Chapter 2
Technical Preparation

This chapter’s focus is on providing some technical background which is needed
for the subsequent analysis to be carried out on the surplus models themselves in
later chapters. This background is not meant to be comprehensive in the sense that
well-known mathematical topics are normally assumed to be known and are not
discussed in much detail. Rather, less commonly known topics specific to this mono-
graph are discussed. A brief review is provided of Lagrange polynomials due to
their importance in numerous subsequent places in the monograph. The so-called
‘Dickson—Hipp’ operator, which generalizes both Laplace transforms and distribu-
tion tails, is of central importance in many of the models, and is then discussed.
As much of the monograph utilizes defective renewal equation methodology, this
topic and the closely related compound geometric and compound geometric convo-
lution methodology is also reviewed. Finally, the important classes of mixed Erlang
and Coxian distributions, which have attracted much attention in recent years in the
applied probability and actuarial literature due to their mathematical tractability, are
briefly summarized.

2.1 Lagrange Polynomials

Suppose that x;, x3, .. ., x,, are distinct numbers, and that 4 (x) is any polynomial of
degree at most n — 1. Then h(x) may be expressed in the form
n n X — x:
h(x) =Y hix; L 2.1

(x) E(’)Hx,-—x- @.1)

i=1 =L /
J#
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12 2 Technical Preparation

so that 4(x) may be re-expressed as a linear combination of its functional values
h(x1), h(x2), ..., h(xy).

Example 2.1 The choice h(x) = 1 yields interesting and useful identities involving

(arbitrarily chosen) numbers x, x,, ..., x,. In this case (2.1) becomes
X —x
1= ] 2.2
YT 22
i Jj=l1
J#i

and with x = 0 it follows that forn > 2

Zl_[xj_xl

i=1 j=1

J#

which is also true for n = 1 when the empty product is assumed to be 1. Also, the
right-hand side of (2.2) is a polynomial of degree n — 1 because it is the sum of n
such polynomials, one for each i. The coefficient of x"~! in the i-th polynomial is

1/ JI —x ), and since the coefficient of x"~! must be 0 for n > 2, it follows
J=1j#
that (for n > 2)

n n

{l_[(x,» — x; } {]_[(x, —x) }_l =0, (2.3)

i=1 =1 i=1 =1
J #1 bi 9&1
where the equality on the right follows by multiplying both sides of the outer equality
by (=D)L O

2.2 Dickson-Hipp Operators and Equilibrium
Distributions

In this section, we introduce the Dickson—Hipp operator (including the Laplace
transform as a special case) as well as some useful properties of this operator. The
results for this transform and the related equilibrium distributions will be extensively
used throughout this monograph.

Let r be a number, and /(x) an integrable function. Then define

o0
T, h(x) = e”‘/ e Vh(y)dy, Re(r) >0, x >0, (2.4)
X



2.2 Dickson—Hipp Operators and Equilibrium Distributions 13

called the Dickson-Hipp transform of the function A (x) (e.g. Dickson and Hipp
(2001), Li and Garrido (2004)). A change in the variable of integration results in the
alternative representation

T h(x) = /00 e "h(x 4 y)dy. (2.5)
0

Clearly, 7, is a linear operator in that

Tr{ Zaih[m} =D alhix), (2.6)
i=1 i=l1

as is obvious from (2.4) or (2.5). Also, the Laplace transform is a special case, i.e.

h(s) = / ” e h(y)dy = T,h(0). (2.7)
0

Furthermore, the integrated tail may be obtained from

/ h()dy = Toh(x).

Example 2.2 Mixture of exponentials
Suppose that h(x) = Zle gihi(x) for x > 0 where h; (x) = Bje %~ for B; > 0 and
0 <gq; <1 with Zle gi = 1. Then, from (2.6) with (2.5), one finds

k k 00 k
5 Bty qibi
Thx) =) qiThi(0) =) qipie™™* / ey = 3 e,
i=1 i=1 0 i=1

O

It is of interest to consider repeated application of the operator. Thus, define for
n=1,2,...,
Trl,rz ..... r,,h(x) = Tr| Trz e Trnh(x)- (28)

For n = 2, a change in the order of integration yields

00
Trl,rzh(x) — er1X/ ey {Trzh(y)} dy

= o / ey f me"z’h(ﬂdtdy
x y

0 '
o / e—’ﬂ{ f e—(r,—r2>ydy}h(,)dt. 2.9)
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Therefore, if r| # ry, it follows that

00 e~ (n=r)x _ o=(n—rt
T, nh(x) = e"X/ e ! { }h(t)dt
X

ry —nr

e [Z e h(t)dt — e [ e M h(t)dt

)

ry —n
that is,
T h(x) — T, h(x)
T nh(x) = — , T ET. (2.10)
ry —n

Thus, the Laplace transform of the Dickson—-Hipp transform is a special case of

(2.10), i.e.
T,h(0) — T;h(0)
S 9

oo
/ e Th(5)} dy = T, h(0) =
0 —r
and using (2.7),

M' @2.11)
s—r

/ e {Toh(y)) dy =
0

It is clear from (2.10) that
Trl»rZh('x) = Trz,rlh(x)s (212)

and so the order of application of the operator is unimportant. Clearly, the same is
true for (2.8) by repeated application of (2.12) if r; # r; fori # j. In fact, we have
the following generalization of (2.10).

Theorem 2.1 Ifr; #rj fori # j, then forn > 1,

T, h(¥) = > ai T, h(x), (2.13)
i=1
where
aiz%, i=1,2,....n
[1(r; = ri)
j#i

Proof Clearly, (2.13) holds for n = 2 as (2.13) reduces to (2.10) in this case. We
will prove that the result holds for all n by induction on n, and thus we assume that
(2.13) holds for n. Then using (2.12) repeatedly, it follows that

Tr],rz,.. h(X) = Trn+1,r1,r2,w,"nh(x) = T"n+l

Trl,rz ..... r,,h(x)’

<sTnsTnt1
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and by the inductive hypothesis together with (2.6) and (2.10),

n

Trmrre B () = T, { Z ﬂ}
)

i=1 ]_[ (rj—ri
1#1
Z Thrh@) _ ~  Th6) =T, h()
i=l l_[ (rj - rl) i=1 (rn+l ri) l_[ (rj - rl)
Jj';]i j;ét

But using (2.3), it follows that

n Trh n n+1 —1
Trl,rz ..... rth(x) = Z % r,‘“h(x)}( { 1—[ } )
T =) =
J#t
n Tr[h(x) n+1 -1
15 i (| T -] )
i=1 lj[] (rj —ri) i1
J#
and (2.13) also holds for n + 1. ([l

