GPU Acceleration of Dense Matrix and Block
Operations for Lanczos Method for Systems over
Large Prime Finite Field

Nikolai Zamarashkin® and Dmitry Zheltkov

INM RAS, Gubkina 8, Moscow, Russia
nikolai.zamarashkin@gmail.com, dmitry.zheltkov@gmail.com
http://www.inm.ras.ru

Abstract. GPU based acceleration of computations with dense matrices
and blocks over large prime finite field are studied. Particular attention
is paid to the following algorithms:

— multiplication of rectangular N x K blocks with N > K;

— multiplication of N x K blocks by square K x K matrices;

— LU-decomposition of matrices.
Several approaches for optimal use of GPU resources are proposed.

Efficiency analysis of implemented algorithms is provided for prime
finite field with number of elements about 2°12, 2768 21024 34 GPUs
of different computational performance and architecture generations.
Numerical experiments prove efficiency of proposed solutions.

From numerical results it follows that GPU usage allows to accelerate
block operations and to expand area of almost linear parallel scalability
of Lanczos method implementation by INM RAS. Moreover, a sparse
system of size about 2 millions, with 82 average nonzero elements per
row, over field with about 2°!2 elements, on 128 nodes of Lomonosov
supercomputer will be solved 2 times faster in case of GPUs used.

Keywords: GPGPU - RSA - Large prime finite field + Block Lanczos
method

1 Introduction

This research is the result of analysis made for implementation of the improved
block Lanczos method for the linear systems over large prime finite field (see, [6]).

Until recently, large data exchanges were considered as the main reason for
poor scalability of block Lanczos method implementations on powerful comput-
ing systems [3-5,7]. Moreover, in case of low speed communication network the
acceleration noticeably deviated from linear for the number of nodes about 100.

The basic idea of [6] was the efficient way of data storage. Thanks to this, the
data exchange is significantly reduced, and is perfectly scalable for block size K.
As a result, in the improved implementation the time for data exchange turned
out to be less than the time for operations with dense matrices and blocks, which

© Springer International Publishing AG 2017
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2017, CCIS 793, pp. 14-26, 2017.
https://doi.org/10.1007/978-3-319-71255-0_2

GPU Acceleration of Dense Matrix and Block Operations 15

does not depend on the block size K. As a matter of fact, the larger the block
size K the greater the difference.

Thus, it is the computations with dense matrices and blocks that determine
the limit of linear scalability for the improved implementation of block Lanczos
method. Namely, while the time for symmetrized sparse matrix by the block
multiplication significantly exceeds the time for operations with dense matrices
and blocks, the parallel properties of the method are almost perfect. In practice,
this is valid up to a few hundreds or a thousand nodes.

In order to spread the ideal scalability even further (for example, up to 213
nodes), we have to speed up the computation with blocks.

As modern computing nodes are multi-core systems, they are very advan-
tageous for operations with dense matrices and blocks. The use of multicore
accelerates these operations proportionally to the number of cores. However, the
number of cores per node is usually limited (typical values about 8 — 16). But for
really hard problems this is not enough. The systems with much larger number
of cores are needed. The most common example of such system are the graphic
accelerators (GPUs).

This paper explores the possibility of the using GPUs for computations with
dense matrices and blocks with elements from large prime fields. The examples
are considered for the fields with the number of elements of order 2°12, 2768 and
91024

The choice of algorithms for efficient implementation is constricted due to
restrictions on access to GPU resources and dependence of time on presence of
branches in the program. For these reasons, we prefer simple algorithms with a
regular structure. However, if possible we use the Winograd’s idea to reduce the
number of multiplications twice. This is important, since in large prime fields
the complexity of multiplying greatly exceeds the complexity of addition and
subtraction.

Our main purpose is to clarify the possibility of significant acceleration (more
than 10 times) of calculation dense matrix by block product.

The applicability of this research is not just limited to calculations in the
block Lanczos method. The same improvements can be useful for Thome type
algorithm implementations [1,2].

