Chapter 2
Background

Abstract This chapter introduces fundamental basic concepts, notations, and ter-
minologies for requirements engineering as well as software architecture that the
proposed QuaDRA framework and its extension rely on. In addition, the UML
profiles used throughout this book, life-cycle expressions used for describing the
relation between the requirements in different methods of the QuaDRA framework
as well as variability modeling used in the extension of QuaDRA are introduced.
Finally, the description of the real-life case study smart grid used to illustrate the
application of QuaDRA is presented.

2.1 Requirements Engineering

Understanding and describing the problem that the software has to solve in a pre-
cise way is the first thing to do when developing a software [68]. Requirements
engineering (RE) as a sub-discipline of software engineering consists of require-
ments development and requirements management [240]. It covers a structured set
of activities in discovering, documenting, and maintaining a set of requirements
for a computer-based system [223]. The requirements of a software system consist
of functional requirements and quality requirements (also known as non-functional
requirements or NFRs).

We introduce definitions and descriptions of the quality requirements security
and performance in Section 2.1.1. Problem frames as the basis for our problem-
oriented requirements engineering is described in Section 2.1.2.

© Springer Fachmedien Wiesbaden GmbH 2017

A. Alebrahim, Bridging the Gap between Requirements
Engineering and Software Architecture,

DOI 10.1007/978-3-658-17694-5_2

20 2 Background

2.1.1 Quality Requirements

For the success of software projects, quality requirements are as critical as func-
tional requirements as the software without considering the necessary quality prop-
erties may be too slow, unusable, or insecure [73, 40]. However, they are often
neglected in practice or poorly described in requirement documents [251].

There is no consensus in the software engineering community regarding the def-
inition of quality requirements (also known as non-functional requirements [184]).
Often, they are referred to as “-ilities” such as reliability or “-ities” such as security.
Nevertheless, there are quality requirements that end neither with “-ility” or “-ity”
such as performance [73]. Chung & Sampaio do Prado Leite [73] introduce the
notion of satisficing when talking about achieving quality requirements!. It refers
to the nature of quality requirements that cannot be addressed absolutely but in a
“good enough sense”. The notion of satisficing reflects the sense of good enough.

Eliciting, modeling, and managing quality requirements is one of the important
challenges in requirements engineering. Quality requirements are considered as
the most expensive and complex ones to deal with [72, 93]. They tend to inter-
fere, conflict, or contradict with each other. Achieving a particular type of qual-
ity requirements might hurt the achievement of other types of quality require-
ments [91, 72]. This negative impact reveals the need for making trade-offs be-
tween conflicting quality requirements to fulfill the overall software goal/purpose.
Performance and security requirements represent such conflicting requirements. In
the following, we describe these requirements and give definitions for them.

Security Requirements

Security is often an afterthought in designing software. Security requirements
are not considered explicitly and therefore not integrated in the software archi-
tecture [211]. Hence, there is a need for explicitly and systematically addressing
security as early as possible in the software development life cycle.

In the international standard ISO/IEC 25010 (SQuaRE) [130] which is the suc-
cessor of ISO/IEC 9126-1, security is defined as one of the characteristics for prod-
uct quality properties. It is divided into the five subcharacteristics confidentiality,
integrity, non-repudiation, accountability, and authenticity. In this book, we fo-

! Quality requirements or non-functional requirements are treated as softgoals in the NFR Frame-
work introduced by Chung & Sampaio do Prado [73].

2.1 Requirements Engineering 21

cus on confidentiality, integrity, and authenticity which are defined in the standard
ISO/IEC 25010 as follows:

Confidentiality is defined as the “degree to which a product or system ensures
that data are accessible only to those authorized to have access.”

Integrity is defined as the “degree to which a system, product or component
prevents unauthorized access to, or modification of, computer programs or data.”

Authenticity is defined as the “degree to which the identity of a subject or re-
source can be proved to be the one claimed.”

