Balancing Expression Dags for More Efficient
Lazy Adaptive Evaluation

Martin Wilhelm (59

Institut fiir Simulation und Graphik, Otto-von-Guericke-Universitat Magdeburg,
Universitatsplatz 2, 39106 Magdeburg, Germany
martin.wilhelm@ovgu.de

Abstract. Arithmetic expression dags are widely applied in robust
geometric computing. In this paper we restructure expression dags by
balancing consecutive additions or multiplications. We predict an asymp-
totic improvement in running time and experimentally confirm the theo-
retical results. Finally, we discuss some pitfalls of the approach resulting
from changes in evaluation order.

1 Introduction

Most theoretical algorithms in the field of computational geometry are based
on the real RAM model of computation and therefore assume exact real num-
ber arithmetic at unit cost. Actual processors cannot represent real numbers
and instead use floating-point arithmetic. Computing exact numerical values is
expensive and not always possible. Luckily, it is also seldom necessary to compute
exact values in order to ensure robustness in geometric algorithms. The Exact
Geometric Computation paradigm instead only demands that the decisions made
in a geometrical algorithm are correct [9,10]. A common technique used for
exact-decisions computation is to store the computation history in an arith-
metic expression dag and then adaptively (re)compute the result with a higher
precision until a verified decision can be made. Several expression-dag-based
number types have been developed with different evaluation strategies. Strate-
gies can be to gradually increase the precision bottom-up (LEA [1]) or fall back to
exact computation (CGAL::Lazy_exact nt [8]) if a decision cannot be verified,
or to use a precision-driven! evaluation (leda::real [2], Core::Expr [5,11],
Real_algebraic [6]). All of the mentioned number types suffer from high per-
formance overhead compared to standard floating-point arithmetic.

In this work we make an attempt to improve the performance of dag-based
number types by restructuring the underlying expression dag in certain situa-
tions. Restructuring the expression dag was originally proposed by Yap [10]. To
our knowledge, there is no previous work that actually implements any restruc-
turing strategy. We focus on reducing the depth of an expression dag, i.e. the size

! This should more correctly be called “accuracy-driven”, but we use the term
“precision-driven” throughout this paper for historical reasons.
© Springer International Publishing AG 2017

J. Blémer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 19-33, 2017.
https://doi.org/10.1007/978-3-319-72453-9_2

20 M. Wilhelm

of the longest path from any node to the root. The accuracy needed at a node
in an expression dag to guarantee a certain error at its root generally increases
with the size of the longest path between the node and the root. Therefore a
decrease in expression depth can be expected to lead to better error bounds at
lower precision and, consequently, to a better performance of dag-based number
types. We restructure the expression dag by “balancing” consecutive additions
and consecutive multiplications, such that the maximum depth of the involved
operators is minimized. By this we also increase the independence of the nodes,
which makes it more feasible to parallelize the evaluation. In this work, however,
we will not elaborate on advantages regarding parallelization.

We provide a theoretical analysis and evaluate our strategy based on the
number type Real_algebraic introduced by Morig et al. [6].

2 Theoretical Foundation

An expression dag is a rooted ordered directed acyclic graph, which is either

1. A single node containing a number or
2. A node representing a unary operation {\/, —} with one, or a binary operation
{+, —, %, /} with two, not necessarily disjoint, expression dags as children.

We call an expression dag E’ whose root is part of another expression dag F a
subexpression of E.

Let E be an expression dag, let o € {+, x} and let E’ be a subexpression of
E with root r of type o. Let T be a connected subgraph of E’, containing 7, such
that all nodes in T"— r have at most one predecessor in E and are of type o.
Then T is a tree and we call T an operator tree. The children of the leaves of T in
E are called operands of T'. We restructure E by replacing all maximal operator
trees in E by a balanced operator tree with the same number of operands. For
a single tree, we call this replacement balancing the operator tree. If all maximal
operator trees in E are replaced, we call the process balancing the expression dag.