Although less important in what follows than the case with distinct r;, the case
with identical 7; is straightforward. It is clear from (2.9) that

T, h(x) = erx/ (t —x)e " h(t)dt,

and by induction on n that

rx o0
Trr,...,rh(x) = S / (t —x)"te " h(t)dt.
——— n—-D!J

n terms

In connection with probability distributions, it is often convenient to allow for
distributions which have discrete or both discrete and continuous components, rather
than strictly continuous densities. In particular, if F(y) = 1 — F(y) = Pr(Y < y),
for y > 0, is a distribution function (df), it is often useful to replace the right-hand
side of (2.4) by ¢~ f:o e "VdF(y), which essentially involves the replacement of
h(y)dy by the more general d F (y). In a similar manner to the derivation of (2.11),
it follows that
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00 00 TN
/ e”{e’y/ e”dF(t)}dy = M (2.14)
0 y S —r

where

f)=E (") = / eVdF(y). (2.15)
0

Replacement of r by 0 in (2.14) yields

Eal— 1—E(eY
| Ty = =22 2.16)
0 N
and letting s — 0 yields, by L’Hopital’s rule,
00 —
EY) = / F(y)dy. (2.17)
0

Each of (2.14), (2.16) and (2.17) hold for any nonnegative random variable Y, even
if Y has discrete mass Eoints.
Let F1,(y) =1— Fy,(y), for y > 0, be defined by

e fyoo e " F(x)dx B e F(x + y)dx
e Fydx [ e F(x)dx

y=0, (2.18)

fl,r(y) =

and Fy,(y) in (2.18) is a df, as it is a mixture of those of the form 1 — F(x +y)
/F(x). In Dickson—Hipp notation, F, ,(y) = {T,F(y)}/{T, F(0)}. Thus, F ,(y)
is differentiable (even if F(y) has discrete mass points), with derivative f; ,(y) =
—f/”(y) from (2.18), namely

f(y) —re"” f}oo e F (x)dx
I e F(x)dx

fl,r (y) =
But integration by parts yields
o0 _ oo .
e / e "dF(x) = F(y) —re"” / e " F(x)dx,
y y

and therefore
e [ e ™ dF(x)

— , > 0. 2.19
fooo e ¥ F(x)dx Y (-19)

fl,r(y) =

The Laplace transform of (2.19) is, using (2.14), (2.15) and (2.16), given by
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P Lol NERYIOEIIO
fir(s) = fo e fl,,(y>dy—(s_r) T (2.20)

We remark that when r = 0, (2.19) reduces to

_F(y)
fro(y) = %) (2.21)

using (2.17). The probability density function (pdf) (2.21) is often referred to as

an equilibrium pdf, and consequently (2.19) as a generalized equilibrium pdf (e.g.
Willmot and Lin 2001, Sect.9.2).

Example 2.3 Mixture of exponentials

Suppose that F(x) = Y, ¢ Fi(x) for x > 0 where F;(x) = e #* for f; > 0 and
0 < g¢g; < 1with Zf:l g; = 1. Then, using the result in Example 2.2, the generalized
equilibrium pdf (2.19) is given by

ko aibi ,~piy k
T f(y) Dini Bitr€
fl,r(Y)z = = k - . = ‘]z(")fz()’),
fooo e ™" F(x)dx Zj:l # ;
where
qi
Cli(")=kﬁ;rqj, i=1,2,...,k,
Zj=l ﬂ_,‘+r
and f;(y) = Bie P for y > 0. O

Moments of F ,(y) are easily obtainable. One has from (2.19) that

%0 IS yme™ [ e d F (x)dy
|y = 22

0 Jo e F(x)dx
_ Jo ey yretdy}dF(x)

= — 2.22
Jo e F(x)dx (&5
For r # 0, one has the identity (easily proved by induction on n)
X n!  (—rx)
n_,ry — _ X
/0 yleVdy = —(_r)n+1 {1 e jgo 7 } (2.23)

Substitution of (2.23) into the numerator of (2.22) yields
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o —rx * n_ry n! o —rx ( rx)
,/0 e {./0 ye)dy}dF(x) 7(7”)"“'/0 e {1 e" Z 7 }dF(x)

Jj=0

_ (_;1)!”4”{/000 YA F(x )_Z( r) f ’dF(x)}

j=0

n (=r)’ j
= Sy r)n+l{f(r) 2(:) i E(YJ)}.

Thus, for r # 0, it follows that forn = 1,2, .. .,

o n! "\ (—r)) E (YY) }
"fi,,Ndy = 1+ — 1. 2.24
fo V' fir(dy (_r),,{ ; R (2.24)
For r = 0, it follows easily from (2.22) that
o0 . . E(ynJrl) 5 o5
/(; Y fro(y) Y—m- (2.25)

For a detailed discussion of higher order equilibrium distributions in connection
with higher stop-loss moments, see Willmot (2002b) or Willmot et al. (2005) for
example.

2.3 Defective Renewal Equations

Suppose that m (x) satisfies the integral equation
m(x) = ¢/ m(x —y)dF(y) +v(x), x=0, (2.26)
0

where 0 < ¢ < 1, F(y) =1 — F(y)is adf with F(0) = 0, and v(x) > 0 is locally
bounded (i.e. v(x) < oo for x < o0). Then (2.26) is called a defective renewal
equation.

In order to discuss the solution to (2.26), we let the Laplace—Stieltjes transform
of F be f(s) = f0°° e *YdF (y). Then define F" (y) =1 — F*(y) to be the tail of
the distribution of the n-fold convolution gf F with itself, i.e. the associated Laplace
transform is fooo e“"—"f*n(y)dy = {1 — [f(s)]"}/s. It is convenient to introduce the
compound geometric df G(y) =1 — E(y) = Pr(L < y) associated with (2.26) by

G =) (—¢)¢"F (y), y=0. 2.27)
n=1
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Clearly, -
G(0) = ¢,

so that G (y) has a discrete mass point of 1 — ¢ at 0. One has

W 1—¢

=————, (228
1—=9¢f(s) 229

E () = /0 edG(x) =Y (1 - )¢ | F(s))
n=0

where f (s) is given by (2.15). Taking Laplace transforms of (2.26) yields mi(s) =
¢ni(s) f(s) +V(s), and solving for i (s) yields with (2.28),

