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Abstract. The mathematical model of cloud computing system based
on the queuing system with the splitting of the incoming queries and
synchronization of services is considered. The queuing system consists of
a single buffer and N servers (IV > 2), service times are independent and
exponentially distributed. The incoming query enters the system as a
whole and only before service is divided into subqueries, each subquery
is served by its device. The servers with parts of the same query are
considered to be employed as long as the query is not serviced as a whole:
the query is handled only when the last of it is out and a new query may
be served only when there are enough free servers (the response time is
the maximum of service times of all parts of this query). Expressions for
the stationary performance characteristics of the system are presented.
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1 Introduction

This paper is devoted to the problem of cloud computing modeling [1]. There
exist several approaches to the cloud computing systems modeling. One approach
(see [3-6]) implies that the cloud computing system is modeled via a queuing
system with K subqueues and each subqueue consists of a buffer with one or
several servers. The incoming query is divided into exactly K subqueries, one for
each of the subqueues. On this approach the Fork—Join [3,4] and Split-Merge
[7-9] models are based. The Split-Merge model uses the idea of synchronization
of servers (only when the service of all subqueries belonging to the same query
has been finished, the service of the new query in commenced). The second
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approach models the cloud computing system as queuing system with unlimited
number of homogeneous servers (see [10,11]), in which the incoming query is
split into several subqueries and each is served by one of the free servers.

The mathematical model of cloud computing system presented here may
be considered as general case within the second approach: the queuing system
consists of IV servers and the buffer; each incoming query is split only before the
start of the service. We use the idea of synchronization of services as in [7-9]. Our
goal is to derive analytical expressions for the main performance characteristics
of the model.

The paper is structured as follows. The Introduction section is followed by
the section with general system (inhomogeneous servers) description. In the next
section some results for the case of the considered system (homogeneous servers)
are presented. In Conclusion the directions for further research are given.

2 The General Case of Inhomogeneous Servers

2.1 The System Description

The queuing system consists of N non-homogeneous servers (N > 2) labeled
with numbers from 1 to N without repetitions and the buffer of size r < oo.
Queries enter the system according to Poisson flow with rate \. Before the start
of the service the query is divided into N subqueries, the service time of a
subquery on server ¢ has exponential distribution with rate p;, ¢ = 1, N. The
mechanism of synchronization is used — the servers with parts of the same query
are considered to be busy as long as the query is not serviced as a whole: the
query is handled only when the last part of it is out and a new query may be
served only when all servers are free.

Denote the response time of a query by 7. It is one of the main characteristics
of cloud computing systems (see [2]). It may be defined as n = max(ny,...,nn)
(see [3-5]) or as p = min(ny,...,nn) (see [12-15]), where n; are the service times
of the subqueries.

In [16] it is shown that the analysis of queuing models with the response time
defined as minimum is equal to the analysis of well-studied multiserver queuing
systems [17]. So we will consider only the case of maximum.

The probability distribution function (PDF) of = max(n;,...,ny) has the
form [6,16,18]:

N
P{max(n,...,nn) <z} = H (1—e 7). (1)
i=1

For homogeneous servers (p; = u, Vi = 1, N) (1) is reduced to

P{max(n1,n2,...,nn) <z} = (1 - e_“x)N . (2)

We will consider the random process v(t) defined by

v(t) = {£(t),6(1)}, 3)
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where £(t) is the number of queries in the buffer at time ¢ and the vector
a(t) = (01(t),...,0n(t)) describes the servers occupancy (d;(t) = 1 if the é-th
server is occupied by the i-th part of a query and §;(t) = 0 otherwise). It is
supposed, that each subquery may enter only its server so the situation when
two or more subqueries are directed to the same server is impossible.

The state space X of {v(t),t > 0} is

X:{(O)}U{(L (51775N))}7 (4)

where I = 0;7, d1,...,dx take values 0 or 1. Denote

P{&(t) =1,0(t) = (01,...,0n)} = pr.s(t), P{v(t) =0} = po(t).

Assuming that the steady-state exists the stationary probabilities are henceforth
denoted by prs and po.

2.2 The System of Equations

In order to derive the system of equilibrium equations for the considered system
the following notation is needed:

— = (u1,...,un) — the service rate row-vector (size N);

= H_(i, is,....i) — the row-vector of service intensities (size IV — k) from which
the elements with the specified numbers (;,, fiy, - - -, fti;,) have been deleted
(il 7éi2 75 #ik, il,ig,...,ik = 1,N);

— A = diag(\) — the diagonal arrival rate matrix (of variable size which is
defined by the corresponding steady-state probability vector).