2 GPU Acceleration of Operations with Dense Matrices
and Blocks

2.1 Algorithms

The algorithms with simple structure are preferred for GPU accelerators since
the limited resource management, and dependence of algorithm running time on
the presence of branches in the program.

Let us assume that elements in the large prime field can be specified using
512, 768, or 1024 bits. Further we show that the field size (the number of elements
in the field) can significantly affect the implementation efficiency.

We are interested in two particular cases:

16 N. Zamarashkin and D. Zheltkov

1. implementation of block-by-block multiplication X7Y for N x K blocks X,Y;
2. implementation of block-by-matrix multiplication XU for N x K block X,
and K x K matrix U;

We decided on “naive algorithm”, as well as on an algorithm by Winograd, which
reduces the number of multiplications twice.

In addition, we use Winograd idea for efficient LU decomposition, which is
used in block Lanczos method for K x K matrix inversion. However, the total
time for operations with K x K matrices is still significantly smaller than the time
for operations with N x K blocks [6,7]. So the improvement of LU decomposition
via Winograd method is considered only as a theoretical result.

The Winograd method is based on the elementary equality for the elements
of matrix C' = AB. Assuming the number of columns and rows of A to be 2m,
we write

m
= Z (@i2K—1 + bak,j) (@i 2k + bag—1,5)
=1

m m
- E @i 2k—10i 2% — g bor—1,5b2k ;- (1)

k=1

=~
Il
_

The last two sums have low complexity and can be pre-calculated in advance.
The main calculation corresponds to the sum (1). It is easy to see that the
number of multiplications in this sum is 2 times less than the one in “naive
algorithm”.

While Winograd method for matrix product multiplication is well known, the
similar technique for Gaussian elimination is not. Since a complete description
of an algorithm would be unnecessarily cumbersome, we only give its main idea.

Consider a strictly reqular matrix A of order N in the block form

A1 Aro
A= , 2
[A21 A22} @)
with 2 x 2 block Ay1. The first two steps of elimination can be written as
A _ 0 0
A— A-— [Aﬂ A [An A = [OA%)} , (3)

where the submatrix Aélz) of A is used as a starting point for the next steps

of Gaussian eliminations. Thus calculation of ASQ) determines the complexity of

the whole algorithm.
Indeed, let us transform (3) by removing A7} from it. For this, we represent
A11 using the strict regularity of A and O(1) multiplications as

A1 = L11Uny, (4)

GPU Acceleration of Dense Matrix and Block Operations 17

with lower triangular 2 X 2 matrix L;; and upper-triangular 2 x 2 matrix Uy;.
Then

L1y -1 _ L A
A— A- {Aleﬁl} [Un Ly Arg] = A~ [12121 [U11 A], (5)

Note that O(N) multiplications are enough to find Ay and Ajps.

Now we will show that it is possiple to calculate A(le) = Agy — AglAlg with
just (N — 2)* + O(N — 2) multiplications. In order to do this consider a matrix
product

¢ = [42] | 5] ©)
By |’
where A;, Ay are columns, and By, By are rows of order N —2 (take into account
that the sizes of Ay and Ay, are equal to (n—2)x 2 and 2x (N —2), respectively).
Then using Winograd technique we can write

C} = (as1 + bj2) (ai2 + bj1) — asas — bj1b,, (7)

where a;1, a2, bj1, and b;2 are components of the vectors A;, Az, By and Ba,
respectively. The statement about the number of multiplications for two steps
of Gaussian eliminations directly follows from (7), and the general result follows
from the induction on the matrix size.

2.2 Algoritm Mapping on GPU Architecture

“Naive Algorithm” for Matrix Multiplication. The organization of cal-
culations is similar to the one proposed in [9]. Consider multiplication of N x M
matrix A and M x K matrix B with the elements in a large prime field.

Suppose that the memory size of GPU is sufficient to store the matrices A,
B and the resulting matrix C = AB. Let the matrix A be represented in the
following row-block form

Al
a=) ®
AT
and B in column-block form
B= BlBrsz%}’ (9)

with parameter ¢ denoting the block size (number of rows/columns).

