
Disproving the Conjectures
from “On the Complexity of Scrypt and Proofs
of Space in the Parallel Random Oracle Model”

Daniel Malinowski and Karol Żebrowski(B)

University of Warsaw, Warsaw, Poland
daniel.malinowski@crypto.edu.pl, k.zebrowski@mimuw.edu.pl

Abstract. In the paper “On the Complexity of Scrypt and Proofs of
Space in the Parallel Random Oracle Model” (Eurocrypt 2016) Joël
Alwen et al. focused on proving a lower bound of the complexity of a gen-
eral problem that underlies both proofs of space protocols [Dziembowski
et al. CRYPTO 2015] as well as data-dependent memory-hard functions
like scrypt — a key-derivation function that is used e.g. as proofs of work
in cryptocurrencies like Litecoin.

In that paper the authors introduced a sequence γn and conjectured
that this sequence is upper bounded by a constant. Alwen et al. proved
(among other results) that the Cumulative Memory Complexity of the
hash function scrypt is lower bounded by Ω(n2/(γn · log2(n))). If the
sequence γn is indeed bounded by a constant then this lower bound can
be simplified to Ω(n2/ log2(n)).

In this paper we first show that γn > c
√

log(n) and then we strengthen

our result and prove that γn ≥
√
n

poly(log(n))
.

Alwen et al. introduced also a weaker conjecture, that is also sufficient
for their results — they introduced another sequence Γn and conjectured
that it is upper bounded by a constant. We show that this conjecture is
also false, namely: Γn ≥ c

√
log(n).

1 Introduction

The purpose of proofs of work is to provide a puzzle that requires a worker to
dedicate a significant amount of resources to solve it, while still remaining feasi-
ble. Originally, this technique was developed to fight spam emails — if the sender
had to dedicate some nontrivial amount of resources to send a single message
then sending millions of spam emails would be unprofitable. However, proofs of
work gained a lot of attention only recently — they are used in cryptocurrencies
to solve the problem of double spending of coins.

Originally, the resource used in proofs of work was a time spent on the compu-
tations, and consequently the focus was on time complexity of the worker. In the

This work was supported by the Polish National Science Centre grant
2014/13/B/ST6/03540.

c© Springer International Publishing AG 2017
J. Shikata (Ed.): ICITS 2017, LNCS 10681, pp. 26–38, 2017.
https://doi.org/10.1007/978-3-319-72089-0_2

Disproving the Conjectures 27

view of recent hardware advances, e.g. tailored ASIC devices, memory-hardness
appears to be a much better requirement, as memory cost is not reduced by such
devices. A candidate memory-hard function scrypt, introduced by Percival in [9],
aims to require the evaluator to either dedicate significant amount of space for
the computation or highly increase the time spent on the evaluation. A similar
space-time trade-off is imposed on the worker in proofs of space — a concept
introduced by Dziembowski et al. in [5]. In proofs of space the worker can either
dedicate a specified amount of the memory to generate proofs very efficiently, or
save the space and pay increased time cost every time he generates the proof.

Alwen et al. in [1] focus on proving a lower bound of the complexity of a gen-
eral problem that underlies both proofs of space protocols as well as the scrypt
function. To prove their main results, the authors of [1] introduced two combi-
natorial conjectures (either of them is sufficient for their results) and assumed
that they are true.

In this paper we disprove both conjectures from [1]. To give a reader intuitions
and a good understanding of the definitions required for stating the conjectures
we give an introduction to [1] in Sect. 1.1. We remind the parallel Random Oracle
Model, the labeling and pebbling games and how to calculate the Cumulative
Memory Complexity of algorithms.

1.1 Introduction to [1]

Alwen et al. in [1] investigate lower bounds on the time and memory complexity
of an adversary algorithm A whose goal is to compute labels of nodes in a
directed acyclic graph. In this game (we describe it in more details in Sect. 1.1)
the label of a node is a hash h of node’s index and the labels of its parents1. The
hash function is modeled as a random oracle, so in order to compute the label,
A has to keep the labels of parent nodes in the memory.

Specific instances of this problem underlie proofs of space protocols con-
structed by Dziembowski et al. in [5]. Proofs of space is an alternative concept
to proofs of work, in which a prover must dedicate a significant amount of his
disc space as opposed to his computing power. Proofs of space are more environ-
mentally friendly than proofs of work, because storage does not require energy.
They can be used to create e.g. greener cryptocurrencies [8].

