2(Si ∧ Ti) = (si ∧ ti ti1 ... tim)

Then the result follows by (V) above. 	
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We can now prove that alignment is a sufficient property for compatibility.

Theorem 10. Let BN 1 and BN 2 be two BNs with g ∈ BN 1 and g′ ∈ BN 2.
Then if BN 1 and BN 2 are aligned on g and g′ then BN 1 and BN 2 are compatible
on g and g′.

Proof. Let C = C (BN 1,BN 2, g, g′). By Definition 5 we need to show the follow-
ing: (i) Tr(BN 1) ⊆ P1(Tr(C)); and (ii) Tr(BN 2) ⊆ P2(Tr(C)).

(i) Since g aligns with g′ we know that for each trace σ1 ∈ Tr(BN 1) there
exists σ2 ∈ Tr(BN 2) such that ρg(σ1) = ρg′(σ2). Then we need to show
that σ1 ∈ P1(Tr(C)). By our assumption above on σ1 and σ2 and Lemma
9. (i) we know that σ1 ∧ σ2 ∈ Tr(C) must hold. Then by Lemma 9. (ii) we
have P1(σ1 ∧ σ2) = σ1 and so σ1 ∈ P1(Tr(C)) as required.

(ii) The proof follows along similar lines to (i) above. 	

The above result provides a means of ensuring compatibility holds without

requiring the composed system to be considered. This is important since a com-
posed model will be larger and so more affected by the state space explosion
problem. Note that while alignment is a sufficient condition for compatibility
it can be shown that it is not a necessary property for it. In future work we
intend to investigate strengthening alignment so that it completely characterises
compatibility (see Sect. 5).

We say that BN 1 and BN 2 are duplicates if they are the same Boolean net-
work up to the renaming of entities (i.e. they are isomorphic). It is interesting
to consider what happens when duplicate Boolean networks are merged on cor-
responding entities (where corresponding is defined in the obvious way based on
the underlying isomorphism). As an illustration, consider the example presented
in Fig. 5 based on composing two duplicate copies of BNEx1 (Fig. 1).

g1 g4
gc

g6

g5

g3

g2

[gc] = g2g5
[g2] = gc

[g3] = gcg2
[g5] = gc

[g6] = gcg5

Fig. 5. Composing two duplicate copies of BNEx1 on corresponding entities g1 and g4

We now use the alignment property to show that duplicate Boolean networks
are compatible when composed on corresponding entities.

Theorem 11. Let BN 1 and BN 2 be two duplicate Boolean networks and let
g ∈ BN 1 and g′ ∈ BN 2 be corresponding entities. Then BN 1 and BN 2 are
compatible on g and g′.
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Proof. Since BN 1 and BN 2 are duplicates it follows (assuming a corresponding
state order) that Tr(BN 1) = Tr(BN 2). Thus by Definition 8 we know that BN 1

and BN 2 are aligned on corresponding entities g and g′, and so by Theorem 10
we have that BN 1 and BN 2 are compatible on g and g′ as required. 	


5 Conclusions

In this paper we set out to develop a compositional framework for Boolean net-
works in order to facilitate the construction and analysis of large scale models.
This work was motivated by interesting interactions with the synthetic biology
group at Newcastle1 and their search for formal tools and techniques to sup-
port their work on engineering biological systems. We have formally defined our
compositional approach and introduced the notion of compatibility to formalize
the preservation of a Boolean network’s behaviour within a composed model.
We formulated the alignment property which we showed was a sufficient con-
dition for ensuring compatibility and used it to investigate the composition of
duplicate models. Importantly, the alignment property makes no reference to
the composed model and so helps avoid potentially limiting state space explo-
sion issues. The compositional framework developed is supported by a prototype
tool that automates the composition process and associated analysis.

A range of related work on composing Boolean networks can be found in
the literature. For example, the properties of composing random Boolean net-
work by computing the attractors compositionally is considered in [5]. Other
work includes [15] in which a compositional approach is used to study a large-
scale network. Our approach based on merging entities and characterising the
preservation of model behaviour appears to be new.

In future work we intend to extend the alignment property to provide a com-
plete characterisation of compatibility. Initial work in this area has focused on
using a state graph to model the interference that can occur between Boolean
networks in a composed model. We are also interested in using our composi-
tional framework as the basis for decomposing large Boolean network models to
aid analysis. Further, we intend to undertake a series of large case studies to
investigate the applicability of the techniques and tools we have developed.
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10. Rosenblueth, D.A., Muñoz, S., Carrillo, M., Azpeitia, E.: Inference of boolean net-
works from gene interaction graphs using a SAT solver. In: Dediu, A.-H., Mart́ın-
Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 235–246. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07953-0 19

11. Saadatpour, A., Albert, R.: Boolean modeling of biological regulatory networks: a
methodology tutorial. Methods 62(1), 3–12 (2013)

12. Schaub, M.A., Henzinger, T.A., Fisher, J.: Qualitative networks: a symbolic app-
roach to analyze biological signaling networks. BMC Syst. Biol. 1(4) (2007)

13. Steggles, L.J., Banks,R., Shaw,O.,Wipat,A.:Qualitatively modelling and analysing
genetic regulatory networks: a petri net approach. Bioinformatics 23(3), 336–343
(2007). http://bioinformatics.oxfordjournals.org/content/23/3/336

14. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks–
II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297
(1995)

15. Tournier, L., Chaves, M.: Interconnection of asynchronous boolean networks, asymp-
totic and transient dynamics. Automatica 49(4), 884–893 (2013)

16. Wuensche, A.: Basins of attraction in network dynamics: a conceptual framework
for biomolecular networks. In: Schlosser, G., Wagner, G.P. (eds.) Modularity in
Development and Evolution, chap. 13, pp. 288–311. University of Chicago Press,
Chicago (2004)

http://link.aps.org/doi/10.1103/PhysRevE.71.056116
http://link.aps.org/doi/10.1103/PhysRevE.71.056116
https://doi.org/10.1007/978-3-319-07953-0_19
http://bioinformatics.oxfordjournals.org/content/23/3/336


http://www.springer.com/978-3-319-71068-6


	A Formal Framework for Composing Qualitative Models of Biological Systems
	1 Introduction
	2 Boolean Networks
	3 Compositional Framework
	4 Compatibility and Alignment
	5 Conclusions
	References




