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Abstract. Current theoretical attempts towards understanding real-life
leasing scenarios assume the following leasing model. Demands arrive
with time and need to be served by leased resources. Different types
of leases are available, each with a fixed duration and price, respecting
economy of scale (longer leases cost less per unit time). An online algo-
rithm is to serve each arriving demand while minimizing the total leasing
costs and without knowing future demands. In this paper, we general-
ize this model into one in which lease prices fluctuate with time and
are not known to the algorithm in advance. Hence, an online algorithm
is to perform under the uncertainty of both demands and lease prices.
We consider different adversarial models and provide online algorithms,
evaluated using standard competitive analysis. For each of these models,
we give deterministic matching upper and lower bounds.

Keywords: Online algorithms - Leasing - Infrastructure problems -
Parking permit problem - Ski-rental problem

1 Introduction

Over the years, leasing has become a widely adopted business model in many
markets. Companies needing access to expensive equipment have been avoiding
the risk of buying resources, that may soon become obsolete, and leasing them for
limited periods instead. As a result of its flexibility and various advantages, leas-
ing has been used in many forms and employed in plenty of applications. Despite
its prominence, the first theoretic study that aimed towards better understanding
leasing scenarios has been introduced in 2005, by Meyerson [13].

Meyerson has proposed the first theoretic leasing model, phrased as a simple
daily-life problem: the Parking Permit Problem, described as follows. Each day,
depending on the weather, we have to either use the car (if it is rainy) or walk
(if it is sunny). In the former case, we must have a valid parking permit, which
we choose among K different types of permits (leases), each having a different
duration and price. At any time, lease prices respect economy of scale such that
a longer lease costs less per unit time. The goal is to buy a set of leases in
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order to cover all rainy days while minimizing the total cost of purchases and
without using weather forecasts. This simple problem, in which a single resource
(a permit) is leased, to cover arriving demands (rainy days), captures the main
notion of online leasing. There have been a series of works that extend this notion
to more sophisticated problems such as involving multiple resources [1,4,12,14]
or more flexible demands (demands that need not be covered immediately) [11].

All these models assume that resources have fized prices that do not change
over time. Nevertheless, due to their dynamic nature, most markets are likely
to face fluctuations in their resource prices. These may often be hard to predict
and hence leasing decisions tend to be more critical and challenging.

Our Contribution. In this paper, in pursuit of better understanding these
challenges, we incorporate the lack of this knowledge into the leasing model by
allowing lease prices to change over time. These are given by an adversary and
not known to the algorithm in advance. Hence, an online algorithm is to perform
under the uncertainty of both demands (no weather forecast) and lease prices.

To evaluate our algorithms, we use the standard competitive analysis in which
an online algorithm is compared to the optimal offline algorithm which is optimal
and knows the entire sequence of demands and lease prices in advance. Given
an input sequence o, let C4(0) and Copr(c) denote the cost incurred by an
algorithm A and an optimal offline algorithm OPT, respectively. Algorithm A
is c-competitive if there exists a constant « such that C4(0) < ¢-Copr(0) + «
for all input sequences o.

It is easy to see that, without any restrictions on the prices, an adversary can
set the competitive ratio to an arbitrary large number. Thus, we weaken the power
of the adversary by imposing restrictions on how prices change. We define the fol-
lowing adversarial models. The first adversary sets the prices for each lease type k
within an interval [Cy, f - Ci] for some constant f (Sect. 3). The second adversary
allows the price of a lease to only change by at most 1 between any two consecu-
tive days (Sect.4). We also consider these adversaries with the assumption that
demands are given to the algorithm in advance (Sect. 5). For each of these mod-
els, we give deterministic matching upper and lower bounds. We further generalize
some of these results to problems involving multiple resources (Sect. 6).

2 Related Work and Background

In this section, we give an overview of the related literature and provide some
definitions needed throughout the rest of the paper.

Related Work. A standard assumption in most resource allocation problems
has been the permanence of the resources purchased. Once a resource is bought,
it is assumed it can be used any time in the future without inducing further
costs that can be influenced by time or number of uses.