- P L= 0;7, k =1, N, — the vector of steady-state probabilities that there
are I queries in the buffer and k occupied servers;

- plvkipiz ‘‘‘‘‘ 'ik—l,I =0;r, k= l,N, 11 75 12 75 75 U1y 01502y« v vy ll—1 = 1,N,
— the vector of steady-state probabilities that there are I queries in the
buffer, k servers are occupied and the severs with numbers i1, 4o, ...,i5_1 are
necessarily under service.

For the probability of the empty system we have the following equation:

APo = H1Po,(1,0,...,0) T H2P0,(0,1,...,0) T - - - T INDP0,(0,0,...,1)- (5)

We leave the state (0) when the first query enters the system, and we enter this
state when the last part of the previous query will finish its service. In matrix
form the Eq. (5): 5

Apo = Mipgq, (6)

where M; = p.

Now we will consider the set {(0,1)} of states {(0,(1,0,...,0)),
(0,(0,1,0,...,0)),..., (0,(0,0,...,0,1))} — the buffer is empty and one server
is occupied:
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(A =+ 11)P0,(1,0,...,0,0) = H2P0,(1,1,0,...,0,0) T+ H3P0,(1,0,1,...,0,0) F -+ -+
+ UND0,(1,0,0,...,0,1)
(A =+ 12)Po,(0,1,...,0) = H1P0,(1,1,0,...,0) T H43P0,(0,1,1,...,0,0) T - - +
+ KNDPo,(0,1,0,...,0,1)

(A + 18)Po,(0,0,...,0,1) = H1P0,(1,0,0,...,0,1) T H2P0,(0,1,0,...,0,1) + - - -+

+ UN=1D0,(0,0,0,...,1,1)5

or according to our notation:

A+ Ml)PO,(l,o,...,o) =HKH_1)Po,2,>
(A + 12)Po,(0.1,....00 = H_(2)P0 .2,

(A + 1N)P0,(0,0,....1) = H_(N)Po,2 -

Relations (7) is the matrix form can be written as
(/11 + M1) Po1 = Mapg 5. (8)

Here A, = diag(\) and M; = diag(pi);—7 — the diagonal matrices with the
same size as the vector pg q, M, = diag(ui)izﬁ — the diagonal matrix with
the same size as the vector p 5, column-vector pg o = (p0,21a . ,p072N).

For the set {(0,2)} of states, when the buffer is empty and two servers are
occupied (C% states), the following system may be presented:

(A+Ms,)po2, = M_(1,)Pos, .
(A+ Mz, )pg o, = M_2,9P03,.

(/1 + M2N)p0,2N = M—(N;)pO,SN__,

where p 3, is a column-vector with elements pg 5, ., i # k, k,i = 1, N, matrices
Aand My, = diag(pr +mu;), 777 ;4 are (N —1)-by-(N — 1) diagonal matrices,

M_ .y = diag(p_.3))i—T7,ip6 K =1, N.
The matrix form of (9) is:

(/12 + MQ) Po2 = M3P0,3» (10)

where _
Ay = diag(A), My = diag(M2i)i:ﬁ’

M; = diag(M_ i )) 1w
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and a column-vector
Pos3 = (Po,sl,»---apo,?w,.) .

With the set {(0,k)} of states, when the buffer is empty and k servers are
occupied (C%; states) the following system of equations is connected:

)

(A + Mkil,ig,m,ik_1> po’kil,i2’«~,ik_1 = M—(h7i27~~-7ik71ﬁ)pO,kJrlil,ig,,.,,ik_l,-
k=3 N1,
(11)

here
Mkil,iz,...,ik71 = diag(:u’il Tt gy /Li)il,.“,ik,l,i:m,ili...iik,1¢i7

M*(ilai%uwik—l") = dzag(p‘il,ig,4..,ik71,i)z‘1,..‘,ik_l,i:l,N,il;é...:,éik_l;éi’

and column-vector

e <p0’k+17‘1”‘2"“*ik*1“)z'1,...,izH,z':L*N,mé...;éikfl#i'

The matrix form of (11) is

(/Ik + Mk)Po,k = Mk+1po,k+17 (12)

where R
Ay = diag(4),

My, = diag(Mki1vi2,-~-,ik—1>i17~~»7ik71:177N1i175---75ik71’
Myt = diag(M*(ihizwwik—l,'))il,..A,ik_lzl,iN,ilgé...#ik_l7
and a column-vector
Po ki1 = (Po,k+1,;1,7;2,___,7‘,k71,,) i1y i1 = 1L, Nip # o F i
Now we will consider the case, when the buffer is empty and all servers are
occupied — {(0, N)} = {(0,(1,1,...,1))}:
(A 1+ p2 + oo+ 1N) Po,(1,1,1,...,1,1) = AP0 + [1D1,(1,0,0,...,0,0)F
+ p2P1,(0,1,0,...,0,0) T HNP1,(0,0,0,...0,1)s  (13)

and the matrix form of (13)

(/iN + MN) PoN = Apo + M1P171’ (14)

with R
A =X, My=p1+p2+...+pn,

and the matrix M; was defined in (6).



