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Abstract. The widespread use of people-nearby services has spawned
the development of social discovery applications that help users make
new friends with nearby users (such as WeChat). Unfortunately, mali-
cious third-parties can often deploy trilateration attacks to exploit
people-nearby applications to determine the exact locations of target
users, therefore compromising their privacy. In this paper, we revisit
these localization attacks and propose a new two-step localization
method that boosts the accuracy of the state of the art for the con-
temporary location-based social network (LBSN) services which have
adopted the band-distance obfuscation to blur the location information.
The basic idea is to first locate the target in a small circle with the radius
of the band distance; then, refine the estimated location with sufficient
queries which is driven by the required localization accuracy. We theo-
retically prove that our method is able to converge to pinpoint users with
an upper bound of the complexity of our design. We also evaluate the
performance of our model when considering different distribution errors,
and finally show our localization method is robust with exciting accuracy
and limited complexity through extensive simulation experiments. This
attack can locate target users within 20 m with over 95% accuracy in
most cases while the query-time is a limited value and can be roughly
computed.
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1 Introduction

Location-based services (LBS) provide value-added applications for users based
on their locations. LBS can be used in a variety of contexts, such as health, indoor
object search, entertainment, work, personal life, etc. Internet applications such
as Facebook and Yelp allow users to “check-in” at restaurants, bars, retail out-
lets, schools, and offices, thereby sharing their locations within their social net-
works. However, the appearance of “the Snowden incident” has risen the people’s
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consciousness of the privacy protection. Internet users are being reminded fre-
quently that their online behaviors have been under constant scrutiny by NASA
and other third parties.

All these factors have contributed to the recent growth of privacy-preserving
mobile application people-nearby services. Applications with people-nearby ser-
vices utilize the users’ geographical information to provide proximity-based social
and message discovery. People-nearby services are being used to find dating
partners, friends who live or work nearby, and for bulletin-board style messages
that have been posted nearby. These recent-growing people-nearby services may
based on anonymous messaging or relatively close relationship: 4chan, Whisper,
and Yik Yak that allow users to anonymously post their thoughts to a public
audience; and WeChat that allows users to share content only visible to friends.

The above cases of privacy-preserving communications have brought forth
a challenging privacy problem: Can a malicious third-party determine
the locations of those nearby users by any people-nearby services
in mobile application? News articles have reported that the Egyptian gov-
ernment used trilateration to locate and imprison users of gay dating applica-
tions [1,2]. Recent academic work has also shown several general avenues of
localization attacks to evaluate privacy of the following two types of mobile
application nearby services with ezact-distance and band-distance. (i) If a mobile
application people-nearby service provides the exact distance to the nearby user
or message, the attack can be launched by taking readings from at least three
different vantage points to trilaterate or triangulate the user’s location [3,4].
The readings from different vantage points can be set by virtual probes using
fake GPS locations. (ii) If the mobile application people-nearby services do not
provide an exact distance to the nearby user or message but instead report dis-
tances of nearby users in concentric bands, such as bands of 100 m as used by
WeChat. Other research can still infer user’s location with high accuracy from
theory to practice [3-10].

In this work, we revisit mobile app people-nearby services with band dis-
tances and adopt a new model that is different from the existing methods to
localize a user in a two-dimensional plane. In theory, our method can localize
the target user within a square of any size. We also derive a complexity upper-
bound of our algorithm. In practice, we acknowledge that localization errors may
occur because of the GPS measurement deviation or that errors are intention-
ally added by mobile apps for privacy protection. At the same time we evaluate
the performance of our model when considering different distribution errors,
and finally show our localization method is robust through extensive simulation
experiments.

The paper is organized as follows. Section?2 reviews some related work.
Section 3 demonstrates the localization method. In Sect. 5, we evaluate our model
based on simulation experiments considering different error distributions. In
Sect. 6, we present some discussions. Finally, Sect. 7 concludes the paper.
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2 Related Work

There have been quite a few studies on localizing users using mobile app people-
nearby services either with exact distances or band distances. In Euclidean geom-
etry, trilateration is the process of determining relative locations of points by
measurement of exact distances, using the geometry of circles; triangulation is
the process of determining the location of a point by measuring angles to it from
known points at either end of a fixed baseline, rather than measuring distances
to the point directly (trilateration). To perform the trilateration attack, assume
that when a target user is known to lie on three circles from known locations,
the centers of the three circles with their exact radii provide sufficient informa-
tion to pinpoint the location of the target user [11]; the triangulation attack
is similar. Qin et al. demonstrated triangulation attacks against services with
exact distances [12]. In other independent studies, Mascetti et al. [13] applied
a distance-based clustering algorithm to formalize a location privacy attack to
approximately localize the users. Li et al. [3] explored user discovery attacks and
highlight the significance of this threat. However, the method has some limita-
tions that it may require applications’ information while it is sensitive to the
noise introduced by nearby services. Polakis et al. [4] conducted a theoretical
study and proved tight bounds on the number of queries required for carrying
out the localization attacks, irrespective of machine learning techniques.