In pursuit of better economies of scale, a number of models have been
introduced. These include the Buy-at-Bulk model [3] in which cost varies with
the capacity a resource provides (larger capacity is cheaper per unit) and the
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Rent-or-Buy model formulated as the Ski-Rental problem, defined as follows.
Each day, a skier is to decide whether to buy or rent skis while minimizing total
skiing costs and without knowing when the skiing season ends [8,9].

A generalization of the Ski-Rental problem is the Parking Permit Problem
described earlier [13], such that the number of leases K is set to 2. Meyerson has
given a deterministic O(K)-competitive and a randomized O(log K)-competitive
algorithm along with matching lower bounds. He has also introduced the leasing
variant of the online Steiner Forest problem, known as Steiner Tree Leasing. The
goal in the classical online Steiner Forest problem is to select a subset of edges
of minimum weight such that each pair of arriving nodes is connected. Steiner
Forest Leasing asks to lease edges for K different durations/prices such that an
edge can be used only during its lease period (must lease it again should we need
it at a later step) and the goal is to connect each arriving pair (called terminals)
for the current step, while minimizing the total leasing costs. Meyerson has given
a randomized O(lognlog K)-competitive algorithm for Steiner Forest Leasing,
where n represents the number of nodes in the input graph and K the number
of available leases. Recently, Bienkowski et al. [6] have proposed a deterministic
algorithm with O(K log s)-competitive ratio for Steiner Tree Leasing (a special
case of Steiner Forest Leasing in which there is a fixed root node to which arriving
requests that are single nodes must be connected), where s denotes the number
of terminals and K the number of available leases.

Inspired by Meyerson’s work, Anthony and Gupta [4] have generalized his
idea to other infrastructure problems: (metric) Facility Location, Set Cover, and
Steiner Tree. An analogous definition to Steiner Forest Leasing is given to each
of these infrastructure leasing problems, known as (metric) Facility Leasing, Set
Cover Leasing, and Steiner Tree Leasing, respectively. Anthony and Gupta have
showed an interesting connection between infrastructure leasing problems and
stochastic optimization problems that leads to approximation algorithms for the
offline variants of these problems. They have given an O(K) (where K is the
number of available leases), O(logn) (where n is the number of elements in the
Set Cover instance), and O(min(K,logn)) (where n is the number of nodes in the
graph and K the number of available leases) approximation for these variants,
respectively.

Nagarajan and Williamson [14] have later improved the O (K )-approximation
for (metric) Facility Leasing to an (offline) 3-approximation and have given an
O(K logn)-competitive algorithm for its online variant, where n is the num-
ber of clients. Kling et al. [10] have extended the results by Nagarajan and
Williamson [14] for the online variant by removing the dependency on n (and
thereby on time). They have given an O(lk log(lk))-competitive algorithm,
where i is the maximum lease length. Abshoff et al. [2] have given the first
online algorithm for Set Cover Leasing and have improved previous results for
online variants of Set Cover. Li et al. [11] have extended Meyerson’s leasing
model by introducing demands that need not be served upon arrival, but have
deadlines. Hu et al. [7] have extended the Parking Permit Problem to a two-
dimensional variant in which lease types have lengths and capacities.
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A variant of the Ski-Rental Problem in which the ski-rental price changes
over time has been introduced by Bienkowski [5]. He has studied several models
differing in the knowledge given to the algorithm in terms of the duration of the
skiing season and has given algorithms with competitive ratios up to constant
or logarithmic factors optimal.

In this paper, we generalize the leasing framework given by the Parking
Permit Problem and introduce pricing models differing in how lease prices change
over time.

Background. We briefly introduce the formal definition of the original Parking
Permit Problem and a variant we often use for our analysis.

Parking Permit Problem: We are given a set of K lease types, defined by prices
Cq,...,Ck and durations lq,...,lx. A day t is covered, if a lease of some type
k is purchased on day ', such that ¢’ <t < # + 1, — 1. The goal is to cover all
given rainy days with minimal costs.