Another application of the problem considered in [1] is an examination of
a memory-hard hash function2 scrypt introduced by Percival in [9]. The honest
evaluation of the scrypt function invokes underlying hash function h (modeled as
a random oracle) n times, and requires storing n labels (where n is a parameter of
scrypt). As Percival stated, the expectation was that even for the adversary that
parallelizes the computation it holds that S(n) · T (n) ≥ n2−ε, where S(n) and
T (n) denote space and time invested, respectively. However, no rigorous proof of
that fact was given. Another shortcoming of Percival’s analysis was measuring

1 Parent of a node v is any node w s.t. an edge (w, v) exists in the graph.
2 Memory-hard hash functions require large storage during evaluation. They are used

as password hashing functions and in proofs of work in cryptocurrencies.

28 D. Malinowski and K. Żebrowski

memory complexity in terms of maximum memory used during computation.
This does not take into account that the adversary could potentially amortize
memory usage across multiple invocations of scrypt function for multiple differ-
ent inputs. To address this issue Alwen et al. consider a cumulative memory
complexity proposed in [3]. We briefly recall this notion in Sect. 1.1.

Cumulative Memory Complexity in Parallel Random Oracle Model.
Alwen and Serbinenko in [3] developed a new complexity metric better suited
for capturing an amortized memory hardness of a given function. The intuition
behind their model is that the adversary can use specialized hardware to evaluate
many instances of the function in parallel. In such a situation only the amortized
cost per single evaluation is important.

The authors of [3] consider an adversary whose goal is to compute a function
Hh (i.e. some function H that depends on the oracle h) with underlying hash
function h modeled as a random oracle. The computation proceeds in steps and
ends when the adversary computes Hh. In each step the adversary gets the
previous state σi−1 (the state σ0 is set to the given initial state σinit), makes
unbounded local computations and produces the next state σi. Additionally,
once per step the adversary can send a polynomial (therefore parallel in the
model name) set of queries to the random oracle and get back the hash values.

The cumulative memory complexity (CMC) of a single evaluation of Hh is
measured as Σi|σi|. CMC in parallel ROM model of Hh, denoted cmcpROM(Hh),
is defined as minimal (over all the adversaries) expected CMC of the adversary
computing Hh.

Labeling Games. Alwen et al. in [1] proved that the hardness of scrypt-like
functions, as well as the security of proofs of space, rely on difficulty of the
following game, called computeLabel.

The game is played on a single source and a single sink directed acyclic graph
(DAG) G = (V,E) with subset of challenge nodes C ⊆ V and is parametrized
with a hash function h (modeled as a random oracle). Each graph node, with
index i, is associated with a label li defined recursively as a hash of index i
and labels of parents of i, namely li = h(i, lp1 , . . . , lpd

), where p1 < · · · < pd

are indices of all the parents of i. The game proceeds in n rounds, where n is
a parameter of the game. At each round r a challenge cr is drawn uniformly
at random from C. The player’s goal is to compute the label associated with
the challenge node cr, before moving to the next round and learning the next
challenge cr+1. As before, we assume the pROM model, i.e. the player can make
multiple parallel random oracle calls at each step of his computation. The game
ends when the last challenge is answered.

We define a CMC complexity of the computeLabel game as the expected value
of CMC of the best adversary playing the game. The second result of Alwen et al.,
described in Sect. 1.1, applies to the CMC complexity of the computeLabel game
played on a simple path graph, which underlies the scrypt function.

Disproving the Conjectures 29

Pebbling Games and “entangled” Pebbling Games. A standard pebbling
game, similarly to the computeLabel, is played on a single source and a single
sink DAG G = (V,E). At each step the player can put or remove a pebble from
a node of G according to the following two rules: a new pebble can be placed
on any node v for which all parents of v have pebbles on them (in particular, a
pebble can always be placed on the source), and pebbles can always be removed.
The game ends when a pebble is placed on the sink of G. In the parallel pebbling
game the player at each step places at the same time as many pebbles as he wants
(as long as he follows the rules) and then he removes any number of pebbles of
his choice.

The cumulative complexity (CC) of the strategy for the (parallel) pebbling
game is defined as Σi|Si| where Si is a set of pebbled nodes at the end of i-th
step. The CC of a graph G is defined as CC of the best pebbling strategy for G.

For a graph G = (V,E) one could consider a pebbling analogue of the
computeLabel game, called pebble in [1]. At each round a challenge cr is sampled
uniformly at random from C ⊆ V , and the goal of the player is to pebble the
challenge node (following the same rules as in the parallel pebbling game), before
advancing to the next round and learning the challenge cr+1.

