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Abstract. Storage overflow problem in wireless sensor networks is a new
and challenging issue, wherein data-collecting base station is not avail-
able while more data items are generated than available storage space
in the entire network. In this paper, we consider overall storage overflow
problem in WSNs, the goal of which is to maximize the minimum remain-
ing energy of data node (the node with overflow data) in order to prolong
the lifetime of the sensor network. For overall storage overflow problem,
we propose a two-step solution. A degree-constrained data aggregation
algorithm is presented, and then we further propose a data replication
algorithm which is a unified method, integrating data aggregation and
data redistribution. Extensive simulations show that our proposed algo-
rithms significantly outperform than existing algorithms especially in
extending the lifetime of the sensor network.

Keywords: Wireless sensor networks - Overall storage overflow + Data
aggregation - Data redistribution

1 Introduction

In recent years, wireless sensor networks (WSNs) have been widely used in vari-
ous fields. Many of them are deployed in remote area or challenging environments
to collect large volumes of data for a long period of time, such as ocean moni-
toring, volcano eruption monitoring and climate change. Due to the inaccessible
and hostile environments, it is not feasible to deploy long-term base station with
power outlets. Therefore, the generated data is first stored inside the sensor net-
work for a period of time, and then collected by periodic visit of the robots or
data mules. In the challenging environment, however, uploading opportunities
would be unpredictable and rare, a major problem is how to store the massive
amount of data inside the network comprising of nodes with limited storage space
and limited energy. In the sensor network, sensor nodes are randomly deployed
in the area and then each node collects data independently. When events of the
interest take place, sensor nodes close to them may collect data more frequently
than nodes far away, therefore these nodes may run out of their storage space
quickly than others. After a period of time, some nodes may deplete their storage
space and generate overflow data, while other nodes may have available storage
space. There are two level of data overflow in the sensor network.
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1. Partial Storage Overflow: In this level of data overflow, some nodes (denoted
as data nodes) in the sensor network deplete their own storage space while
other nodes (denoted as storage nodes) still have available storage space.
And the total size of available storage space is greater than or equal to the
total size of overflow data. If uploading opportunities are not available, the
newly generated data at data node can not be stored, causing data loss. In
order to avoid data loss, data redistribution are proposed. The idea of data
redistribution is that redistributing overflow data from data node to storage
node, such that any data node does not have any overflow data.

2. Overall Storage Overflow: This is a more serious situation, where the total
size of overflow data exceeds the total size of available storage space in the
network. To overcome overall storage overflow problem, it needs two step:
data aggregation [1] and data redistribution. Data aggregation for overall
storage overflow problem is to reduce the size of overflow data, such that the
overflow data can fit into the available storage space. After data aggregation,
overall storage overflow problem becomes partial storage overflow problem
and it can be solved by data redistribution.

Therefore overall storage overflow problem is more serious and complicated
compared to partial storage overflow problem. In this paper, we focus on overall
storage overflow problem. For this problem, we consider different sensor nodes
may have different remaining energy, especially data node which usually has
low remaining energy as collecting massive data consumes a lot of energy. The
contributions of this paper are as follows:

1. We first study overall storage overflow problem in WSNs for maximizing the
minimum remaining energy of data node. To our best knowledge, the problem
has not been addressed by any of existing research.

2. We propose a data aggregation algorithm and a data replication algorithm.
Data replication algorithm is a unified method which integrate data aggrega-
tion and data redistribution.

3. Extensive experiments have been conducted to verify that our algorithm
achieves higher lifetime than existing approaches.

The rest of this paper is organized as follows. In Sect. 2, we present related
work. In Sect. 3, we introduce overall storage overflow problem. Sections4 and 5,
we introduce data aggregation and unified method for overall storage overflow
problem respectively. And we also give its corresponding algorithms. In Sect. 6,
we compare the proposed algorithms with existing algorithms and discuss the
performance. Section 7 concludes the paper with future work.

2 Related Work

Storage overflow problem in wireless sensor network is relatively new research
topic. Tang et al. [1] study overall storage overflow problem in base station-
less sensor networks. They solve the problem by data aggregation and data
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redistribution. And they address data aggregation for overall storage overflow
is equivalent to multiple traveling salesman walks problem (MTSW). Alhakami
et al. [2] proposed a unified method that is based upon data replication tech-
niques for overall storage overflow problem. Both above work assume that the
energy of each node is infinity, ignoring different nodes may have different
remaining energy.