We determine the asymptotic running time of a single precision-driven eval-
uation before and after balancing the expression dag for a series of additions
or a series of multiplications. Assumptions on the unit costs for the arith-
metic operations and the increase in accuracy are consistent with leda: :real,
Real_algebraic and partly with Core: :Expr.

2.1 Addition

Assume we have a dag-based number type that determines the result of an
addition z = x + y with absolute accuracy ¢ in time ©(q +log|z|) if x and y are
accurate up to ¢ + ¢ fractional digits, where c is some constant.

Let x1,...,x, be distinct floating point numbers with exponent < e,e > 0.
We want to determine the running time to compute z = Y. | ; with absolute
accuracy q. Any expression dag for z contains an operator tree consisting of all
addition nodes. Assume that the operator tree is a linear list, i.e. the computation

Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation 21

order is equivalent to z1 + (z2 + (23 + ... + (£n—1 + 25))). Then the i-th addition
(counting from the root) must be accurate up to ¢; = g+ ic fractional digits and
the magnitude of its result is at most e; = e + [log(n — ¢)]. Therefore we get the
time for computing z by adding the time needed on each level as

Tiist(q) = O <Z_:(qi + e,-)) =0 <z_:(q +ic+e+log(n — z)))

i=0 i=0
= O(nq+n2+ne)

This bound is tight if all summands have maximum exponent. Now assume the
operator tree is perfectly balanced, i.e. the computation order is equivalent to

(wr+z2) + (3 +xa))+ o)+ (o + (T3 +Tp2) + (X1 + 7))

Then at level i there are 2° additions, which must be accurate up to ¢; = ¢ + ic
fractional digits. The magnitude of their result is at most e; = e +logn —i. So
the asymptotic bound for the computation time shrinks to

logn

Tvai(q) = O (Z 2/(q +ic+e+logn — z)) = O (ng +nlogn + ne)
i=0

2.2 Multiplication

For multiplication we assume the number type computes the result of z = x *xy
with absolute accuracy ¢ in time ©((q+log|z|)'°83) if = is accurate up to ¢ +c+
[log|y|] and y up to g+c+[log |z|] fractional digits, where ¢ is some constant. We
determine the running time to compute z = [}, z; with absolute accuracy g.

We consider the operator tree consisting of all multiplication nodes in an
expression dag for z. Let e > 0 be the maximum exponent of z1,...,x,. In the
unbalanced case the accuracy needed increases by at most ¢ + e with each level
top-down, whereas the maximum exponent of the result increases by e bottom-
up. Assuming that x1, ..., z,, are exact, we do not need to increase the accuracy
of the leaves. Then we get

Tiist(q) = O (Z(ql + ei)log?’) =0 <Z(q +i(c+e)+(n— i)e)log?’)

=0 =0
=0 (nqlogS + nlog3+1 + nlog3+1elog 3)

This bound is tight if z1,...,z, all have exponent e. When the operator
tree is balanced, the accuracy needed increases by ¢ + e;11 at level 4, where
e; = 2'°8" ¢ 50 the requested accuracy at level i is

i+1
Qi:q+ic+z210gn7je§q+ic+210gn+1€
j=0

22 M. Wilhelm

Therefore

logn
Tou(q) = O (Z 2'(q +ic+ 28" e 4 QIOgnie)log3>
1=0
=0 (nqlogB + n(logn)logS + nlog3+1elog3)

If e > 0 the improvement we get from balancing the tree is dominated by the
cost for managing the increasing number of integer digits. If one can expect the
exponent to be bounded from above, the improvement gets asymptotically signif-
icant. Let eyax be the largest exponent occurring during the whole computation.
Then

n—1
Tlist(Q) =0 <Z(q + i(C + emax) + emax)log3>

=0

=0 (nqlog3 + nlog 3+1 4 nlog 3+1€£§3)

whereas

logn
Tbal(Q) =0 (Z Qi(q + i(C + emax) + emax)log3>

i=0
=0 (nqlog3 + n(log n)1°g3 + n(log n)1°g3e]1£§f)

The asymptotic bound for Tiis(q) is tight if the values of ©(n) inner nodes
are of order epax.