V($)E (et
figs) = LOE ™) (2.29)
1-¢
The solution (2.29) may be expressed in a more convenient form with additional
assumptions about G(y) or v(x). First, if F(y) has density f(y) = F’(y), then
G(y)=1—¢ + [; g(x)dx, where

g =Y _(1—=¢)p"f"(y), y>0, (2.30)

n=1

is a compound geometric density (and f**(y) = dF*(y)/dy). Thus, using (2.28),
the Laplace transform of (2.30) is

g(s) = /Ooe‘”g(y)dy = 1_—? — (1 =¢). (2.31)
0 1—9¢f(s)

Therefore, (2.29) may be expressed as

~ | ~
m(s) = T—¢ g)v(s) +v(s),

which yields upon inversion (e.g. Resnick (1992), Sect.3.5)

1 X
mx) = —— f V(g — Ydy + v(x). 232)
1—9¢ Jo

Next, we consider assumptions about v(x) rather than G (x). First note that (2.16)

yields

= R 1—E (e_‘YL)

G(s) =f e YG(y)dy = . (2.33)
0
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Then assuming that one may write

sV(s) = C —Vi(s), (2.34)
it follows that (2.29) may be expressed as

iy T {1 [11_—¢E (9]} _ 7o) - sj}’(;)é(s)’

ie. . ~
V(s) — CG(s) + V. (s)G(s)
1—¢ :

m(s) = (2.35)

For example, if v(x) is differentiable, (2.34) holds with v, (s) = fooo e {—v'(x)}dx
and C = v(0), and (2.35) yields

v(x) =v(0)G(x) — [ v (x — )G (y)dy

mix) = — (2.36)
Similarly, if V(s) = v, (s) where
sy = kDR (2.37)

s —r

then
V. (s) = k—— () — h(s)} =k (1 + L) [ —R(s)},
S —r S —r

i.e. sV, (s) = kh(r)— [kh(s) — V,(s)} and (2.34) holds with C = kh(r) and ¥, (s) =
kh(s) — rv,(s). Thus, if V(s) is given by (2.37) and (2.35) becomes

sy = @)~ kR (IG(5) 11—_{k(;z(s) — ()} Gs) 238)

Hence if V(s) =V,.(s) =k fooo e {T,h(x)}dx, then (2.38) yields

k ~ — * _
m(x) = <m> [{Trh(X)} — h(r)G(x) +/ {h(y) —rT,h(y)} G(x — y)dy} :
- 0
A similar result holds if V(s) = V,.(s) = fooo ey, (x)dx, where v, (x) =
ke™ fxoo e ""dH (t), with H(t) = 1 — H(t) is a (possibly discrete) df, as is clear
from (2.14) and (2.37) with h(s) = f0°° e **dH (x). In particular, with r = 0, if
v(x) = kH (x), it follows from (2.38) that
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k r_ _ _
m(x) = m {./0 G(x—y)dH(y)+ H(x) — G(x)}.

There are special cases of (2.26) that deserves mention.

Example 2.4 Compound geometric tail
From (2.28) and (2.33), we find that

5@):%1-&}:{ ¢ }l_f(s), (2.39)
s 1 —¢f(s) 1 —¢f(s) s

which may be rearranged as

T(s) = 6 F)O(s) + =& f ©),

Inversion of this Laplace transform relationship yields

G(x)=¢ /O G(x —y)dF(y) + ¢F (x). (2.40)

Comparison of (2.40) with (2.26) yields the conclusion that the solution to (2.26)
when v(x) = ¢ F(x) is m(x) = G(x) given by (2.27). [l

Example 2.5 Compound geometric density
It follows from (2.31) that

. | o1 — ) F(s)
s =( ¢){ =67 ) } 1= 67 )

Thus, 3(s) = ¢ £ (5)3(s) + ¢ (1 — ¢) f(s), yielding
gx)=¢ /0 g — ) fdy +¢(1 — d) f(x), (2.41)

and the compound geometric density (2.30) also satisfies a defective renewal equa-
tion. O

While the solution to (2.26) is complicated in general, there is some asymptotic
help available. Suppose that F (y) is nonarithmetic (i.e. has a continuous component)
and there exists an R > 0 satisfying

/ ” eRdF(y) = l. (2.42)
0 0]

If e®*v(x) is “directly Riemann integrable”(to be discussed momentarily), then
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mx) ~Ce ® x> oo, (2.43)
where o R
Yv(y)d
c= Jo vy (2.44)
¢ [, yeRdF(y)

and a(x) ~ b(x) as x — oo means that lim a(x)/b(x) = 1. A sufficient condition
X—>00

for e®*v(x) to be directly Riemann integrable is that e®*v(x) < h(x) where h(x) is
nonnegative, nonincreasing, and Riemann integrable (i.e. f0°° h(x)dx < o0). This
condition is in turn satisfied if [, e®T9¥v(x)dx < oo for some € > 0. To see
this, note that e®+9%y(x) is locally bounded on (0, c0) because the same is true

of v(x). Also, because lim e®+9*y(x) = 0, there exists a K < oo such that
X—>00

eRTI%y)(x) < K, ie. e®v(x) < h(x) with h(x) = Ke ¢*. The asymptotic result
(2.43) is sometimes called a Cramer—Lundberg result. Finally, if (2.42) holds then

Cre™™ <m(x) < Cye™, x>0, (2.45)
where C; = irzlga(z), Cy = ilzllga(Z)’ and
a(z) = &
[T e dF(y)
In particular, (2.27) satisfies
Gx)y<e ® x>0 (2.46)

The Lundberg bounds (2.45) are derived in Willmot et al. (2001). A more detailed
discussion is provided in Sect. 8.3.

‘We introduce the function E(x, y), forx > 0 and y > 0, satisfying the defective
renewal equation

G(x,y)=¢ / G(x —t,Y)dF({t)+¢F(x +y), (2.47)
0

so that G(x, 0) = G(x), from (2.40). It will be shown that G (x, y) is useful when
analyzing the deficit at ruin in the renewal risk model (in Sect.4.5). Alternatively,
(2.47) has an expression as follows. Taking the Laplace transform of (2.47) with the
aid of (2.28) yields

g _9J eG4y ¢ { /°° } { /°° " }
/0 e 7Gx, y)dx = T— (bf(s) e e *dG(x) A e F(x+y)dxy.
(2.48)

Therefore, inversion of the Laplace transform results in
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Glx,y) = % / Fx+y—0dG@). (2.49)
- 0

Next, we con_sider the “excess loss” or “residual lifetime distribution” with df
F.(y) =1— Fy(y), where

- F@x+y)
F, = — >0, 2.50
» T y = (2.50)
nd F+y)
/ XTy
- =F = ‘7 2.51
S () ME)) oo (2.51)
It is convenient to define
— E(x, y)
A, =1—A, = — 2.52
) (6)) G0 (2.52)

satisfying
Jo Fes MF(x = 0dG(1)
Jo Flx —ndG(1)