Interval Model: In this variant, a lease type k always starts at times i - [y + 1 for
i € Ng. We refer to an interval of the form [i - I, + 1, (i + 1) - l] as an interval of
type k. In addition, we also assume that all lease intervals align with each other
(i-e., Iy is a multiple of lx_1).

Throughout the paper, we often refer to the deterministic algorithm for the
Parking Permit Problem by Meyerson [13] and so we restate it here. The algo-
rithm assumes the Interval Model and reads as follows: ‘As soon as the optimum
offline algorithm (using only the schedule seen so far) would purchase a lease
type k, the online algorithm buys it’. This algorithm has an O(K)-competitive
ratio (Theorem 3.1 in [13]).

In the original Parking Permit Problem, the Interval Model could be assumed
with the loss of at most 4 in the competitive ratio (Theorem 2.2 in [13]). In our
model, however, this is not true in general due to the changes in lease prices.
Hence, we argue about the loss whenever we make this assumption.

In our model, we use C}, to refer to the lowest price which occurs for a lease
type k on a given sequence. The restrictions on the occurring price changes are
described at the beginning of each respective section.

3 Arbitrary Prices

We consider the following problem. Each day, an adversary determines whether
it is rainy or sunny. It also provides the algorithm with the prices of the leases for
the current day. Prices of leases are allowed to change essentially in an arbitrary
way between two consecutive days. The only restriction is that prices for each
lease type k are within an interval [Cy, f - Ci] for some constant f. We give
deterministic matching lower and upper bounds for this problem. These bounds
depend on the parameters f and K. We also show that the dependency on f
can be avoided when the adversary is replaced by a simple stochastic process.
For the lower bound below, we adopt ideas from the lower bound for the
original Parking Permit Problem while incorporating the maximum price change.
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The main idea is to only give a low price for a lease on the first day of its duration,
such that an online algorithm can not yet make the decision to buy it, if it is a
longer and hence expensive lease.

Theorem 1 (Lower Bound). Every deterministic algorithm for the Parking
Permit Problem with arbitrary prices has a competitive ratio of at least Q(f - K).

Proof. Let ALG be an online algorithm for the Parking Permit Problem with
arbitrary prices. We assume the interval model and define our K lease types as
follows. For the durations we set I = 1 and I, = 2K f3-1,_; for k > 1. The costs
are set to Cj, = (2f2)F. This implies that 2f2 - C}, = Cyyq for all k < K. We
construct an input sequence such that a rainy day occurs every time the current
day is not covered by ALG. On the first day of each interval of type k, the price
is C. For the other days in such an interval, the price is f - Cj.

For every k, we define x; as the number of times the online algorithm buys
a lease type k on the first day of the corresponding interval. In the same way
we define nj for the intervals of type k where the online algorithm buys the
corresponding lease on the second day or later (this is not possible for k = 1,
hence n; = 0). From this we directly get Cajg = >, (zx - Cx 4+ ny - fCy) for the
costs of the online algorithm. Now let ¥y, be the number of intervals of type k
containing at least one rainy day and where ALG does not buy a lease type k
on the first day. A possible solution is to cover each interval of type k with a
non-zero number of rainy days by a lease type k. In the case that ALG buys a
lease type k on the first day of such an interval, there will not be more rainy
days in this interval, hence the optimal solution can cover it with a lease type 1.
Therefore we have for all k: Copt < 2, - C1 + yi - C.

We define r as the number of type k intervals with a non-zero number of
rainy days for which ALG does not buy a lease of any type j > k (hence ry = 0).
We can show that the algorithm has to pay at least K fC} for each of these
intervals. For k = 2, if ALG does not buy a lease type 2 or higher it needs 2/,
leases of type 1 to cover the interval. Therefore the costs for this interval are at
least

l2/l1 . Cl > 2K - f3 . Cl > KfCQ

In the same way, consider an interval of type k > 2 and denote by C4;4(k—1)
the costs ALG pays to cover an interval of type k — 1. By induction we know
that Cazg(k — 1) > K fCr—1 > Ci—1 if it does not cover the whole interval with
a lease type k — 1. Therefore the costs for covering the type k interval are at

least
e/l Croq > 2K - f? - C_y > K fCy.