3 Implementation

The balancing strategy has been implemented for the dag-based exact-decision
numbertype Real_algebraic designed by Mérig et al. [6]. This number type
consists of a single- or multi-layer floating-point-filter [4], which falls back to
adaptive evaluation with bigfloats stored in an expression dag [3]. Balancing is
done at most once at each node, right before the first bigfloat evaluation. Other-
wise, existing results would have to be recomputed after changing the structure
of the dag, which could potentially lead to a massive overhead if subexpres-
sions need to be evaluated during dag construction. Once evaluated nodes are
therefore treated as operands in any subsequent balancing process.

We call evaluations of subexpressions of an expression dag F partial evalua-
tions of E. By preventing evaluated nodes to be part of another operator tree,
frequent partial evaluations during construction can fully negate the benefits of
the balancing strategy. If partial evaluations occur only sporadically, then their
impact on the expression depth of E, i.e. the maximum distance of any node to
its root, is small, since each of the involved subexpressions have been balanced
when they were evaluated for the first time.

Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation 23

Observation 1. Let E be an expression dag consisting of n additions or n mul-
tiplications and n + 1 bigfloats. Let d be the expression depth of E after its
evaluation. If at most k partial evaluations of E occur before the evaluation of
E, then d < k[log 1.

On the first evaluation of a node that cannot be handled by the floating-
point-filter, the balancing process starts at this node recursively. If the current
node contains an addition or a multiplication and has not be balanced before,
all operands of the maximal operator tree containing this node as root will be
retrieved. If the depth of the operator tree can be reduced, it gets balanced
(cf. Algorithm 1). For almost-balanced trees a slight decrease in depth may not
justify restructuring a large tree. Therefore it might be useful to experimentally
decide on a factor tightening this condition in later implementations.

Algorithm 1. The relevant operator trees are retrieved in the form of an
operand list with an associated depth. By comparing the depth with the
number of operands it gets decided whether the trees should be balanced.

Data: current node node
if node is not balanced then
if node is addition or multiplication then
(operands, depth) = retrieve_operands(node)
if depth > [log|operands|] then
| balance current operation
end

foreach op € operands do
| recurse on op

end
else
| recurse on children
end

mark node as balanced
end

The operands get retrieved through a depth-first search. Nodes can be
retrieved more than once and therefore the same node can represent multiple

operands. A node is treated as an operand if one of the following conditions
holds:

1. The node is not of the same type as the current operation (i.e. + or).
2. The node has already been balanced (and therefore initialized).
3. The node has more than one parent.

The third condition is necessary, since the subexpression represented by this
node will be destroyed during balancing. If a full copy of the node would be
created instead, this may lead to an exponential blowup for highly self-referential
structures (cf. Fig. 1).

A similar observation as for the second condition (cf. Observation 1) can be
made. If few operator nodes have more than one parent, the overall impact on
the expression depth is small.

24 M. Wilhelm

Fig. 1. An expression dag computing a'® and its exponential expansion that results
from resolving multiple references through copying.

Observation 2. Let E be an expression dag consisting of n additions or n mul-
tiplications and n 4+ 1 bigfloats. Let d be the expression depth of E after its
evaluation. If at most k operator nodes of E have more than one reference, then
d < k[log 1.

We balance an operation by combining two operands to a new operand until
only one node is left by treating the operand vector like a queue (cf. Algorithm 2).
Note that this strategy does not preserve the evaluation order of the operands
if the number of operands is not a power of two. This can have consequences
for the running time and may obfuscate the experiments. If operand order is
of importance, it can be preserved by inserting dummy nodes with values 0 for
addition and 1 for multiplication up to the next power of two.