> 0, (2.53)

Ac(y) =

due to (2.49) with y = 0 and (2.50). Clearly, (2.53) is a proper tail distribution as it
is a mixture of (2.50), mixed over x. In fact (2.52) is the tail distribution of the deficit
at ruin given that ruin occurs, which will be discussed in Sect.4.5. Then the residual
lifetime tail of the compound geometric distribution

_ G
G.(y) = %TJF)” y >0, (2.54)

also satisfies the defective renewal equation

— y_ — —
G(y) = 45/0 Ge(y =nDdF (1) + ¢F(y) + (1 —p)Ac(y). (2.55)

To see this, introduce ®, with df F, (x) independent of L. Then

X

Pr(L + O, > x) = G(x) + /xfy(x —1)dG(t) = Fy(x) +/ G(x —t)dF,(1),
0 0

and thus, with the help of (2.50) and (2.49) is given by
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v >{Fv(x)+ | E(x—ndFy(t)—E(x)}
0

F
Xty _ _
= {F(x+y)+/ G(x+y—t)dF(t)—G(x)F(y)}.
y

(2.56)

Then, from (2.40), it may be expressed as

G(x,y) =

1 qu [ G(x¢~|- » /Oyg(x Ty —0dF(r) — E(x)f(y)} :

Dividing the above equation by G (x) followed by rearranging terms yields (2.55).
Interestingly, it can be demonstrated that (2.54) is the tail of L + V, where V, is
independent of L with df A, (y) in (2.52), namely

G =3t b v sy y=o (2.57)
G(x)

or equivalently

_ _ y_ _ y_
G (y) =G +/ Ay (y —0)dG(t) = Ax(Y) +/ G(y —ndA(1). (2.58)
0 0

It follows that the residual lifetime distribution of the compound geometric distribu-
tion is actually the convolution of the compound geometric distribution itself and the
distribution A, (y). To prove (2.57), taking Laplace transforms of (2.55) and using
(2.16) results in

~ ~ ~ 1— iy 1 — E(e—sY
Gx(s) = ¢Gx(s)f(s) +¢4 + (1 _¢)#’

where G, (s) = fooo e VG, (y)dy. Then rearranging the above equation and using
(2.28) yields

G = U= FE+ A=l —E@)} _ 1-¢f() = (1 —¢)EE ")
x o1 ¢76) ST= 970}
. 11— E(e_SL)E(e—éV.)

N

and the inversion gives (2.57). We remark that the expression for G, (y) in (2.58)
appears to be very useful in the study of the reliability properties of the compound
geometric distribution. The df F(x) is said to be new worse (better) than used or
NWU (NBU) if F(x + y) > (S)f(x)f(y) forall x > O0and y > O (see e.g. Barlow
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and Proschan (1975)). It is well known that the compound geometric distribution is
NWU (e.g. Brown (1990)). From (2.58), this result is found immediately since the
integral term on the right-hand side of (2.58) is non-negative. See Willmot (2002a)
for analytic results on the compound geometric residual lifetime distributions in
connection with the distribution of the deficit ruin as well as some reliability-based
properties of the compound geometric distribution.

Example 2.6 Compound geometric convolution

Motivated by the previous discussion, we now consider more generally the df of
the compound geometric convolution £ (x) = 1 — 7(x) = G * C(x), where
Cx)=1—C(x)isthedfofa positive random variable independent of L. So, the
tail of the compound geometric convolution is given by

X

A (x)=Gx)+ / x?(x —1dG@) =C(x) + f Gx —ndC@®). (2.59)
0 0

From (2.40), it is obvious that 7 (x) = G(x)/¢ = G(x)/G(0) if C(x) = F(x).
Then it is known that the tail df of the compound geometric convolution satisfies the
defective renewal equation (e.g. Willmot and Lin (2001), p. 174),

A (x) =¢ f A (x —1)dF(t) + ¢F(x) + (1 — ¢)C(x). (2.60)
0
Similar to (2.47), we introduce the function
G(x,y) = / G(x —t,y)dC(t) + C(x + y). (2.61)
0

From (2.59), we know ¢ (x, 0) = Z (x) due to G (x, 0) = G (x) with G (x, y) given
by (2.47). Then using (2.48) one finds the Laplace transform of the integral on the
right-hand side of (2.61) as

/Oo e {fxﬁ(x —1, y)dC(t)} dx
0 0
{f e G(x, y)dx} {/ e_‘”dC(x)}
0 0
L {/ e_”dG(x)} {/ e F(x + y)dx} {/ e_”dC(x)} .
I1—¢ Lo 0 0

Since [~ e *d A (x) = E(e™*F) [;7 e™**dC(x), we get

00 X _ ¢ 00 X
| e—SX{/ G<x_z,y)dC(r)}dx=7f e—”{/ F(x+y—t)d%(t)}dX-
0 0 1—¢Jo 0

Therefore, by the uniqueness of the Laplace transform, (2.61) satisfies
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G(x,y) =Cx +y)+ %/ F(x+y—0dX(1). (2.62)
- 0

Next, we define _
Y(x,y)

A (y) =1 - (y) = —=, 2.63
» ) = o) (2.63)
and the residual lifetime tail of the df JZ"(y) as
7 H(x +
Ty =280 s
K (x)

But, the second term on the right-hand side of_ (2.62_)has the same form as (2.49)
with G replaced by JZ", and using (2.56) with G = _# results in

G (x,y)
x+y _
= Cx+y)+ % {f(x +) +/ A (x +y—1)dF(t) —Y(x)F(y)}
y
_ ¢, _ xX+y y_ _
= C(x+y)+m[F(x+y)+/0 %(x+y—t)dF(t)—f0 %(x+y—t)dF(t)—%(x)F(y)}
_ ya —(1=¢)C ) y__ .
_ C(x+y)+£{{(x+y) (; "”C(x“)—/o Ji/(x+y_l)dF(t)—J£/(x)F(y)],

where the last equality is due to (2.60). Dividing by ¥ (x) and rearranging terms
yields the defective renewal equation for .# . (y) given by

- y__ _ _
T = ¢ /0 To(y — DAF @) + $F0) + (1 — 9T (). (2.64)

Then similar to (2.57) and (2.58), the stochastic composition result for the residual
lifetime of the compound geometric convolution . (y) is also available as follows.
Let 7 be independent of L with df <7, (y). Then taking Laplace transforms of (2.64)
and using (2.28) it follows that

{1— f(s)} +A *(,ii){l - E(eisn//*')} _ 1— E(eiSL)E(e*'ﬂ/x)
s{l—¢f()} s ’

./(.) e_sxyx (ndy = ¢

and inverting the above equation identifies the residual lifetime tail 7, (y) as

T o(y) = % = Pr(L+ % > ), (2.65)

or equivalently
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_ _ y___ _ y__
7o) =Gy + fo Ty = G = Z () + /O Gy — dti(1).