Recently, many measurement studies focus on online social networks such
as Whisper [5,14], WeChat [6-10,15,16], and Yik Yak [17]. These online social
networks have stored large volumes of sensitive data about users (e.g., contro-
versial discussion information, user profiling, activity traces), all of which pose
potential privacy risks.

3 A Two-Step Localization Model

Most locating models proposed in recent literature focus on the practical effects
on the application people-nearby services while few of them have the theory anal-
ysis for the localization errors and the complexity of their models. In addition,
the experiment results show that there are still room for improving the local-
ization accuracy. In this section, we propose a new localization attack model in
which localization errors can be quantified. Based on the theoretical analysis, we
find an efficient way to locate the target user and quantify the query complexity
of our model. Table1 tabulates the notations that will be used throughout the
rest of this paper.

3.1 A Two-Step Localization Algorithm

Since the location information provided is not specific enough to locate the
target user easily with high precision, we divide the locating procedure into the
following two steps: (i) Coarsely locate the target to a small circle whose radius
is r, which needs to traverse the whole target distributing ring. This step is called
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Table 1. Notations

Notation | Description

dist(A, V) | The Euclidean distance between point A and V

r The band distance of the application
14 The target point
A; The attacker

IS
3

The reporting distance of the application

LocateToR; (ii) Restrict the user within a small square precisely and efficiently
when constraints to the horizontal and vertical coordinates are added. The step
is called LocateAccurate. Algorithm 1 describes the entire locating procedure.

Algorithm 1. Two-step localization
Input:
r: the band distance of the mobile app
e: the tolerant error
Output:
Pest: estimating target position
% the whole locating procedure
1: p = LocateToR(r)
2: pest = LocateAccurate(r,p, €)
3: return pes:

3.2 Coarse Location Estimation

LocateToR is aimed at coarsely restricting the target to a small circle whose
radius is r. The basic idea is to cover the target distribution ring with the circle
one by one until the reporting distance is r which indicates that the target is
inside the circle, and then record the center of the circle for the following accurate
localization.

The whole implementation is described in Algorithm 2. Suppose that the
band distance of the application is r and the target is V, the reporting distance
from V to initial attacker location A is d,.. To traverse the target circular band,
we set all the covering circle centers distributing along the circle whose radius
is d, — 5. We can easily take A; that is d,. — § far above the Ay as shown in
Fig. 1. The coordinates of A; can be computed according to the angle LAy AgA;
and the coordinate of Ag. Besides, the 6 in the figure can be calculated by the
cosine formula (take the advantage of triangle A;AyD in the illustration). As
for LocateToR, we prove the following theorem.
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Algorithm 2. LocateToR
Input:
r: the band distance of the app
p: the initial attacker position
Output:
p: the coordinates of point which is less than r far from target
% restrict the target to a circle of radius r
: dr = AppDist(p)
p = AttackerInit(p)
while d, > r do
p = NextAttacker(p,r)
d» = AppDist(p)
: end while
: return p

I A v

Theorem 1. In a two-dimensional space, given a point V existing in a ring with
internal diameter d4 — r and external diameter d4, if we cover the ring with
the disk whose radius is . There must be a disk and the distance between its
center and V is less than r, and it takes at most {2 queries to find the disk,

which satisfies {2 = % . %—g =

s
<d2+<d—g>2fr2)> ’

2arccos< 2d(d=1)
)

¢ Victim
“. D . O InitAttacker
= + Attacker

Fig. 1. An illustration of the LocateToR algorithm

3.3 Location Refinement

In LocateToR, we have restricted the target point V' in a small circle of radius r,
now we turn our attention to locating V' accurately. In Fig.2, P € {W, E, N, S}
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is r away from the target V. We reach our goal by finding these four points P
that satisfy dist(p,P) < € on the line which is horizontal or vertical. € is the
tolerance set by us. It seems that V is pulled by P from four directions. Thus,
the target V is restricted in a small square CyC1C2C3 whose length of side is €.
We take the center (i.e., V.s) of the square to be the estimated position of the
target V. The algorithm details are shown in Algorithm 3.