It is easy to see that any pebbling strategy in the pebble game can be adapted
as a strategy in the computeLabel game for a restricted adversary who stores in
memory only the labels, i.e. random oracle outputs. One could consider a slightly
strengthened model in which the adversary can store specific functions of the
labels (but not yet arbitrary ones). For example, consider an adversary playing
the computeLabel game who stores in memory the XOR of labels x := li ⊕ lj .
Later, e.g. in the next round, he could compute li and use it together with x to
recover lj (or the other way around). This way he could potentially improve the
complexity in terms of CMC.

A pebbling abstraction of such an adversary is an adversary playing the
entangled pebbling game, a new class of randomized pebbling game introduced
in [1]. In this game, for a set V ⊆ V and some integer 0 ≤ t < |V| a player
who has individual pebbles on all the nodes in V is allowed to place an entangled
pebble 〈V〉t on V that weights |V|−t. The meaning of such an entangled pebble is
that when the player has both 〈V〉t and individual pebbles on any t nodes from
V then he can at once put individual pebbles on all the nodes in V. The pebbles
used to “disentangle” V might be a result of disentangling another entangled
pebble. Note that the entangled pebble is a generalization of a normal pebble
where 〈v〉0 corresponds to the individual pebble on vertex v. The initial pebbling
in this game consists of a number of entangled pebbles.

Alwen et al. show a clever trick using polynomial interpolation which allows
to translate an entangled pebble 〈V〉t to an encoding of length w · (|V| − t) such
that given any t labels of nodes from V it is possible to recover the remaining
ones (here w is the length of a single label). An adversary allowed to use only
such encodings in the computeLabel game is called an entangled adversary.

It is not obvious if relaxing the restriction by allowing the adversary to
use entangled pebbles improves his cumulative complexity of the pebble game.

30 D. Malinowski and K. Żebrowski

However, Alwen et al. show an example of a graph for which entangled pebbling
is strictly more powerful (see [1] Appendix A).

Alwen et al. Conjectures and Their Implications. The authors of [1]
define a sequence γn (we define it in Definition 7, Sect. 2) and prove that:

1. For any DAG G = (V,E) with |V | = n, with high probability over the choice
of the random hash function h : {0, 1}∗ → {0, 1}w, the pROM time complexity
to play computeLabel on G, for any number of challenges, starting with any
initial state of size k ·w is roughly at least the time complexity needed to play
pebble on G with the same number of challenges and starting with an initial
pebbling of size roughly γn · k.

2. The pROM CMC of computeLabel for Ln (a simple graph underlying scrypt,
that consists of a single path from a source to a sink) is Ω

(
n2

γn·log2(n)

)
.

Alwen et al. conjecture that the sequence γn is upper bounded by a constant
(see Conjecture 13 in [1] or Conjecture 1, Sect. 2). They use this conjecture to
boost their results proved for a restricted class of adversaries, so called entangled
adversaries (see Sect. 1.1), to hold for arbitrary adversaries in pROM.

Under this conjecture, the first result would solve the main open problem
from the work of Dziembowski et al. [5] on proofs of space. The second one
would imply a near-quadratic lower bound on CMC of evaluating scrypt for
arbitrary pROM adversaries.

The authors of [1] also prove the same results using a different sequence Γn

instead of γn. It is easy to show that for each n it holds Γn ≤ γn. Therefore the
results would hold assuming only a weaker conjecture — that the sequence Γn is
upper bounded by a constant (see Conjecture 16 in [1] or Conjecture 2, Sect. 2).
However, the authors of [1] concentrate on the stronger conjecture, because the
sequence γn is more convenient to work with.

1.2 Our Results

As stated before, in this paper we disprove the Conjectures 13 and 16 from [1]
(Conjectures 1 and 2 Sect. 2). To do it, we first show how to construct a transcript
(see Sect. 2) from a graph and we prove that the properties of such graph-derived
transcripts are connected to the clique number and the (fractional) chromatic
number of that graph.

We disprove Conjecture 1 first using the Mycielski construction [7] (from
that we get γn ≥ √

log(n)/2) and then we strengthen our result using random
graphs (we get γn ≥ √

n/poly(log(n))). We disprove Conjecture 2 using Kneser
graphs [6] (we get Γn ≥ c

√
log(n)).