Using the above estimations and y, = r + Zj>k n; + Zj>k x; we get

Copt L a1 -C1 +yy - Cp for all k

K
= (K =1)f-Cop <Y (arfC1 +yfCr)
k=2
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Note that this bound also holds without the assumption of the interval model,
as we show next. The optimal solution can treat the problem as in the proof,
only buying leases on the first day of a given interval. The algorithm produces
a solution which is not necessarily aligned with the intervals. However, leases
which are bought for a low price are already aligned with those intervals, while
leases which are bought for the high price can be replaced by two leases for
at most the same price. Hence, any solution of an algorithm against the given
sequence in the non-interval model can be transformed into a solution of at most
twice the costs for the interval model.

It should also be noted that the sequence of prices is only increasing for a
fixed lease type within an interval and always repeats itself. From the proof,
we can observe that even knowing this sequence of prices in advance does not
improve the possible performance of any online algorithm in this setting.

Next we show how to achieve a matching O(f - K) upper bound for the
problem. To this end, we show that any c-competitive algorithm for the original
Parking Permit Problem can be transformed into a (¢- f)-competitive algorithm
for the Parking Permit Problem with arbitrary prices.

Theorem 2 (Transformation). Let ALG be any c-competitive algorithm for the
Parking Permit Problem. ALG can be transformed into a (c- f)-competitive algo-
rithm ALG’ for the Parking Permit Problem with arbitrary prices.

Proof. Let ALG be any c-competitive algorithm for the Parking Permit Problem
and let I be any instance of the Parking Permit Problem with arbitrary prices.
We construct ALG’ as follows. For each lease type i in I we fix its prices to
the first price for lease type ¢ revealed by the adversary. Then we run ALG
while purchasing online the leases it outputs. Let Opt be the cost of the optimal
solution for A with arbitrary prices. The cost of our solution constructed is upper
bounded by ¢ Opt’, where Opt’ is the cost of the optimal solution based on the
first prices, fixed by the algorithm. Clearly, we have that Opt’ < f - Opt and so
the theorem follows. O

It turns out that when prices are restricted to be only non-increasing with
time, it is possible to have a competitive ratio independent of f. The following
theorem shows that the deterministic algorithm by Meyerson achieves that.

Theorem 3 (Upper Bound). For the Parking Permit Problem with arbitrary,
non-increasing prices, the deterministic algorithm in [15] is O(K)-competitive.
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Proof. We assume the interval model and lose a factor 2 in the competitiveness,
as follows. Consider the optimum solution for the original problem. Any lease
type k in the optimum solution intersects and thus can be covered by at most
two consecutive leases of the same type in the interval model. The first of these
leases is bought on the same day the optimum lease is bought and hence the
online algorithm pays exactly what the optimum algorithm does. Since prices are
non-increasing, the cost of the second lease is at most the cost of the optimum
lease.

We use induction over the lease types. For k = 1, either the online algorithm
pays 0 or the price for the interval which the optimum also has to pay. For k > 1,
we observe that the induction hypothesis directly implies Ca;qy < (K — 1)Copt if
the optimum does not buy a permit of type k for this interval. Otherwise, we
have Ca14 < (k—1)Copt by induction until the day such that the optimum would
have decided to buy a permit of type k. But then the algorithm at most pays
the same price for this permit as the optimum, since the price can only be non-
increasing. It follows that for every interval of type k that C4;y < k- Copy if this
interval was the whole input which implies the competitive ratio. a

So far we have seen that when price curves are given by an adversary, the
maximum price change within an interval reflects directly on the competitive
ratio of any online algorithm, even if the price curves have a simple repeating
structure and are known in advance.

However, if the specific curve from the lower bound is replaced by curves in
which good prices for our algorithm appear more often, rather than just forcing
a decision on a specific day in the sequence, then we may get a competitive ratio
independent of f.

We demonstrate this effect by introducing a simple variant of the problem
in which the price continues to drastically change, but the times at which it
changes are determined by a stochastic process.

