
Chapter 2
Technical Preparation

This chapter’s focus is on providing some technical background which is needed
for the subsequent analysis to be carried out on the surplus models themselves in
later chapters. This background is not meant to be comprehensive in the sense that
well-known mathematical topics are normally assumed to be known and are not
discussed in much detail. Rather, less commonly known topics specific to this mono-
graph are discussed. A brief review is provided of Lagrange polynomials due to
their importance in numerous subsequent places in the monograph. The so-called
‘Dickson–Hipp’ operator, which generalizes both Laplace transforms and distribu-
tion tails, is of central importance in many of the models, and is then discussed.
As much of the monograph utilizes defective renewal equation methodology, this
topic and the closely related compound geometric and compound geometric convo-
lution methodology is also reviewed. Finally, the important classes of mixed Erlang
and Coxian distributions, which have attracted much attention in recent years in the
applied probability and actuarial literature due to their mathematical tractability, are
briefly summarized.

2.1 Lagrange Polynomials

Suppose that x1, x2, . . . , xn are distinct numbers, and that h(x) is any polynomial of
degree at most n − 1. Then h(x) may be expressed in the form

h(x) =
n∑

i=1

h(xi )
n∏

j=1
j �=i

x − x j

xi − x j
, (2.1)
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12 2 Technical Preparation

so that h(x) may be re-expressed as a linear combination of its functional values
h(x1), h(x2), . . ., h(xn).

Example 2.1 The choice h(x) = 1 yields interesting and useful identities involving
(arbitrarily chosen) numbers x1, x2, . . . , xn . In this case (2.1) becomes

1 =
n∑

i=1

n∏

j=1
j �=i

x − x j

xi − x j
, (2.2)

and with x = 0 it follows that for n ≥ 2

n∑

i=1

n∏

j=1
j �=i

x j

x j − xi
= 1,

which is also true for n = 1 when the empty product is assumed to be 1. Also, the
right-hand side of (2.2) is a polynomial of degree n − 1 because it is the sum of n
such polynomials, one for each i . The coefficient of xn−1 in the i-th polynomial is

1/
n∏

j=1, j �=i
(xi − x j ), and since the coefficient of xn−1 must be 0 for n ≥ 2, it follows

that (for n ≥ 2)

n∑

i=1

{ n∏

j=1
j �=i

(xi − x j )

}−1

=
n∑

i=1

{ n∏

j=1
j �=i

(x j − xi )

}−1

= 0, (2.3)

where the equality on the right follows bymultiplying both sides of the outer equality
by (−1)n−1. �

2.2 Dickson–Hipp Operators and Equilibrium
Distributions

In this section, we introduce the Dickson–Hipp operator (including the Laplace
transform as a special case) as well as some useful properties of this operator. The
results for this transform and the related equilibrium distributions will be extensively
used throughout this monograph.

Let r be a number, and h(x) an integrable function. Then define

Trh(x) = erx
∫ ∞

x
e−ryh(y)dy, Re(r) ≥ 0, x ≥ 0, (2.4)
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called the Dickson–Hipp transform of the function h(x) (e.g. Dickson and Hipp
(2001), Li and Garrido (2004)). A change in the variable of integration results in the
alternative representation

Trh(x) =
∫ ∞

0
e−ryh(x + y)dy. (2.5)

Clearly, Tr is a linear operator in that

Tr

{ n∑

i=1

aihi (x)

}
=

n∑

i=1

ai Trhi (x), (2.6)

as is obvious from (2.4) or (2.5). Also, the Laplace transform is a special case, i.e.

h̃(s) =
∫ ∞

0
e−syh(y)dy = Tsh(0). (2.7)

Furthermore, the integrated tail may be obtained from

∫ ∞

x
h(y)dy = T0h(x).

Example 2.2 Mixture of exponentials
Suppose that h(x) =∑k

i=1 qihi (x) for x > 0 where hi (x) = βi e−βi x for βi > 0 and
0 ≤ qi < 1 with

∑k
i=1 qi = 1. Then, from (2.6) with (2.5), one finds

Trh(x) =
k∑

i=1

qi Trhi (x) =
k∑

i=1

qiβi e
−βi x

∫ ∞

0
e−(βi+r)ydy =

k∑

i=1

qiβi

βi + r
e−βi x .

�

It is of interest to consider repeated application of the operator. Thus, define for
n = 1, 2, . . .,

Tr1,r2,...,rn h(x) = Tr1Tr2 · · · Trn h(x). (2.8)

For n = 2, a change in the order of integration yields

Tr1,r2h(x) = er1x
∫ ∞

x
e−r1 y

{
Tr2h(y)

}
dy

= er1x
∫ ∞

x
e−(r1−r2)y

∫ ∞

y
e−r2t h(t)dtdy

= er1x
∫ ∞

x
e−r2t

{∫ t

x
e−(r1−r2)ydy

}
h(t)dt. (2.9)
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Therefore, if r1 �= r2, it follows that

Tr1,r2h(x) = er1x
∫ ∞

x
e−r2t

{
e−(r1−r2)x − e−(r1−r2)t

r1 − r2

}
h(t)dt

= er2x
∫∞
x e−r2t h(t)dt − er1x

∫∞
x e−r1t h(t)dt

r1 − r2
,

that is,

Tr1,r2h(x) = Tr2h(x) − Tr1h(x)

r1 − r2
, r1 �= r2. (2.10)

Thus, the Laplace transform of the Dickson–Hipp transform is a special case of
(2.10), i.e. ∫ ∞

0
e−sy {Trh(y)} dy = Ts,r h(0) = Trh(0) − Tsh(0)

s − r
,

and using (2.7), ∫ ∞

0
e−sy {Trh(y)} dy = h̃(r) − h̃(s)

s − r
. (2.11)

It is clear from (2.10) that

Tr1,r2h(x) = Tr2,r1h(x), (2.12)

and so the order of application of the operator is unimportant. Clearly, the same is
true for (2.8) by repeated application of (2.12) if ri �= r j for i �= j . In fact, we have
the following generalization of (2.10).

Theorem 2.1 If ri �= r j for i �= j , then for n ≥ 1,

Tr1,r2,...,rn h(x) =
n∑

i=1

ai Tri h(x), (2.13)

where

ai = 1
n∏
j=1
j �=i

(
r j − ri

) , i = 1, 2, . . . , n.

Proof Clearly, (2.13) holds for n = 2 as (2.13) reduces to (2.10) in this case. We
will prove that the result holds for all n by induction on n, and thus we assume that
(2.13) holds for n. Then using (2.12) repeatedly, it follows that

Tr1,r2,...,rn ,rn+1h(x) = Trn+1,r1,r2,...,rn h(x) = Trn+1Tr1,r2,...,rn h(x),
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and by the inductive hypothesis together with (2.6) and (2.10),

Tr1,r2,...,rn ,rn+1h(x) = Trn+1

{ n∑

i=1

Tri h(x)
n∏
j=1
j �=i

(
r j − ri

)

}

=
n∑

i=1

Trn+1,ri h(x)
n∏
j=1
j �=i

(
r j − ri

) =
n∑

i=1

Tri h(x) − Trn+1h(x)

(rn+1 − ri )
n∏
j=1
j �=i

(
r j − ri

) .

But using (2.3), it follows that

Tr1,r2,...,rn+1h(x) =
{ n∑

i=1

Tri h(x)
n+1∏
j=1
j �=i

(
r j − ri

)

}
− {Trn+1h(x)}

( n∑

i=1

{ n+1∏

j=1
j �=i

(
r j − ri

) }−1)

=
{ n∑

i=1

Tri h(x)
n+1∏
j=1
j �=i

(
r j − ri

)

}
− {Trn+1h(x)

}(−
{ n+1∏

j=1
j �=n+1

(
r j − rn+1

) }−1)
,

and (2.13) also holds for n + 1. �

Although less important in what follows than the case with distinct ri , the case
with identical ri is straightforward. It is clear from (2.9) that

Tr,r h(x) = erx
∫ ∞

x
(t − x)e−r t h(t)dt,

and by induction on n that

Tr, r, . . . , r︸ ︷︷ ︸
n terms

h(x) = erx

(n − 1)!
∫ ∞

x
(t − x)n−1e−r t h(t)dt.