Algorithm 2. The operator tree is restructured by discarding all nodes
except the root and building a new balanced operator tree bottom-up by
repeatedly combining the two smallest subtrees to a new tree.

Data: operand vector operands, operation type o, root node root
size = operands.size();
for i =0 to size — 2 do

| operands.add(new Node(operands|2i], operands|2i + 1], 0))
end
root.left = operands|2 x size — 2J;
root.right = operands|2 x size — 1];

4 Experiments

All experiments are run on an Intel Core 15 660 with 8 GB RAM under Ubuntu
16.04 LTS. We use Boost interval arithmetic as floating-point-filter and MPFR
bigfloats for the bigfloat arithmetic. The code is compiled using g++ 5.4.0 with
C++11 on optimization level 03 and linked against Boost 1.62.0 and MPFR 3.1.0.
Test results are averaged over 25 runs each if not stated otherwise. The variance
for each data point is negligible.

Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation 25

We will perform two simple experiments to evaluate our strategy. In our first
experiment we compute the sum of the square roots of the natural numbers 1
to n with accuracy q.

template <class NT> void sum_of_sqrts(const int n, const long q){
NT sum = NT(0);
for (int i = 1; i <= n; 4++i) {
sum += sqrt (NT(i));

sum.guarantee_absolute_error_two_to(q);

The second test computes the generalized binomial coefficient

(x/ﬁ) - \/ﬁ(\/ﬁzl)"')(\/ﬁ—n-i-l)
n n(n—1)---1

with accuracy gq.

template <class NT> void bin_coeff (const int n, const long q){
NT b = sqrt(NT(13));
NT num = NT(1); NT denom = NT(1);
for (int i = 0; i < n; ++i) {
num #*= b — NT(i);
denom *= NT(i+1);

NT bc = num/denom;
bc.guarantee_absolute_error_two_to(q);

For each test we compare four different implementations. We distinguish
between no balancing (def), balancing only addition (add), balancing only mul-
tiplication (mul) and balancing both addition and multiplication (all).

The sum-of-square-roots test as well as the binomial coefficient test provide
simple examples for when balancing can be of use (cf. Fig. 2). Obviously balanc-
ing multiplication does not have a positive effect on the sum-of-square-roots test

35¢ [sn = 5000080 — 750000m — 10000]| 2P| 17 — 5000 ||
I~ 0 0o n = 7500
3F S = 1 30 2 = lon = 10000 | |
o ol i o
— 25 1 — 25} M B :
g - & - g | £
=, 5 S5 SN - S
\%/ Er g: \3.,}/ — — . — _ —
g 1.5f - © M | 1og st © = R
= s - = = = 2 2
1t = - 1 1t S S 1
0.5} 1 0.5} 1
0 T ; ; T 0 T ; T ;
def add mul all def add mul all
(a) Sum-of-square-roots (b) Binomial coefficient

Fig. 2. Performance gain through balancing for sum_of_sqrts and bin_coeff with a
requested accuracy of ¢ = 50000 for different values of n.

26 M. Wilhelm

and balancing addition does not have a positive effect on the binomial coefficient
computation. There is a small overhead in these cases due to the traversal of the
dag. The overhead vanishes in all, since the same procedure is used for both
addition and multiplication.

1.6} llln:5OOUDDn = 7500007, = 10000 |4 1.6} In . = 5000 |
= = 0o n = 7500
1.4F 1 1.4F — I Oon, = 10000 ||
™ jie]
G 3
12| = o 1 12} |
8 M 8 -
= I B = SH -
R T o g I 2 S
b2 = © = © %
— 0.8) =) s | — 08}
v =1 (=) 1 — —
Z 06l = S < 206l =2 0
2 < S < & S S
=l R =]
0.4f = 0.4f
0.2 0.2F
0 T T 0 T ;
def add mul all def add mul all
(a) Sum-of-square-roots (b) Binomial coefficient

Fig. 3. Performance gain through balancing for sum_of_sqrts and bin_coeff with a
requested accuracy of ¢ = 25000. The relative gain is larger than for ¢ = 50000 (cf.
Fig.2).

