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Abstract. In the paper “On the Complexity of Scrypt and Proofs of
Space in the Parallel Random Oracle Model” (Eurocrypt 2016) Joél
Alwen et al. focused on proving a lower bound of the complexity of a gen-
eral problem that underlies both proofs of space protocols [Dziembowski
et al. CRYPTO 2015] as well as data-dependent memory-hard functions
like scrypt — a key-derivation function that is used e.g. as proofs of work
in cryptocurrencies like Litecoin.

In that paper the authors introduced a sequence +, and conjectured
that this sequence is upper bounded by a constant. Alwen et al. proved
(among other results) that the Cumulative Memory Complexity of the
hash function scrypt is lower bounded by 2(n?/(y, - log?(n))). If the
sequence v, is indeed bounded by a constant then this lower bound can
be simplified to £2(n?/log?(n)).

In this paper we first show that v, > ¢4/log(n) and then we strengthen

_vn
= poly(log(n)) -

Alwen et al. introduced also a weaker conjecture, that is also sufficient
for their results — they introduced another sequence I',, and conjectured
that it is upper bounded by a constant. We show that this conjecture is

also false, namely: I, > cy/log(n).

our result and prove that -, >

1 Introduction

The purpose of proofs of work is to provide a puzzle that requires a worker to
dedicate a significant amount of resources to solve it, while still remaining feasi-
ble. Originally, this technique was developed to fight spam emails — if the sender
had to dedicate some nontrivial amount of resources to send a single message
then sending millions of spam emails would be unprofitable. However, proofs of
work gained a lot of attention only recently — they are used in cryptocurrencies
to solve the problem of double spending of coins.

Originally, the resource used in proofs of work was a time spent on the compu-
tations, and consequently the focus was on time complexity of the worker. In the
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view of recent hardware advances, e.g. tailored ASIC devices, memory-hardness
appears to be a much better requirement, as memory cost is not reduced by such
devices. A candidate memory-hard function scrypt, introduced by Percival in [9],
aims to require the evaluator to either dedicate significant amount of space for
the computation or highly increase the time spent on the evaluation. A similar
space-time trade-off is imposed on the worker in proofs of space — a concept
introduced by Dziembowski et al. in [5]. In proofs of space the worker can either
dedicate a specified amount of the memory to generate proofs very efficiently, or
save the space and pay increased time cost every time he generates the proof.

Alwen et al. in [1] focus on proving a lower bound of the complexity of a gen-
eral problem that underlies both proofs of space protocols as well as the scrypt
function. To prove their main results, the authors of [1] introduced two combi-
natorial conjectures (either of them is sufficient for their results) and assumed
that they are true.

In this paper we disprove both conjectures from [1]. To give a reader intuitions
and a good understanding of the definitions required for stating the conjectures
we give an introduction to [1] in Sect. 1.1. We remind the parallel Random Oracle
Model, the labeling and pebbling games and how to calculate the Cumulative
Memory Complexity of algorithms.

1.1 Introduction to [1]

Alwen et al. in [1] investigate lower bounds on the time and memory complexity
of an adversary algorithm A whose goal is to compute labels of nodes in a
directed acyclic graph. In this game (we describe it in more details in Sect. 1.1)
the label of a node is a hash h of node’s index and the labels of its parents®. The
hash function is modeled as a random oracle, so in order to compute the label,
A has to keep the labels of parent nodes in the memory.

Specific instances of this problem underlie proofs of space protocols con-
structed by Dziembowski et al. in [5]. Proofs of space is an alternative concept
to proofs of work, in which a prover must dedicate a significant amount of his
disc space as opposed to his computing power. Proofs of space are more environ-
mentally friendly than proofs of work, because storage does not require energy.
They can be used to create e.g. greener cryptocurrencies [8].

Another application of the problem considered in [1] is an examination of
a memory-hard hash function? scrypt introduced by Percival in [9]. The honest
evaluation of the scrypt function invokes underlying hash function h (modeled as
a random oracle) n times, and requires storing n labels (where n is a parameter of
scrypt). As Percival stated, the expectation was that even for the adversary that
parallelizes the computation it holds that S(n) - T'(n) > n?~¢, where S(n) and
T'(n) denote space and time invested, respectively. However, no rigorous proof of
that fact was given. Another shortcoming of Percival’s analysis was measuring

! Parent of a node v is any node w s.t. an edge (w, v) exists in the graph.
2 Memory-hard hash functions require large storage during evaluation. They are used
as password hashing functions and in proofs of work in cryptocurrencies.
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memory complexity in terms of mazimum memory used during computation.
This does not take into account that the adversary could potentially amortize
memory usage across multiple invocations of scrypt function for multiple differ-
ent inputs. To address this issue Alwen et al. consider a cumulative memory
complexity proposed in [3]. We briefly recall this notion in Sect. 1.1.