Performance Requirements

According to Bass et al. [45], quality requirements are not completely dependent
on design or on implementation. Performance has partially architectural dependen-
cies and partially non-architectural dependencies. For example, it depends on the
amount of communication between components, on the allocation of the function-
alities to each component, on the usage of shared resources, which are all archi-
tectural dependencies. On the other hand, performance depends also on the choice
of algorithms to implement the functionalities and on how efficient the implemen-
tation of such algorithms is, which are both non-architectural dependencies.

Performance depends upon the load to the system and the resources available
to process the load [47]. Therefore, for performance assessment, performance re-
quirements and domain knowledge are used. Performance requirements describe
the response time characteristics of the system-to-be. Domain knowledge repre-
sents assumptions on the system-to-be such as the workload and the constraints on
resource usage.

In the international standard ISO/IEC 25010 (SQuaRE) [130] performance effi-
ciency (performance hereafter) is defined as one of the characteristics for product
quality properties. It is composed of the subcharacteristics time behavior, resource
utilization, and capacity. Time behavior including response time and throughput is
defined as “the degree to which the response and processing times and throughput
rates of a product or system, when performing its functions, meet requirements.”
In this book, we focus on response time.

22 2 Background

2.1.2 Problem Frames

Problem frames are a means to describe software development problems. They
were proposed by Michael Jackson [133], who describes them as follows:

“A problem frame is a kind of pattern. It defines an intuitively identifiable prob-
lem class in terms of its context and the characteristics of its domains, interfaces
and requirement.”

A problem frame is described by a frame diagram, which basically consists of
domains, interfaces between them, and a requirement. Domains describe entities in
the environment. Jackson distinguishes the domain types biddable domains that are
usually people, causal domains that comply with some physical laws, and lexical
domains that are data representations.

In problem diagrams, interfaces connect domains, and they contain shared phe-
nomena. Shared phenomena may be events, operation calls, messages, and the like.
They are observable by at least two domains, but controlled by only one domain, as
indicated by the name of that domain and “!”. In Fig. 2.1 the notation MD!{data}
(between MeterData and SubmitMD) means that the phenomenon data is con-
trolled by the domain MeterData and observed by the machine SubmitMD.

zproblemDisgrams
SubmitMeterData

MDl{data} «lexicalbomain: 2o
MeterData | = 7"~ ——— _
«maching: arefersTos
SubmitMD ST R4
«oausalbomain, connectionDomsain: _ '«’can‘StrainS» -7
SMODKsendDatalntob AN} WAN £ -7

_ -~ refarsTos

WisnWforwardData} ot

ehiddableDomain: Z”
AuthorizedExternalEntity

Fig. 2.1: Problem Diagram for submitting meter data to external entities

When we state a requirement, we want to change something in the world with
the software to be developed. Therefore, each requirement constrains at least one
domain. Such a constrained domain is the core of any problem description, because
it has to be controlled according to the requirements. A requirement may refer to
several other domains. The requirement R4 in Fig. 2.1 constrains the domain WAN.

2.1 Requirements Engineering 23

It refers to the domains MeterData and AuthorizedExternalEntity®. The task is to
construct a machine (i.e., software) that improves the behavior of the environment
(in which it is integrated) in accordance with the requirements.

Requirements analysis with problem frames proceeds as follows: first the envi-
ronment in which the machine will operate is represented by a context diagram. A
context diagram consists of machines, domains and interfaces. Then, the problem
is decomposed into subproblems, which are represented by problem diagrams. A
problem diagram consists of a submachine of the machine given in the context
diagram, the relevant domains, the interfaces between these domains, and a re-
quirement. Figures 2.1 shows a problem diagram in UML notation.