1.3 Related Work

In recent work [2] Alwen et al. proved that CMC complexity in pROM model of
scrypt is Ω(n2w), where w and n are the output length and number of invocations

Disproving the Conjectures 31

of the underlying hash function, respectively. That bound clearly improves the
result Ω

(
n2

γn·log2(n)

)
from [1] and is tight because CMC complexity of scrypt

computed as prescribed is O(n2w).
However, the techniques used in [2] do not use the notion of entangled peb-

bling games and are strictly tailored for scrypt function. Thus the approach from
[1] might be of more general use.

2 Preliminaries

In this section we recall the conjectures from [1] and definitions that are necessary
to state them. We also give the intuitions behind the notions introduced by Alwen
et al. They are, however, not necessary to understand our results from Sect. 3.

Definition 1. For n ∈ N an n-transcript T is a set of implications of the form
τj = (i1, i2, . . . , ik → i0) for k, i0, i1, . . . , ik ∈ [n] = {1, 2, . . . , n}.

The idea behind the notion of a transcript is as follows. Consider an adversary
A playing the computeLabel game on a graph G having some fixed initial state
σinit. Here A is unrestricted, which in particular means that σinit can contain
any information, not only labels of the vertices. We fix the random oracle h as
well. We include the implication τj = (i1, i2, . . . , ik → i0) into the transcript
describing Ah(σinit) if for some sequence of challenges c1, . . . , cm at some round
in the game:

– the labels li1 , . . . , lik are all the labels that appeared as inputs or outputs of
the oracle so far,

– the label li0 did not appear as an input or an output of the oracle before, and
– A makes a query to the random oracle using li0 as one of the inputs.

Intuitively, this means that we are able to “extract” the label li0 (without query-
ing the oracle h for it) from σinit and the labels li1 , . . . , lik , by invoking Ah(σinit).

For example, consider a DAG G from Fig. 1. Suppose A so far queried only
for the label of the vertex 1 i.e. l1 = h(1) and for the label of the vertex 3
i.e. l3 = h(3, l1). At this round he makes a query for a label of the vertex 5
i.e. l5 = h(5, l2, l3, l4). A had to extract l2 and l4 from σinit and l1, l3, so in
this case we would include into the transcript the implications (1, 3 → 2) and
(1, 3 → 4).

Definition 2. A set U ⊆ [n] satisfies an n-transcript T , if for some s ≤ n there
exists a sequence U0, . . . , Us, s.t.:

– U0 = U,
– For each j = 1, 2, . . . , s there exists τj = (i1, i2, . . . , ik → i0) ∈ T

s.t. Uj = Uj−1 ∪ {i0} and i1, i2, . . . , ik ∈ Uj−1,
– Us = [n].

Definition 3. For an n-transcript T we define ex(T) = n−minU |U | where the
minimum is taken over all sets U ⊆ [n] that satisfy T .

32 D. Malinowski and K. Żebrowski

1 3

2

4

5

Fig. 1. An example graph used to illustrate definitions from Sect. 2.

Let the transcript T describe an adversary A playing the computeLabel game
on a graph G with an initial state σinit (as explained before). Intuitively, ex(T)
is the maximal number of labels that can be extracted from σinit and some label
set {li|i ∈ U} (where U corresponds to the set from Definition 3) by invoking
Ah(σinit) on several different challenge sequences, in an optimal way.

Definition 4. The entangled set S = 〈q1, q2, . . . , qt〉m for 0 ≤ m ≤ t − 1 is
an object that given m different numbers from {q1, q2, . . . , qt} returns all the
numbers {q1, q2, . . . , qt}. The weight of S is defined as w(S) = t−m. The weight
of the family F = {S1, . . . , Sr} of entangled sets is the sum of weights of the
entangled sets w(F) = w(S1)+ · · ·+w(Sr). We will write S∗ to denote the (real)
set {q1, q2, . . . , qt}.
Definition 5. We say that the n-transcript T is covered by the family of entan-
gled sets F = {S1, . . . , Sr} if for every implication τ = (i1, i2, . . . , ik → i0) ∈ T
there exists a sequence of sets V0, . . . , Vs s.t.

– V0 = {i1, i2, . . . , ik},
– For each j = 1, 2, . . . , s there exists an entangled set Sj =

〈q1, q2, . . . , qt〉m ∈ F s.t. Vj = Vj−1 ∪ {q1, q2, . . . , qt} and |{q1, q2, . . . , qt} ∩
Vj−1| ≥ m,

– i0 ∈ Vs.