The relative benefit of balancing increases if the precision increase due to the
number of operands is large relative to the requested accuracy for the result.
Figure 3 shows the performance gain through balancing for a requested accu-
racy of ¢ = 25000. With 10000 operands, the relative gain is about 42% for
sum_of_sqrts and 51% for bin_coeff compared to 26% and 34% for ¢ = 50000.
The theoretical analysis from Sect. 2 predicts that the absolute performance gain

71 [o def i O T ger)
—=-add —=mul
6f 1 51 1
"
5 |3 o
S 4f 18 oF
@ g 3 |
Y 3 1 g
R a2 2 1
& o} 1 &
1) | 1 |
0 — 0 |
0 02 04 06 08 1 0 02 04 06 08 1.
q -10° q -10°
(a) Sum-of-square-roots (b) Binomial coefficient

Fig. 4. Absolute performance gain through balancing for sum_of_sqrts and bin_coeff
for n = 10000 with different requested accuracies (average over five runs). The absolute
gain is almost independent of ¢q. The relative gain decreases.

Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation 27

primarily depends on the number of the operands that can be balanced and is
independent from the requested accuracy. The experimental results largely con-
firm this assumption as shown in Fig. 4. Since balancing is done before the first
evaluation, the overhead due to the balancing procedure only depends on the
size of the expression dag and the number of operands.

5 Caveats

When restructuring an expression dag there are some potential pitfalls one
should be aware of. Changing the structure of an expression dag leads to a
change in evaluation order, which may in turn influence the performance. Other
hurdles are even more subtle, since they result from implementation details of
the underlying bigfloat arithmetic. We show examples, where this leads to prob-
lems for balancing. However, the caveats are not restricted to balancing, but
apply to restructuring attempts in general.

5.1 Evaluation Order

When evaluating a dag-based number type recursively, a slight change in expres-
sion order can have an unexpectedly high impact on the evaluation time [7].
Balancing the dag may have a negative impact on the optimal expression order.
One example where this may occur is the computation of the geometric sum
S ort with r < 1.

template <class NT> void geometric_sum(const int n, const long q){
NT r = sqrt(NT(13)/NT(64));
NT ri = NT(1); NT s = ri;
for (int i=0; i<n; ++i){
ri *= r;
s += ri;
}

s.guarantee_absolute_error_two_to(q);

}

We call the multiplication node m; resulting from the i-th multiplication
deeper than the node m; resulting from the j-th multiplication if i < j and
shallower if j < i. If m; is shallower than m; then m; is an ancestor of m;
in the expression dag. When balancing the expression dag the accuracy needed
at the deeper multiplication nodes decreases, while the accuracy needed at the
shallower nodes increases. Since in geometric_sum the shallower multiplication
nodes depend on the deeper ones, the balancing actually increases the final
accuracy needed at the deeper multiplication nodes by an amount logarithmic
in the total number of additions. To make things worse, the deeper nodes are
still evaluated first (with low precision) and therefore need to be recursively re-
evaluated for every shallower multiplication node, leading to a quadratic number
of evaluations (Fig.5).

Note, that this does not happen for the linear computation order if we assume
the following increase in accuracy (cf. Sect. 2):

28 M. Wilhelm

Fig. 5. Expression dags for geometric_sum before and after balancing. After balancing,
all multiplication nodes are on the same level, with the deeper ones evaluated first,
inducing a quadratic number of evaluation steps.

— To evaluate z = x + y with accuracy ¢, both x and y must be accurate up to
q + 2 digits.

— To evaluate z = z % y with accuracy ¢, * must be accurate up to ¢ + 2 +
[log |y|] and y must be accurate up to ¢ + 2 + [log |z|]| digits.