Each executable block relates to calculation of C = A'B;. Since the subma-
trices CJZ» do not intersect, the operating results for different blocks are indepen-
dent. The total number of executable blocks in the algorithm is N, = %

Now let’s turn to the threads inside the executable blocks. Each thread cal-

culates a product of a row of A* by a column of B;, which corresponds to one

18 N. Zamarashkin and D. Zheltkov

Fig. 1. Calculation in one executable block

Fig. 2. “Naive” matrix multiplication algorithm: data loading for one executable block.

element in the submatrix C. Thus, the number of threads is equal to ¢* (Figs. 1
and 2).

As follows from the above, the number of executable blocks and the number of
threads in blocks depend on the value ¢, namely with increasing ¢ the number of
blocks decreases, while the number of threads increases. We propose the following
heuristic principle to obtain the optimal value of ¢:

the more blocks, the better.

Without going into details, we note that a large number of blocks has the
following advantages:

1. More multiprocessors on GPU are filled (and more uniformly);
2. The scheduler can more effectively “hide” the time for data and instructions
swapping.

But this rule is applicable only for reasonable value of ¢, as there are sev-
eral GPU architecture limitations on number of threads per block and number
of blocks for multiprocessor [10]. Formally, the maximum number of blocks is
obtained with t = 1. But there are four objections to this choice.

First, the number of blocks is limited by the computational grid size of the
particular GPU. This restriction, however, is not too strong. For example, it can
be avoided by considering multiplication of smaller submatrices, such as parts
of the rows of A, and parts of the columns of B.

Second limitation is the linear dependence of the number of downloads from
global memory from ¢. Actually, due to high complexity of the calculations with
long numbers the loading time does not have a decisive influence.

GPU Acceleration of Dense Matrix and Block Operations 19

Third, maximal number of blocks per multiprocessor is limited, so with small
number of threads per block total number of threads per multiprocessors would
be less than maximal available (occupancy will be low). In this case multiproces-
sor would worse hide data and instruction fetch.

Fourth reason is provided by the condition that the number of threads in
the block must be a multiple of 32 (the number of threads in a warp). Choosing
t = 1, we use only one of the 32 threads that are allocated anyway. This is
absolutely ineffective. Therefore, we must chose ¢ such that t? is a multiple of
32 and the optimal ¢ is t = 8 (the minimal ¢ such that #? is a multiple of 32).

Note, that with ¢ = 8 occupancy of multiprocessor is not limited by maximal
number of blocks for the most modern GPU: each block uses 64 threads, maximal
number of blocks is equal to 32. So, in this case block number limitation allows
to use 2048 threads per multiprocessor and that is exactly limitation of thread
number per multiprocessor. For older architectures such ¢ limits occupancy by
maximal number of blocks per multiprocessors, but for this architectures real
limiter for occupancy would be number of used registers.

Consider executable block algorithm.

Algorithm 1. Multiplication of IV X 8 blocks. “Naive approach”

1. Two 1 x 8 vectors are loaded from the device’s memory in the shared memory
(could be considered as equivalent of shared L2 cache of multicore CPU) of
streaming multiprocessor (SM): one vector corresponds to the column of the
row-block, and another is the row of the column-block;

2. Each of the 64 threads loads two numbers (elements of a large prime field)
into the registers (Cache L1) of its stream processor (SP);

8. Each thread executes a product of its own numbers and sums it with the
current value of the result;

4. Montgomery conversion is performed once at the end of all calculations; the
necessary constants are loaded from the constant memory.

Despite the simplicity of the Algorithm 1, the very possibility of its execution
on a GPU is nontrivial. Let us consider the necessary resources for its execution.
Each thread is associated with:

1. 2W +1 32-bit registers for storing the result, where W is the number of 32-bit
words necessary for storing elements of a prime field. For example, for a field
with 512 bits per element, W = 16; for 768-bit field W = 24, and for 1024-bit
field W = 32.

2. 2W registers for storing the inputs (i.e. elements of the corresponding row
and column).