For a lease type ¢ > 1, the prices C; and f - C; are available. The price C;
is chosen with probability p > 0 and f - C; is chosen with probability (1 — p).
The price of the first lease type is assumed to be a constant C;. In this way,
the resulting prices can still form the same pattern as in the deterministic lower
bound.

The goal here is to provide an algorithm with competitive ratio independent
of the maximum price change f. In order to achieve this, we propose an algorithm
that tries to avoid buying a lease at a high price and compensates with an
expected waiting time ©(1) instead. Our algorithm assumes the interval model
and is described as follows.

Algorithm. Let k£ be the lease type with maximum Cj such that Cj < %Cl.
As long as no lease type i > k would be bought by the optimal solution, we
cover all requests with leases of type k which we buy as soon as the low price is
available. We use leases of type 1 to cover the time of waiting for this price. As
soon as the optimal solution would have bought a lease type ¢ > k, we buy it on
the next time step where the price is low and as before cover all requests in the
waiting period with leases of type 1.
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We show in the following theorem that the algorithm above achieves a com-
petitive ratio independent of the maximum price change f for the stochastic
price model.

Theorem 4 (Upper Bound). There exists an O (K + %) -competitive algorithm

for the stochastic price model.

Proof. Let k be the maximum lease type with Cy < %Cl. Replacing every lease
types 1 up to k£ in the optimal solution with a lease type k has expected costs
of at most

> 1-— 1
(1=p)"'p((t = 1)C1 + Cy) = Tpcl +Cy < 2501.

t=1

Now consider the behavior of the algorithm on lease types i with C; > 1C}. The
algorithm only attempts to buy such a lease if the optimal algorithm has bought
it as well. The expected costs of the algorithm are at most

= 1
Z(l 7p)t71p((t — 1)01 + Ci) = Jcl + C; < 2C;.

t=1 p
By induction, it follows that the costs of the algorithm for these lease types are
at most 2K - Copt.

It is easy to see that this analysis also holds for the non-interval model, since
the adversary is assumed to always pay the low price and hence the costs of a
solution in the interval model with this assumption are at most 2 times the costs
of the optimal solution in the non-interval model. a

The competitive ratio above tends to infinity if p becomes very small.
However, if p becomes too small, a ratio (p + (1 — p)f)K can always be
achieved by applying the algorithm by Meyerson. This ratio is also superior
in case p is close to 1. More precisely, the stated ratio of K + % is smaller if

K(f-1)—4 K(f-1)—4
pe 31— /BN 10+ BN

4 The Progressive Model

The results in the previous section raise the question of whether the problem is
hard to solve in general or these results can be improved when more restrictions
are imposed on the adversary. Hence, we consider the following problem. Each
day, an adversary determines whether it is rainy or sunny. It also provides the
algorithm with the prices of the leases for the current day. Unlike in the previous
section, prices can now change by at most 1 between two consecutive days.

The resulting prices are much closer to an almost continuous behavior which
occurs on several digital goods, especially those in which prices are not deter-
mined by a single seller but emerge from a high frequency trade as in the stock
market.

In what follows, we give deterministic matching lower and upper bounds. In
this model, C}, refers to the lowest price occurring for a lease of type k.
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Theorem 5 (Lower Bound). Every online algorithm for the Parking Permit
Problem with progressive prices has a competitive ratio of at least Q(K + éiK)

Proof. The lower bound K follows directly from that of the Parking Permit
Problem. As for !x/cy, consider an instance of the problem with two leases
(K =2). Let C; =1y = 1. The price for the first lease type remains fixed, while
the price Cs for the second lease increases until time % and then decreases again.
There will be no rainy days during the first ZZ? steps. We choose Cy < %. For

the online algorithm, consider the following possibilities:

1. The online algorithm does buy the lease type 2 during the first lf steps. Then
there will be no further rainy days, and the optimal solution pays 0. Hence,
the competitive ratio is unbounded.

2. The online algorithm does not buy the lease type 2 during the first % steps.
Then there will be % rainy days starting from the % + 1st step and the costs
are at least Coy + % for the online algorithm. The optimal costs are Cs.