Since for » < 1 also r* < 1 the increase in accuracy is the same for addition
and multiplication. Therefore with linear computation order the multiplication
nodes do not need to be re-evaluated after their initial evaluation. If » > 1 the
linear dag and the balanced dag show similar behavior.?

To avoid extensive recomputations, we can compute a topological order and
determine the final accuracy needed at each node before recomputing it [7]. We
implement this strategy and compare it with recursive evaluation. The standard
recursive evaluation procedure essentially works as depicted in Algorithm 3. At
each node the needed accuracy of its children is ensured and the value at this
node gets recomputed. Nodes can get recomputed several times if they have more
than one parent.

Algorithm 3. Evaluating an expression dag by recursively increasing the
accuracy of the children before recomputing the current operation.

Data: requested accuracy ¢

if error is larger than 279 then
compute needed accuracy for children

recurse on children with their respective accuracy
recompute
end

When evaluating topologically we determine a topological order for all
inexact nodes and compute the maximum accuracy needed for those nodes.

2 Real_algebraic usually overestimates the exponent by one, therefore in our tests
is chosen to be smaller than 0.5.

Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation 29

Afterwards we recompute the nodes with their maximum accuracy (cf. Algo-
rithm 4). By following this procedure we can guarantee that no node is recom-
puted more than once during one evaluation of the expression dag.

Algorithm 4. Evaluating an expression dag by finding a topological order
and determining the maximum accuracy needed at each node before recom-
puting them.

Data: requested accuracy ¢

if error is larger than 277 then
top = all inexact nodes in topological order

for i =1 to |top| do
| update the required error for the children of top]i]

end
for i = |top| downto 1 do

if topli].error > topli].requested_error then

| recompute topli]

end

end

end

We execute the geometric sum experiment with the four balancing strate-
gies from before. Furthermore for each of these strategies we evaluate either
recursively (r) or in topological order (t).

As the results in Fig. 6 show, balancing the expression dag destroys a favor-
able evaluation order when computing the geometric sum. Switching to a topo-
logical evaluation order negates this effect. Note that the performance loss due

(=] D
lon=175 3 3
0 0
Oon =350 —
155 100 =700
—
2}
=
Qo
s 10
[}
wn
z
[}
@
= 2 2
= 5 = hd
[\ [}
NI R B N S B S B B o~ o I~
S oo oD oo oo 9o oo ooo o oo o
COODOO. OOOOOOOOO- o o O
0 — — — —— — [— I D —

defr deft addr addt mulr mult allr allt

Geometric Sum

Fig. 6. Balancing additions leads to a massive increase in running time for
geometric_sum with ¢ = 50000 by creating a bad evaluation order. Topological evalu-
ation solves the problem.

30 M. Wilhelm

16 defr defr

14 addr 40 addr

12
;ﬁ 10 ﬁ 30
S 8
= — 20
£ 6 g
= =

4 10

2

0 0

100 250 400 550 700 850 1,000 100 250 400 550 700 850 1,000
N N
(a) Geometric Sum (b) Geometric Sum + OPB

Fig. 7. Comparison of the behavior of geometric_sum for increasing n with the bal-
ancing procedure from Algorithm 2 and with order preserving balancing (OPB). The
original procedure leads to jumps in running time, while order preserving balancing
produces the expected quadratic behavior (¢ = 50000, averaged over 5 runs each).

to the logarithmic increase of precision in the balanced case is too small to show
in the measurements.

The values for n have been chosen to show spikes in the running time. As
pointed out in Sect. 3 our balancing algorithm does not necessarily preserve the
order of the operands. If the shallowest multiplication node is evaluated first,
this leads to an optimal evaluation order. Figure 7 compares our implementation
with an order-preserving balancing strategy.>

The algorithm we use to build a balanced tree results in large jumps when
stepping from 2 — 1 to 2* operands (k € N). With 2¥ — 1 operands the pre-
viously rightmost operand, i.e. the shallowest multiplication node, becomes the
leftmost operand in the balanced tree and therefore the evaluation order is opti-
mal. With 2% operands the previous operand order is preserved by the algorithm
and is therefore the worst possible. If preserving order is enforced, the quadratic
increase in running time is evident.