Note that without loss of performance, we can store only one of the input
numbers on registers, and load the second one word by word as needed. There-
fore, only W + 1 registers are needed to store the inputs.

Thus, even by the most primitive calculations 3W 42 registers per an executable
block are needed, that is:

20 N. Zamarashkin and D. Zheltkov

512-bit field: not less than 50 registers;
768-bit field: not less than 74 registers;
1024-bit field: not less than 98 registers.

These elementary estimates show that GPUs with 63 registers per thread have
a very limited applicability resource. The latter, of course, does not mean that
it is impossible to organize calculations on such GPUs. One can certainly get an
implementation for any large field by arranging calculations involving additional
work with memory. But the aim of our research is to obtain the maximum accel-
eration. Therefore, we are primarily interested in situations without unnecessary
obstacles to the most rapid implementation.

Remark 1. We are interested in two types of block operations for the block
Lanczos method: block-by-block multiplications in form XTY, and block-by-
matriz multiplications in form XU (with K x K matriz U, and N x K blocks
X andY). Note that in applications the parameter N, is usually very large, but
the block size K can be insignificant (for example, about 8). In this case, there
are certain difficulties in choosing t. This is especially characteristic for XTY
calculation. Indeed, by the above scheme, for t = 8 we get only one executable
block. And reducing t would result in inefficient use of threads.

We can partially solve the problem by considering X and 'Y in a form

X3 Y1
x=|2v=]) (10)
Xi Y

with the same number of rows in each block X;, Y;. Since in this case

1
X7y =3 " xy;, (11)
j=1
one can consider computations of the form X]TYJ as executable blocks.
However, this solution is not perfect. The results of calculations for individual
threads are not independent. In addition, it becomes necessary to synchronize the
calculations. Both factors negatively affect the efficiency of computing XTY. We
emphasize, that the problem arises only for small K and we are mostly interested
in situations with K large. In this case the problem s not so critical.

Finally, due to the large number of registers in use, the number of threads
on SM will be noticeably less than the maximum possible. For older architec-
tures only 20 registers could be used to achieve full occupancy, for new — about
30. However, since the number of downloads is smaller than the number of cal-
culations, only the instructions loading is worse compensated, which leads to
uncritical decrease in performance.

For 512 bit numbers achieved occupancy is good enough — performance
profiler show that instruction and data fetch are successfully hided and more

GPU Acceleration of Dense Matrix and Block Operations 21

than 90 percent of time is spent by arithmetic operations. Nevertheless, in case of
fields with more than 512 bits per element for more optimal use of GPU resources,
it is necessary to further consider the algorithms that use fewer registers, that
is, multiplying long numbers in several stages.

Matrix Multiplication with Winograd Approach. The organization of
matrix multiplication with Winograd approach is similar to the “naive algo-
rithm” (see Sect. 2.2) (Fig. 3).

Fig. 3. Matrix multiplication algorithm with Winograd approach: data loading for one
executable block

Analogously to the “naive algorithm” each executive block performs the cal-
culation of 8 x 8 submatrix C]’: = A"Bj7 and each thread calculates one element
of C]’ The difference is that for Winograd approach a two columns of A? and two
rows of B; are loaded to L2 and L1 Cache. This is necessary for the following

elementary calculation = (a;2r—1 + bag,;) (@i 2k + bak—1,5) - (12)
Below we describe the main ideas of the algorithm for GPU.

Algorithm 2. Multiplication of N x 8 blocks with Winograd approach

1. Two 2 x 8 blocks are loaded from the device’s memory in the shared memory
(could be considered as equivalent of shared L2 cache of multicore CPU) of
streaming multiprocessor (SM) : one block corresponds to the column of the
row-block, and another is the row of the column-block;

2. Each of the 64 threads loads 4 numbers (elements of a large prime field) into
the registers (Cache L1);

3. Fach thread executes (12) for its own 4 numbers and sums it with the current
value of the result;

4. Montgomery conversion is performed once at the end of all calculations; the
necessary constants are loaded from the constant memory.