In connection with probability distributions, it is often convenient to allow for
distributions which have discrete or both discrete and continuous components, rather
than strictly continuous densities. In particular, if F(y) = 1 − F(y) = Pr(Y ≤ y),
for y ≥ 0, is a distribution function (df), it is often useful to replace the right-hand
side of (2.4) by erx

∫∞
x e−rydF(y), which essentially involves the replacement of

h(y)dy by the more general dF(y). In a similar manner to the derivation of (2.11),
it follows that
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∫ ∞

0
e−sy

{
ery
∫ ∞

y
e−r t dF(t)

}
dy = f̃ (r) − f̃ (s)

s − r
, (2.14)

where

f̃ (s) = E
(
e−sY

) =
∫ ∞

0
e−sydF(y). (2.15)

Replacement of r by 0 in (2.14) yields

∫ ∞

0
e−sy F(y)dy = 1 − E(e−sY )

s
, (2.16)

and letting s → 0 yields, by L’Hopital’s rule,

E(Y ) =
∫ ∞

0
F(y)dy. (2.17)

Each of (2.14), (2.16) and (2.17) hold for any nonnegative random variable Y , even
if Y has discrete mass points.

Let F1,r (y) = 1 − F1,r (y), for y ≥ 0, be defined by

F1,r (y) = ery
∫∞
y e−r x F(x)dx

∫∞
0 e−r x F(x)dx

=
∫∞
0 e−r x F(x + y)dx
∫∞
0 e−r x F(x)dx

, y ≥ 0, (2.18)

and F1,r (y) in (2.18) is a df, as it is a mixture of those of the form 1 − F(x + y)
/F(x). In Dickson–Hipp notation, F1,r (y) = {Tr F(y)}/{Tr F(0)}. Thus, F1,r (y)
is differentiable (even if F(y) has discrete mass points), with derivative f1,r (y) =
−F

′
1,r (y) from (2.18), namely

f1,r (y) = F(y) − rery
∫∞
y e−r x F(x)dx

∫∞
0 e−r x F(x)dx

.

But integration by parts yields

ery
∫ ∞

y
e−r xdF(x) = F(y) − rery

∫ ∞

y
e−r x F(x)dx,

and therefore

f1,r (y) = ery
∫∞
y e−r xdF(x)

∫∞
0 e−r x F(x)dx

, y > 0. (2.19)

The Laplace transform of (2.19) is, using (2.14), (2.15) and (2.16), given by
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f̃1,r (s) =
∫ ∞

0
e−sy f1,r (y)dy =

(
r

s − r

)
f̃ (r) − f̃ (s)

1 − f̃ (r)
. (2.20)

We remark that when r = 0, (2.19) reduces to

f1,0(y) = F(y)

E(Y )
(2.21)

using (2.17). The probability density function (pdf) (2.21) is often referred to as
an equilibrium pdf, and consequently (2.19) as a generalized equilibrium pdf (e.g.
Willmot and Lin 2001, Sect. 9.2).

Example 2.3 Mixture of exponentials
Suppose that F(x) =∑k

i=1 qi Fi (x) for x ≥ 0 where Fi (x) = e−βi x for βi > 0 and
0 ≤ qi < 1 with

∑k
i=1 qi = 1. Then, using the result in Example 2.2, the generalized

equilibrium pdf (2.19) is given by

f1,r (y) = Tr f (y)∫∞
0 e−r x F(x)dx

=
∑k

i=1
qiβi

βi+r e
−βi y

∑k
j=1

q j

β j+r

=
k∑

i=1

qi (r) fi (y),

where

qi (r) =
qi

βi+r∑k
j=1

q j

β j+r

, i = 1, 2, . . . , k,

and fi (y) = βi e−βi y for y > 0. �

Moments of F1,r (y) are easily obtainable. One has from (2.19) that

∫ ∞

0
yn f1,r (y)dy =

∫∞
0 ynery

∫∞
y e−r xdF(x)dy

∫∞
0 e−r x F(x)dx

=
∫∞
0 e−r x

{∫ x
0 ynerydy

}
dF(x)

∫∞
0 e−r x F(x)dx

. (2.22)

For r �= 0, one has the identity (easily proved by induction on n)

∫ x

0
ynerydy = n!

(−r)n+1

{
1 − erx

n∑

j=0

(−r x) j

j !
}
. (2.23)

Substitution of (2.23) into the numerator of (2.22) yields
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∫ ∞

0
e−r x

{∫ x

0
ynerydy

}
dF(x) = n!

(−r)n+1

∫ ∞

0
e−r x

{
1 − erx

n∑

j=0

(−r x) j

j !
}
dF(x)

= n!
(−r)n+1

{∫ ∞

0
e−r x dF(x) −

n∑

j=0

(−r) j

j !
∫ ∞

0
x j dF(x)

}

= n!
(−r)n+1

{
f̃ (r) −

n∑

j=0

(−r) j

j ! E
(
Y j
)}

.

Thus, for r �= 0, it follows that for n = 1, 2, . . .,

∫ ∞

0
yn f1,r (y)dy = n!

(−r)n

{
1 +

n∑

j=1

(−r) j

j !
E
(
Y j
)

1 − f̃ (r)

}
. (2.24)

For r = 0, it follows easily from (2.22) that

∫ ∞

0
yn f1,0(y)dy = E

(
Y n+1

)

(n + 1)E(Y )
. (2.25)

For a detailed discussion of higher order equilibrium distributions in connection
with higher stop-loss moments, see Willmot (2002b) or Willmot et al. (2005) for
example.

2.3 Defective Renewal Equations

Suppose that m(x) satisfies the integral equation

m(x) = φ

∫ x

0
m(x − y)dF(y) + v(x), x ≥ 0, (2.26)

where 0 < φ < 1, F(y) = 1− F(y) is a df with F(0) = 0, and v(x) ≥ 0 is locally
bounded (i.e. v(x) < ∞ for x < ∞). Then (2.26) is called a defective renewal
equation.

In order to discuss the solution to (2.26), we let the Laplace–Stieltjes transform
of F be f̃ (s) = ∫∞

0 e−sydF(y). Then define F
∗n

(y) = 1 − F∗n(y) to be the tail of
the distribution of the n-fold convolution of F with itself, i.e. the associated Laplace
transform is

∫∞
0 e−sy F

∗n
(y)dy = {1 − [ f̃ (s)]n}/s. It is convenient to introduce the

compound geometric df G(y) = 1 − G(y) = Pr(L ≤ y) associated with (2.26) by

G(y) =
∞∑

n=1

(1 − φ)φn F
∗n

(y), y ≥ 0. (2.27)



2.3 Defective Renewal Equations 19

Clearly,
G(0) = φ,

so that G(y) has a discrete mass point of 1 − φ at 0. One has

E
(
e−sL

) =
∫ ∞

0
e−sxdG(x) =

∞∑

n=0

(1 − φ)φn
{
f̃ (s)

}n = 1 − φ

1 − φ f̃ (s)
, (2.28)

where f̃ (s) is given by (2.15). Taking Laplace transforms of (2.26) yields m̃(s) =
φm̃(s) f̃ (s) + ṽ(s), and solving for m̃(s) yields with (2.28),

m̃(s) = ṽ(s)E
(
e−sL

)

1 − φ
. (2.29)

The solution (2.29) may be expressed in a more convenient form with additional
assumptions about G(y) or v(x). First, if F(y) has density f (y) = F ′(y), then
G(y) = 1 − φ + ∫ y

0 g(x)dx , where

g(y) =
∞∑

n=1

(1 − φ)φn f ∗n(y), y > 0, (2.30)

is a compound geometric density (and f ∗n(y) = dF∗n(y)/dy). Thus, using (2.28),
the Laplace transform of (2.30) is

g̃(s) =
∫ ∞

0
e−syg(y)dy = 1 − φ

1 − φ f̃ (s)
− (1 − φ). (2.31)