Cumulative Memory Complexity in Parallel Random Oracle Model.
Alwen and Serbinenko in [3] developed a new complexity metric better suited
for capturing an amortized memory hardness of a given function. The intuition
behind their model is that the adversary can use specialized hardware to evaluate
many instances of the function in parallel. In such a situation only the amortized
cost per single evaluation is important.

The authors of [3] consider an adversary whose goal is to compute a function
H" (i.e. some function H that depends on the oracle h) with underlying hash
function h modeled as a random oracle. The computation proceeds in steps and
ends when the adversary computes H". In each step the adversary gets the
previous state o;_1 (the state op is set to the given initial state ojnt), makes
unbounded local computations and produces the next state o;. Additionally,
once per step the adversary can send a polynomial (therefore parallel in the
model name) set of queries to the random oracle and get back the hash values.

The cumulative memory complezity (CMC) of a single evaluation of H" is
measured as X;|o;|. CMC in parallel ROM model of H", denoted cmcPROM (M),
is defined as minimal (over all the adversaries) expected CMC of the adversary
computing H".

Labeling Games. Alwen et al. in [1] proved that the hardness of scrypt-like
functions, as well as the security of proofs of space, rely on difficulty of the
following game, called computelabel.

The game is played on a single source and a single sink directed acyclic graph
(DAG) G = (V, E) with subset of challenge nodes C' C V' and is parametrized
with a hash function h (modeled as a random oracle). Each graph node, with
index 14, is associated with a label [; defined recursively as a hash of index i
and labels of parents of ¢, namely I; = h(i,l,,,...,l,,), where p; < -+ < pq
are indices of all the parents of i. The game proceeds in n rounds, where n is
a parameter of the game. At each round r a challenge ¢, is drawn uniformly
at random from C. The player’s goal is to compute the label associated with
the challenge node c,., before moving to the next round and learning the next
challenge c¢,41. As before, we assume the pROM model, i.e. the player can make
multiple parallel random oracle calls at each step of his computation. The game
ends when the last challenge is answered.

We define a CMC complexity of the computeLabel game as the expected value
of CMC of the best adversary playing the game. The second result of Alwen et al.,
described in Sect. 1.1, applies to the CMC complexity of the computelLabel game
played on a simple path graph, which underlies the scrypt function.
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Pebbling Games and “entangled” Pebbling Games. A standard pebbling
game, similarly to the computelabel, is played on a single source and a single
sink DAG G = (V, E). At each step the player can put or remove a pebble from
a node of G according to the following two rules: a new pebble can be placed
on any node v for which all parents of v have pebbles on them (in particular, a
pebble can always be placed on the source), and pebbles can always be removed.
The game ends when a pebble is placed on the sink of G. In the parallel pebbling
game the player at each step places at the same time as many pebbles as he wants
(as long as he follows the rules) and then he removes any number of pebbles of
his choice.

The cumulative complezity (CC) of the strategy for the (parallel) pebbling
game is defined as X;|S;| where S; is a set of pebbled nodes at the end of i-th
step. The CC of a graph G is defined as CC of the best pebbling strategy for G.

For a graph G = (V,E) one could consider a pebbling analogue of the
computelabel game, called pebble in [1]. At each round a challenge ¢, is sampled
uniformly at random from C' C V', and the goal of the player is to pebble the
challenge node (following the same rules as in the parallel pebbling game), before
advancing to the next round and learning the challenge ¢, 1.

It is easy to see that any pebbling strategy in the pebble game can be adapted
as a strategy in the computelabel game for a restricted adversary who stores in
memory only the labels, i.e. random oracle outputs. One could consider a slightly
strengthened model in which the adversary can store specific functions of the
labels (but not yet arbitrary ones). For example, consider an adversary playing
the computelabel game who stores in memory the XOR of labels z :=I; ® ;.
Later, e.g. in the next round, he could compute /; and use it together with z to
recover [ (or the other way around). This way he could potentially improve the
complexity in terms of CMC.