This sequence can be repeated infinitely often and even works without a model
with fixed intervals since a lease type 2 can never cover 2 complete blocks of
rainy days. O

Note that the sequence of prices is again independent of the algorithm’s
behavior and repeats itself, implying that it does not help the algorithm if the
prices are known in advance. Despite the restriction on the prices, notice that
the maximum price change within the duration of a lease still reflects in the
competitive ratio of any algorithm as illustrated in the lower bound above.

Theorem 6 (Upper Bound). For the Parking Permit Problem with progressive
prices, the deterministic algorithm by Meyerson is O(K + éik)—competz’tive.

Proof. We make two assumptions: (1) the interval model and (2) 21 < I
which also implies 2C%,_1 < Cj. We show next that these assumptions lead to a
loss of at most a factor 4 in the competitiveness. Note that the assumption for
(1) holds only because we compare our online algorithm to the optimal offline
algorithm which assumes no price changes. Clearly, the cost of this optimal offline
algorithm is a lower bound for the cost of the actual optimal offline algorithm
for the problem.

For (1), assume the optimal solution buys a lease type k. If we fix the intervals
in which this lease can be bought, we may replace it by at most two leases of
the same length. The costs of the optimal solution increase by a factor at most
2 since we assume that prices do not change for the optimal solution.

As for (2), we eliminate some of the lease types from the original problem
as follows. We visit the leases one by one in decreasing length order. We keep
the lease with the highest length and start eliminating the leases that do not
satisfy 2lx_1 < lx. Now, consider a lease [; in the optimal solution, which was
eliminated. We replace I; by the next highest lease I; which is not eliminated.
Cy c
l .

< T and since [; < 2l;, we get

C; < 2C; and hence lose a factor at most 2 in the competitive ratio.

Due to economy of scale, we have that
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Now, we use induction over the lease types to show that the algorithm pays
at most (k:—|—2(lf() - ¢, for a lease type k, where C}, is what the optimal algorithm
pays at least to buy such an interval.

For k = 1, the online algorithm pays the same as the optimum. For & > 1,

the algorithm pays at most (k—1 —i—2é,’“k‘_11 )-Cl—1 by induction hypothesis. For k,

the algorithm pays (k—1 —1—2%) -Ck—1 by induction until the day the optimum
would have decided to buy a lease type k, on which the algorithm pays at most

Cr+1j. Hence the algorithm pays a total of at most (k—1+2 é’j:l ) Cro1+Cr+l.

By substituting 2C%_1 < Cj and 2l;—1 < lj, we get (k + Qé—’“k)) - Ch. O

5 Full Weather Forecast

The algorithms presented thus far are faced with the uncertainty of both future
demands and price changes. To better understand the effect of price fluctuation,
we impose further restrictions on the adversary.

For any two lease types i and j, we define 7;;(t) to be the ratio of price of i to
price of j on day t (lease price ratio). The adversary can change lease prices such
that for any two days these ratios remain unchanged. Moreover, the algorithm
is aware of all demands in advance (i.e., has access to full weather forecast).

Note that we already determined that giving the online algorithm full knowl-
edge of the prices while rainy days arrive online does not change the competitive
ratio of the problem since our lower bounds always use a fixed price curve seen
so far.

In what follows, we give deterministic lower and upper bounds for arbitrary
and progressive prices.

Theorem 7 (Lower Bound). Every deterministic algorithm for the Parking
Permit Problem with full weather forecast and arbitrary prices has a competi-
tive ratio of at least Q(f).

Proof. We consider an instance with 2 leases. We set Iy = Cy = 1, Iy = 3f
and Cy = 2f. The requests occur at the f last time steps. We adapt the price
sequence according to the following cases:

1. The online algorithm buys the second lease at the first day of the sequence. Its
costs are therefore 2 f. We drop prices by a factor f and the optimal solution
pays at most 2.

2. The online algorithm does not buy the second lease at the first day. We
increase prices by a factor f. The optimal solution can buy a lease type 2 on
the first day.