Let us consider the necessary resources for the Algorithm 2 execution. Each
executable thread is associated with:

22 N. Zamarashkin and D. Zheltkov

Fig. 4. Calculations in matrix multiplication algorithm with Winograd approach.

1. 2W + 1 32-bit registers for storing the result. Recall that W is the number
32-bit words required per element of the large field.

2. 4W registers for storing the inputs.
Analogously to the “naive algorithm”, only 2W + 2 registers are enough to
store the inputs without loss of performance. Moreover we can reduce the
number of input data registers to W 4 3 by a slight increase of the operations
number (not more than 3W extra additions for one multiplication of numbers)
(Fig. 4).

However, the most estimate gives 4W + 2 registers per an executable block,
that is:

512-bit field: not less than 67 registers;
768-bit field: not less than 99 registers;
1024-bit field: not less than 131 registers.

Note that Winograd algorithm requires a larger number of registers, so the need
of economical algorithms for it is more critical.

2.3 Important Realization Details

An important feature of GPU is the instruction madc in the pseudo-assembler
(CUDA PTX). This instruction multiplies two numbers with obtaining the first
or the last word of the result, and adding it to the third number, taking into
account the carry flag. Also it can change the carry flag in case of overflow. This
makes it easy to implement the arithmetic with numbers from large prime finite
fields [8].

Note that for architectures of the second and third generations, the instruc-
tion for 32-bit numbers is translated into assembler instruction which is slower
than 32-bit instructions with floating-point numbers (2 — 3 times for the sec-
ond generation, and 6 times for the third one). For the newer architectures, it is
translated into a set of 16-bit instructions that are executed with the same speed
as 32-bit floating-point instructions. Thus, in general, the instruction is executed
4 times slower than the instructions with a floating point numbers. And the peak
performance of calculations with long numbers is 2 — 6 times lower than the one
for floating-point numbers.

However, the performance of CPUs for this task is also far from peak:

GPU Acceleration of Dense Matrix and Block Operations 23

— due to the lack of integer instruction for simultaneous multiplication and
addition;

— due to the lack of a vector instructions for addition with a carry flag, and for
multiplication with obtaining the major word.

As a result, for modern CPUs performance for long arithmetic is 8 - 32 times
below the peak performance for 32-bit floating point numbers. Thus, theoreti-
cally, in case of such tasks GPU should be so many times faster than CPU, as
GPU single-precision peak performance is higher than CPU one. Thus, theoret-
ically, in case of such tasks the gain of GPU performance to CPU performance
coincides to the proportion of the peak performances for single-precision tasks.

An important task for the GPU programming is to get rid of branches. Since
all threads within a group (warp) must perform the same instruction, branching
(with threads executing different branches) is converted to a sequential code,
where each thread executes all branches. This leads to more registers and slower
execution.

For matrix multiplication over a large prime field, such branching occur only
at the stage of reduction, and can significantly affect the performance only for
small block sizes. These branching compare two long numbers, and subtract if
the first one is greater. However, it is easy enough to get rid of it. To do this, we
subtract the second number from the first one, and then add the second number
multiplied by the carry flag occurred in the subtraction.

2.4 Numerical Experiments

We compare results for CPUs and GPUs of different generations on the following
problems: 22! x K block by K x K matrix multiplication (with K = 8,16), and
multiplication of square matrices of order 1024.

We use implementations of Winograd approach and Strassen method for CPU
(Strassen only for square matrix multiplication), and “naive” implementation
and Winograd method for GPU.

The experiments were performed on the following devices (note, that due to
frequency boost technologies peak performance of the newest hardware is given
approximately):

— 4-core CPU Intel Core 15-4440, 3.1 GHz, power consumption 84W.
It is CPU of 4th generation of Intel Core microarchitecture. From that gen-
eration (and till the latest available at the moment) CPU core could execute
per clock 2 fused multiply-add vector instruction with 256-bit vector.
For single precision floats each such instruction performs 16 floating point
operation (8 multiplications and 8 additions). Thus, single core executes up to
32 floating point operations per clock, 4 cores — 128 flop per clock.
As considered CPU has 4 cores and its clock frequency is 3.1 GHz, its theo-
retical single precision peak performance is 396.8 Gflops.