5.2 Operands Matter

In some cases balancing can destroy a favorable dag structure independently from
the evaluation order. We compute the telescoping product Hrfl # through the

i=1
following algorithm.
template <class NT>
void telescoping_product (const int n, const long q){
NT prod = NT(1);
for (int 1 = 1; i < n; ++i) {
prod %= NT(i+1)/NT(i);

prod.guarantee_absolute_error_two_to (q) H

3 This is implemented by inserting dummy nodes up to the next power of two.

Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation 31

In the experimental results shown in Fig.8a, a performance decrease due
to balancing is evident, which also cannot be corrected through a change in
evaluation order. The reason for this effect is that the naive order enables the
bigfloat arithmetic to make use of eliminating factors. Bigfloat multiplications
involving integers* are less expensive®. In the original expression order the result
of each multiplication is an integer and can be determined as such. Therefore,
although significantly reducing the average need of accuracy, balancing has a
negative effect on the performance.

I = 5000

6 - 2 I8 = 5000
4f[oen = 10000 ~ = 15 i3 0op = 10000
Dop = 20000 = = . Don = 20000

Time (seconds)

~
=
=

0.85
1.71
Time (seconds)
—_ v} w
1.92
0.78
1.92
0.85
1.71
3.42
0.86
1.72
3.43

defr deft mulr mult defr deft mulr mult

(a) Telescoping Product 7 > 1 (b) Telescoping Product i > 3
= Q Ia n = 5000
8 - ~ lop = 10000
]] 0opn = 20000
:é?
g 6
£
z — o)
o 4 < ~
§ 02 02 o o
& o o
= =
2 — —_ = o =
i i 0 0
= = S =
0
defr deft mulr mult

(c) Telescoping Product Reverse

Fig. 8. Performance of different variants of telescoping_product before and after
balancing multiplications (¢ = 50000). In the original version balancing destroys
a favorable order of the operands, which cannot be corrected for by switching to
topological evaluation. When starting with ¢ = 3, the order before balancing is less
favorable and the performance gain of balancing outweighs the loss for larger n. For

telescoping_product_reverse no favorable order is destroyed and balancing shows
the expected net benefit.

* Or integers divided by a power of two.
5 This behavior was confirmed with both mpfr and leda bigfloats.

32 M. Wilhelm

If the product is computed starting with ¢ = 3 only every third subexpression
evaluates to an integer. While there are still some favorable structures getting
disrupted by balancing the expression dag, the benefit of balancing surpasses
the loss as the number of operands increases (cf. Fig. 8b). The effect vanishes if
the product is computed in reverse order as depicted in the following algorithm.

template <class NT>
void telescoping_product_reverse(const int n, const long q){
NT prod = NT(1);
for (int i = n—1; i >= 1; —i) {
prod = NT(i+1)/NT(i);

}

prod.guarantee_absolute_error_two_to(q);

By this, none of the subexpressions involved evaluates to an integer and only a
logarithmic amount of subexpressions evaluates to an integer divided by a power
of two. The results of the experiment for the reverse case are shown in Fig. 8c.
Now balancing has the expected positive effect on the overall performance. Note
that, as expected, the forward loop starting with ¢ = 3 without balancing takes
approximately two third of the time of the reverse case.

5.3 Overhead

In all tests, except the telescoping product test with ¢ > 1, the overhead for the
balancing procedure as well as for the topological sorting was (usually much) less
than 0.5% of the final running time. The running time of telescoping product
is unusually small compared to its number of operations, therefore the relative
overhead of additional computations is higher. In this case the overhead amounts
to less than 2% for balancing and less than 3% for topological sorting.