Definition 6. The weight w(T) of the n-transcript T is the smallest weight
w(F) of a family F of entangled sets that covers T .

The intuition behind the notion of the transcript weight w(T) is as follows.
Let T describe an unrestricted adversary A playing the computeLabel game with
an initial state σinit on a graph G. Then there exists an entangled pebbling
adversary (see Sect. 1.1) A′ playing the pebble game on the same graph G with
an initial pebbling state σ′

init of weight w(T) who is able to mimic the adversary
A in the following sense: whenever A makes a query to compute some label
li = h(i, lp1 , . . . , lpt

), A′ puts a (normal) pebble on the vertex i. Note that the

Disproving the Conjectures 33

initial state of A′ may contain entangled pebbles which cannot be translated to
standard pebbles.

For example, consider a DAG G from Fig. 1. Suppose σinit consists of l2, a
xor of the first half of l1 with the first half of l4 and a xor of the second half of
l3 with the second part of l4. Then A can extract l2 just from σinit and l4 from
σinit, l1, l3. So T = {(→ 2), (1, 3 → 4)}. In this case the initial pebbling state
σ′
init could be equal to {〈2〉0, 〈1, 3, 4〉2}. Then A′ can use 〈2〉0 when A extracts

l2 from σinit and use 〈1, 3, 4〉2 when A extracts l4 from σinit, l1, l3.

Definition 7. We define a sequence γn as:

γn = max
n−transcript T

w(T)
ex(T)

Conjecture 1 (Conjecture 13 from [1]). There exists a constant C s.t. for
all natural n we have γn < C.

Definition 8. Let li for i = 1, 2, . . . , n be independent random labels chosen
uniformly from {0, 1}w. We say that the state σ ∈ {0, 1}∗, that might depend on
those labels, satisfies the transcript T if for every implication (i1, i2, . . . , ik →
i0) ∈ T the label li0 is a function of a tuple (li1 , . . . , lik , σ). Let σw denote the
shortest state that satisfies T . Then shannon(T) = infw

|σw|
w .

The value shannon(T) is the length of the shortest state σ, divided by a label
length w, that for any implication (i1, i2, . . . , ik → i0) ∈ T allows to extract li0
given labels li1 , . . . , lik .

For example, if T = {(1 → 2), (2 → 1)} then a state σ = l1 ⊕ l2 allows to
recover l2 given l1, and to recover l1 given l2. So in this case shannon(T) ≤ 1.

Definition 9. We define a sequence Γn as:

Γn = max
n−transcript T

w(T)
shannon(T)

Conjecture 2 (Conjecture 16 from [1]). There exists a constant C s.t. for
all natural n we have Γn < C.

It is easy to prove that for each transcript T we have ex(T) ≤ shannon(T) ≤
w(T), so always γn ≥ Γn. To see the first inequality let U = {i1, . . . , ik} ⊆ [n] be
the smallest set that satisfies T and σw be a state that satisfies T . By Definition 2
we can expand the set U to the whole set [n] using implications from T and by
Definition 8 for each implication τ = (j1, j2, . . . , jm → j0) ∈ T we can extract
the label lj0 from σw and the labels lj1 , lj2 , . . . , ljm . Therefore (l1, . . . , ln) is a
function of (σw, li1 , . . . , lik) and

|σw| ≥ H(σw) ≥ H(σw|li1 , . . . , lik) = H(σw, li1 , . . . , lik) − H(li1 , . . . , lik) ≥

≥ H(l1, . . . , ln) − H(li1 , . . . , lik) = (n − k) · w = ex(T) · w.

34 D. Malinowski and K. Żebrowski

This ends the proof of the first inequality. The second inequality follows from the
fact that the family of entangled sets F covering T can be thought of as a special
case of a state σ, because on the trick used in [1] to translate an entangled pebble
to the encoding of length proportional to the pebble weight (see Sect. 1.1).

Therefore the Conjecture 2 is weaker than the Conjecture 1. As stated before,
both Conjecture 1 and Conjecture 2 are sufficient for the main result of [1].

3 Our Results

We disprove Conjecture 1 in Sect. 3.1 and Conjecture 2 in Sect. 3.2.

3.1 Disproving Conjecture 1

Let G denote an undirected simple3 graph with vertex set equal to [n]. We call
such a graph an n-graph.