O

Example 2.7 Classical Poisson risk model with diffusion

The classical Poisson risk model with diffusion is defined by U; = u +ct — S; + W;
for t+ > 0, where W, is a Wiener process with drift 0 and variance 2D, and U,
without W, is given in (3.1). The details of the model are described in Sect.3.1.
From Dufresne and Gerber (1991), it is shown that the survival probability ¥ (u),
namely ¥ (u) = Pr{U, > O for all t > 0|Uy = u}, is the df of a compound geometric
convolution. More precisely, let us assume the Poisson rate A and the claim amount
distribution P(y) = 1 — P(y) with mean E(Y) = [, ydP(y), and let P(y) =

fo} P(x)dx/E(Y) be the equilibrium df of P(y),
Cx)y=1—e5", x>0,

and F(x) = C x P;(x) be the convolution df. Then, if ¢ = AE(Y)/c in (2.30),
the survival probability ¥ () is a df of the compound geometric convoluted with
C(x) (i.e. ¥ (u) = G % C(x)). Therefore, the results for the compound geometric
convolution obtained previously are applicable to v (u). (I

Lastly, we remark that if C(x) = F(x), then . (x) = G(x)/G(0), and thus,
all results for the compound geometric convolution are reduced to those for the
compound geometric tail G (x). See Willmot and Cai (2004) for further details related
to the residual lifetime of compound geometric convolution and its risk and queueing-
theoretic applications.

2.4 Mixed Erlang Distributions

The mixed Erlang class of distributions is dense in the class of positive continuous
probability distributions (e.g. Tijms (1994), pp. 163—-164), and is extremely well
suited for analytic evaluation of risk-theoretic quantities. It is also a very large class
of distributions, and includes many distributions whose membership in the class is not
immediately obvious, such as phase-type distributions (e.g. Shanthikumar (1985)).

Concerning parameter estimation of the mixed Erlang distribution, Lee and Lin
(2010) studied numerical experiments to fit Erlang mixtures to data using maximum
likelihood estimation using the EM algorithm. As discussed in Lee and Lin (2010),
the EM algorithm for a finite mixture of Erlangs provides an effective iterative scheme
and has fast convergence. However, there is an issue of overfitting with many Erlang
terms in the mixed model. A detailed discussion regarding estimation can be founded
in Lee and Lin (2010). See also Verbelen et al. (2015) for fitting a finite mixture of
Erlangs to censored and truncated data using the EM algorithm.
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For 8 > 0and j = 1,2, 3, ..., define the Erlang- j pdf to be

J=1 ,—By
5y = BBV e

TEEE y >0, (2.66)

with Laplace transform

~ o B\’
zfﬂ’j(s)z'/(; e yé”ﬂ,j(y)dy=<m) .

For j =1, &.1(y) = Be P is the exponential pdf, and g}; 1(s)

1(s) = B/(B + 5). For
risk-theoretic calculations, it is of interest to consider &3 ;j(x + y) where x > 0 and
y > 0. Clearly,

(2.67)

1
,316 Blx+y) I j—1 L
Epi(x +y) = R r xkyl=Imk

k=0

j k1 k p—Bx ik i—k—1 ,—By
/3 IBJ y.] e y
N e
= G !
1 L
== ) Epir1(0)Ep k().
Bi=
That is,
Epilx+y) =

1 J
5 > G (0)Ep 1k (). (2.68)
k=1

Next, let {q1, q2, - . .} be a discrete counting distribution with probability generating
function (pgf)

0@) =) q;7.

(2.69)
Then fory > 0
0 =3 400 = Z 4 % 2.70)
j=1
is said to be a mixed Erlang pdf.
It follows from (2.67) and (2.69) that the Laplace transform of (2.70) is
f<s>=/ “’f(y)dy—Zq, <ﬂf_s>j=Q<ﬂf_s>, @71
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so that the mixed Erlang class of distributions may also be viewed as the class of
compound distributions with exponential secondary distribution.

If g; = 1 then f(y) reduces to the Erlang-;j pdf. It also includes distributions
such as sums and mixtures of Erlang distributions with different scale parameters
(Willmot and Woo (2007)), as is now described.

For B; < B, the algebraic identity

Bi B

B
ﬁ1+s=/3+s{1_<1 ﬁ’s)(")}’ 2.72)

B+s

expresses (in Laplace transform form) the fact that a zero-truncated geometric sum of
exponential random varigbles has an exponential distribution. Thus, if a distribution
has Laplace transform f(s) which depends on s via the function g;/(B8; + s) for
different values of B;, (2.72) may sometimes be used to express f(s) in the mixed
Erlang form (2.71).

Example 2.8 Mixture of two exponentials
Suppose that f(y) = pBie Y 4+(1—p)Bre Y where 0 < B; < frand0 < p < 1.

Then
Bi +(1—-p) B2

F&=rg Brts

’

and again using (2.72), it may be expressed in the form (2.71), i.e. f(s) Q(ﬂzﬂ
with

B

B2

1—(1—%)z ’

Q@)=z31l—p+p

which may be expressed as

oa-p-rer (o rE ) (-3) -

Thus, the coefficients g; of z/ are obtained as g1 = 1 — p + p(B1/p>) and
B B’ .
szp(— 1—=), Jj=23....
B2 B2

Example 2.9 Sum of independent gammas
Suppose that

n

~ B \“
fls) = < > , (2.73)
E Bi+s
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corresponding to the sum of independent gamma random variables. Let 8 = sup; B,

and lising (2.72) it follows that (2.73) may be expressed formally in the form (2.71),
Le. f(s) = Q{B/(B + s)}, where

Q(z)—z’"l—[{ (

mr:b

(2.74)

m) z }m

withm = > ;. Thus, if m is a positive integer, (2.74) is a pgf, corresponding to the
convoluti(;n é)f negative binomial distributions, shifted to the right by m. In particular,
ifo; = 1fori =1,2,...,n,then (2.73) is the Laplace transform of the generalized
Erlang distribution (e.g. Gerber and Shiu (2005)), which is thus in the mixed Erlang
class. The coefficients ¢; of z/ in (2.74) may be evaluated recursively, and for some
choices of n and the «;s, also analytically (e.g. Willmot and Woo (2007)). O