A pebbling abstraction of such an adversary is an adversary playing the
entangled pebbling game, a new class of randomized pebbling game introduced
in [1]. In this game, for a set ¥V C V and some integer 0 < ¢ < |V| a player
who has individual pebbles on all the nodes in V is allowed to place an entangled
pebble (V); on V that weights |V|—t. The meaning of such an entangled pebble is
that when the player has both (V); and individual pebbles on any ¢ nodes from
V then he can at once put individual pebbles on all the nodes in V. The pebbles
used to “disentangle” V might be a result of disentangling another entangled
pebble. Note that the entangled pebble is a generalization of a normal pebble
where (v)( corresponds to the individual pebble on vertex v. The initial pebbling
in this game consists of a number of entangled pebbles.

Alwen et al. show a clever trick using polynomial interpolation which allows
to translate an entangled pebble (V); to an encoding of length w - (|V| —t) such
that given any t labels of nodes from V it is possible to recover the remaining
ones (here w is the length of a single label). An adversary allowed to use only
such encodings in the computeLabel game is called an entangled adversary.

It is not obvious if relaxing the restriction by allowing the adversary to
use entangled pebbles improves his cumulative complexity of the pebble game.
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However, Alwen et al. show an example of a graph for which entangled pebbling
is strictly more powerful (see [1] Appendix A).

Alwen et al. Conjectures and Their Implications. The authors of [1]
define a sequence 7, (we define it in Definition 7, Sect. 2) and prove that:

1. For any DAG G = (V, E) with |V| = n, with high probability over the choice
of the random hash function h: {0,1}* — {0,1}", the pROM time complexity
to play computelLabel on G, for any number of challenges, starting with any
initial state of size k-w is roughly at least the time complexity needed to play
pebble on G with the same number of challenges and starting with an initial
pebbling of size roughly ~,, - k.

2. The pROM CMC of computelabel for L,, (a simple graph underlying scrypt,

that consists of a single path from a source to a sink) is {2 "722 .
n-log?(n)

Alwen et al. conjecture that the sequence ~,, is upper bounded by a constant
(see Conjecture 13 in [1] or Conjecture 1, Sect.2). They use this conjecture to
boost their results proved for a restricted class of adversaries, so called entangled
adversaries (see Sect. 1.1), to hold for arbitrary adversaries in pROM.

Under this conjecture, the first result would solve the main open problem
from the work of Dziembowski et al. [5] on proofs of space. The second one
would imply a near-quadratic lower bound on CMC of evaluating scrypt for
arbitrary pROM adversaries.

The authors of [1] also prove the same results using a different sequence I,
instead of ,,. It is easy to show that for each n it holds I',, < ~,. Therefore the
results would hold assuming only a weaker conjecture — that the sequence I, is
upper bounded by a constant (see Conjecture 16 in [1] or Conjecture 2, Sect. 2).
However, the authors of [1] concentrate on the stronger conjecture, because the
sequence 7, is more convenient to work with.

1.2 Our Results

As stated before, in this paper we disprove the Conjectures 13 and 16 from [1]
(Conjectures 1 and 2 Sect. 2). To do it, we first show how to construct a transcript
(see Sect. 2) from a graph and we prove that the properties of such graph-derived
transcripts are connected to the clique number and the (fractional) chromatic
number of that graph.

We disprove Conjecture 1 first using the Myecielski construction [7] (from
that we get v, > y/log(n)/2) and then we strengthen our result using random
graphs (we get v, > v/n/poly(log(n))). We disprove Conjecture 2 using Kneser
graphs [6] (we get I, > cy/log(n)).

1.3 Related Work

In recent work [2] Alwen et al. proved that CMC complexity in pROM model of
scrypt is £2(n?w), where w and n are the output length and number of invocations
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of the underlying hash function, respectively. That bound clearly improves the
result (2 (

computed as prescribed is O(n?w).

However, the techniques used in [2] do not use the notion of entangled peb-
bling games and are strictly tailored for scrypt function. Thus the approach from
[1] might be of more general use.

)> from [1] and is tight because CMC complexity of scrypt

_n?
Yn-log?(n

2 Preliminaries

In this section we recall the conjectures from [1] and definitions that are necessary
to state them. We also give the intuitions behind the notions introduced by Alwen
et al. They are, however, not necessary to understand our results from Sect. 3.

Definition 1. Forn € N an n-transcript T is a set of implications of the form
T; = (i17i2,...7ik — io) f07“ k10,081,105 € [n] = {1,2,...,n}.