Now we concentrate on how to determine W, E, N, S very fast. We first prove
Theorem 2, Corollaries 1 and 2. BiSecSearch (i.e., Algorithm 4) is used to search
the eligible points. Starting from the position which is returned by LocateToR,
we hunt for W, E first. The moving distance is 7 at the beginning and reduces by
half every time when moving forward to the actual point P. Once the reporting
distance changes, moving direction will be changed. From Corollary 2, we make
sure that dist(P, ]5) decreases exponentially. Then, taking the central point of
W,E:‘ as the starting point, we obtain N , S in the similar way of determining
W, E.

Algorithm 3. LocateAccurate
Input:
r: the band distance of the mobile app
p: the point returned by LocateToR
€: the tolerant error
Output:
Pest: estimating target position
% locate the target accurately
: [px1,px2] = BiSecSearch(r,p, X, €)

_ Px1+Px2
p =

2
: [py1,py2] = BiSecSearch(r,p,Y,¢)

PX1,2TPX2,x

Dest,x = 2

Py1,y+Py2,
Pest,y = ,y2 Y
: return pes:

Theorem 2. For any two points A, V in a two-dimensional space, the distance
between them satisfies dist(A,V) < r, and the two different points A;,A5 can
be found on any straight line crossing the A point, which satisfies the following
equations:

dist(A,V) =,
dist(As, V) =

Corollary 1. For any two points A(za,y4), V(zv,yv) in a two-dimensional
space, the distance between two points satisfies dist(A, V') < r. Then two differ-
ent points A; and A, can be found on the line x = x4 or y = ya that is parallel
to the axis through the point A, which satisfies:
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Fig. 2. An illustration of the location refinement algorithm

dist(A,V) =,
dist(As, V) =,
Ta, t T4, _ wa or YA 1 Ya,

2 2 U

Corollary 2. For any two points A, V in a two-dimensional space, the distance
between two points satisfies dist(A, V) < r, there must exist A, Ao satisfies the
Corollary 1. Starting from A, move the point along the any line that crosses the
A point with the moving sequence | = {l;|l; = 57,7 = 0,1,...,N — 1} and the
direction is uncertain. For any small €, after N times of movement, we can find
Ay and A, respectively, which satisfies:

dist(Aq, Ar) <,
diSt(AQ, AQ) < €,

N = {log2 \/57"-‘ + 1.
€

where

4 Theoretical Analysis

In Fig.2, the target V is at (Tyictim, Yvictim), and we denote the estimation
pOiI’lt with VeSt(xestayest)~ On the line Y = Yvictim, W(xW7yW) and E(xE,yE)
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Algorithm 4. BiSecSearch
Input:
r: the band distance of the mobile app
p: the initial point
dim: X or Y
€: the tolerant error when locate the point
Output:
P: List of the points of estimated position along the desired direction
% look for the point who is r away from the target

1: IterNum = Hogz@] +1

2: P is a empty list

3: for sgn=-1,1 do

4: De,dim = Ddim — SN * T

5. dimg = {X,Y}\dim

6: Pe,dimy = Pdimsg

7. for j=0,1,..., [terNum do
8: d, = AppDist(p.)

9: if r > d, then
10: Pe,dim = Pe,dim + SGN * T
11: else
12: Pe,dim = Pe,dim — SN *T
13: end if
14: end for
15: insert p. into P
16: end for

17: return P

are the points satisfying Corollary 1, W(I{/V, yw) and E(x]g, yE) are the points
satisfying Corollary 2, € is the tolerance parameter in Locate Accurate.

\/(ZW - mvictim)Q + (yW - yvictim)2 =T, (1)
\/(xE' - xvictim)Q + (yE - yvictim)2 =T (2)

According to Corollary 2,

\/(xW —zw)? + (yw —yw)? <e.
Since yw = yg = Y1 = Yw = YE, then

lew — 2w | <, (3a)
lxg — 28| <€ (3b)

N = {log2 \@n-‘ + 1.
€

in which
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Suppose €, €g is the true error when estimating xw, xg, i.e.,

ew = lzw —aw| <, (4a)
€ = |rg — Tg| <e. (4b)

According to Corollary 1,

Tw + Tg
f — Tyictim| = 0. (5)
Then, we have
Tw + g
|xest - xvictim‘ - T — Tyictim
(zw —ew) + (¥E — €R)
= — Twictim
? (6)
Tw + TR €w + €
= |7 — Toictim + — =
2 2
_|ew +es| _ lew|+ew|
2 2 ’

If € < 5x=r, we have

T
|1'est - zvictim| < W

Similarly,
r
|yest - yvictim| < W (7)
The final localization error between the target actual position and the esti-
mated position is

err = \/(x — Tyictim)? + (Y — Yvictim)?

Vor (8)

QN-1"

Thus, our method can achieve any small localization accuracy with more queries.