We use problem frames in this book as a basis for requirements engineering.
The use of problem frames has the following benefits:

It takes the surrounding environment of the software into consideration [133].
It allows decomposing the overall software problem into simpler subproblems,
thus reducing the complexity of the problem. The reason is that the complex-
ity of each single problem diagram is independent of the size of the system.
Moreover, the number of problem diagrams increase linearly even for large
systems [133].

e It enables us to check for inconsistencies in different parts of the model due to
its semi-formal structure [115].

e It makes it possible to annotate problem diagrams with quality requirements
and additional information such as domain knowledge, particularly when con-
sidering quality requirements [17].

e It allows us to obtain detailed information from the structure of problem di-
agrams. Such information enables us to perform interaction analysis and opti-
mization, whereas other requirements engineering approaches such as scenario-
based approaches and use cases do not contain detailed information for such
analyses [6].

e It not only helps to understand the software problem, but also supports in solv-
ing that problem. The structure of the problem diagrams and the properties
of the involved domains facilitate the development of corresponding architec-
ture components that reflect the problem characteristics. Hence, software ar-
chitectures can be derived from requirement models expressed as problem dia-
grams [69].

2 This example is taken from the case study smart grid which we introduce later on in this chapter.

24 2 Background

2.2 Software Architecture Concepts

In this section, we provide an overview of the main concepts and definitions
of software architecture and architecture terminology (Section 2.2.1 and Sec-
tion 2.2.2), architectural patterns and quality-specific patterns (Section 2.2.3 and
Section 2.2.4), Viewpoint models (Section 2.2.5), architecture description lan-
guages (Section 2.2.6), and architecture evaluation (Section 2.2.7).

2.2.1 Definition of Software Architecture

The need for having a software architecture (SA) discipline has been recognized
in the sixties, seventies, and eighties with growing complexity of software sys-
tems [192, 80]. But the formal work in the area of software architecture began in
the 1990s [187, 80].

Hofmeister et al. [126] describes software architecture as a blueprint of a system
bridging the system requirements and implementation. It does not provide a com-
prehensive refinement of the system, but an abstraction of the system to manage
complexity.

It is generally acknowledged that there is no common agreement on the def-
inition of software architecture [104, 222, 35]. More than 150 definitions of the
software architecture from the literature and from practitioners are collected by the
Software Engineering Institute (SEI) at Carnegie-Mellon University> [78]. One of
the most used definitions for software architecture is provided by Bass et al. [44]:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationship among them.”

Rozanski and Woods [204] describe two key parts of this definition, namely
system structures and externally visible properties more detailed. Two types of
system structure exist for software architecture:

e The static structure forms the design-time organization of the software. It in-
cludes the elements of the software and their relationships.

e The dynamic structure describes the run-time elements of the software and their
interactions.

Externally visible properties of the system are manifested in two different ways,
namely externally visible behavior and quality properties:

3 http://www.sei.cmu.edu/architecture/

2.2 Software Architecture Concepts 25

e [Externally visible behavior specifies what the system does. It defines the func-
tional interactions between the system and its environment.

e Quality properties specify how the system does it. They are non-functional
properties of the system that are externally visible such as performance and
security.

To a software problem, there might be more than one possible solution, known
as candidate architectures. According to Rozanski and Woods [204]:

“A candidate architecture for a system is a particular arrangement of static and
dynamic structures that has the potential to exhibit the system’s required externally
visible and quality properties.

In this book, we explore the solution space to identify candidate architectures
with respect to quality requirements. The candidate architectures or alternative
architectures stem from various architectural patterns having different impact on
quality requirements or quality strategies help satisficing quality requirements.

Rozanski and Woods [204] define an Architecture Description (AD) as

“a set of products that documents an architecture in a way its stakeholders can
understand and demonstrates that the architecture has met their concerns.”

Products in this context is referred to architectural models, scope definition,
constraints, and principles.

2.2.2 Difference between Architecture and Design

In the previous section, we gave an overview of existing definitions of software
architecture. In this section, we discuss how architecture is different from design.
This difference matters for this book as we have been developing a method includ-
ing requirements analysis and software architecture. Therefore, we need to know
for our method

e where are the boundaries to design
e which decisions are “architectural” and which are “non-architectural”

Perry & Wolf [192] clearly distinguish in their definitions between architecture
and design. They define architecture as follows:

“Architecture is concerned with the selection of architectural elements, their
interactions, and the constraints on those elements and their interactions neces-
sary to provide a framework to satisfy the requirements and serve as a basis for
the design.”