Definition 10. Let G be an n-graph. By T (G) we denote an n-transcript
T (G) = {τ1, . . . , τn} where τi = (i1, i2, . . . , ik → i) and i1, i2, . . . , ik are all
the vertices in [n] \ {i} that are not adjacent to the vertex i.

Lemma 1. Let G be an n-graph. Then ex(T (G)) = ω(G) where ω(G) is the
clique number of G i.e. the size of the largest clique in G.

Proof. First we show that ex(T (G)) ≥ ω(G). Let V be the largest clique in G
and U = [n] \ V . Then |U | = n − ω(G) and U satisfies T (G). That is because
we can add elements of V to U , in any order, using implications from T (G).
Formally, let i0 ∈ [n] \ U = V . Then τi0 = (i1, i2, . . . , ik → i0) ∈ T (G) where
i1, i2, . . . , ik are the vertices not adjacent to i0. But V is a clique, so all the
vertices i1, i2, . . . , ik are contained in U , so we can use τi0 and by that add i0 to
U . We can do the same for all i ∈ [n] \ U = V and at the end we get the whole
set [n]. Therefore the set U satisfies T (G), so ex(T (G)) ≥ n − |U | = ω(G).

Now we show that ex(T (G)) ≤ ω(G). Let U be the smallest set that satisfies
T (G). Assume by contradiction, that |U | < n − ω(G). Then V = [n] \ U is not
a clique (as |V | > ω(G)) — there exist i0
= j0 ∈ V that are not adjacent. As U
satisfies T (G), we have to add both i0 and j0 to U . But the only implication in
T (G) with i0 on the right side has j0 on the left side, and the only implication in
T (G) with j0 on the right side has i0 on the left side. In other words i0 depends
on j0 and j0 depends on i0. Therefore we cannot add either of i0, j0 to U because
the other element would have to be added first. Consequently U does not satisfy
T (G). We have a contradiction — U cannot be smaller than n − ω(G).

Lemma 2. Let G be an n-graph. Then
√

χ(G) ≤ w(T (G)) ≤ χ(G) where χ(G)
is the chromatic number of G i.e. the smallest number of colors that has to be
used to properly color the vertices of G.

3 A simple graph is a graph containing no graph loops or multiple edges.

Disproving the Conjectures 35

Proof. First we prove the second inequality. Let C : [n] → [χ(G)] be the proper
coloring of G. Let C−1(i) = {qi

1, q
i
2, . . . , q

i
pi

}, Si = 〈qi
1, q

i
2, . . . , q

i
pi

〉pi−1 and F =
{S1, S2, . . . , Sχ(G)}. Then w(Si) = 1, w(F) = χ(G) and T (G) is covered by F .
The proof of this claim is easy. Let τi0 = (i1, i2, . . . , ik → i0) ∈ T (G). Then the
vertices i1, i2, . . . , ik are all the vertices in G that are not adjacent to i0. Let
j = C(i0) be the color of the vertex i0. All the other vertices with the color j are
not adjacent to i0, which means that S∗

j ∩ {i1, i2, . . . , ik} = S∗
j \ {i0}. So we can

use the entangled set Sj to get a vertex i0.
Now we prove the first inequality. Assume that T (G) is covered by the family

of entangled sets F = {S1, S2, . . . , Sr}. It is enough to show a proper coloring
of vertices of G using w(F)2 colors. First we show a coloring using r colors
in which every vertex has less than w(F) same color neighbors. Then, using a
greedy algorithm, we can change it to a proper coloring using r · w(F) ≤ w(F)2

colors
Let i0 ∈ [n] be any vertex in G and τi0 = (i1, i2, . . . , ik → i0) ∈ T (G).

Let V0, V1, . . . , Vs be any shortest sequence of sets as in Definition 5. Let
Sji = 〈qji

1 , qji
2 , . . . , qji

tji
〉mji

be the entangled set opened at the step number
i = 1, 2, . . . , s, i.e. Vi = Vi−1 ∪ S∗

ji
and |Vi−1 ∩ S∗

ji
| ≥ mji . We assign the color

number js to the vertex i0. Obviously js ∈ [r] and the coloring is unambiguous
as there is exactly one implication in T (G) with the element i0 on the right
side. Additionally, as the sequence V0, V1, . . . , Vs is the shortest, we know that
i0 ∈ S∗

js
and all the indices ji are different.