The idea behind the notion of a transcript is as follows. Consider an adversary
A playing the computelLabel game on a graph G having some fixed initial state
Oinit- Here A is unrestricted, which in particular means that oj,; can contain
any information, not only labels of the vertices. We fix the random oracle h as
well. We include the implication 7; = (41,42,...,ix — do) into the transcript
describing A" (oinit) if for some sequence of challenges ¢y, ..., ¢, at some round
in the game:

— the labels [;,, ..., l;, are all the labels that appeared as inputs or outputs of
the oracle so far,

— the label [;, did not appear as an input or an output of the oracle before, and

— A makes a query to the random oracle using l;, as one of the inputs.

Intuitively, this means that we are able to “extract” the label [;, (without query-
ing the oracle h for it) from o and the labels ;,, ..., l;, , by invoking A" (oinit)-

For example, consider a DAG G from Fig. 1. Suppose A so far queried only
for the label of the vertex 1 ie. I; = h(1) and for the label of the vertex 3
i.e. I3 = h(3,{1). At this round he makes a query for a label of the vertex 5
ie. l5 = h(5,l2,13,l4). A had to extract lo and Iy from oy and Iy,l3, so in
this case we would include into the transcript the implications (1,3 — 2) and
(1,3 —4).

Definition 2. A set U C [n] satisfies an n-transcript T, if for some s < n there
exists a sequence Uy, ..., Us, s.t.:

Uy =U,

— For each j = 1,2,...,s there exists 7, = (i1,42,...,9 — o) € T
s.t. Uj = j—1 U{Zo} and ’il,ig,...,ik € Uj_l,

- Us = [n].

Definition 3. For an n-transcript T we define ex(T) = n— ming |U| where the
minimum is taken over all sets U C [n] that satisfy T.
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Fig. 1. An example graph used to illustrate definitions from Sect. 2.

Let the transcript T" describe an adversary A playing the computelLabel game
on a graph G with an initial state oj, (as explained before). Intuitively, ex(T)
is the maximal number of labels that can be extracted from oy and some label
set {l;]i € U} (where U corresponds to the set from Definition 3) by invoking
AN (ainit) on several different challenge sequences, in an optimal way.

Definition 4. The entangled set S = {(q1,q2,...,Gt)m for 0 < m < t —1 is
an object that given m different numbers from {q1,qs,...,q} returns all the
numbers {q1,4qz, - .., qt}. The weight of S is defined as w(S) = t—m. The weight
of the family FF = {S1,...,S,} of entangled sets is the sum of weights of the
entangled sets w(F) = w(S1)+---+w(S,). We will write S* to denote the (real)
set {qla qz, - .- ,qt}'

Definition 5. We say that the n-transcript T is covered by the family of entan-
gled sets F = {S1,...,S.} if for every implication 7 = (i1,19,... i — ig) € T

there exists a sequence of sets Vg, ..., Vs s.t.

- ‘/b = {i17i27"‘7ik}7

— For each j = 1,2,...,s5 there exists an entangled set S; =
<QI7QQ7 .. 'aqt>m € F st ij - 7j—1 U {qlaq27 e 7qt} and |{Q17Q27 .. 'aQt} N
Vicil zm,

— g € V.

Definition 6. The weight w(T) of the n-transcript T is the smallest weight
w(F) of a family F of entangled sets that covers T .

The intuition behind the notion of the transcript weight w(7T) is as follows.
Let T describe an unrestricted adversary A playing the computelLabel game with
an initial state oj,;; on a graph G. Then there exists an entangled pebbling
adversary (see Sect.1.1) A’ playing the pebble game on the same graph G with
an initial pebbling state of,;, of weight w(T") who is able to mimic the adversary
A in the following sense: whenever A4 makes a query to compute some label
li =h(i,lp,..., 1), A puts a (normal) pebble on the vertex i. Note that the
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initial state of A’ may contain entangled pebbles which cannot be translated to
standard pebbles.

For example, consider a DAG G from Fig. 1. Suppose it consists of Iy, a
xor of the first half of I; with the first half of I4 and a xor of the second half of
l3 with the second part of [4. Then A can extract lo just from o,y and Iy from
Tinits 11,l3. So T = {(— 2),(1,3 — 4)}. In this case the initial pebbling state
ol could be equal to {(2)o, (1,3,4)2}. Then A’ can use (2)o when A extracts
Iy from iy and use (1,3,4)s when A extracts l4 from o, l1, I3.