Tang et al. [3] also study how to minimize the total energy consumption
in the process of data redistribution, and address it as a minimum cost flow
problem. Hou et al. [4] study how to maximize the minimum remaining energy
of the nodes after data preservation, such that the data can be preserved for
maximum amount of time. And Takahashi et al. [5] try to preserve the data
inside the network for maximum possible time, by distributing the data items
from low energy nodes to high energy nodes. Xue et al. [6] consider different data
may have different importance and priority, and study how to preserve data with
maximum priority. They address the core of the problem is a maximum weighted
flow problem and propose a time efficient heuristic algorithm. A network flow
perspective of data preservation problem in sensor networks is given in [7]. All
above work, however, do not address overall storage overflow problem and they
just try to redistribute overflow data as much as possible. In this paper, we con-
sider the different remaining energy of nodes, and try to maximize the minimum
remaining energy of data node in the process of data aggregation in order to
prolong the lifetime of the network.

There are active research that focused on data aggregation. Kuo et al. [§]
studies how to construct a data aggregation tree that minimizes the total energy
cost of data transmission, while Chen et al. [9] study the construction of a
data gathering tree to maximize the network lifetime. Yan et al. [10] and Lee
et al. [11] consider the aggregation delay in the process of data aggregation
and propose data aggregation scheduling scheme to minimize latency in duty-
cycled WSNs. Some other work use mobile base stations collect aggregated data
[12,13]. However data aggregation for overall storage overflow problem signifi-
cantly differs from above data aggregation. The above data aggregation in wire-
less sensor network is used to collect data items from different sensor nodes, in
order to reduce number of transmissions and energy consumption. Data aggre-
gation for overall storage overflow problem is to aggregate the overflow data, so
that the overflow data can be stored in the available storage space. In Sect. 3, we
introduce the process of data aggregation for overall storage overflow problem
in detail.

3 Overall Storage Overflow Problem

The wireless sensor network consists of many nodes, we denote the node with
overflow data as data node, and the node with available storage space as storage
node. To aggregate data, one or more data nodes (called initiators) send their
overflow data to other data nodes. When a data node (called an aggregator)
receives the data, it aggregates its own overflow data, then forwards the initia-
tors entire overflow data to another data node, which becomes an aggregators



A Framework for Overall Storage Overflow Problem 21

and aggregates its own overflow data, and so on so forth. This continues until
enough aggregators are visited such that the total size of overflow data is equals
to or is slightly less than total available storage in the network. Each aggregator
can aggregate its own overflow data only once. If an aggregator receives another
initiator’s overflow data, it just transfers it to other data node. And if a storage
node receives the initiator’s overflow data, it simply relays it. After the aggre-
gation, the initiators’ overflow data become zero, and the last aggregator has
both its own aggregated data and the entire overflow data from initiator. Some
data nodes which neither an initiator nor an aggregator are not involved in data
aggregation, they have original overflow data which is not aggregated.

Network Model. The sensor network can be modeled as an undirected graph
G = (V,E), where V ={1,2,--- |V} is set of |V sensor nodes, and E is set of
|E| edges. Every sensor node can transmit and receive data, but its transmission
range is limited. Vv;,v; € V, there exists an edge (v;,v;) € E in graph G if and
only if node v; and v; are in each other transmission range. Assume that each
node has same transmission range and there are p data nodes, denoted as vg.
Thus the number of storage nodes (denoted as v;) is |V| — p. We consider that
each data node has same size of overflow data and each storage node has same
available storage space. Let R denote the size of overflow data in bits at each
data node, and let m denote the available storage space in bits at each storage
node. For overall storage overflow problem, it satisfies the following equation.

px R>([V|—p)xm (1)

Feasible Overall Storage Overflow. In order to reduce the overflow data to
the size which can be stored by the available storage capacity, enough number
of aggregators should be visited. Let ¢ denotes the number of aggregators, and
r represents the size of overflow data after data aggregation, which based on
a spatial correlation model [14], indicating that the size of redundant overflow
data between any two data nodes is R — r. The feasibility of data aggregation
can be derived in [1].