16 1. Zaryadov et al.

For the case, when the buffer is not empty, we will not derive the systems of
equations in detail, but immediately represent them in the matrix form:

(/Ik + Mk) Prx=AProip+ Mepiprper, 121, 1<k<N-1, (15)
and for k=N
(/IN + MN) PiN =APr_1Nn+ M1p1+1,17 I>1, (16)

matrices Ay, My and My, k =1, N, are defined in (6), (8), (10), (12), (14). The
vectors pr g, [ > 1,1 <k < N have the same structure and size as vectors p y,
1<k < N, defined in (6), (8), (10), (12), (14).

The normalization condition for the system with unlimited buffer size is

oo N
P0+Zzlkpf,k =1, (17)
1=0 k=1
where 15, = (1,1,...,1,1) is a vector which size is equal to the size of the vector

Pr.ks 1<k<N.
For the system with finite-capacity buffer the following equations hold:

Mk’pr,k = )‘pr—l,k + Mk+1pr,k+17 k=1,N -1, (18)

and
MNp, N =AP,_1 N> (19)
where matrices M, and My, 1 < k < N, are defined in (6), (8), (10), (12), (14)
and vectors Prk 1 < k < N, have the same structure and the same size as
vectors pg g, 1 < k < N, defined in (6), (8), (10), (12), (14).
The normalization condition (17) for the finite buffer system takes the form:

r N
Pot+ > > Lipry=1. (20)

I=0 k=1

For the infinite system (6), (8), (10), (12), (14), (15), (16), as well for the
finite system (6), (8), (10), (12), (14), (15), (16), (18), (19) the solution may be
found by using matrix-analytical methods [19-26].

2.3 Marginal Probability Distributions

By prx = 1pry, I =2 0, k =1, N we will denote the probability that there are

I, I > 0, queries in the buffer and k, k = 1, N, servers are occupied. Then the
system (6), (8), (10), (12), (14), (15), (16) takes form:

Apo = MlPO,ly

v (1)
Azpl,k =Mpriia, 120
k=1
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The steady-state probability 77, that there are I, I > 0, queries in the buffer
and at least one server is busy, is

N
fr=Y prr I>0, (22)
k=1
and from (21) with (22) the following relations are obtained:
. 1 -
#1 = Mpraa, 120 (23)

The steady-state probabilities 7 that there are k, & = 0, N, servers are
occupied regardless of the number of queries in the buffer are follows:

o = Po,

> 24
WkZZU’I,ka k=1K. @)
=0

We will use the probability distributions (23) and (24) for the system with
homogeneous servers presented in the next section.

By substituting min g and max g instead of i, j = 1, N in (21) and making
the same computations as for the system with homogeneous server (which are
presented in the next section) one may obtain the following inequality for the
probability pg:

A

S| A Y1
1— — _<pp<1-— _.(25)
min(gy, ..., 4N) ; jC%h max (1, ..., 1uN) ; iCh (

3 The Case of Homogeneous Servers. Stationary
Performance Characteristics

3.1 The System Description and the System of Equations

Let’s assume that all servers are homogeneous (1 = pio = ... = uny = u), then
we may redefine the random process {v(t),tge0} (3) as v(t) = {£(t),(¢)}, where
0(t) — not the vector, but the scalar — the number of occupied servers. The set
of states X' (4) can be redefined as X = {(0)} U {(é; )}, where i = 0,7 (r < c0)
is the number of queries in the buffer and 7 = 1, N is the number of occupied
servers.

The steady-state probabilities py (the system is empty) and p; ;, i = 0,7,
r <00, j =1, N (i queries in the buffer and j servers are occupied by subqueries)
satisfy the following systems of equations (when r = 00):

Apo = f1(u)po,1,
)poj = fi+1(Wpoj+1, j=1,N—1,
po,N = Apo + f1()p1,1, (26)
)pij = Api—1,j + fi+1(W)pij+1, i21,7=1,N—1,
Pi,N = Api—1,N + fi()pit1,N,

A+ fi(p
A+ fn(p)
(A+ £
A+ fn(p)

~

— — —
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with

filp) =jC%n, j=1N (27)

for the system with the unlimited-capacity buffer.
The normalization condition is:

oo N
Ppo + Z Zpi’j =1. (28)

i=0 j=1
For the system with the finite-capacity buffer (26) takes form:

Apo = f1(1)po,1,
A+ fi(0) po; = fi+1(Wpoj+1, J=1,N—1,
A+ fn (1) po,n = Apo + f1()p1,1,
A+ fi(W) pij = Api—1j + fi1(Wpijpr, i=1r—1,j=1N -1,
A+ fn(w) piny = Apicin + fi(wpiyin, i=1,7—1,
[i(w)pr; = Apr—1,5 + fi+1(W)prjyr, J=1,N—1,
IN(0)pr,N = Apr—1,N,

with normalization condition

r N
P0+ZZPi,j =1 (30)

i=0 j=1

3.2 Marginal Probability Distributions

If we denote by 7;, j = 0, N, the marginal probability distribution of the number
of occupied servers and by 7;, ¢ > 0, the probability distribution of the number
of queries in the buffer, defined in (24) and (23) correspondingly, then from (26)
and (28) we obtain:

Ao = f1(w)(po + p1.1), (31)
AT = f[i(l)pivia, 1> 1
and
T = Po,
A (32)
TP = 5 ] = 17N7
T fiw)

where f;(u) is defined in (27).
From (32) and normalization condition (28) for 7;, j =0, N,

N
po + Zpij =1,
=1
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the probability pg of the system being empty is obtained:

N

p=1-23 L (33)

ri= iCy

3.3 The Laplace-Stieltjes Transformation of Waiting Time
Probability Distribution Function

If we define as w(s) the Laplace-Stieltjes transformation (LST) of waiting time
PDF for an arbitrary query, w; ;(s) — the LST of waiting time PDF for the
incoming query when there are i, i > 0, other queries in the buffer and j,
7 =1, N, servers are occupied, then:

o~ N (%S) N
w(s) =po+ Y Y wii()pig =po+ Y wiv(s) Y wi(s)pis, (34)
0 j=1

i=0 j=1 i=

where wj(s) is the LST of PDF (2) for n = max(n,...,7;), j =1, N (see [18]):

J

ci .
wils) =Y (-1 S k2 (35)
k=1

i=1 s+

3.4 Probability Generation Function

In this subsection the probability generating function P(z1;22) for the prob-
ability distribution py (the system is empty) and p; ;, i« = 0,7, j = 1,N, is
introduced:

oo N
P(zi;z2) =po+ Y21 Y pij2d-
=0 j=1

Multiplying each equation of (26) by z; and z, raised to the corresponding
degrees the following relation is obtained:

1 1-— Z1
P(z1;29) = Y] <)\po o (21— zév)
2 — 21 N
—fl(M)Pl(Zl)@lZilz +(1—22) Z fi(w)Pi(z1) |, (36)

where py is defined by (33) and P;(z1) = > p; jzt.
i=0
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4 Numerical Experiment

Here we present numerical results of computation of the probability pg of system
being empty, probability 7, of the buffer being overfull and the mean number
N of queries in the buffer in the system with homogeneous servers and a finite-
capacity buffer.

The first table gives results for the case with N = 5 servers, r = 100 and
service rate p = 10.

Table 1. System with N = 5 servers, r = 100 and service rate u = 10

A | po e N
1 |0.946667 1.56534e-018 | 0.00195716
5 10.733333 1.70661e-017 | 0.0631629
10 |0.466667 1.26398e-016 | 0.397024
15 /0.2 4.71081e-016 | 2.08437
20 | 2.75912e-006 | 0.0625026 90.1282
30 | 2.54953e-034 | 0.375 98.8256
40 | 2.16074e-056 | 0.53125 99.3479
50 =0 0.625 99.5403

The second table gives results for py (computed from (33)) in the system
with unlimited buffer, N = 5 servers and service rate u = 10.

Table 2. System with unlimited buffer, N = 5 servers and service rate p = 10

A po
1 10.9466667
5 0.7333333
10 | 0.4666667
15 0.2
18 | 0.0400000

It is easily seen that the probabilities pg in the first and the second tables
correspond each other (Tables 1 and 2).

5 Conclusions and Furthest Problems

The brief introduction to the mathematical model of cloud computing system
based on the queuing system with the splitting of the incoming queries and
synchronization of services was presented.
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Our future goals are:

to evaluate probabilities 7;(31), i > 0, and p; ; (26), 7 > 0,7 =1, N;

to evaluate LST (34) for N homogeneous servers;

to obtain the condition of the steady-state regime existence for the system
with unlimited buffer and homogeneous servers;

to construct and analyze the mathematical model of the system with N = aK
homogeneous servers, where K is the number of subqueries for a incoming
query and « is a positive integer;

to construct and analyze the mathematical model of the system with N homo-
geneous servers and arbitrary number of subqueries for a incoming query.
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