— Nvidia Tesla C2070, power consumption 250W, compute capability 2.0, peak
single precision performance — 1.03Tflops.

24 N. Zamarashkin and D. Zheltkov

— Nvidia Tesla K40, power consumption 235W, compute capability 3.5, peak
single precision performance — 4.2Tflops.

— Nvidia GeForce GTX 1050, power consumption 75W, compute capability 6.1,
peak single precision performance — 2 Tflops.

Results of multithread experiments on CPU are presented in Table 1.

The results of operations on GPU are given in Table2 (22! x 8 block by 8 x 8
matrix multiplication), in Table3 (22! x 16 block by 16 x 16 matrix), and in
Table4 (for matrices of order 1024).

The considered large prime fields required 512 bits, 768 bits, and 1024 bits
per element.

Table 1. Time for matrix multiplications on CPU (sec.)

Matrix size | 227 x 8| 22! x 16 | 1024 x 1024 | 1024 x 1024, Strassen
512 bits 3.98 [13.41 20.92 12.62

768 bits 724 |24.28 |39.53 23.57

1024 bits [12.6 | 54.97 |69 40.9

Table 2. Time for 22 x 8 block by 8 x 8 matrix multiplications on GPU (sec.)

GPU C2070 | K40 | GTX1050
Naive algorithm, 512 bits 0.35]0.28|0.41
Winograd approach, 512 bits |0.26 | 0.19|0.28
Naive algorithm, 768 bits 0.85 |0.58|1.15

Winograd approach, 768 bits |0.8 0.63 |1
Naive algorithm, 1024 bits 2.04 |1.06|2.83
Winograd approach, 1024 bits | 1.53 1.07]2.12

Table 3. Time for 22 x 16 block by 16 x 16 matrix multiplications on GPU (sec.)

GPU C2070 | K40 | GTX1050
Naive algorithm, 512 bits 1.31 0.89 | 1.56
Winograd approach, 512 bits |0.89 0.6 |0.95
Naive algorithm, 768 bits 3.1 2 3.88

Winograd approach, 768 bits |2.86 |2.07|3.5
Naive algorithm, 1024 bits 7.59 |3.91|10.82
Winograd approach, 1024 bits | 5.47 | 3.57 6.8

GPU Acceleration of Dense Matrix and Block Operations 25

Table 4. Time for 1024 x 1024 matrix multiplications on GPU (sec.)

GPU C2070 | K40 | GTX1050
Naive algorithm, 512 bits 2.38 1.57]2.53
Winograd approach, 512 bits |1.48 |0.91|1.42
Naive algorithm, 768 bits 5.75 |3.67|6.49

Winograd approach, 768 bits |5.38 |3.31|5.52
Naive algorithm, 1024 bits 13.55 | 7.16|18.11
Winograd approach, 1024 bits | 9.37 | 5.77 | 9.74

It is noticeable that, due to the use of a larger number of registers, the
Winograd approach usually accelerates the computation much less than twice,
especially in case of 768 bit numbers. In addition, the advantage of the GPU
over the CPU becomes smaller with increasing the field sizes. This proves the
necessity of algorithms for long numbers that require smaller number of registers
(with multiplying via several stages).

Nevertheless, all the GPUs significantly outperform CPUs for this problem
both in terms of computing speed and performance per watt of power. Note that
the algorithm used on CPU is quite efficient, and although the CPU is not the
most modern, but has almost the same performance on this task as the most
modern Intel CPUs (especially at the same clock frequency).

Now consider the results on the Tesla C2070 adapter for 512 bit numbers.
This accelerator is similar to the Tesla X2070, which is used on “Lomonosov”.
Matrix multiplication with Winograd method is 15 times faster than on CPU.
Note, than CPU used in our experiments is even slightly faster on such task
than 2 Intel Xeon X5570 4-core CPUs (which “Lomonosov” node contains). It
has a slightly higher clock frequency and the execution of 64-bit instructions
ADC and MUL (which dominate in the algorithms) requires 2 and 3 times less
cycles, respectively.