Since we always change the two prices by the same factor at the same time, the
lease price ratio stays the same throughout the sequence. O

Theorem 8 (Lower Bound). Every deterministic algorithm for the Parking
Permit Problem with full weather forecast and progressive prices has a com-
petitive ratio of at least Q((lf()
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Proof. We consider an instance with 2 leases. A sequence of length I5 is divided
into four phases as illustrated in Fig.1. Rainy days occur exactly on all days
of the third phase. The price curve is chosen between 2 versions based on the
behavior of the online algorithm in the first phase.

‘ Phase 1 ‘ Phase 2 ‘ Phase 3 ‘ Phase 4

Fig. 1. Illustration of the price curve during one period of the lease type 2.

The online algorithm either buys the lease type 2 before or after price has
risen above % -l in the first phase. If the online algorithm bought it before that,
we choose the lower (orange) curve for the prices and enforce a difference of at
least é - l5. Otherwise we enforce the same difference in prices by choosing the
upper (green) curve. Therefore the costs of both algorithms differ by ©(I3).

We ensure that covering the rainy days with leases of the first type is never
a superior option by setting [y = 1 and ensuring Cy < %lgCl. The price curve of
the lower lease behaves such that the lease price ratio stays the same throughout
the sequence. |

Theorem 9 (Upper Bound). For the Parking Permit Problem with full weather
forecast, there is a deterministic algorithm with competitive ratio O(f) for arbi-
trary prices and O(1 + ZC%) for progressive prices.

Proof. The algorithm assumes that the price of each lease type k is the first
price seen for this type and constructs an optimal offline solution O PTg based
on these prices. It then buys online the leases in OPTg. For the analysis, we
set these prices to their minimum and this is possible since for any two lease
types ¢ and j, r;;(¢)’s remains unchanged for all days and so an optimal offline
solution comprises of the same leases for any two days, given the same schedule
of rainy days. Let Copt,, be the cost of OPTE after setting the prices of leases to
their minimum. We assume the interval model and hence lose a factor at most
2 by the same argument as in the proof of Theorem 6. Moreover, we analyze the
algorithm over the first /i time steps. Let C4;4 and Coyp¢ denote the cost of the
online algorithm and the cost of the optimum algorithm, based on the original
lease prices, respectively. Clearly, Copt,, < Cope. For arbitrary prices, the com-
petitive ratio follows from Ca;4 < f-Copt,, . For progressive prices, the algorithm
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pays lx more for each lease bought in OPTg. Suppose OPTg contains |OPTg|
leases. Then, Copt, = ZIOZIIBTEl Cj(s), where j(s) denotes the type 1,..., K of the

S
corresponding lease. The competitive ratio then follows from

|OPTEg| lK
Calg < Z:; (Ci + 1) < (1+ &)+ Copt-

6 (Generalizations

The results so far address price fluctuation of a single resource (a permit). It
is natural to ask whether these results can be generalized to multiple resources.
Hence, we dedicate this section to infrastructure leasing problems with resource
prices changing over time. Resource prices are determined, as before, by the
arbitrary, progressive, and full weather forecast (arbitrary/progressive) models.

Corollary 1 (Transformation). Let A be any infrastructure leasing problem
with any c-competitive algorithm ALG. ALG can be transformed into a (c - f)-
competitive algorithm and a (¢~ (1+ (%))-competitive algorithm for A with arbi-
trary and progressive prices, respectively.

Proof. The same arguments as those in Theorems2 and 6 for a single resource
hold for any infrastructure leasing problem with multiple resources. a

Corollary 2 (Transformation). Let A be any infrastructure leasing problem
with any (offline) c-approzimation algorithm ALG when demands are known in
advance. ALG can be transformed into a (c- f)-competitive algorithm for A with
full weather forecast and arbitrary prices and a (c + lcil)—competitive algorithm
for A with full weather forecast and progressive prices.