26 2 Background

Design is defined by Perry & Wolf [192] as:

“Design is concerned with the modularization and detailed interfaces of the
design elements, their algorithms and procedures, and the data types needed to
support the architecture and to satisfy the requirements.”

Hence, the design phase consists of two levels: high-level structure and low-
level structure of the software*. Software architecture (or architectural design)
is concerned with the design and implementation of the high-level structure of
the software [156, 174], whereas detailed design (or non-architectural design) is
concerned with the design and implementation of the low-level structure of the
software. From the perspective of the architecture, detailed design is part of the
realisation [194, pp 116,117].

According to Hofmeister et al. [126], software architecture is placed after re-
quirements and domain analysis and before detailed design, coding, integration,
and testing. This provides an approximate order of executing the tasks, it however
does not mean that the analysis phase must be finished before the design phase
begins. Overlaps and iterations between tasks exist. As described in Section 2.1,
in the requirements engineering phase the requirements of the system are elicited,
analyzed, and managed. It results in requirements that provide the key input to the
software architecture design. Requirements may need to be changed according to
the software architecture tasks. The software architecture guides the implementa-
tion tasks, including detailed design, coding, integration, and testing.

According to Clements et al. [78], decisions that are concerned with satisfying
functional and quality requirements can be seen as “architectural decisions”. De-
cisions that result in element properties that are not visible are “design decisions”
and not “architectural decisions”. Typical examples for design decisions are the
choice of data structures and algorithms.

Rozanski & Woods [204] state that “a concern, problem, or system element is
architecturally significant if it has a wide impact on the structure of the system
or on its important quality properties such as performance, scalability, security,
reliability, or evolvability.” Whether something is architecturally significant is a
subjective decision which is driven by the judgement of the architect, its skill and
expertise, and the circumstances of each individual system [204].

4 Also called coarse-grained design and fine-grained design

2.2 Software Architecture Concepts 27

2.2.3 Architectural Patterns

The software architecture is to a large extent influenced by its quality require-
ments [56, 44, 126]. It has to fulfill the defined functional requirements as well
as the desired quality requirements [56, 44, 126]. Developing such a software ar-
chitecture that achieves its quality requirements is one of the most demanding
tasks [39]. Architectural patterns in general contribute to the satisfaction of de-
sired quality requirements.

Architectural styles have been investigated for many years in different areas of
computer science [175]. According to Bass et al. [44], an architectural style is
“a specialization of element and relation types, together with a set of constraints
on how they can be used.”

We use the term architectural pattern as a synonym for architectural style as
suggested by Bass et al. [44] and Hofmeister et al. [126]. The idea of software
patterns stems originally from Christopher Alexander, a professor of building ar-
chitecture, who published a series of books about patterns, pattern language, and
catalog of patterns in building architecture [98].

Architectural patterns [62, 215, 33] describe the high-level structure and be-
havior of software systems. They represent well-proven generic solutions to prob-
lems that arise recurrently at the architectural design level. An architectural pattern
has three essential parts: a problem definition, a description of the problem’s con-
text, and a corresponding solution to the problem [109, 33]. Besides satisfying
functional requirements, architectural patterns aim at satisfying several quality re-
quirements. Applying an architectural pattern results in consequences regarding
the fulfillment of quality requirements. Positive consequences are documented as
benefits whereas the negative consequences are labeled as liabilities. Patterns may
have different variants that extend their functionality and/or come with different
benefits and liabilities.

In the literature, there is no consensus on the classification of patterns, regard-
ing their philosophy, the way of describing patterns, and the granularity of archi-
tectural patterns. For example, interpreter is a classical design pattern introduced
by Gamma et al. [103]. It, however, can be treated like an architectural pattern,
since it is a central and externally visible component [33]. Hence, there is no sin-
gle catalog of architectural patterns to be used by software architects. We decided
to select the patterns from Buschmann et al. [62], which are among the best set of
the existing architectural pattern collections.