i pxR=(V]=p)xm, px(R+m)—|V|xm
g= X R WVimp xmy _ ppx (R m) ZVixamy gy

There is at least one initiator, and the maximum number of aggregators is p — 1.
Therefore, the valid range of p is
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Ezample 1. Figure 1 is an example of overall storage overflow problem in a linear
sensor network with five nodes. Figure 1(a) is data aggregation step for overall
storage overflow problem. Node A, C' and D are data nodes, while B and E are
storage nodes. Each data node has 2 units overflow data, and each storage node
has 2 units available storage space. There are total 6 units of overflow data while
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Fig. 1. A sensor network with overall storage overflow problem. (a) Data aggregation
step. (b) Data redistribution step.

there are only 4 units of available storage space, causing overall storage overflow
problem. We assume that r = 1. The number of aggregators ¢ is calculated as 2
by using Eq. 2. Therefore the number of initiator is one. One possible aggregation
walk is A, B, C, D and node A is the initiator. After data aggregation, the size
of overflow data at A, C and D are 0, 1 and 3 respectively.

After data aggregation, the next step is data redistribution. Data redistrib-
ution is to decide how to redistribute overflow data from data node to storage
node. This has been shown to be a minimum cost flow problem [3], which can be
solved efficiently. Figure 1(b) shows data redistribution step post data aggrega-
tion. After data aggregation, the total size of overflow data is equal to available
storage space. One possible data redistribution solution is redistributing C’s 1
unit of data to B, D’s 1 unit of data to B via C' and D’s 2 units of data to E.
Finally, any data node does not have overflow data.

4 Data Aggregation for Overall Storage Overflow
Problem

4.1 Data Aggregation Formulation

In the sensor network, all sensor nodes have a limited energy source, typically
in the form of a battery. It is awkward and unreasonable to replace the energy
source of node. For data node, it costs more energy than storage node as it
collects and saves massive data items. The remaining energy of the data node
is generally lower than the residual energy of the storage nodes. It is therefore
significant to save the data node’s energy for prolonging the lifetime of network
(the time until the first node depletes its energy in the network).

Let Vpn = {DN1,DNs,--- ,DN,} denotes the set of data nodes and there
is a set of aggregation walks: W = {Wy, Wy, --- | W, }, where each walk W;(1 <
i < a) start from a distinct initiator. Each node have its own energy F;. Let E}
denote node’s residual energy after data aggregation. Then,

El=E; — za: Ciw, (4)

j=1
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where C; w, is the energy cost of node 7 in the aggregation walk W; by trans-
mitting or receiving data items. If node ¢ is not in the aggregation walk Wj,
Ci,w; = 0. The objective of data aggregation is to find a set of aggregation walk
W = {Wy, Wy, - ,W,}, such that the minimum energy among all data node
Vb is maximized post aggregation, while saving as much energy as possible.

max min Epy 5

wx min By, )
under the energy constraint that each node can not spend more energy than its
own energy, E; > 0,Vi € V.

4.2 Data Aggregation Algorithm

Since the main participant in the process of data aggregation is the data node,
we firstly transform the original sensor network G(V, E) into an aggregation
network G'(V', E’). In the aggregation network G'(V', E’), V' is set of p data
node in V. For any two data node v;,v; € V', if there exists an edge (v;,v;) € E,
we add the same edge in G'(V', E’) , thus (v;,v;) € E'. Otherwise we find the
shortest paths between node v; and v;, and add a new edge in the aggregation
network. Its weight of the new added edge is the cost of the shortest path between
those two nodes. Therefore the aggregation network is a complete graph. In this
paper, we introduce a new variable to represent the weight of edge between data
nodes in the network.

Definition 1 (Quality of Edge). For any two data nodes, v;,v; € V and
2

eij = (vi,v) € E, Q(es5) = %, where d;; is the distance between node v; and
ij

v, and E;; = min(Evi,Evj) is the minimum energy between node v; and v;.

The quality of edge is proportional to the square of the distance between
two data nodes in the edge. The idea behind the quality of the edge is that the
larger quality of the edge, the two node in this edge will have less energy or longer
distance, then less likely the edge will be selected as data aggregation path. We
use the quality represent the weight of edge to help us to select the aggregation
path. In the aggregation network, if two data nodes are not directly connected
in the original sensor network, the distance d;; is the cost of the shortest path
between those two nodes, and FEj; is the minimum energy of node in the found
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Fig. 2. (a) Original sensor network G. (b) Aggregation network G’. (c) Aggregation
walk.
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shortest path. Figure 2(a) shows the original wireless sensor network. Figure 2(b)
is the corresponding aggregation network G’. In the original grid sensor network
Fig.2(a), we assume that the distance between any pair of connected nodes is 1
and the energy of every node is 2. The quality of edge is marked on every edge
in Fig. 2(b) according to Definition 1.