Example 2.10 Mixture of Erlangs with different scale parameters

Suppose that
FO)Y =D P i),

i=1 k=1

oo o0
where pir >0, Y > pir = 1,and B = sup, B; < oo. Then
i=1 k=1

oo o0 ) k
f<s>=ZZpik< ﬁ.ﬁ_’ﬂ) : (2.75)

k
_ gl —r U 2.76
0(2) ZZPk2{1_<1_%>Z} (2.76)

m=0

B
0 . ,3 ,3 Jj—k )
m2 (o) (5) (-5)
i=1 k=l ,X:; k=1/\B p

SR ()

[o¢] oo o0 _ . k
Q@) = ZZmZ(k:TI 1) <E) <1—%> 7
i=1 ko=ol .
D
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Thus, interchanging the order of the first two summations implies that the coefficients
g; of z/ in (2.76) are given by

_ Nk
q; = ZZP:k(J )(é) (1—%) L =12, @7

i=1 k=1

We remark that (2.77) holds even if 8; = B for some i (with the usual notational
convention that 0° = 1). O

The mixed Erlang class defined by (2.70) or (2.71) is thus quite large, and is
extremely tractable mathematically, as will become evident.

It follows from (2.16) and (2.71) that the tail of the mixed Erlang distribution has
Laplace transform

o _o(£) (Y
/o e_“}'f(y)d)):—l QS(HS) =qu{—l <sﬂ+s) }

But one has the geometric series

B -5

k=1 =
and thus
o0 o0 k ©0
7Sy_ _ )
/0 eV F(y)dy =— Z%Z<,3+s> = ;(ﬂ—i-s) jZ:];‘I/,
i.e.
e F Lo () 2.78
FE(y)dy = — , _
/o ¢ I ﬁ;Qk<ﬁ+s> (278)
where .
Or= > q. k=012, (2.79)

j=k+1

Therefore, the mixed Erlang tail is given by

S R e B
F(y) = EZQk&,kH(y)—e 2O (2.80)
k=0 k=0 :
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Example 2.11 Residual lifetime distribution of mixed Erlang distributions
It follows from (2.68) that

fx+y) = qu‘gﬁ,j(x +y)
j=1
J

Z Epk (¥)Ep, jr1-1(x)

k=1

= I

Mg T'Mg

ZCI Epk(¥)Ep,ja1-k(X).

1 j=k

‘Dal»—‘
T

Letn =k — 1 and m = j — k to obtain

[ elNee)

1
fetn =g D Gmint1Epmi1 () Ep 1 () (2.81)

m=0 n=0
Substitution of (2.81) into (2.51) yields, using (2.80),

oo

5 z épi(y) Z qj+kSp.k+1(X)

j =0

() = pos s
7 2 Qibpart ()
k=0
i.e. -
L) =D a5, ¥ =0, (2.82)
j=1
where .
> qj+ikbpp+1(x)
T . ji=1,2,.... (2.83)
Y 0kbpit1(x)

»
Il

0

Clearly, (2.79) implies that Z qjx = 1, and thus f,(y) in (2.82) is again a mixture
]_
of Erlangs, but with different weights. (]

Example 2.12 Generalized equilibrium distribution of mixed Erlang distribu-
tions

Consider the distribution defined by (2.18). Differentiating (2.18) implies that (2.19)
may also be expressed as
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Joo e fx+ydx [ e F(x) fi(y)dx
f e F(x)dx B fooo e~ F(x)dx

fi, ) = , (2.84)

and (2.84) is a mixture over x of pdf of the form (2.51). In the mixed Erlang case,
substitution of (2.82) into (2.84) yields

Frr) =Y a;08,(), (2.85)

J=1

where foo _
qjxe " F(x)dx .
q;(r) = Ofooje*”‘f(x)dx . j=1,2,.... (2.86)
0

Clearly, (2.85) is again a mixture of Erlang pdfs, and we will now simplify (2.86).
First, consider the denominator of (2.86). It follows from (2.67) and (2.80) that

ri (ﬁ+r)k'

k=0

00 o 1S~
/ e "F(x)dx = — Z Q16 k+1(r) =
0 P k=0

For the numerator of (2.86), it follows from (2.83) and (2.80) that

e 2

Z q/+k£}5 k1(X),

('Ij.xeirxf(x)

and, again using (2.67),

o0 = ‘
| ae T = 5 Zq,+ké%k+1<r> L J+k<ﬂ+r) |

k 0 k=
Thus, (2.86) becomes
o0 k
Z qj+k (/3+r>
qi(r) = oo—k, j=12,.... (2.87)
g <ﬂ+r)

To obtain more insight into the discrete distribution (2.87), we consider the pgf

-4 0w-o(#)

/3 9
1_Q(ﬁf—r) SEY

Q] (Z)
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e.g. Klugman et al. (2013) (pp. 129-131) or Willmot and Woo (2013) (pp. 189-190).
g g pp pp

Then,
_ZOO B\
Ql.%(Z)_nzoqnql (ﬂ+r)z ’

where Q; =Y., ¢; and

s

. 8 j—n—1 . IRY
( B ) Zj:nJrl qj (m) Zj:() qj+n+1 (/3—+,)
qn,1 == ==

Pl oy () e ()

and so (2.87) is ¢; () = qj,l,l(lsiﬂ). Thus,

>4 = ]Z:T‘q,fl,l <ﬂ +r)Z] =20, ()= 0/(2)

with Q7 (z) = le (z) Directly, we may write

o ()= (%) - () -e(k)
"\ B+s B+s 1_Q<f3+r> %_ﬂir
e 2(F) -2 () r o) -e(#)
deoam 1-o(ds) PP -o(d)

which is (2.20) with 7(s) = O (%) as expected.
Note that zQ ,(z) is of the same form as the discrete ladder height pgf in the

compound binomial model, which will be discussed later in Example 7.4. We remark
that from Feller (1968) (p. 265),

ZE _1-0® (2.88)

1—z

and thus if » > 0, (2.87) may be expressed as
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o) k
) B
q;(r) = < r > kgbqﬁk (ﬁ+’)
J - E)
+ B
IB " 1— Q (}3+r)
whereas if r = 0, .
0, .
q;(0) = OOJ_‘, j=1,2,.... (2.89)
Ok
k=0

That is, from (2.21), the equilibrium pdf of the mixed Erlang distribution is

0 _ <+
= — = ; 0 éa ; s
Jro(y) E) ?:1 4;(0)8p,; (y)
where ¢;(0) is given by (2.89), again of mixed Erlang form. (]