Therefore, (2.29) may be expressed as

m̃(s) = 1

1 − φ
g̃(s )̃v(s) + ṽ(s),

which yields upon inversion (e.g. Resnick (1992), Sect. 3.5)

m(x) = 1

1 − φ

∫ x

0
v(y)g(x − y)dy + v(x). (2.32)

Next, we consider assumptions about v(x) rather than G(x). First note that (2.16)
yields

G̃(s) =
∫ ∞

0
e−syG(y)dy = 1 − E

(
e−sL

)

s
. (2.33)
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Then assuming that one may write

s̃v(s) = C − ṽ∗(s), (2.34)

it follows that (2.29) may be expressed as

m̃(s) = ṽ(s)
{
1 − [1 − E

(
e−sL

)]}

1 − φ
= ṽ(s) − s̃v(s)G̃(s)

1 − φ
,

i.e.

m̃(s) = ṽ(s) − CG̃(s) + ṽ∗(s)G̃(s)

1 − φ
. (2.35)

For example, if v(x) is differentiable, (2.34) holds with ṽ∗(s) = ∫∞
0 e−sx {−v′(x)}dx

and C = v(0), and (2.35) yields

m(x) = v(x) − v(0)G(x) − ∫ x
0 v′(x − y)G(y)dy

1 − φ
. (2.36)

Similarly, if ṽ(s) = ṽr (s) where

ṽr (s) = k
h̃(r) − h̃(s)

s − r
, (2.37)

then

s̃vr (s) = k
s

s − r

{
h̃(r) − h̃(s)

} = k

(
1 + r

s − r

){
h̃(r) − h̃(s)

}
,

i.e. s̃vr (s) = kh̃(r)−{kh̃(s) − r ṽr (s)
}
and (2.34) holds withC = kh̃(r) and ṽ∗(s) =

kh̃(s) − r ṽr (s). Thus, if ṽ(s) is given by (2.37) and (2.35) becomes

m̃(s) = ṽr (s) − kh̃(r)G̃(s) + {kh̃(s) − r ṽr (s)
}
G̃(s)

1 − φ
. (2.38)

Hence if ṽ(s) = ṽr (s) = k
∫∞
0 e−sx {Trh(x)}dx , then (2.38) yields

m(x) =
(

k

1 − φ

)[
{Trh(x)} − h̃(r)G(x) +

∫ x

0
{h(y) − rTrh(y)}G(x − y)dy

]
.

A similar result holds if ṽ(s) = ṽr (s) = ∫∞
0 e−sx vr (x)dx , where vr (x) =

kerx
∫∞
x e−r t dH(t), with H(t) = 1 − H(t) is a (possibly discrete) df, as is clear

from (2.14) and (2.37) with h̃(s) = ∫∞
0 e−sxdH(x). In particular, with r = 0, if

v(x) = kH(x), it follows from (2.38) that
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m(x) = k

1 − φ

{∫ x

0
G(x − y)dH(y) + H(x) − G(x)

}
.

There are special cases of (2.26) that deserves mention.

Example 2.4 Compound geometric tail
From (2.28) and (2.33), we find that

G̃(s) = 1

s

{
1 − 1 − φ

1 − φ f̃ (s)

}
=
{

φ

1 − φ f̃ (s)

}
1 − f̃ (s)

s
, (2.39)

which may be rearranged as

G̃(s) = φ f̃ (s)G̃(s) + φ
1 − f̃ (s)

s
.

Inversion of this Laplace transform relationship yields

G(x) = φ

∫ x

0
G(x − y)dF(y) + φF(x). (2.40)

Comparison of (2.40) with (2.26) yields the conclusion that the solution to (2.26)
when v(x) = φF(x) is m(x) = G(x) given by (2.27). �

Example 2.5 Compound geometric density
It follows from (2.31) that

g̃(s) = (1 − φ)

{
1

1 − φ f̃ (s)
− 1

}
= φ(1 − φ) f̃ (s)

1 − φ f̃ (s)
.

Thus, g̃(s) = φ f̃ (s)g̃(s) + φ(1 − φ) f̃ (s), yielding

g(x) = φ

∫ x

0
g(x − y) f (y)dy + φ(1 − φ) f (x), (2.41)

and the compound geometric density (2.30) also satisfies a defective renewal equa-
tion. �

While the solution to (2.26) is complicated in general, there is some asymptotic
help available. Suppose that F(y) is nonarithmetic (i.e. has a continuous component)
and there exists an R > 0 satisfying

∫ ∞

0
eRydF(y) = 1

φ
. (2.42)

If eRxv(x) is “directly Riemann integrable”(to be discussed momentarily), then
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m(x) ∼ Ce−Rx , x → ∞, (2.43)

where

C =
∫∞
0 eRyv(y)dy

φ
∫∞
0 yeRydF(y)

, (2.44)

and a(x) ∼ b(x) as x → ∞ means that lim
x→∞ a(x)/b(x) = 1. A sufficient condition

for eRxv(x) to be directly Riemann integrable is that eRxv(x) ≤ h(x) where h(x) is
nonnegative, nonincreasing, and Riemann integrable (i.e.

∫∞
0 h(x)dx < ∞). This

condition is in turn satisfied if
∫∞
0 e(R+ε)xv(x)dx < ∞ for some ε > 0. To see

this, note that e(R+ε)xv(x) is locally bounded on (0,∞) because the same is true
of v(x). Also, because lim

x→∞ e(R+ε)xv(x) = 0, there exists a K < ∞ such that

e(R+ε)xv(x) ≤ K , i.e. eRxv(x) ≤ h(x) with h(x) = Ke−εx . The asymptotic result
(2.43) is sometimes called a Cramer–Lundberg result. Finally, if (2.42) holds then

CLe
−Rx ≤ m(x) ≤ CUe

−Rx , x ≥ 0, (2.45)

where CL = inf
z≥0

α(z), CU = sup
z≥0

α(z), and

α(z) = eRzv(z)

φ
∫∞
z eRydF(y)

.

In particular, (2.27) satisfies

G(x) ≤ e−Rx , x ≥ 0. (2.46)

The Lundberg bounds (2.45) are derived in Willmot et al. (2001). A more detailed
discussion is provided in Sect. 8.3.

We introduce the function G(x, y), for x ≥ 0 and y ≥ 0, satisfying the defective
renewal equation

G(x, y) = φ

∫ x

0
G(x − t, y)dF(t) + φF(x + y), (2.47)

so that G(x, 0) = G(x), from (2.40). It will be shown that G(x, y) is useful when
analyzing the deficit at ruin in the renewal risk model (in Sect. 4.5). Alternatively,
(2.47) has an expression as follows. Taking the Laplace transform of (2.47) with the
aid of (2.28) yields

∫ ∞

0
e−sxG(x, y)dx = φ

∫∞
0 e−sx F(x + y)dx

1 − φ f̃ (s)
= φ

1 − φ

{∫ ∞

0
e−sx dG(x)

}{∫ ∞

0
e−sx F(x + y)dx

}
.

(2.48)
Therefore, inversion of the Laplace transform results in
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G(x, y) = φ

1 − φ

∫ x

0
F(x + y − t)dG(t). (2.49)

Next, we consider the “excess loss” or “residual lifetime distribution” with df
Fx (y) = 1 − Fx (y), where

Fx (y) = F(x + y)

F(x)
, y ≥ 0, (2.50)

and

fx (y) = F ′
x(y) = f (x + y)

F(x)
. (2.51)

It is convenient to define

Ax (y) = 1 − Ax (y) = G(x, y)

G(x)
(2.52)

satisfying

Ax (y) =
∫ x
0 Fx−t (y)F(x − t)dG(t)
∫ x
0 F(x − t)dG(t)

, y ≥ 0, (2.53)

due to (2.49) with y = 0 and (2.50). Clearly, (2.53) is a proper tail distribution as it
is a mixture of (2.50), mixed over x . In fact (2.52) is the tail distribution of the deficit
at ruin given that ruin occurs, which will be discussed in Sect. 4.5. Then the residual
lifetime tail of the compound geometric distribution

Gx (y) = G(x + y)

G(x)
, y ≥ 0, (2.54)

also satisfies the defective renewal equation

Gx (y) = φ

∫ y

0
Gx (y − t)dF(t) + φF(y) + (1 − φ)Ax (y). (2.55)

To see this, introduce �y with df Fy(x) independent of L . Then

Pr(L + �y > x) = G(x) +
∫ x

0
Fy(x − t)dG(t) = Fy(x) +

∫ x

0
G(x − t)dFy(t),

and thus, with the help of (2.50) and (2.49) is given by



24 2 Technical Preparation

G(x, y) = φ

1 − φ
F(y)

{
Fy(x) +

∫ x

0
G(x − t)dFy(t) − G(x)

}

= φ

1 − φ

{
F(x + y) +

∫ x+y

y
G(x + y − t)dF(t) − G(x)F(y)

}
.