Algorithm 1. Degree-Constrained Data Aggregation Algorithm

Input: G(V, E) and the number of aggregators ¢
Output: The set of aggregation walks W and Ev’mnDN
Notations:
ei: the edge in the aggregation network graph;
v one node of the edge e;;
vej_r: the other node of the edge e;;
rf(vi): the number of reference of the node v;;
Q(e;): the quality of the edge e;;
;anN: the minimum remaining energy of data node;
: Transform G(V, E) into G'(V', E’);
: Calculate the quality of each edge in G'(V', E');
Sort edges’ quality in G'(V', E’), Q(e1) < Q(e2) < ... < Q(en);
s for 1 <j<|V'|do
Initialize node rf(v;) = 2;
end for
W = ¢, count =i =1;
: while count < g do
if rf(ve, > 0) and rf(ver > 0) and (e; in W will not induce cycle) then
W =W U/{e}; '
7ﬂf(ve;) -
Tf(ve;’) -3
count + +;
end if
1+ +;
: end while
: for 1 <5 <|W|do
Aggregate data along W; from one end which has the smaller quality of edge;
: end for

[ e e e e e
R N B Al - I sl

: find the minimum remaining energy of data node E:anN;
: return W and E),

N
—_

VINp N )

Degree-Constrained Data Aggregation Algorithm. Now we present an
approximation algorithm for data aggregation. It works as follows. Line 1 trans-
forms the original wireless sensor network graph into the aggregation network
graph. Line 2 calculates the quality of each edge in the aggregation network
according to definition 1. Line 3 sorts all the edges’ quality into nondecreasing
order. Lines 4-6 initialize the number of reference of each node to be 2. That is,
the degree of each node in the set of aggregation walks will not exceed 2. The
while loop in lines 8-16 check if each edge in W is cycleless and the number
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of reference of each node is greater than 0. If yes, add it into W. This contin-
ues until ¢ edges are added into W. After that, it starts from one end which
has the smaller quality of edge and aggregate overflow data via visiting the rest
nodes. Figure 2(c) shows the aggregation walk which generated by the algorithm
corresponding to aggregation network graph Fig. 2(b).

Time Complexity. Due to space constraints, the analysis is omitted. The time
complexity of this algorithm is O(]V[?).

5 Integrating Data Aggregation and Data Redistribution

To overcome overall storage overflow problem in the sensor network, we have
a two-step solution. But this solution does not necessarily achieve good per-
formance. A unified method is proposed [2] which is based on data replication
techniques. Data replication technology for overall storage overflow problem is
that using storage node which is on the aggregation walk to replicate part or all
overflow data of initiator in the process of data aggregation. However the total
size of replicated data on any storage node along any aggregation walk cannot
exceed this node’s available storage space. As it does not consume extra energy,
it saves a lot of energy in the step of data redistribution.

Ezample 2. Figure 1 shows the example of two-step solution for overall storage
overflow problem. Considering that initial energy E of each node is 10, and
the energy cost is 1 by transmitting 1 data item. Thus, data aggregation and
redistribution cost is 6 and 5 respectively, and the residual energy of each node is
marked under the node in Fig. 1. The total energy cost of two-step solution is 11
and the minimum residual energy of data node is 6. Figure 3 illustrate the data
replication technology with the same sensor network which described in Fig. 1.
It shows that when initiator node A sends its 2 units of data passing storage
node B, it replicates 1 unit of the data (marked in parentheses) and stores at
B. Therefore, next in data redistribution step, node D only needs redistribute
2 units of data to node E. Finally the total energy cost is 9 which has an 18%
improvement compared to two-step solution, while the minimum residual energy
of data node is 7, having a 17% improvement.