28 2 Background

2.2.4 Quality-specific Mechanisms and Tactics

Architecture tactics or Tactics are established and proven strategies that can be
used to help fulfill a particular quality requirement [44, 204]. From an architectural
view a tactic may affect the overall architecture only slightly or, in some cases, an
implemented tactic may not be visible in the architecture at all. For example, a
client/server architecture could be augmented by a “Heartbeat” tactic to address
availability [44]. It enables the server to know which clients are still alive; how-
ever, this modification is neither an architectural pattern nor is its implementation
guaranteed to modify existing architectural views.

Introduce concurrency is an example for a performance tactic. It proposes to
process the requests in parallel by processing different event streams on different
threads for processing different sets of activities. This tactic describes a coarse-
grained solution to help achieve response time requirements. Such a tactic can be
mapped to more fine-grained mechanisms such as master-worker. The same holds
for security tactics. For example, maintain data confidentiality can be achieved by
the fine-grained mechanism encryption. To this end, we make use of such fine-
grained mechanisms instead of tactics in the QuaDRA framework. These mecha-
nisms are briefly described in the following.

2.2.4.1 Security patterns and mechanisms

Encryption is an important means to achieve confidentiality. A plaintext is en-
crypted using a secret key and decrypted either using the same key (symmetric
encryption) or a different key (asymmetric encryption). One advantage of sym-
metric encryption is that it is faster than asymmetric encryption. The disadvan-
tage is that both communication parties must know the same key, which has to
be distributed securely or negotiated. In asymmetric encryption, there is no key
distribution problem, but a trusted third party is needed that issues the key pairs.

RBAC Verifying permission is a frequently recurring problem in security rele-
vant systems. Hence, it has been treated in several access control patterns for
the design phase [248, 211]. Access control patterns define security constraints
regarding access to resources. Role-Based Access Control (RBAC) provides
access to resources based on functions of people in an environment, known as
roles, and the kind of permission they have, known as rights.

Digital signature is an important means for achieving integrity and authenticity
of data. Using the digital signature, the Sender produces a signature using the
private key and the data. The receiver ensures that the data is created by the
known sender using the public key.

2.2 Software Architecture Concepts 29

MAC is an important means for achieving integrity and authenticity of data.
Message Authentication Code (MAC) uses a secret key and the data to generate
a MAC. The verifier uses the same secret key to detect changes to the data.

2.2.4.2 Performance patterns and mechanisms

Load Balancer is a mechanism that is used to distribute computational load
evenly over two or more hardware components. The load balancing pattern con-
sists of a component called Load Balancer, and multiple hardware components
that implement the same functionality. The load balancer can be realized as a
hardware or a software component [96].

Master Worker makes it possible to serve requests in parallel, similarly to load
balancing. In contrast to load balancing that uses hardware components, the
master-worker pattern provides a software solution. It consists of a software
component called Master and two or more other software components, called
Worker. The task of the master is to divide the request into parallel tasks and to
forward them to the workers, which manage the smaller tasks [96].

First Things First ensures that the most important tasks will be processed if
not every task can be processed. The problem that this pattern aims at solving
is that a temporary overload of inbound requests is expected. This situation
may overwhelm the processing capacity of a specific resource. The First Things
First pattern uses the strategy of prioritizing tasks and performing the important
tasks with high priority first. In the case of a permanent overload, applying this
pattern would cause the starving of low-priority tasks [220].

Flex Time reduces the load of the system by spreading it temporally. That is, it
moves the load to a different period of time where the inbound requests do not
exceed the processing capacity of the resource. The problem that this pattern
solves is that an overload of the system is expected. The inbound requests ex-
ceed the processing capacity of a specific resource. Flex Time is only applicable
when some tasks can be performed at a different period of time [220].