(2.56)

Then, from (2.40), it may be expressed as

G(x, y) = φ

1 − φ

{
G(x + y)

φ
−
∫ y

0
G(x + y − t)dF(t) − G(x)F(y)

}
.

Dividing the above equation by G(x) followed by rearranging terms yields (2.55).
Interestingly, it can be demonstrated that (2.54) is the tail of L + Vx where Vx is

independent of L with df Ax (y) in (2.52), namely

Gx (y) = G(x + y)

G(x)
= Pr(L + Vx > y), y ≥ 0, (2.57)

or equivalently

Gx (y) = G(y) +
∫ y

0
Ax (y − t)dG(t) = Ax (y) +

∫ y

0
G(y − t)d Ax (t). (2.58)

It follows that the residual lifetime distribution of the compound geometric distribu-
tion is actually the convolution of the compound geometric distribution itself and the
distribution Ax (y). To prove (2.57), taking Laplace transforms of (2.55) and using
(2.16) results in

G̃x (s) = φG̃x (s) f̃ (s) + φ
1 − f̃ (s)

s
+ (1 − φ)

1 − E(e−sVx )

s
,

where G̃x (s) = ∫∞
0 e−syGx (y)dy. Then rearranging the above equation and using

(2.28) yields

G̃x (s) = φ{1 − f̃ (s)} + (1 − φ){1 − E(e−sVx )}
s{1 − φ f̃ (s)} = 1 − φ f̃ (s) − (1 − φ)E(e−sVx )

s{1 − φ f̃ (s)}
= 1 − E(e−sL)E(e−sVx )

s
,

and the inversion gives (2.57). We remark that the expression for Gx (y) in (2.58)
appears to be very useful in the study of the reliability properties of the compound
geometric distribution. The df F(x) is said to be new worse (better) than used or
NWU (NBU) if F(x + y)≥(≤)F(x)F(y) for all x ≥ 0 and y ≥ 0 (see e.g. Barlow
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and Proschan (1975)). It is well known that the compound geometric distribution is
NWU (e.g. Brown (1990)). From (2.58), this result is found immediately since the
integral term on the right-hand side of (2.58) is non-negative. See Willmot (2002a)
for analytic results on the compound geometric residual lifetime distributions in
connection with the distribution of the deficit ruin as well as some reliability-based
properties of the compound geometric distribution.

Example 2.6 Compound geometric convolution
Motivated by the previous discussion, we now consider more generally the df of
the compound geometric convolution K (x) = 1 − K (x) = G ∗ C(x), where
C(x) = 1 − C(x) is the df of a positive random variable independent of L . So, the
tail of the compound geometric convolution is given by

K (x) = G(x) +
∫ x

0
C(x − t)dG(t) = C(x) +

∫ x

0
G(x − t)dC(t). (2.59)

From (2.40), it is obvious that K (x) = G(x)/φ = G(x)/G(0) if C(x) = F(x).
Then it is known that the tail df of the compound geometric convolution satisfies the
defective renewal equation (e.g. Willmot and Lin (2001), p. 174),

K (x) = φ

∫ x

0
K (x − t)dF(t) + φF(x) + (1 − φ)C(x). (2.60)

Similar to (2.47), we introduce the function

G (x, y) =
∫ x

0
G(x − t, y)dC(t) + C(x + y). (2.61)

From (2.59), we know G (x, 0) = K (x) due to G(x, 0) = G(x) with G(x, y) given
by (2.47). Then using (2.48) one finds the Laplace transform of the integral on the
right-hand side of (2.61) as

∫ ∞

0
e−sx

{∫ x

0
G(x − t, y)dC(t)

}
dx

=
{∫ ∞

0
e−sxG(x, y)dx

}{∫ ∞

0
e−sxdC(x)

}

= φ

1 − φ

{∫ ∞

0
e−sxdG(x)

}{∫ ∞

0
e−sx F(x + y)dx

}{∫ ∞

0
e−sxdC(x)

}
.

Since
∫∞
0 e−sxdK (x) = E(e−sL)

∫∞
0 e−sxdC(x), we get

∫ ∞
0

e−sx
{∫ x

0
G(x − t, y)dC(t)

}
dx = φ

1 − φ

∫ ∞
0

e−sx
{∫ x

0
F(x + y − t)dK (t)

}
dx .

Therefore, by the uniqueness of the Laplace transform, (2.61) satisfies
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G (x, y) = C(x + y) + φ

1 − φ

∫ x

0
F(x + y − t)dK (t). (2.62)

Next, we define

A x (y) = 1 − Ax (y) = G (x, y)

K (x)
, (2.63)

and the residual lifetime tail of the df K (y) as

K x (y) = K (x + y)

K (x)
, y ≥ 0.

But, the second term on the right-hand side of (2.62) has the same form as (2.49)
with G replaced by K , and using (2.56) with G = K results in

G (x, y)

= C(x + y) + φ

1 − φ

{
F(x + y) +

∫ x+y

y
K (x + y − t)dF(t) − K (x)F(y)

}

= C(x + y) + φ

1 − φ

{
F(x + y) +

∫ x+y

0
K (x + y − t)dF(t) −

∫ y

0
K (x + y − t)dF(t) − K (x)F(y)

}

= C(x + y) + φ

1 − φ

{
K (x + y) − (1 − φ)C(x + y)

φ
−
∫ y

0
K (x + y − t)dF(t) − K (x)F(y)

}
,

where the last equality is due to (2.60). Dividing by K (x) and rearranging terms
yields the defective renewal equation forK x (y) given by

K x (y) = φ

∫ y

0
K x (y − t)dF(t) + φF(y) + (1 − φ)A x (y). (2.64)

Then similar to (2.57) and (2.58), the stochastic composition result for the residual
lifetime of the compound geometric convolution K (y) is also available as follows.
Let Vx be independent of L with dfAx (y). Then taking Laplace transforms of (2.64)
and using (2.28) it follows that

∫ ∞

0
e−sxK x (y)dy = φ{1 − f̃ (s)} + (1 − φ){1 − E(e−sV x )}

s{1 − φ f̃ (s)} = 1 − E(e−sL )E(e−sV x )

s
,

and inverting the above equation identifies the residual lifetime tail K x (y) as

K x (y) = K (x + y)

K (x)
= Pr(L + Vx > y), (2.65)

or equivalently
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K x (y) = G(y) +
∫ y

0
A x (y − t)dG(t) = A x (y) +

∫ y

0
G(y − t)dAx (t).

�

Example 2.7 Classical Poisson risk model with diffusion
The classical Poisson risk model with diffusion is defined byUt = u + ct − St +Wt

for t ≥ 0, where Wt is a Wiener process with drift 0 and variance 2D, and Ut

without Wt is given in (3.1). The details of the model are described in Sect. 3.1.
From Dufresne and Gerber (1991), it is shown that the survival probability ψ(u),
namelyψ(u) = Pr{Ut ≥ 0 for all t ≥ 0|U0 = u}, is the df of a compound geometric
convolution. More precisely, let us assume the Poisson rate λ and the claim amount
distribution P(y) = 1 − P(y) with mean E(Y ) = ∫∞

0 ydP(y), and let P1(y) =∫ y
0 P(x)dx/E(Y ) be the equilibrium df of P(y),

C(x) = 1 − e− c
D x , x ≥ 0,

and F(x) = C ∗ P1(x) be the convolution df. Then, if φ = λE(Y )/c in (2.30),
the survival probability ψ(u) is a df of the compound geometric convoluted with
C(x) (i.e. ψ(u) = G ∗ C(x)). Therefore, the results for the compound geometric
convolution obtained previously are applicable to ψ(u). �

Lastly, we remark that if C(x) = F(x), then K (x) = G(x)/G(0), and thus,
all results for the compound geometric convolution are reduced to those for the
compound geometric tailG(x). SeeWillmot andCai (2004) for further details related
to the residual lifetime of compound geometric convolution and its risk and queueing-
theoretic applications.