Definition 7. We define a sequence v, as:

= max
n n—transcript T eaz(T)

Conjecture 1 (Conjecture 13 from [1]). There exists a constant C' s.t. for
all natural n we have ~,, < C.

Definition 8. Let I; for i = 1,2,...,n be independent random labels chosen
uniformly from {0,1}". We say that the state o € {0,1}*, that might depend on
those labels, satisfies the transcript T if for every implication (i1,ia,...,ix —
ig) € T the label l;, is a function of a tuple (I;,,...,l;,,0). Let oy, denote the
shortest state that satisfies T. Then shannon(T) = inf,, %i‘

The value shannon(T) is the length of the shortest state o, divided by a label
length w, that for any implication (i1, 42, ..., — i9) € T allows to extract l;,
given labels l;,,...,1;,.

For example, if T = {(1 — 2),(2 — 1)} then a state o = [; @ I allows to
recover ly given l1, and to recover Iy given ls. So in this case shannon(T) < 1.

Definition 9. We define a sequence I, as:

T
I—  max _w@
n—transcript T' shannon(T)

Conjecture 2 (Conjecture 16 from [1]). There exists a constant C' s.t. for
all natural n we have I',, < C.

It is easy to prove that for each transcript T we have ex(T) < shannon(T) <
w(T'), so always v, > I,. To see the first inequality let U = {i1,...,ix} C [n] be
the smallest set that satisfies T and o, be a state that satisfies T'. By Definition 2
we can expand the set U to the whole set [n] using implications from T" and by

Definition 8 for each implication 7 = (j1,42,...,Jm — jo) € T we can extract
the label I, from o, and the labels l;,,1;,,...,1;,. . Therefore (I1,...,1,) is a
function of (o, liy, ..., 1;,) and

|0'w| ZH(O'w) ZH(UUJ'li]v"'vlik) ZH(O'w,lil,...,lik)—H(lil,...,lik) Z

>H(ly,....ln)— H(l;y, ..., ;) =(n—k) - w=ex(T) - w.
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This ends the proof of the first inequality. The second inequality follows from the
fact that the family of entangled sets F' covering T' can be thought of as a special
case of a state o, because on the trick used in [1] to translate an entangled pebble
to the encoding of length proportional to the pebble weight (see Sect. 1.1).
Therefore the Conjecture 2 is weaker than the Conjecture 1. As stated before,
both Conjecture 1 and Conjecture 2 are sufficient for the main result of [1].

3 Our Results

We disprove Conjecture 1 in Sect. 3.1 and Conjecture 2 in Sect. 3.2.

3.1 Disproving Conjecture 1

Let G denote an undirected simple® graph with vertex set equal to [n]. We call
such a graph an n-graph.

Definition 10. Let G be an n-graph. By T(G) we denote an n-transcript
T(G) = {r,...,7n} where 7, = (i1,42,...,ip — 1) and i1,i9,...,9 are all
the vertices in [n] \ {i} that are not adjacent to the vertex i.

Lemma 1. Let G be an n-graph. Then ex(T(G)) = w(G) where w(G) is the
clique number of G i.e. the size of the largest clique in G.

Proof. First we show that ex(T(G)) > w(G). Let V be the largest clique in G
and U = [n] \ V. Then |U| = n — w(G) and U satisfies T(G). That is because
we can add elements of V to U, in any order, using implications from T'(G).
Formally, let ig € [n] \ U = V. Then 7;, = (i1,42,...,ix — t9) € T(G) where
i1,%2,...,1f are the vertices not adjacent to ig. But V is a clique, so all the
vertices 41, 42, . . ., 9, are contained in U, so we can use 7;, and by that add ¢ to
U. We can do the same for all i € [n] \ U = V and at the end we get the whole
set [n]. Therefore the set U satisfies T'(G), so ex(T(G)) > n — |U| = w(G).

Now we show that ex(T(G)) < w(G). Let U be the smallest set that satisfies
T(G). Assume by contradiction, that |U| < n — w(G). Then V = [n] \ U is not
a clique (as |V| > w(G)) — there exist iy # jo € V that are not adjacent. As U
satisfies T(G), we have to add both iy and jo to U. But the only implication in
T(G) with ig on the right side has jo on the left side, and the only implication in
T(G) with jo on the right side has iy on the left side. In other words iy depends
on jo and jy depends on ig. Therefore we cannot add either of g, jo to U because
the other element would have to be added first. Consequently U does not satisfy
T(G). We have a contradiction — U cannot be smaller than n — w(G).