Example 2.13 Esscher transform of mixed Erlang distributions
As f(s) = Q(555), we get

f(uﬂ)_Q(ﬁ) Q(ﬁ'ﬂﬁiJ Q*<M>
Tw o (i) 0 () prrwes)

where

or equivalently

O

Example 2.14 A compound geometric distribution
For the compound geometric random variable L with Laplace—Stieltjes transform
given by (2.28), substitution of the mixed Erlang Laplace transform (2.71) yields

E(esb)=c<ﬂis>,

where
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Cl) = Z cjzl = — Q¢ = (2.90)

is a discrete compound geometric pgf. Thus L has a pdf

g =) &y, y=>0,

j=1

and Pr(L = 0) = ¢y = 1 — ¢. Rearrangement of (2.90) gives rise to

C)=9¢0()Ck)+U—9),

which yields, upon equating coefficients of z”, the identity
Cn :¢qucn7kv n=12..., (2.91)

and (2.91) may be used to evaluate {c,; n = 0, 1,2, ...} numerically, beginning
withcg =1 — ¢.
For any o > 0 it follows from (2.81) that

/ (x —y)gx)dx —/ x%g(x + y)dx

,3 f {Zgﬁ n+l(y)zcm+n+lgﬂ m+1(x)} dx

m=0
= E Zéaﬁ,n+l(y) Zcm+n+1/0 xaéaﬁ,mﬂ(x)dx-
n=0 m=0

One has easily from (2.66) that

<, T(m+o+1)
/0 x4 &g my1(x)dx = %,
and thus
o Cm+n 1F(m—|—a+1)
/y (x — y)*g(x)dx = goﬁs w1 () Z e e :
i.e.
f e =P 3y B (2.92)

n=0
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where .
Tm+a+1)
yn,azzcm+n+lT, i’l=0,1,2,....
m=0 m’B

00 —
With & = 0, one has that ¥, 0 = Y ¢puynt1 = C, and (2.92) becomes
m=0

G(y)=Pr(L > y)=e¢# Z_ (ﬁy)"

y>0. (2.93)

The coefficients {fn; n =0, 1, 2, ...} have generating function from (2.90) given
by

= 1 19
2Co l—z{1 1—¢Q(Z)}

n=0
__ ¢ 1-0@ (2.94)

1 -¢0@ 1-z

Again (2.94) implies, upon equating coefficients of z",
(1) n
Ci=——) a0y n=012. .,
1=-¢3

using (2.88) and (2.90). Alternatively, (2.94) may be rearranged as
[o¢] o0
= 1—-0(z)
nZ == Z CnZ + -
D Gt =90 ){ Z:; } A

n=0

which yields, upon equating coefficients of z”, the discrete defective renewal equation

Ci=0¢> aCor+¢0, n=12... (2.95)
k=1

The coefﬁcients_{al; n =0,1,2,...} may be computed recursively from (2.95),
beginning with Cy = ¢. |
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2.5 Coxian Distributions

Another useful class of distributions is the class of Coxian-n distributions with
Laplace transform

f(s) = foo e VdF(y) = mL (2.96)
0

H (Ai + )"

i
where 4; > Ofori = 1,2,...,m, with &; # X; fori # j. Also, n; is a positive

integer fori = 1,2,...,m,and n = n; + ny + ... + n,. Thus the denominator of
(2.96) is polynomial of degree n, while a(s) is a polynomial of degree n — 1 or less.

As f(O) = 1, it follows that a(0) = ]_[ Ay, and if a(s) = a(0) for all s > 0

then (2.96) is the Laplace transform of the1 sum of m independent Erlangian dis-
tributed random variables. Of course, if m = n = 1, (2.96) is an exponential Laplace
transform.

In fact, a partial fraction expansion of (2.96) results in

m j
fs)= ZZ;}U (x H) (2.97)

i=1 j=I1

for some constants p;;. While not particularly important in what follows, an explicit
expression for p;; is

)Li_j dmi—i {ﬁ a(s) ”
Pij = . i ny :
T = prdsii | L O™
k#i

It is clear from (2.97) that ) Z pij = 1, but it is not necessary that p;; > 0 for
i=1j=1

all i and j. Thus (2.97) 1mphes that the Coxian-n distribution is said to be that of a

combination of Erlangs. In particular, when n; = 1 for all 7, the distribution is that

of a combination of exponentials (e.g. Dufresne (2007)). Furthermore, if p;; > 0 for

all i and j, the distribution is of the mixed Erlang form of the type discussed in the

previous section with a single scale parameter.

Example 2.15 Coxian-2 distribution

We now consider the Coxian-2 case with n = 2 in some detail. Then (2.96) may be
expressed as

a1s + ap

TO= G a6+
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where A; = A, is not excluded. Clearly, ay = A;X;, and it is convenient notationally
to reparameterize by letting a; = A;(1 — p). Thus the Coxian-2 Laplace transform
may be written as

= °°_sy M =p)s+ ik
f(S)_/o A R P AW

(2.98)

It is clear from (2.98) that if p = O then f(s) is the Laplace transform of an expo-
nential distribution with mean 1/A, and if A, = A{(1 — p) then f(s) is the Laplace
transform of an exponential distribution with mean 1/4,. We wish to exclude these
cases from the ensuing analysis.

As (2.98) may be written as

Al AlAg

fN(S)Z(l_p)S-I-M r (s + A1) (s +22) (259
it follows that the Coxian-2 pdf may be expressed as
F) =0 = ple™ +ahape ™ h(y), (2.100)
where '
h(y) = fo eimr)x gy 2.101)

Of course, h(y) is easy to evaluate, but its form depends on whether A, equals X, or
not. In any event, f(0) = A;(1 — p), which implies that p < 1.
It follows from (2.100) that the tail may be expressed as

F(y)=(—pe ™ +ple™ +re " h(y)},

i.e.
F(y) =e ™ {1+ riph(y)}. (2.102)

If A; > X, then from (2.101) lim A(y) = oo, and from (2.102) one must have
y—>00

p > 0, because if p < 0 then ¥ F(y) would become negative for large y. But
p # 0, and thus if A; > A,, it follows that 0 < p < 1. Hence (2.99) is a mixture of
an exponential Laplace transform with mean 1/A;, and the Laplace transform of the
sum of two exponentials with means 1/A; and 1/1, if 0 < p < 1 and | > A,, and
if p = 1 then (2.99) is the Laplace transform of the sum of two exponentials with
means 1/1; and 1/A;. If &1 = X, then (2.99) is a mixed Erlang Laplace transform
of the type discussed in the previous section.
On the other hand, if A; < A, then from (2.101)

1 — e~ P22y

h =
6] i
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which implies from (2.102) that

Al
A — AL

lim e"F(y) =1+ Ap lim h(y) =1+ p
y—>00 y—=>0

Since this limit cannot be negative, one must have p > 1 — A, /A4, or equivalently
X > A(1 — p). But Ay # A1(1 — p) and thus if A; < A, then 1 — ;—f <p<1but
p #0.