2.4 Mixed Erlang Distributions

The mixed Erlang class of distributions is dense in the class of positive continuous
probability distributions (e.g. Tijms (1994), pp. 163–164), and is extremely well
suited for analytic evaluation of risk-theoretic quantities. It is also a very large class
of distributions, and includesmany distributionswhosemembership in the class is not
immediately obvious, such as phase-type distributions (e.g. Shanthikumar (1985)).

Concerning parameter estimation of the mixed Erlang distribution, Lee and Lin
(2010) studied numerical experiments to fit Erlang mixtures to data using maximum
likelihood estimation using the EM algorithm. As discussed in Lee and Lin (2010),
theEMalgorithm for a finitemixture of Erlangs provides an effective iterative scheme
and has fast convergence. However, there is an issue of overfitting with many Erlang
terms in themixedmodel. A detailed discussion regarding estimation can be founded
in Lee and Lin (2010). See also Verbelen et al. (2015) for fitting a finite mixture of
Erlangs to censored and truncated data using the EM algorithm.
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For β > 0 and j = 1, 2, 3, . . ., define the Erlang- j pdf to be

Eβ, j (y) = β (βy) j−1 e−βy

( j − 1)! , y > 0, (2.66)

with Laplace transform

Ẽβ, j (s) =
∫ ∞

0
e−syEβ, j (y)dy =

(
β

β + s

) j

. (2.67)

For j = 1, Eβ,1(y) = βe−βy is the exponential pdf, and Ẽβ,1(s) = β/(β + s). For
risk-theoretic calculations, it is of interest to consider Eβ, j (x + y) where x ≥ 0 and
y ≥ 0. Clearly,

Eβ, j (x + y) = β j e−β(x+y)

( j − 1)!
j−1∑

k=0

(
j − 1

k

)
xk y j−1−k

= 1

β

j−1∑

k=0

{
βk+1xke−βx

k!
}{

β j−k y j−k−1e−βy

( j − k − 1)!
}

= 1

β

j−1∑

k=0

Eβ,k+1(x)Eβ, j−k(y).

That is,

Eβ, j (x + y) = 1

β

j∑

k=1

Eβ,k(x)Eβ, j+1−k(y). (2.68)

Next, let {q1, q2, . . .} be a discrete counting distribution with probability generating
function (pgf)

Q(z) =
∞∑

j=1

q j z
j . (2.69)

Then for y > 0

f (y) =
∞∑

j=1

q jEβ, j (y) =
∞∑

j=1

q j
β (βy) j−1 e−βy

( j − 1)! (2.70)

is said to be a mixed Erlang pdf.
It follows from (2.67) and (2.69) that the Laplace transform of (2.70) is

f̃ (s) =
∫ ∞

0
e−sy f (y)dy =

∞∑

j=1

q j

(
β

β + s

) j

= Q

(
β

β + s

)
, (2.71)
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so that the mixed Erlang class of distributions may also be viewed as the class of
compound distributions with exponential secondary distribution.

If q j = 1 then f (y) reduces to the Erlang- j pdf. It also includes distributions
such as sums and mixtures of Erlang distributions with different scale parameters
(Willmot and Woo (2007)), as is now described.

For β1 < β, the algebraic identity

β1

β1 + s
= β

β + s

{ β1

β

1 −
(
1 − β1

β

) (
β

β+s

)
}
, (2.72)

expresses (in Laplace transform form) the fact that a zero-truncated geometric sum of
exponential random variables has an exponential distribution. Thus, if a distribution
has Laplace transform f̃ (s) which depends on s via the function β1/(β1 + s) for
different values of β1, (2.72) may sometimes be used to express f̃ (s) in the mixed
Erlang form (2.71).

Example 2.8 Mixture of two exponentials
Suppose that f (y) = pβ1e−β1 y+(1− p)β2e−β2 y where 0 < β1 < β2 and 0 < p < 1.
Then

f̃ (s) = p
β1

β1 + s
+ (1 − p)

β2

β2 + s
,

and again using (2.72), it may be expressed in the form (2.71), i.e. f̃ (s) = Q(
β2

β2+s )

with

Q(z) = z

⎧
⎨

⎩1 − p + p

⎧
⎨

⎩

β1

β2

1 −
(
1 − β1

β2

)
z

⎫
⎬

⎭

⎫
⎬

⎭ ,

which may be expressed as

Q(z) =
{
1 − p + p

(
β1

β2

)}
z + p

∞∑

j=2

(
β1

β2

)(
1 − β1

β2

) j

z j .

Thus, the coefficients q j of z j are obtained as q1 = 1 − p + p(β1/β2) and

q j = p

(
β1

β2

)(
1 − β1

β2

) j

, j = 2, 3, . . . .

�

Example 2.9 Sum of independent gammas
Suppose that

f̃ (s) =
n∏

i=1

(
βi

βi + s

)αi

, (2.73)
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corresponding to the sum of independent gamma random variables. Let β = supi βi ,
and using (2.72) it follows that (2.73) may be expressed formally in the form (2.71),
i.e. f̃ (s) = Q{β/(β + s)}, where

Q(z) = zm
n∏

i=1

{ βi

β

1 −
(
1 − βi

β

)
z

}αi

(2.74)

with m =
n∑

i=1
αi . Thus, if m is a positive integer, (2.74) is a pgf, corresponding to the

convolution of negative binomial distributions, shifted to the right bym. In particular,
if αi = 1 for i = 1, 2, . . . , n, then (2.73) is the Laplace transform of the generalized
Erlang distribution (e.g. Gerber and Shiu (2005)), which is thus in the mixed Erlang
class. The coefficients q j of z j in (2.74) may be evaluated recursively, and for some
choices of n and the αi s, also analytically (e.g. Willmot and Woo (2007)). �

Example 2.10 Mixture of Erlangs with different scale parameters
Suppose that

f (y) =
∞∑

i=1

∞∑

k=1

pikEβi ,k(y),

where pik ≥ 0,
∞∑
i=1

∞∑
k=1

pik = 1, and β = supi βi < ∞. Then

f̃ (s) =
∞∑

i=1

∞∑

k=1

pik

(
βi

βi + s

)k

, (2.75)

and using (2.72) and (2.75) may be expressed in the form (2.71) with

Q(z) =
∞∑

i=1

∞∑

k=1

pik z
k

{ βi

β

1 −
(
1 − βi

β

)
z

}k
. (2.76)

A negative binomial expansion in (2.76) yields

Q(z) =
∞∑

i=1

∞∑

k=1

pik

∞∑

m=0

(
k + m − 1

k − 1

)(
βi

β

)k (
1 − βi

β

)m

zm+k

=
∞∑

i=1

∞∑

k=1

pik

∞∑

j=k

(
j − 1

k − 1

)(
βi

β

)k (
1 − βi

β

) j−k

z j

=
∞∑

i=1

∞∑

j=1

{
j∑

k=1

pik

(
j − 1

k − 1

)(
βi

β

)k (
1 − βi

β

) j−k
}
z j .



2.4 Mixed Erlang Distributions 31

Thus, interchanging the order of the first two summations implies that the coefficients
q j of z j in (2.76) are given by

q j =
∞∑

i=1

j∑

k=1

pik

(
j − 1

k − 1

)(
βi

β

)k (
1 − βi

β

) j−k

, j = 1, 2, . . . . (2.77)

We remark that (2.77) holds even if βi = β for some i (with the usual notational
convention that 00 = 1). �

The mixed Erlang class defined by (2.70) or (2.71) is thus quite large, and is
extremely tractable mathematically, as will become evident.