6 Conclusion

Balancing additions and multiplications in an expression dag can significantly
reduce the computation time needed as demonstrated by the sum-of-square-roots
test and the binomial coefficient test. The experimental data indicates that the
overhead due to the balancing algorithm is small compared to the cost of the
bigfloat operations. Balancing may cause changes in the evaluation order that lead
to increased running time. Those issues can partially be addressed by switching
to a topological evaluation, which can be done with small overhead as well.

We conclude that it is useful to provide a number type supporting balanc-
ing of expression dags in combination with topological evaluation. The use of
this number type should be considered whenever an algorithm performs a large
number of consecutive additions or multiplications. Switching a number type is
usually less time-consuming than a deep analysis and adjustment of the used
algorithm.

Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation 33

7 Future Work

In this paper we restricted restructuring of the dag to balancing additions and
multiplications. Performance increase due to further restructuring is imaginable.
Subtractions could easily be included in the balancing process by treating them
like an addition and a negation and propagating the negations to the operands.
It may also be useful to incorporate divisions into the multiplication balancing
process. Since inversions are much more expensive than negations, it seems not
feasible to replace them by a multiplication and an inversion. Instead a promising
strategy might be to reduce the number of divisions by raising them to the root.

Balancing an expression dag makes its nodes more independent and therefore
makes it more accessible for parallelization. Further restructuring with the goal
of faster parallelization, e.g. expanding products, might be profitable.

References

1. Benouamer, M.O., Jaillon, P., Michelucci, D., Moreau, J.: A lazy exact arithmetic.
In: Proceedings of the 11th Symposium on Computer Arithmetic, pp. 242-249
(1993)

2. Burnikel, C., Mehlhorn, K., Schirra, S.: The leda class real number (1996)

3. Dubé, T., Yap, C.: A basis for implementing exact geometric algorithms (extended
abstract) (1993)

4. Fortune, S., van Wyk, C.J.: Efficient exact arithmetic for computational geometry.
In: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp.
163-172 (1993)

5. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric
and geometric computation. In: Proceedings of the Fifteenth Annual Symposium
on Computational Geometry, SoCG, pp. 351-359 (1999)

6. Morig, M., Rossling, 1., Schirra, S.: On design and implementation of a generic
number type for real algebraic number computations based on expression dags.
Math. Comput. Sci. 4(4), 539-556 (2010)

7. Morig, M., Schirra, S.: Precision-driven computation in the evaluation of expression-
dags with common subexpressions: problems and solutions. In: Kotsireas, I.S., Rump,
S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 451-465. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32859-1_39

8. Pion, S., Fabri, A.: A generic lazy evaluation scheme for exact geometric compu-
tations. Sci. Comput. Program. 76(4), 307-323 (2011)

9. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack, J.R.,
Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 597-632. Elsevier,
Amsterdam (2000)

10. Yap, C.: Towards exact geometric computation. Comput. Geom. 7, 3-23 (1997)

11. Yu, J., Yap, C., Du, Z., Pion, S., Bréonnimann, H.: The design of core 2: a library
for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121-141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_24

https://doi.org/10.1007/978-3-319-32859-1_39
https://doi.org/10.1007/978-3-642-15582-6_24

2 Springer
http://www.springer.com/978-3-319-72452-2

Mathematical Aspects of Computer and Information
Sciences

7th International Conference, MACIS 2017, Vienna,
Austria, Movember 15-17, 2017, Proceedings

Bldmer, J.; Kotsireas, |.S.; Kutsia, T.; Simos, D.E. (Eds.)
2017, ¥, 462 p. 71 illus., Softcover

ISBM: 978-3-319-72452-2

	Balancing Expression Dags for More Efficient Lazy Adaptive Evaluation
	1 Introduction
	2 Theoretical Foundation
	2.1 Addition
	2.2 Multiplication

	3 Implementation
	4 Experiments
	5 Caveats
	5.1 Evaluation Order
	5.2 Operands Matter
	5.3 Overhead

	6 Conclusion
	7 Future Work
	References