Initiators: © Data Replication: @
Data Aggregation: ----------- > Data Redistribution:
____________________________ . 1 2
O, © O ® © O
A B(1) c D E A B(1) c D E
Energy 8 8 8 10 10 Energy 8 8 7 8 10
(@) (b)

Fig. 3. Data replication technology for same sensor network in Fig. 1.
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Since our Degree-Constrained Data Aggregation Algorithm can find the set
of aggregation walks and data redistribution can be solved by minimum cost
flow algorithm, the challenges of data replication technology are how to select
initiator for each aggregation walk and how many units of data to replicate
at storage nodes which in the aggregation walk. In each aggregation walk, the
initiator has two choices. For example, in Fig. 3(a) the initiator can be node A or
node D which can lead to different energy consumption. Observing that the last
aggregator has more overflow data than other data nodes after data aggregation
and having more available storage nodes around the last aggregator would make
the data redistribution more energy-efficient. Therefore we select the node which
surrounded by less storage nodes as the initiator in each aggregation walk. For
the second challenge, we give below definition.

Definition 2 (Demand Number of Storage Node). For any storage node
u on any aggregation walk, let N(u) be all its one-hop neighbor nodes. For each
data node v € N(u) N Vpn, let D, , represent the distance between node w and
node v, and Vsy =V — Vpn denotes the set of storage nodes The demand
number d(u) of storage node u, d(u) =3, c N(wyvpy

2
quN(u)mvSN %
2

Noted that quN ())"Vsn gz v > ( since node v has at least one neighboring
storage node u. And if each node v just has one neighboring storage node u,
the value of d(u) is equal to the number of data nodes which surround node wu.
The idea behind d(u) is that the less number of data nodes surrounding u and
the more number of storage nodes surrounding such data nodes with shorter
distance, the more unites of data items should be replicated at storage node wu.
Next we give a data replication algorithm, it works as follows. In each aggregation
walk, the initiator sends all its overflow data to the next node along the walk. If
a data node receives the overflow data, it just aggregates its own data and then
sends the received data to the next node. For a storage node u receiving the
data, firstly it calculates its own demand number d(u). And then calculate the
amount of data to be replicated as min (ﬁ, z,8), where z is the rest of overflow
data which has not been replicated and s represents the available storage space
of this node. Finally node u replicates the calculated units of data in its storage
space and relays the entire overflow data to the next node along the aggregation
walk. This continues until the last aggregator receives the overflow data. The last
aggregator aggregates its data and keeps the rest units (may be zero) of overflow
data which have not been replicated. Finally, the aggregated overflow data is
redistributed to storage node which has available storage space by minimum
cost flow algorithm [3].

Time Complexity. Due to space constraints, the analysis is omitted. The time
complexity of this algorithm is O(|V|?|E|log(|V|C)), where C' = max{R+7,m}.
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Algorithm 2. Data Replication Algorithm
Input: The sensor network GG, and the set of aggregation walk W
Output: Minimum remaining energy of data node Ey;,,
Notations:
|W;| : the number of nodes on the aggregation walk W;;
mcfa : minimum cost flow algorithm;
V;.space : available storage space of storage node Vj;

1: a=|W];

2: for 1 <i<ado

3:  Let Vin; and V,gg be the initiator and the last aggregator on the aggregation
walk W; respectively;

4: Vini sends all its overflow data to the next node along W;;

5. z=R,b=|W;|;

6: for2<j<(b—1)do

T if (V; € W; is data node) then

8: V; aggregates its own data with overflow data of Vj,i;

9: else

10: s = Vj.space;

11: if (s > 0 and z > 0) then

12: Calculate d(V});

13: t:min(ﬁvﬁ,z,s);

14: Replicate t units of overflow data on Vj;

15: z2=2z—t

16: end if

17: end if

18: V; sends the entire overflow data of Vj,; to the next node along W;;

19:  end for

20: Vagg aggregates its own data and keeps the rest z units of data of Vini;
21: end for

22: Epinpy = mefa(G);

23: return E! ;

minpn

6 Performance Evaluation

This section presents the effectiveness of our proposed algorithms for overall
storage overflow problem. Extensive experiments were performed in Java. In
our experiment, we adopt first order radio model [15]. For node u send R-bit
data to its neighbor v over their distance d, the transmission energy cost at u
is Ey(R,d) = E¢iec X R+ €amp X R X d?, and the receiving energy cost at v
is E.(R) = Eeec X R, where Feje. =100nJ/bit and €qmp = 100 pJ/bit/m?. 50
and 100 sensor nodes are scattered randomly across a 1000 x 1000 m? network,
in which no two nodes can be in the same location. The transmission range of
each node is 250 m. For data node, the initial energy is randomly around 600 J—
700 J, while the initial energy of each storage node is randomly around 900 J—
1000 J. Unless otherwise mentioned, the sensor network consists of 50 nodes,
and R = m = 1 MB. To eliminate the impact of randomness, each experiment
scenario is repeated 100 times.
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6.1 Performance of Data Aggregation Algorithm