It follows from (2.16) and (2.71) that the tail of the mixed Erlang distribution has
Laplace transform

∫ ∞

0
e−sy F(y)dy =

1 − Q
(

β

β+s

)

s
=

∞∑

j=1

q j

{1 −
(

β

β+s

) j

s

}
.

But one has the geometric series

j∑

k=1

(
β

β + s

)k

=
(

β

β + s

) 1 −
(

β

β+s

) j

1 − β

β+s

= β
1 −

(
β

β+s

) j

s
,

and thus

∫ ∞

0
e−sy F(y)dy = 1

β

∞∑

j=1

q j

j∑

k=1

(
β

β + s

)k

= 1

β

∞∑

k=1

(
β

β + s

)k ∞∑

j=k

q j ,

i.e. ∫ ∞

0
e−sy F(y)dy = 1

β

∞∑

k=0

Qk

(
β

β + s

)k+1

, (2.78)

where

Qk =
∞∑

j=k+1

q j , k = 0, 1, 2, . . . . (2.79)

Therefore, the mixed Erlang tail is given by

F(y) = 1

β

∞∑

k=0

QkEβ,k+1(y) = e−βy
∞∑

k=0

Qk
(βy)k

k! . (2.80)
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Example 2.11 Residual lifetime distribution of mixed Erlang distributions
It follows from (2.68) that

f (x + y) =
∞∑

j=1

q jEβ, j (x + y)

= 1

β

∞∑

j=1

q j

j∑

k=1

Eβ,k(y)Eβ, j+1−k(x)

= 1

β

∞∑

k=1

∞∑

j=k

q jEβ,k(y)Eβ, j+1−k(x).

Let n = k − 1 and m = j − k to obtain

f (x + y) = 1

β

∞∑

m=0

∞∑

n=0

qm+n+1Eβ,m+1(x)Eβ,n+1(y). (2.81)

Substitution of (2.81) into (2.51) yields, using (2.80),

fx (y) =
1
β

∞∑
j=1

Eβ, j (y)
∞∑
k=0

q j+kEβ,k+1(x)

1
β

∞∑
k=0

QkEβ,k+1(x)
,

i.e.

fx (y) =
∞∑

j=1

q j,xEβ, j (y), y ≥ 0, (2.82)

where

q j,x =

∞∑
k=0

q j+kEβ,k+1(x)

∞∑
k=0

QkEβ,k+1(x)
, j = 1, 2, . . . . (2.83)

Clearly, (2.79) implies that
∞∑
j=1

q j,x = 1, and thus fx (y) in (2.82) is again a mixture

of Erlangs, but with different weights. �

Example 2.12 Generalized equilibrium distribution of mixed Erlang distribu-
tions
Consider the distribution defined by (2.18). Differentiating (2.18) implies that (2.19)
may also be expressed as
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f1,r (y) =
∫∞
0 e−r x f (x + y)dx
∫∞
0 e−r x F(x)dx

=
∫∞
0 e−r x F(x) fx (y)dx∫∞

0 e−r x F(x)dx
, (2.84)

and (2.84) is a mixture over x of pdf of the form (2.51). In the mixed Erlang case,
substitution of (2.82) into (2.84) yields

f1,r (y) =
∞∑

j=1

q j (r)Eβ, j (y), (2.85)

where

q j (r) =
∫∞
0 q j,xe−r x F(x)dx
∫∞
0 e−r x F(x)dx

, j = 1, 2, . . . . (2.86)

Clearly, (2.85) is again a mixture of Erlang pdfs, and we will now simplify (2.86).
First, consider the denominator of (2.86). It follows from (2.67) and (2.80) that

∫ ∞

0
e−r x F(x)dx = 1

β

∞∑

k=0

Qk Ẽβ,k+1(r) = 1

β + r

∞∑

k=0

Qk

(
β

β + r

)k

.

For the numerator of (2.86), it follows from (2.83) and (2.80) that

q j,xe
−r x F(x) = e−r x

β

∞∑

k=0

q j+kEβ,k+1(x),

and, again using (2.67),

∫ ∞

0
q j,xe

−r x F(x)dx = 1

β

∞∑

k=0

q j+k Ẽβ,k+1(r) = 1

β + r

∞∑

k=0

q j+k

(
β

β + r

)k

.

Thus, (2.86) becomes

q j (r) =

∞∑
k=0

q j+k

(
β

β+r

)k

∞∑
k=0

Qk

(
β

β+r

)k , j = 1, 2, . . . . (2.87)

To obtain more insight into the discrete distribution (2.87), we consider the pgf

Q1, β

β+r
(z) = 1 − β

β+r

1 − Q
(

β

β+r

)
Q(z) − Q

(
β

β+r

)

z − β

β+r

,
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e.g. Klugman et al. (2013) (pp. 129–131) orWillmot andWoo (2013) (pp. 189–190).
Then,

Q1, β

β+r
(z) =

∞∑

n=0

qn,1

(
β

β + r

)
zn,

where Q j =∑∞
i= j+1 qi and

qn,1

(
β

β + r

)
=
∑∞

j=n+1 q j

(
β

β+r

) j−n−1

∑∞
j=0 Q j

(
β

β+r

) j =
∑∞

j=0 q j+n+1

(
β

β+r

) j

∑∞
j=0 Q j

(
β

β+r

) j ,

and so (2.87) is q j (r) = q j−1,1(
β

β+r ). Thus,

∞∑

j=1

q j (r)z
j =

∞∑

j=1

q j−1,1

(
β

β + r

)
z j = zQ1, β

β+r
(z) = Q∗

r (z)

with Q∗
r (z) = zQ1, β

β+r
(z). Directly, we may write

Q∗
r

(
β

β + s

)
=
(

β

β + s

) 1 − β
β+r

1 − Q
(

β
β+r

)
Q
(

β
β+s

)
− Q

(
β

β+r

)

β
β+s − β

β+r

=
β

β+s
r

β+r
β

β+s − β
β+r

Q
(

β
β+s

)
− Q

(
β

β+r

)

1 − Q
(

β
β+r

) = r

β + r − β − s

Q
(

β
β+s

)
− Q

(
β

β+r

)

1 − Q
(

β
β+r

)

= r

s − r

Q
(

β
β+r

)
− Q

(
β

β+s

)

1 − Q
(

β
β+r

) ,

which is (2.20) with f̃ (s) = Q
(

β

β+s

)
, as expected.

Note that zQ1,t (z) is of the same form as the discrete ladder height pgf in the
compound binomial model, which will be discussed later in Example 7.4.We remark
that from Feller (1968) (p. 265),

∞∑

k=0

Qkz
k = 1 − Q(z)

1 − z
, (2.88)

and thus if r > 0, (2.87) may be expressed as
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q j (r) =
(

r

β + r

)
∞∑
k=0

q j+k

(
β

β+r

)k

1 − Q
(

β

β+r

) ,

whereas if r = 0,

q j (0) = Q j−1
∞∑
k=0

Qk

, j = 1, 2, . . . . (2.89)

That is, from (2.21), the equilibrium pdf of the mixed Erlang distribution is

f1,0(y) = F(y)

E(Y )
=

∞∑

j=1

q j (0)Eβ, j (y),

where q j (0) is given by (2.89), again of mixed Erlang form. �

Example 2.13 Esscher transform of mixed Erlang distributions
As f̃ (s) = Q(

β

β+s ), we get

f̃ (μ + s)

f̃ (μ)
=

Q
(

β

β+μ+s

)

Q
(

β

β+μ

) =
Q
(

β

β+μ
· β+μ

β+μ+s

)

Q
(

β

β+μ

) = Q∗
(

β + μ

β + μ + s

)
,

where

Q∗(z) =
Q
(

β

β+μ
z
)

Q
(

β

β+μ

) ,

or equivalently

q∗
n =

(
β

β+μ

)n
qn

Q
(

β

β+μ

) .