Now we show that for any vertex i0 ∈ [n] there are less than w(F) other
vertices that are adjacent to i0 and have the same color js. Let N(i0) ⊆ [n]\{i0}
denotes the set of neighbors of the vertex i0. We know that all the vertices
with the color js are contained in the set S∗

js
. So it is enough to show, that

|S∗
js

∩ N(i0)| < w(F).
We know that V0 is exactly the set [n] \ N(i0) \ {i0}. So S∗

js
∩ N(i0) ⊆

Vs \ V0 \ {i0}. On the other hand we have |Vi \ Vi−1| ≤ w(Sji) = tji − mji as we
add at most tji elements but only if there were already mji elements present.
We now have:

|S∗
js ∩ N(i0)| < |Vs \ V0| =

s∑
i=1

|Vi \ Vi−1| ≤
s∑

i=1

w(Sji) ≤
r∑

i=1

w(Si) = w(F).

Now we change the coloring into a proper coloring using colors from the set
[r] × [w(F)]. We use a greedy algorithm. For each vertex i0, with color js, we
assign it the color (js, k) where k is any number from [w(F)] s.t. the color (js, k)
was not assigned earlier to any neighbor of i0. We can always find such k because
there are less than w(F) neighbors of i0 which previously had the color js.

We have constructed a proper coloring of vertices of G using at most w(F)2

colors, so w(F)2 ≥ χ(G).

To prove that γn is unbounded we use graphs that have big chromatic num-
ber but small clique number. We first give an example of explicit graphs using
Mycielski construction [7] that satisfy these conditions. In Sect. 3.1 we use ran-
dom graphs to get a stronger result.

36 D. Malinowski and K. Żebrowski

The Mycielski construction generates graph μ(G) from a given graph G. The
construction has the following properties:

– |V (μ(G))| = 2 · |V (G)| + 1,
– χ(μ(G)) = χ(G) + 1,
– ω(μ(G)) = max(2, ω(G)).

The proof of these properties can be found in [7].

Corollary 1. Using the Mycielski construction [7], starting from M2 equal to a
single edge, we can create a graph Mk that has n = 3 · 2k−2 − 1 < 2k vertices,
ω(Mk) = 2 and χ(Mk) = k. That means that ex(T (Mk)) = 2 and w(T (Mk)) ≥√

χ(Mk) =
√

k. So γn ≥ w(T (Mk))
ex(T (Mk))

=
√

k
2 >

√
log(n)

2 is unbounded therefore the
Conjecture 1 is false.

Stronger Result. In this section we show that γn ≥
√

n
poly(log(n)) .

Let G(n, p) denote a random n-graph s.t. each edge is present with probabil-
ity p.

Lemma 3. We have:

– P(ω(G(n, 1/2)) ≥ M) ≤ (
n
M

) · 2−(M2),
– limn→∞ P(ω(G(n, 1/2)) ≥ log(n)2) = 0.

Proof. The first part of the lemma follows from the union bound — there are
(

n
M

)
candidate sets to be a clique of size M , each of them is a clique with probability
2−(M2).

The second part of the lemma follows from the first part:

P(ω(G(n, 1/2)) ≥ log(n)2) ≤
(

n

log(n)2

)
· 2−(log(n)2

2) ≤ nlog(n)2 · 2− log(n)4/4 =

= 2log(n)
3−log(n)4/4,

So limn→∞ P(ω(G(n, 1/2)) ≥ log(n)2) ≤ limn→∞ 2log(n)
3−log(n)4/4 = 0.

Lemma 4. There exists d > 0 s.t. limn→∞ P(χ(G(n, 1/2)) ≤ d n
log n) = 0.

Proof of Lemma 4 can be found in [4].

Theorem 1. There exists c > 0 s.t. γn ≥ c
√

n
log(n)5/2

.

Proof. From the previous lemmas we know that there exists d > 0 s.t. with
probability 1−o(1) a random graph G ← G(n, 1/2) has the following properties:

– ω(G) < log(n)2,
– χ(G) > d n

log n .

So γn ≥ w(T (G))
ex(T (G)) ≥

√
χ(G)

ω(G) >
√

d
√

n
log(n)5/2

= c
√

n
log(n)5/2

.

Disproving the Conjectures 37

3.2 Disproving Conjecture 2

Definition 11. Let G be an n-graph. The b-fold coloring of G is an assignment
of sets of size b (i.e. b colors) to each vertex of G s.t. adjacent vertices receive
disjoint sets. The a : b coloring is a b-fold coloring using a colors. χb(G) is the
smallest number a of colors s.t. a : b coloring exists. Thpfe fractional chromatic
number of G is χF (G) = infb

χb(G)
b .