Thus, the matrix multiplication on GPU of supercomputer “Lomonosov” will
be no less than 15 times faster than the one on its CPU. This means that in case
of the same time spent on the above operations, the block size in the algorithm
can be increased in 15 times, and the time spent for data exchanges will be
reduced approximately in 15 times too.

For a linear system of order about 2 million, with 82 nonzero elements, over
a large simple field of size 512 bits, on 128 nodes of “Lomonosov”, the time for
data exchanges was about 55%. Thus, the implementation of matrix operations
on the GPU reduce calculation time in approximately 2 times.

3 Conclusion

The possibility of using GPU for a significant acceleration of computations with
dense matrices and blocks with elements from the large prime fields is experimen-
tally substantiated. The implementation of “naive algorithm” and the algorithm

26

N. Zamarashkin and D. Zheltkov

using the Winograd approach for multiplication number reduction are described.
Numerical simulations were made for various graphics accelerators architecture
and performance. It is shown that for the prime fields with more than 2°'2
elements, in order to obtain the greatest possible acceleration, the multi-stage
algorithm should be implemented for the multiplications of long numbers.

Acknowledgments. The work was supported by the Russian Science Foundation,
grant 14-11-00806.

References

10.

. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,

P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-Bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333-350. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7_18

Thome, E., et al.: Factorization of RSA-704 with CADO-NFS. Preprint, pp. 1-4
(2012)

. Dorofeev, A.Ya.: Vychislenie logarifmov v konechnom prostom pole metodom

lineinogo resheta. [Computation of logarithms over finite prime fields using number
sieving]. Trudy po diskretnoi matematike, vol. 5. pp. 29-50 (2002)

Dorofeev, A.Y.: Solving systems of linear equations arising in the computation of
logarithms in a finite prime field. Math. Aspects Crypt. 3(1), 551 (2012). Russian
Popovyan, I.A., Nestrenko, Y.V., Grechnikov, E.A.: Vychislitelno slozhnye zadachi
teorii chisel. Uchebnoe posobie [Computationally hard problems of number theory.
Study guide] Publishing of the Lomonosov Moscow State University (2012)
Zamarashkin, N., Zheltkov, D.: Block Lanczos—-Montgomery method with
reduced data exchanges. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016.
CCIS, vol. 687, pp. 15-26. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-55669-7_2

Zamarashkin, N.L.: Algoritmy dlya razrezhennykh sistem lineinykh uravneniy v
GF(2). Uchebnoe posobie [Algorithms for systems of linear equations over GF(2).
Study guide]. Publishing of the Lomonosov Moscow State University (2013)
Efficient basic linear algebra operations for solution of large sparse linear systems
over finite fields. Russian Supercomputing Days (2016)

Nath, R., Tomov, S., Dongarra, J.: An improved MAGMA GEMM for Fermi graph-
ics processing units. Int. J. High Perform. Comput. Appl. 24(4), 511-515 (2010)
Nvidia Corporation, CUDA C. Programming guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide

https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/978-3-319-55669-7_2
https://doi.org/10.1007/978-3-319-55669-7_2
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide

2 Springer
http://www.springer.com/978-3-319-71254-3

Supercomputing

Third Russian Supercomputing Days, RuSCDays 2017,
Moscow, Russia, September 25-26, 2017, Revised
Selected Papers

Voevodin, V.; Sobolev, S, (Eds.)

2017, ¥V, 532 p. 232 illus., Softcover

ISBM: 978-3-319-71254-3

	GPU Acceleration of Dense Matrix and Block Operations for Lanczos Method for Systems over Large Prime Finite Field
	1 Introduction
	2 GPU Acceleration of Operations with Dense Matrices and Blocks
	2.1 Algorithms
	2.2 Algoritm Mapping on GPU Architecture
	2.3 Important Realization Details
	2.4 Numerical Experiments

	3 Conclusion
	References