�

Example 2.14 A compound geometric distribution
For the compound geometric random variable L with Laplace–Stieltjes transform
given by (2.28), substitution of the mixed Erlang Laplace transform (2.71) yields

E
(
e−sL

) = C

(
β

β + s

)
,

where
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C(z) =
∞∑

j=0

c j z
j = 1 − φ

1 − φQ(z)
(2.90)

is a discrete compound geometric pgf. Thus L has a pdf

g(y) =
∞∑

j=1

c jEβ, j (y), y > 0,

and Pr(L = 0) = c0 = 1 − φ. Rearrangement of (2.90) gives rise to

C(z) = φQ(z)C(z) + (1 − φ),

which yields, upon equating coefficients of zn , the identity

cn = φ

n∑

k=1

qkcn−k, n = 1, 2, . . . , (2.91)

and (2.91) may be used to evaluate {cn; n = 0, 1, 2, . . .} numerically, beginning
with c0 = 1 − φ.

For any α ≥ 0 it follows from (2.81) that

∫ ∞

y
(x − y)αg(x)dx =

∫ ∞

0
xαg(x + y)dx

= 1

β

∫ ∞

0
xα

{ ∞∑

n=0

Eβ,n+1(y)
∞∑

m=0

cm+n+1Eβ,m+1(x)

}
dx

= 1

β

∞∑

n=0

Eβ,n+1(y)
∞∑

m=0

cm+n+1

∫ ∞

0
xαEβ,m+1(x)dx .

One has easily from (2.66) that

∫ ∞

0
xαEβ,m+1(x)dx = 	(m + α + 1)

m!βα
,

and thus

∫ ∞

y
(x − y)αg(x)dx =

∞∑

n=0

Eβ,n+1(y)
∞∑

m=0

cm+n+1	(m + α + 1)

m!βα+1
,

i.e. ∫ ∞

y
(x − y)αg(x)dx = e−βy

∞∑

n=0

γn,α

(βy)n

n! , (2.92)
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where

γn,α =
∞∑

m=0

cm+n+1
	(m + α + 1)

m!βα
, n = 0, 1, 2, . . . .

With α = 0, one has that γn,0 =
∞∑

m=0
cm+n+1 = Cn and (2.92) becomes

G(y) = Pr(L > y) = e−βy
∞∑

n=0

Cn
(βy)n

n! , y ≥ 0. (2.93)

The coefficients {Cn; n = 0, 1, 2, . . .} have generating function from (2.90) given
by

∞∑

n=0

Cnz
n = 1

1 − z

{
1 − 1 − φ

1 − φQ(z)

}

= φ

1 − φQ(z)

1 − Q(z)

1 − z
. (2.94)

Again (2.94) implies, upon equating coefficients of zn ,

Cn = φ

1 − φ

n∑

k=0

ckQn−k, n = 0, 1, 2 . . . ,

using (2.88) and (2.90). Alternatively, (2.94) may be rearranged as

∞∑

n=0

Cnz
n = φQ(z)

{ ∞∑

n=0

Cnz
n

}
+ φ

1 − Q(z)

1 − z
,

which yields, upon equating coefficients of zn , the discrete defective renewal equation

Cn = φ

n∑

k=1

qkCn−k + φQn, n = 1, 2 . . . . (2.95)

The coefficients {Cn; n = 0, 1, 2, . . .} may be computed recursively from (2.95),
beginning with C0 = φ. �
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2.5 Coxian Distributions

Another useful class of distributions is the class of Coxian-n distributions with
Laplace transform

f̃ (s) =
∫ ∞

0
e−sydF(y) = a(s)

m∏
i=1

(λi + s)ni
, (2.96)

where λi > 0 for i = 1, 2, . . . ,m, with λi �= λ j for i �= j . Also, ni is a positive
integer for i = 1, 2, . . . ,m, and n = n1 + n2 + . . . + nm . Thus the denominator of
(2.96) is polynomial of degree n, while a(s) is a polynomial of degree n − 1 or less.

As f̃ (0) = 1, it follows that a(0) =
m∏
i=1

λ
ni
i , and if a(s) = a(0) for all s > 0

then (2.96) is the Laplace transform of the sum of m independent Erlangian dis-
tributed random variables. Of course, ifm = n = 1, (2.96) is an exponential Laplace
transform.

In fact, a partial fraction expansion of (2.96) results in

f̃ (s) =
m∑

i=1

ni∑

j=1

pi j

(
λi

λi + s

) j

(2.97)

for some constants pi j . While not particularly important in what follows, an explicit
expression for pi j is

pi j = λ
− j
i

(ni − j)!
dni− j

dsni− j

{ m∏

k=1
k �=i

a(s)

(λk + s)nk

}∣∣∣∣
s=−λi

.

It is clear from (2.97) that
m∑
i=1

ni∑
j=1

pi j = 1, but it is not necessary that pi j ≥ 0 for

all i and j . Thus (2.97) implies that the Coxian-n distribution is said to be that of a
combination of Erlangs. In particular, when ni = 1 for all i , the distribution is that
of a combination of exponentials (e.g. Dufresne (2007)). Furthermore, if pi j ≥ 0 for
all i and j , the distribution is of the mixed Erlang form of the type discussed in the
previous section with a single scale parameter.

Example 2.15 Coxian-2 distribution
We now consider the Coxian-2 case with n = 2 in some detail. Then (2.96) may be
expressed as

f̃ (s) = a1s + a0
(s + λ1) (s + λ2)

,
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where λ1 = λ2 is not excluded. Clearly, a0 = λ1λ2, and it is convenient notationally
to reparameterize by letting a1 = λ1(1 − p). Thus the Coxian-2 Laplace transform
may be written as

f̃ (s) =
∫ ∞

0
e−sy f (y)dy = λ1(1 − p)s + λ1λ2

(s + λ1)(s + λ2)
. (2.98)

It is clear from (2.98) that if p = 0 then f̃ (s) is the Laplace transform of an expo-
nential distribution with mean 1/λ1, and if λ2 = λ1(1− p) then f̃ (s) is the Laplace
transform of an exponential distribution with mean 1/λ2. We wish to exclude these
cases from the ensuing analysis.

As (2.98) may be written as

f̃ (s) = (1 − p)
λ1

s + λ1
+ p

λ1λ2

(s + λ1) (s + λ2)
, (2.99)

it follows that the Coxian-2 pdf may be expressed as

f (y) = λ1(1 − p)e−λ1 y + λ1λ2 pe
−λ1 yh(y), (2.100)

where

h(y) =
∫ y

0
e(λ1−λ2)xdx . (2.101)

Of course, h(y) is easy to evaluate, but its form depends on whether λ1 equals λ2 or
not. In any event, f (0) = λ1(1 − p), which implies that p ≤ 1.

It follows from (2.100) that the tail may be expressed as

F(y) = (1 − p)e−λ1 y + p
{
e−λ1 y + λ1e

−λ1 yh(y)
}
,

i.e.
F(y) = e−λ1 y {1 + λ1 ph(y)} . (2.102)

If λ1 ≥ λ2 then from (2.101) lim
y→∞ h(y) = ∞, and from (2.102) one must have

p ≥ 0, because if p < 0 then eλ1 y F(y) would become negative for large y. But
p �= 0, and thus if λ1 ≥ λ2, it follows that 0 < p ≤ 1. Hence (2.99) is a mixture of
an exponential Laplace transform with mean 1/λ1, and the Laplace transform of the
sum of two exponentials with means 1/λ1 and 1/λ2 if 0 < p < 1 and λ1 ≥ λ2, and
if p = 1 then (2.99) is the Laplace transform of the sum of two exponentials with
means 1/λ1 and 1/λ2. If λ1 = λ2 then (2.99) is a mixed Erlang Laplace transform
of the type discussed in the previous section.

On the other hand, if λ1 < λ2 then from (2.101)

h(y) = 1 − e−(λ2−λ1)y

λ2 − λ1
,
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which implies from (2.102) that

lim
y→∞ eλ1 y F(y) = 1 + λ1 p lim

y→∞ h(y) = 1 + p
λ1

λ2 − λ1
.