For data aggregation algorithm, we compare the performance of our Degree-
Constrained Data Aggregation algorithm (denoted as DCDA) with STF-Walk
[1] and LP-Walk [1] algorithm. STF-Walk algorithm is a (2 — %)—approximation
data aggregation algorithm, while LP-Walk is a novel heuristic algorithm.

We compare DCDA algorithm with STF-Walk algorithm where considering
r/R = 0.5 and the whole valid range of p € [26,33]. Figure 4(a) shows the total
aggregation cost of STF-Walk and DCDA algorithms. With the increase of the
number of data nodes p, total aggregation costs of both STF-Walk and DCDA
increase. It’s obviously that the DCDA algorithm yields less cost than STF-Walk.
This is because STF-Walk algorithm visits some edges twice in the process of
data aggregation, while DCDA algorithm tries to visit some edges which has
smaller weight instead of edges’ second visiting. Figure 4(b) shows the minimum
remaining energy of data node after data aggregation corresponding to Fig. 4(a).
The minimum remaining energy of data node decrease with increase p in both
DCDA and STF-Walk algorithms. As DCDA algorithm considers different node
with different remaining energy and selects the data node with higher priority
which has higher remaining energy to participate in the process of data aggrega-
tion, the minimum remaining energy of data node in DCDA algorithm is always
higher than the remaining energy in STF-Walk algorithm. And the performance
difference between DCDA and STF-Walk algorithm gets bigger with the increase
of number of data nodes.

LP-Walk algorithm which is a novel heuristic algorithm outperforms STF-
Walk algorithm in total energy consumption. We adopt r/R = 0.3 and 0.7, for
r/R = 0.3, the valid range of p is from 26 to 37, while p € [26,29] for r/R = 0.7.
Figure5(a) is the aggregation energy cost by varying r/R and p. And Fig.5(b)
is corresponding the minimum remaining of data node after data aggregation. It
shows that for the same p, with the increase of r/R, the total aggregation cost
for both DCDA and LP-Walk algorithm increase and the minimum remaining
energy of data node post aggregation decrease. The reason is that less redundant

900 650
EDCDA = 8 —-STF-Walk
800 I STF-Walk 3640 - ©-DCDA
3 -]
2630
5700 5 o
ot 8 620
% 600 = o
8 5
& 500) §510
S 5 600 Q
2 400 E
§ € 590
3 300] ]
g £ 580
"~ 200 <
E 570
100 é 560
o — 55
26 27 28 29 30 31 32 33 % 27 28 29 30 31 32 33
Number of Data Nodes p Number of Data Nodes p
(a) Aggregation cost (b) Minimum remaining energy

Fig. 4. Comparing DCDA with STF-Walk by varying p where /R = 0.5.
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Fig. 5. Comparing DCDA with LP-Walk by varying p and r/R.

—©-STF-Walk
O DCDA

SSCE 650

—©-STF-Walk
0 DCDA

Minimum Remaining Energy of Data Node (J)

3001 2 3 4 5 6 7 8 9 10 3001 2 3 4 5 6 7 8 9 10

The size of overflow data R (MB) The size of overflow data R (MB)

(a) r/R=10.3 (b) r/R=10.5

Fig. 6. Comparing DCDA with LP-Walk in minimum remaining energy of data node
by varying R where p = 30.

data between data nodes leads to more number of aggregator are visited, thus
increasing aggregation energy cost and reducing the minimum remaining energy
of data node. However DCDA algorithm outperforms LP-Walk algorithm in
both aggregation cost and minimum remaining energy of data node for the same
reason. In Fig.6(a), p = 30 and /R = 0.3, we vary R from 1 MB to 10 MB while
in Fig. 6(b) p = 30 and r/m = 0.5. It’s obviously that as the increase of the size
of overflow data, the minimum remaining energy of data node post aggregation
in both two algorithm decrease, and the minimum remaining energy in Fig. 6(b)
decrease faster than that in Fig. 6(a). This is because with the increase of r/R,
the more number of aggregators should be visited, it costs more energy for data
nodes. However the minimum remaining energy of data node in DCDA algorithm
is still higher than that in LP-Walk algorithm and the performance difference
get bigger with the increase of R. Therefore DCDA algorithm is more energy
efficient and can prolong the lifetime of the sensor network compared to LP-Walk
algorithm.
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6.2 Performance of Data Replication Algorithm