Lemma 2. Let G be an n-graph. Then +/x(G) < w(T(G)) < x(G) where x(G)
is the chromatic number of G i.e. the smallest number of colors that has to be
used to properly color the vertices of G.

3 A simple graph is a graph containing no graph loops or multiple edges.
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Proof. First we prove the second inequality. Let C: [n] — [x(G)] be the proper
coloring of G. Let C™1(i) = {q},¢5,....4},}, Si = (¢l, 5, ..., 4}, )p,—1 and F =
{51,82,..., 5} Then w(S;) = 1L,w(F) = x(G) and T(G) is covered by F.
The proof of this claim is easy. Let 7, = (41,42, ..., — i) € T(G). Then the
vertices i1,19,...,%; are all the vertices in G that are not adjacent to ig. Let
J = C(ip) be the color of the vertex ig. All the other vertices with the color j are
not adjacent to g, which means that S¥ N {i1,4z,...,ir} = S} \ {io}. So we can
use the entangled set S; to get a vertex .

Now we prove the first inequality. Assume that T'(G) is covered by the family
of entangled sets F = {57,5s,...,S5,}. It is enough to show a proper coloring
of vertices of G using w(F)? colors. First we show a coloring using 7 colors
in which every vertex has less than w(F') same color neighbors. Then, using a
greedy algorithm, we can change it to a proper coloring using r - w(F) < w(F)?
colors

Let ip € [n] be any vertex in G and 7, = (i1,i2,...,9x — i) € T(G).
Let Vo, Vi,...,V, be any shortest sequence of sets as in Definition5. Let
S, = (q{",qéﬂ...,qi})mn be the entangled set opened at the step number

i=12,...,5,ie Vi=V,.; US} and Vi1 n SJ*T\ > m;,. We assign the color
number j; to the vertex ig. Obviously js € [r] and the coloring is unambiguous
as there is exactly one implication in T(G) with the element iy on the right
side. Additionally, as the sequence Vg, Vi, ..., V; is the shortest, we know that
ig € 57, and all the indices j; are different.

Now we show that for any vertex ig € [n] there are less than w(F') other
vertices that are adjacent to ig and have the same color j,. Let N (ig) C [n]\ {io}
denotes the set of neighbors of the vertex ig. We know that all the vertices
with the color js are contained in the set S7 . So it is enough to show, that
ST NN (io)| < w(F).

We know that Vp is exactly the set [n] \ N(ig) \ {io}. So Sj N N(ip) C
Ve \ Vo \ {i0}. On the other hand we have |V; \ Vi_1| < w(S;,) = t;, —m;, as we
add at most ¢;, elements but only if there were already m;, elements present.
We now have:

187 A NG < [Va\ Vol = SV \ Vial < 3 w(S;) < 3 w(S1) = w(F).
i=1 i=1 i=1

Now we change the coloring into a proper coloring using colors from the set
[r] x [w(F)]. We use a greedy algorithm. For each vertex ig, with color js, we
assign it the color (js, k) where k is any number from [w(F")] s.t. the color (js, k)
was not assigned earlier to any neighbor of i5. We can always find such k because
there are less than w(F) neighbors of ig which previously had the color j.

We have constructed a proper coloring of vertices of G using at most w(F)?
colors, so w(F)? > x(G).

To prove that -, is unbounded we use graphs that have big chromatic num-
ber but small clique number. We first give an example of explicit graphs using
Mycielski construction [7] that satisfy these conditions. In Sect. 3.1 we use ran-
dom graphs to get a stronger result.
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The Mycielski construction generates graph p(G) from a given graph G. The
construction has the following properties:

~ V(@) =2 [V(G)| + 1,
- x(u(@) =x(G@) + 1,
- w(u(@)) = max(2,w(G)).

The proof of these properties can be found in [7].

Corollary 1. Using the Mycielski construction [7], starting from Ms equal to a
single edge, we can create a graph My, that has n = 3 - 2872 — 1 < 2% wertices,

(Mk) =2 and x(My) = k. That means that ex(T(My)) = 2 and w(T(My)) >
VX =Vk. So v, > e (1]‘\/[4’;)))) @ > lofg(n) is unbounded therefore the
C’onyecture 1 is false.