Proof. The same argument as that in Theorem 9 for a single resource holds for
any infrastructure leasing problem with multiple resources. a

Notice that the competitive ratio for the progressive model in Corollary 1 is
Ix/cy times the ratio attained by an algorithm for the original problem. In the
Parking Permit Problem, however, we showed that it is possible to have an addi-
tive factor of !x/cy instead (O(K + ZCLK)) We observe that while the results for
the other adversarial models can easily be generalized to any infrastructure leas-
ing problem and any corresponding algorithm, generalizing the results for the
progressive model seems to require a closer look at the characteristics of the spe-
cific algorithm/problem at hand. As an example, we examine the deterministic
algorithm for the Facility Leasing problem by Nagarajan and Williamson [14].

In Facility Leasing, we are given a set of m potential facility locations F' and
a set of n potential clients U in a metric space. On each day t, the adversary
gives a set Dy C U of clients that must be connected to a facility which is in lease
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on day t. There are K different possible types for leasing a facility and the cost
of leasing a facility f € F with lease type i is c{ . Connecting a client to a facility
incurs a cost equal to the distance between the two. The goal is to connect each
arriving client while minimizing the total leasing costs and connecting costs.

Nagarajan and Williamson [14] proposed an O(K - log n)-competitive algo-
rithm for Facility Leasing, based on the primal-dual scheme. We modify their
algorithm to achieve an O((K + ZCLK) log n)-competitive ratio for Facility Leasing
with progressive prices, as follows.

On the first day we fix the prices of all leases/facilities to their corresponding
prices given by the adversary for that day and run the primal-dual algorithm by
Nagarajan and Williamson based on these prices. Then we purchase online the
leases/facilities the primal-dual algorithm outputs. Clearly, we pay for each of
the purchased leases the corresponding price for the day we buy. While most of
the analysis does carry over, it suffices to just modify Lemma 5.4 in [14]. The
proof of Lemma 5.4 can be modified according to the following observation. The
cost of opening facilities is measured such that every dual variable pays into K
leases at the same time, one for each type. For every lease type k bought, the
actual price might be up to l; higher than the one accounted for in the dual
solution. Hence, by using similar arguments as in the proof of Theorem 6, we
conclude the following.

Corollary 3 (Upper Bound). There is an O((K + (%) log n)-competitive algo-
rithm for Facility Leasing with progressive prices.

We conjecture that this technique can be applied to algorithms that work
similar to the primal-dual algorithm in [14]. In particular, an important charac-
teristic is that the algorithm does not spend more on smaller leases than on a
longer lease within the lease period of that lease. This characteristic seems to
appear in all of the deterministic algorithms for the problem with competitive
ratio dependent on K. This is the result of covering an interval of type K with
all lease types having costs equal to that of the longest lease.

7 Concluding Remarks and Future Work

In this paper, we initiate the study of price fluctuation in online leasing. Our
results imply that the effect of price changes is always apparent, even when
demands are known in advance and the ratio between the prices remains fixed
over time. The table below shows a comparison between the bounds attained
for the two pricing models and the knowledge required by the online algorithm
beforehand.

As a summary of our results, we may conclude that the maximum price
change does reflect in both pricing models, but only as an additive term in the
progressive model.

For both models, full knowledge about the occurring prices does not improve
the competitive ratio. However, knowledge of the rainy days (demands) does
remove the dependency on the number of lease types if, in addition, the ratio
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Arbitrary | Progressive
Unknown rainy days/ Unknown prices | O(f - K) |O(K + ZK =)
Unknown rainy days/ Known prices |O(f-K) |O(K + ZK ~)

Known rainy days/ Unknown prices | O(f) o1+ lcfi ), Q((ljiK)

between the prices remains fixed. Nevertheless, the dependency on the maximum
price change remains.

From the previous section we conclude that the bounds for the Parking
Permit Problem reflect in other leasing problems as well, as we showed either
through general transformations or by example of specific algorithms. We also
conjecture that the lower bounds carry over in a similar fashion.

At this point, one may want to look at some other pricing models, arising,
for instance, from specific actual markets or other stochastic processes. Com-
petitive ratios independent of the maximum price change may then be possible.
Moreover, the latter does not seem to be possible even by extending the current
randomized approaches for leasing problems and thus developing new random-
ization techniques could be an interesting next step.
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