5 Experiments

In the sections before, we discussed that our algorithm can reach any precision in
theory. However, there are always some differences between the actual distance
and the measured distance. Nowadays the popular locating ways of mobile phone
include GPS, Network Locating and the blending of the both. There will be
inevitable errors regardless of locating ways. At the same time, the application
would like to add errors to the location information to protect the privacy of the
users. As a result, it is important for locating model to be robust when there
exist errors that can not be negligible. Here we simulate our model with different
error distribution settings and different band distance 7.
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5.1 Model Settings

The error model settings refer to [10]. Considering that errors exist even for short
distance, we change the error to non-zero when the actual distance is less than
100m for different models.

exprnd(1l), Exponential;
o — unirnd(0, 51)7 Uniform; (9)

raylrnd(15z5 ), Rayleigh;

normrnd(1, §), Gaussian.

In our simulation, we set the error tolerance ¢ = 1 and suppose that the first
measurement (i.e., |4gV] in Fig.1) is accurate. The adding error is efr in the
simulation which satisfies efr = n - err,n € Z* (error is generated from the
above model).

5.2 Simulation

Effects of error distribution models. Assume that » = 100m, our model
only leverage the information of small distances. When the reporting distance is
bigger than 2r, it is useless. To exploit the model robustness well, we enlarge the
original errors generated by above settings by timing n, and n € {1,2,4, 8,16, 32}
(i.e.,efr =n-err).

Figure 3 shows the localization error distribution under different models with
different mean. We could find that our model works well even if the error is very
big (such as efr = 32err). The worst case whose incorporating error distribu-
tion is exponential demonstrates that the localization error cumulative proba-
bility can reach 70% when the corresponding error is within 20 m. The remain
cases increase approximately 10% higher, and the model works best for Gaussian
distributions.

Effects of band distance r. We set efr = err, r € {100m,200m,
400m, 800m}. Figure4 shows the result with different r. We find that the per-
formance is worst when incorporating exponential distribution error. When r is
small like less than 400 m, the localization error cumulative probability is close
to 100% within 20 m for exponent distribution and close to 100% within 10m
for other error models; even r is bigger such as r = 800 m, the cumulative proba-
bility is close to 80% within 40 m for exponential distribution and close to 100%
within 40 m for other error models. Still the model performs best for gaussian
distribution.

The above results show our localization methodology can efficiently get rid
of the errors. Taking the locating details into consideration, we should know
that the localization precision is decided by the refinement step LocateToR of
our model. The following reasons may lead to our algorithm robustness: (i) In
LocateAccurate, we locate the victim by adding constraints to the horizontal
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Fig. 3. Localization error distributions under various error models with different aver-

age value settings

coordinates and vertical coordinates then estimate the position by taking aver-
age of the constraint points. Taking average may cancel the errors because all
the errors are positive. (ii) When determining the constraint points, the move-
ment step size is determined. And the resulting error must be caused by the
previous wrong movement. As our algorithm is iterative, the previous error can
be corrected by the following movement.

The model performs best when incorporating Gaussian error models. We
conjecture that Gaussian distributions are symmetric distributions and the error

may be cancelled by taking the average.

6 Discussions

6.1 Complexity Analysis

In this section, we analyze the query complexity of the proposed localization
algorithm. It consists of the two parts: Complexity of LocateT oR and Complexity
of LocateAccurate. The first part is determined by the 6 in Fig. 1.
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6.2 Comparison Remarks

The recent research progress of the privacy problems have driven popular LBSN
service providers to enhance their apps to track more user abnormal behaviors
for privacy protection. It has become more difficult to conduct experiments in
real-world systems. Nevertheless, we believe that the battle between location
attacks and protection will be still continuing. In this subsection, we compare
this paper with a few representative studies. [7,9,10] focus more on using a
number of probes in order to decrease the obfuscation. These methods require
significant probe cost while the localization results are less accurate than this
work. [4] proposed a similar spatial iteration attack approach yet with 3 — 55
response time. Our method is less time-consuming. [17] requires to train a super-
vised or unsupervised model. The results are promising yet the data-collection
procedure is expensive. In summary, our two-step method provides a practical
attack method with high accuracy and small time complexity.

7 Conclusion

Mobile app people-nearby services have often been providing band distances
instead of exact distances in order to protect privacy. In this paper, we revisit
localization attacks in band-based distances. We proposed a new model to launch
localization attacks and proved that our method can pinpoint target users accu-
rately with the theoretically settings. When we incorporated different error dis-
tributions into our model, the simulation results showed that out model can
efficiently combat against the impact the errors. This proposed model is robust
with all most all band distances. In this paper, we continuously investigate the
privacy leakage problem from end-systems. In the emerging software defined
wireless networks, the network infrastructure may provide more data functions
[18]. We envision that the privacy leakage problem may become more severe in
the coming software defined edge computing and networking era.
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