Stronger Result. In this section we show that v, > W\/O;(n))
Let G(n,p) denote a random n-graph s.t. each edge is present with probabil-

ity p.
Lemma 3. We have:

- P(w(G(n,1/2)) > M) < () -2
= limy,— 00 P(w(G (n 1/2))2 og(n ) )70

Proof. The first part of the lemma follows from the union bound — there are ( AT/L[)
candidate sets to be a clique of size M, each of them is a clique with probability

M
2=(5).
The second part of the lemma follows from the first part:

P(w(G(n,1/2)) > log(n)?) < <log?n)2> 9= (557) < ploa(m)? g log(m)/4 _

_ glog(n)*~log(n)"/4

i

S0 limy, oo P(w(G(n,1/2)) > log(n)?) < lim,,_o 2\08(m° —los(m)*/4 — o,

Lemma 4. There exists d > 0 s.t. lim, .. P(x(G(n,1/2)) < logn) =0.

Proof of Lemma 4 can be found in [4].

Theorem 1. There exists ¢ > 0 s.t. v, > CW

Proof. From the previous lemmas we know that there exists d > 0 s.t. with
probability 1—o0(1) a random graph G <« G(n, 1/2) has the following properties:

- w(@) < log(n)?,
- x(GQ) > d=2

logn "

w(T(G) - VX(G)

Vi m
S0 > Zeriey = ey > Vil = Ciglere




Disproving the Conjectures 37

3.2 Disproving Conjecture 2

Definition 11. Let G be an n-graph. The b-fold coloring of G is an assignment
of sets of size b (i.e. b colors) to each vertex of G s.t. adjacent vertices receive
disjoint sets. The a : b coloring is a b-fold coloring using a colors. xu(G) is the
smallest number a of colors s.t. a : b coloring exists. Thpfe fractional chromatic
number of G is xr(G) = inf, %.

Remark: For each n-graph G there exists an a : b coloring s.t. xp(G) = a/b (see
e.g. [6]).
Lemma 5. Let G be an n-graph. Then xr(G) > shannon(T(Q)).

Proof. Let C : [n] — 2% be a fixed b-fold coloring of G s.t. x¢(G) = a/b. Let
l; € {0,1}® for i = 1,2,...,n be random labels of the vertices of G and let I;[r]
denote the r-th bit of I;. We will construct a state o, of length a that satisfies
T(G).

Let C(i) = {ji,4%,...,7i} where ji < ji < --- < ji. We say that the bit I;[r]
has the color ji. Let oy[c] be the xor of all the bits ;[r] (where i € [n],r € [b])
which have the color ¢, for c=1,2,...,a.

It should be easy to see that o} satisfies T(G). That is because for 7 =
(41,%2,...,9 — i) € T(G) and r € [b] we can calculate [;[r]. Let ¢ be
the color of the bit [;[r]. Then Li[r] = op[c] & I, [r1] & --- & [, [rs] where
Li[r], 1y (], Uy [ra], - - -, 1, [rs] are all the bits of color c. Vertices 4, ji,jo2, ..., Js
have common color, therefore 7 is not adjacent to any of j1, jo, ..., js. Thus by the
definition of T'(G) we know that all the numbers j1, ja, . . ., js are present on the
left side of the implication 7. Now we can read the bits {;, [r1],{;,[r2], ..., 1, [7s]
from the labels [;,,1;,,...,l;, and calculate [;[r]. This can be done for any
7 € T(G) and any r € [b].

To prove that I3, is unbounded, we use graphs that have big chromatic num-
bers, but small fractional chromatic numbers. An example of graphs with these
properties are Kneser graphs [6]. The vertices of the Kneser graph K, for a > b
are all b-element subsets of the set [a]. Two vertices are adjacent if their cor-
responding subsets are disjoint. The Knesser graph K., for a > 2b has the
following properties:

- |V(Ka:b)‘ = (Z)a
- X(Kap) =a—2b+2,
- XF(Ka:b) - a/b

The proofs of these properties can be found in [6].
Corollary 2. Let K., be a Kneser graph [6] for a := 3b and n := (}). We have:

ros W(TEa) VX(Kap) _ Va—-2b+2 _ Vb+2 _
"= shannon(T(Ka.)) ~ xr(Kasp) a/b 3

so I, is unbounded.
In this example n = (Bbb) < 23% therefore we have proved that I, is greater

than £2(1/log(n)).

Q(b0'5)
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