Remark: For each n-graph G there exists an a : b coloring s.t. χF (G) = a/b (see
e.g. [6]).

Lemma 5. Let G be an n-graph. Then χF (G) ≥ shannon(T (G)).

Proof. Let C : [n] → 2[a] be a fixed b-fold coloring of G s.t. χF (G) = a/b. Let
li ∈ {0, 1}b for i = 1, 2, . . . , n be random labels of the vertices of G and let li[r]
denote the r-th bit of li. We will construct a state σb of length a that satisfies
T (G).

Let C(i) = {ji
1, j

i
2, . . . , j

i
b} where ji

1 < ji
2 < · · · < ji

b. We say that the bit li[r]
has the color ji

r. Let σb[c] be the xor of all the bits li[r] (where i ∈ [n], r ∈ [b])
which have the color c, for c = 1, 2, . . . , a.

It should be easy to see that σb satisfies T (G). That is because for τ =
(i1, i2, . . . , ik → i) ∈ T (G) and r ∈ [b] we can calculate li[r]. Let c be
the color of the bit li[r]. Then li[r] = σb[c] ⊕ lj1 [r1] ⊕ · · · ⊕ ljs [rs] where
li[r], lj1 [r1], lj2 [r2], . . . , ljs [rs] are all the bits of color c. Vertices i, j1, j2, . . . , js

have common color, therefore i is not adjacent to any of j1, j2, . . . , js. Thus by the
definition of T (G) we know that all the numbers j1, j2, . . . , js are present on the
left side of the implication τ . Now we can read the bits lj1 [r1], lj2 [r2], . . . , ljs [rs]
from the labels lj1 , lj2 , . . . , ljs and calculate li[r]. This can be done for any
τ ∈ T (G) and any r ∈ [b].

To prove that Γn is unbounded, we use graphs that have big chromatic num-
bers, but small fractional chromatic numbers. An example of graphs with these
properties are Kneser graphs [6]. The vertices of the Kneser graph Ka:b for a ≥ b
are all b-element subsets of the set [a]. Two vertices are adjacent if their cor-
responding subsets are disjoint. The Knesser graph Ka:b for a ≥ 2b has the
following properties:

– |V (Ka:b)| =
(
a
b

)
,

– χ(Ka:b) = a − 2b + 2,
– χF (Ka:b) = a/b.

The proofs of these properties can be found in [6].

Corollary 2. Let Ka:b be a Kneser graph [6] for a := 3b and n :=
(
a
b

)
. We have:

Γn ≥ w(T (Ka:b))
shannon(T (Ka:b))

≥
√

χ(Ka:b)
χF (Ka:b)

=
√

a − 2b + 2
a/b

=
√

b + 2
3

= Ω(b0.5)

so Γn is unbounded.
In this example n =

(
3b
b

)
< 23b therefore we have proved that Γn is greater

than Ω(
√

log(n)).

38 D. Malinowski and K. Żebrowski

References

1. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On the
complexity of scrypt and proofs of space in the parallel random oracle model. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 358–387.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 13

2. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.S., Nielsen, J. (eds.) Advances in Cryptology - EURO-
CRYPT 2017. EUROCRYPT 2017. LNCS, vol. 10212, pp. 33–62. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 2

3. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: STOC (2015)

4. Bollobás, B.: The chromatic number of random graphs (1988)
5. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In:

Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 585–605.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 29

6. Ullman, D.H., Scheinerman, E.R.: Fractional graph theory: A rational approach to
the theory of graphs (2013)

7. Mycielski, J.: Sur le coloriage des graphs. Colloquium Math. 3(2), 161–162 (1955)
8. Park, S., Kwon, A., Alwen, J., Fuchsbauer, G., Gaži, P., Pietrzak, K.: SpaceMint:

A Cryptocurrency Based on Proofs of Space. Cryptology ePrint Archive, Report
2015/528 (2015). http://eprint.iacr.org/2015/528

9. Percival, C.: Stronger key derivation via sequential memory-hard functions (2009)

https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-662-48000-7_29
http://eprint.iacr.org/2015/528

http://www.springer.com/978-3-319-72088-3

	Disproving the Conjectures from ``On the Complexity of Scrypt and Proofs of Space in the Parallel Random Oracle Model''
	1 Introduction
	1.1 Introduction to 1
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	3 Our Results
	3.1 Disproving Conjecture 1
	3.2 Disproving Conjecture 2

	References