Since this limit cannot be negative, one must have p ≥ 1 − λ2/λ1, or equivalently
λ2 ≥ λ1(1 − p). But λ2 �= λ1(1 − p) and thus if λ1 < λ2 then 1 − λ2

λ1
< p ≤ 1 but

p �= 0.
We now show that if λ1 < λ2 and p < 0 then (2.99) is the Laplace transform

of the mixture of two exponentials with means 1/λ1 and 1/λ2. To see this, note that
if 1 − λ2

λ1
< p < 0 then we may write p = α(1 − λ2

λ1
) where 0 < α < 1. Next, if

λ1 �= λ2, it follows that

λ1λ2

(s + λ1) (s + λ2)
=
(

λ2

λ2 − λ1

)
λ1

s + λ1
+
(

λ1

λ1 − λ2

)
λ2

s + λ2
, (2.103)

which expresses the fact that the sum of two independent exponential random vari-
ables with different means has pdf which is a combination of two exponential terms.
Substitution of (2.103) into (2.99) yields the fact that if λ1 �= λ2 then

f̃ (s) =
(
1 − p + p

λ2

λ2 − λ1

)
λ1

s + λ1
+
(
p

λ1

λ1 − λ2

)
λ2

s + λ2
,

i.e.

f̃ (s) =
(
1 − p

λ1

λ1 − λ2

)
λ1

s + λ1
+
(
p

λ1

λ1 − λ2

)
λ2

s + λ2
, (2.104)

which is again the Laplace transform of a combination of two exponentials. Thus, if
p = α(1 − λ2

λ1
) then α = p λ1

λ1−λ2
, and (2.104) becomes

f̃ (s) = (1 − α)
λ1

s + λ1
+ α

λ2

s + λ2
,

which, for 0 < α < 1, is the Laplace transform of a mixture of two exponentials.
To summarize, the Coxian-2 distribution has Laplace transform (2.99) which for

p = 1 is that of the sum of two independent exponential random variables (possibly
with different means), for 0 < p < 1 is that of a mixture of an exponential and the
sum of two exponentials, and for 1 − λ2

λ1
< p < 0 (where λ1 < λ2) is that of the

mixture of two exponentials.
If λ1 �= λ2, it follows from (2.104) that

F(y) =
(
1 − p

λ1

λ1 − λ2

)
e−λ1 y +

(
p

λ1

λ1 − λ2

)
e−λ2 y,

and from (2.50), the excess loss tail is easily expressed as



2.5 Coxian Distributions 41

Fx (y) = F(x + y)

F(x)
=
(
1 − px

λ1

λ1 − λ2

)
e−λ1 y +

(
px

λ1

λ1 − λ2

)
e−λ2 y,

where

px = pe−λ2x

F(x)
. (2.105)

Similarly, if λ1 = λ2, then from (2.102),

F(y) = e−λ2 y {1 + pλ2y} ,

and

Fx (y) = F(x + y)

F(x)
= e−λ2 y {1 + pxλ2y} ,

again with px given by (2.105). Thus, the excess loss distribution with pdf fx (y) =
f (x + y)/F(x) is again of Coxian-2 form, but with p replaced by px in (2.105).
That is, from (2.98),

f̃x (s) =
∫ ∞

0
e−sy fx (y)dy = λ1(1 − px )s + λ1λ2

(s + λ1) (s + λ2)
. (2.106)

For the generalized equilibrium distribution defined by (2.18), it follows from
(2.84) and (2.106) that (2.20) becomes

f̃1,r (s) =
∫∞
0 e−r x F(x) f̃x (s)dx∫∞

0 e−r x F(x)dx

= λ1(1 − p1,r )s + λ1λ2

(s + λ1) (s + λ2)
, (2.107)

where

p1,r =
∫∞
0 pxe−r x F(x)dx
∫∞
0 e−r x F(x)dx

. (2.108)

Clearly, (2.107) implies that the generalized equilibriumdistribution (2.18) is again of
Coxian-2 form, but with p replaced by p1,r in (2.108), which will now be simplified.

Using (2.16) and (2.99), one finds that the Laplace transform of the tail F(y)
satisfies
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1 − f̃ (s)

s
= 1

s

{
1 − (1 − p)

λ1

λ1 + s
− p

λ1λ2

(λ1 + s) (λ2 + s)

}

= 1

s

{
(1 − p)

(
1 − λ1

λ1 + s

)
+ p

(
1 − λ1λ2

(λ1 + s) (λ2 + s)

)}

= 1 − p

s + λ1
+ p

s + λ1 + λ2

(λ1 + s) (λ2 + s)

= (1 − p) (s + λ2) + p (s + λ1 + λ2)

(s + λ1) (s + λ2)
,

i.e. ∫ ∞

0
e−sx F(x)dx = s + λ2 + λ1 p

(s + λ1) (s + λ2)
. (2.109)

Also, from (2.105),

∫ ∞

0
pxe

−r x F(x)dx = p
∫ ∞

0
e−(r+λ2)xdx = p

r + λ2
,

and using (2.109) and (2.108) simplifies to

p1,r = p (r + λ1)

r + λ2 + λ1 p
. (2.110)

To summarize, the generalized equilibrium pdf f1,r (y) is again of Coxian-2 form,
but with p replaced by p1,r given by (2.110). In particular, when r = 0, the equilib-
rium pdf f1,0(y) = F(y)/E(Y ) is of Coxian-2 form with p replaced by p1,0.

The compound geometric tailG(y) has Laplace transform, from (2.28) and (2.33),
given by

∫ ∞

0
e−syG(y)dy = 1

s

{
1 − 1 − φ

1 − φ f̃ (s)

}
=
{

φ

1 − φ f̃ (s)

}
1 − f̃ (s)

s
.

In the case when f̃ (s) has the Coxian-2 Laplace transform (2.98), then from (2.109),
this yields

∫ ∞

0
e−syG(y)dy = φ

s+λ2+λ1 p
(s+λ1)(s+λ2)

1 − φ
λ1(1−p)s+λ1λ2

(s+λ1)(s+λ2)

= φ(s + λ2 + λ1 p)

s2 + {λ1 + λ2 − φλ1(1 − p)} s + λ1λ2(1 − φ)
.

Thus, ∫ ∞

0
e−syG(y)dy = φ(s + λ2 + λ1 p)

(s + R1) (s + R2)
, (2.111)
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where

R1, R2 = 1

2

[
{λ1+λ2−φλ1(1−p)}±

√
{λ1 + λ2 − φλ1(1 − p)}2 − 4λ1λ2(1 − φ)

]
.

(2.112)
The roots R1 and R2 given by (2.112) are real, distinct, and positive. To see this,

assume that λ1 ≥ λ2, implying that 0 < p ≤ 1. Thus,

λ1 + λ2 − φλ1(1 − p) = λ2 + λ1 {1 − φ(1 − p)} > 0,

and

{λ1 + λ2 − φλ1(1 − p)}2 − 4λ1λ2(1 − φ)

= {λ1 [1 − φ(1 − p)] − λ2}2 + 4λ1λ2 {[1 − φ(1 − p)] − (1 − φ)}
= {λ1 [1 − φ(1 − p)] − λ2}2 + 4λ1λ2φp,

which is clearly positive. If λ1 < λ2, then λ2 − λ1(1 − p) > 0, and therefore

λ1 + λ2 − φλ1(1 − p) = λ1 + λ2(1 − φ) + φ {λ2 − λ1(1 − p)} > 0,

and also

{λ1 + λ2 − φλ1(1 − p)}2 − 4λ1λ2(1 − φ)

= {λ1 − [λ2 − φλ1(1 − p)]}2 + 4λ1 {[λ2 − φλ1(1 − p)] − λ2(1 − φ)}
= {λ1 − [λ2 − φλ1(1 − p)]}2 + 4φλ1 {λ2 − λ1(1 − p)} ,

again clearly positive.
Clearly, (2.111) may be expressed as

∫ ∞

0
e−syG(y)dy = φ

R2 − R1

{
λ2 + λ1 p − R1

s + R1
+ R2 − λ2 − λ1 p

s + R2

}
,

resulting in

G(y) = φ

R2 − R1

{
(λ2 + λ1 p − R1) e

−R1 y + (R2 − λ2 − λ1 p) e
−R2 y

}
, y ≥ 0,

a combination of exponentials. �
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