In this experiment, two-step solution adopts our data aggregation algorithm
(DCDA) and minimum cost flow algorithm. We compare the performance of
data replication algorithm and two-step solution. In Fig.7, r/R = 0.5, we vary
p from 26 to 33. Figure 7(a) shows data redistribution energy cost and Fig. 7(b)
presents minimum remaining energy of data node. It is obviously that replica-
tion algorithm performs better than two-step solution in both data redistrib-
ution energy cost and minimum remaining energy of data node. In Fig.7(a),
data redistribution energy cost decrease with increase of data node p. This is
because with the increase of p, the more overflow data is aggregated and less
overflow data is redistributed. In general, the minimum remaining energy of data
node decrease with increase of data node. However, in some case, the minimum
remaining energy of data node increase with the increase of data node. It maybe
that algorithms find relatively short paths in the process of data aggregation
and redistribution, leading to less energy cost. Figure8 investigates the effect
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Fig. 7. Comparing data replication algorithm with two-step solution by varying p where
r/ R = 0.5.

500 50

~¥-two-step
—8-replication

IS
@
S

¥ two-step
—8—replication

s S
o o
P g
i K]
S0 3
s s
542() 5
o ©
WG 400 it
3 2
' 380 £ €
] ]
5300 &
€ 340 €
£ E
é 320 é
200
30%6 27 28 29 30 31 32 33 17 17.5 18 18.5 19 19.5 20 205 21
Number of Data Nodes p Number of Data Nodes p
(a) r/R=10.3 (b) r/R=0.7

Fig. 8. Comparing replication algorithm with two-step solution in minimum remaining
energy of data node by varying p where R/m = 5.



A Framework for Overall Storage Overflow Problem 31

600 600

g ¥~ two-step
RN —&- replication
N

J)

¥ two-step
—&-replication

a
=3
=3

Minimum Remaining Energy of Data Node (J)
8
S
Minimum Remaining Energy of Data Node
8
S

v
¥

1 2

o
=

2 3 4
Size of Overflow Data R (MB)

(a) r/R=10.3 (b) r/R=0.7

3 4 5
Size of Overflow Data R (MB)
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of R/m =5 and m = 1MB. Figure8(a) shows the performance of data repli-
cation algorithm and two-step solution in minimum remaining energy of data
node where /R = 0.3 while in Fig.8(b) /R = 0.7. It shows the same trend
as Fig. 7(b). For data replication algorithm, it replicates data items at storage
nodes, saving a lot of energy of sensor nodes during data redistribution. And it
still has advantage over two-step solution.

Figure 9 presents the effect of the size of overflow data where p = 28. We vary
R from 1 MB to 7 MB. With the increase of R, it becomes more challenging since
there are more overflow data. In Fig. 9(a), /R = 0.3 while r/R = 0.7 in Fig. 8(b).
We observe that with the increase of R, the minimum remaining energy of data
node decrease linearly. And with the same R, the minimum remaining energy of
data node in r/R = 0.7 is lower than that in /R = 0.3. This is because with the
increase of r/R, more aggregators are visited, it costs more energy. In Fig. 8(b),
the sensor network can not finish data aggregation and data redistribution work
as some data node delept their energy when R = 7 MB. However, data replication
algorithm outperforms than two-step solutioin. And the performance difference
gets larger with the increase of R. This again demonstrates the effectiveness of
replication algorithm.

7 Conclusions and Future Work

In this paper, we study overall storage overflow problem in wireless sensor net-
work, the goal of which is to maximize the minimum energy of data node. To
our best knowledge, the problem has not been addressed by any of existing
research. And we propose energy-efficient data aggregation and data replication
algorithms. Via extensive simulations, it shows that our algorithms can effec-
tively prolong the lifetime of sensor network compared with existing algorithms.
As for future work, we will consider that different data nodes may have different
size of overflow data. And in order to adapt to large scale sensor networks, we
will design distributed algorithms.
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