We now show that if A; < A; and p < 0 then (2.99) is the Laplace transform
of the mixture of two exponentials with means 1/1; and 1/A,. To see this, note that
if 1 =2 < p < 0 then we may write p = a(l — i—f) where 0 < o < 1. Next, if

)
M # )»21, it follows that

A1A A2 A A A2
= + , (2.103)
(s + A1) (s + A2) Ay — A1) s+ A=A ) s+

which expresses the fact that the sum of two independent exponential random vari-
ables with different means has pdf which is a combination of two exponential terms.
Substitution of (2.103) into (2.99) yields the fact that if A; # A, then

f( ) ! n Ao M n A Ao
s) = — ,
p pAz—M s+ Aq p)u—)»z NEY)

i.e.

Foy=(1-p2t) 2 (p ) 2 (2.104)
= p)u—)»z s+ A p)q—)»z s+ A ’

which is again the Laplace transform of a combination of two exponentials. Thus, if

p=oa(l— %) then o = p/\]ﬁkz, and (2.104) becomes

A Ao
+ )
s+ A S+ Ao

f)y=0—-a)

which, for 0 < o < 1, is the Laplace transform of a mixture of two exponentials.

To summarize, the Coxian-2 distribution has Laplace transform (2.99) which for
p = 1 is that of the sum of two independent exponential random variables (possibly
with different means), for 0 < p < 1 is that of a mixture of an exponential and the
sum of two exponentials, and for 1 — i—f < p < 0 (where A < Ap) is that of the
mixture of two exponentials.

If &1 # Ay, it follows from (2.104) that

— )»1 _ )\1 —
F =(1= A1y )Lzy’
0) ( p)»l—)»z)e +<p)»1—)»2)e

and from (2.50), the excess loss tail is easily expressed as
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— bal A 5
Fo.(y)= w = (1 -p ! )e_)‘ly + (P ! )e—)»zy’

F(x) h = =
where
_ e (2.105)
P :

Similarly, if ; = A,, then from (2.102),
F(y) = e {1 + phay)

and .
Fix+y)

—Ay
— e 1+ pi ,
700 {1+ peroy}

fx(y) =

again with Dx given by (2.105). Thus, the excess loss distribution with pdf f,(y) =
f(x 4+ y)/F(x) is again of Coxian-2 form, but with p replaced by p, in (2.105).
That is, from (2.98),

Al = po)s + Ak
(s+A)(s+1r)

ﬁ®=/e“ﬂ®@= (2.106)
0

For the generalized equilibrium distribution defined by (2.18), it follows from
(2.84) and (2.106) that (2.20) becomes

I e F(x) fo(s)dx

Jirls) = Jo e F(x)dx
_ M= pios+ )»1%2’ (2.107)
(s +21) (s +22)
where o o
s = Iy pxe " F (x)dx 2.108)

- foooe_"xf(x)dx '

Clearly, (2.107) implies that the generalized equilibrium distribution (2.18) is again of
Coxian-2 form, but with p replaced by p - in (2.108), which will now be simplified.

Using (2.16) and (2.99), one finds that the Laplace transform of the tail F(y)
satisfies
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1— f(s) A }

{1_(1_”)x s Pt 0ats

~Hon (-5 (- aeis))
T P mts) P T G 0ats)

1—p S+ A+ A

sta  Ponts) ut
_A=p)s+r)+ps+A+ 1)
B (s 4+ A1) (s + A2)

)

i.e.
o Ayt A
/ e F(x)dy = — 2T MP (2.109)
0 (s + A1) (s +A2)

Also, from (2.105),

o0 _ o0 p
f pre “F(x)dx = p/ e X gy — ,
0 0 r+ A

and using (2.109) and (2.108) simplifies to

p(r+Aip)

prTA (2.110)
r+i+Ap

Pir =

To summarize, the generalized equilibrium pdf f; () is again of Coxian-2 form,
but with p replaced by p; , given by (2.110). In particular, when r = 0, the equilib-
rium pdf fio(y) = f(y)/E(Y) is of Coxian-2 form with p replaced by p; o.

The compound geometric tail G (y) has Laplace transform, from (2.28) and (2.33),
given by

i 1 1-¢ ¢ 1— f(s)
YG(dy = — 41— ——=—t = ~ :
./0 ¢ oy s{ 1—¢f(s)} {1—¢f(s)} s

In the case when f (s) has the Coxian-2 Laplace transform (2.98), then from (2.109),
this yields

) ¢pSthathip _Sthathp
—sy _ (s+A1)(s+22)
A ¢ G(y)dy - 1_¢)\.[(1 P)s+iiAa
(s+21)(s+A2)
¢(s+2r2+21p)

s24+ (M + 22— gl = p)}s +2ida(l — @)

Thus,

/ooe_‘wa(y)d _ peththip) @.111)
0

5+ R)G+R)’
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where

Ry, Ry = %[{)»1+)»2—¢)»1(1—P)}i\/{)\1 + a2 —dr(1 = p)? —4rra (1 —¢) ]

(2.112)

The roots R; and R, given by (2.112) are real, distinct, and positive. To see this,
assume that A > A,, implying that 0 < p < 1. Thus,

MAr—ol(I=p) =+ {l—¢0—-p)} >0,
and

(A + 22 — dr(1 — p)}* — 4rha(1 — @)
= (ML= —p)l— P + 40 {[1 — ¢ (1 — p)] — (1 — @)}
= (M1 =1 = p)] — A} + 401 0aép,

which is clearly positive. If A; < X, then A, — A;(1 — p) > 0, and therefore
MAd =M1 —p)=r +r(l-¢)+¢{r— 11 (1 —p)} >0,
and also

(A + 22— pr(1 — p)}* — 4000 (1 — @)
= (A1 — 22 — dA (1 — PP + 40 {[h — dA (1 — p)] — 2a(1 — )}
= (A1 — [ha — dA (1 — P12+ 4 (o — A (1 — p)},

again clearly positive.
Clearly, (2.111) may be expressed as

Ea— M+rp—R Ry —2y— A
/ e IG(y)dy = ¢ 2thp =R K=l —hip |
0 Ry — R,

S + R] S + R2
resulting in

¢

G0 =g

{o+rp—R)e ™+ (Ry— 2y —p)e ™}, y=o0,

a combination of exponentials. (]
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