2.2.5 Viewpoint Models

As the architecture of a software system is a complex construct, it cannot be de-
scribed in one single model. There are several representations of one or more struc-
tures and abstraction levels for software architecture, each of which describes a
separate concern of the architecture [204]. However, ISO/IEC/IEEE 42010 [131],

30 2 Background

which replaced IEEE Recommended Practice for Architectural Description of
Software Intensive Systems [129], provides no commitment what structures (com-
monly called views [204]) are required for software architecture. This ambiguity
in defining a software architecture and its constituents makes the understanding
and communication between the involved groups of stakeholders inefficient and
error-prone [222].

Common architectural view models summarized from the literature [174] are
Kruchten’s 4+1 view model [156], SEI viewpoint model [80], Siemens 4 view
model [126], and Raozanski & Woods view model [204, 245]. Table 2.1 shows the
views of each view model classified into requirement view, design view, and real-
ization view. These view models can be extended with further views if required,
for example for representing quality requirements.

Table 2.1: Overview of common view models

View model Requirement view Design view Realization view
4+1 use case view logical view development view
process view physical view
Siemens - conceptual view code view
module view execution view
SEI - functional view code view
concurrency view |development view
physical view
Raozanski & context view functional view development view
‘Woods information view |deployment view
concurrency view |operational view

2.2.6 Architecture Description Languages vs UML

As the architecture description of a software system is essential for communication
among stakeholders and for being a basis for later phases of software development,
it should be unambiguous. Informal box and arrow diagrams are used by most of
the architects, which are highly ambiguous [187]. Hence, there have been some at-
tempts in the software engineering research community to specify design specific
languages, called Architecture Description Languages (ADLs) [80]. ADLs are a
means for representing the architecture of a software system in a formal way [187].
Some prominent ADLs are Rapide [170], Darwin [171], UniCon [214], etc. How-

2.2 Software Architecture Concepts 31

ever, the ADLs did not become very popular among the practitioners except for a
few in a specific domain [187].

In contrast, the Unified Modeling Language (UML) [235] is being widely
adopted to describe architectural constructs. UML is originally not constructed to
support architecture descriptions, since it does not support architectural concepts
(for example layers) and the successive refinement of design from the architectural
abstractions [80]. UML lacks formal semantics and is therefore a source of ambi-
guity and inconsistency [187]. However, UML has received much attention from
practicing architects as its facilities can be tailored to describe architectures. The
following reasons might contribute to the popularity of UML [187]:

e Providing a graphical representation of the software architecture. Most of the
ADLs are textual and less appealing to the software architects.

e Supporting multiple views which are important to the software architecture.

e Many tools are available for UML. ADLs lack supporting tools.

e UML is a general-purpose modeling language in contrast to most of the ADLs
that are constructed for domain-specific applications.

2.2.7 Architecture Evaluation

Finding errors during requirements analysis or early design and correcting them is
less costly than finding the same errors during testing. An architecture represents
the results of early design decisions. Architecture evaluation helps finding those
errors early to avoid failure. An architecture evaluation determines how suitable
the architecture is with respect to a set of goals and how problematic with respect
to another set of goals. The results of an architecture evaluation are information
and insights about the architecture [80]. Architecture Trade-off Analysis Method
(ATAM) is one of the well-known methods for evaluating architectures [204].
ATAM consists of nine steps categorized in four groups presentation (Steps 1 -
3), investigation and analysis (Steps 4 - 6), testing (Steps 7 and 8), and reporting
(Step 9). The steps are summarized as follows:

1. Present the ATAM: ATAM is described to the assembled participants by the
evaluation leader.

2. Present the business drivers: The business goals motivating the development
effort and the primary architectural drivers (for example high security) are de-
scribed by the project manager.

3. Present the architecture: The architecture is described by the architect focus-
ing on how business drivers are addressed.

32 2 Background

4. Identify the architectural approaches: The architect identifies architectural
approaches.

5. Generate the quality attribute utility tree: Quality attributes comprising sys-
tem utility (performance, security, etc.) are elicited, specified down to the level
of scenarios, and prioritized.

6. Analyze the architectural approaches: Architectural approaches addressing
scenarios identified in the previous step are elicited and analyzed. In this step,
architectural risks, nonrisks, sensitivity points, and trade-off points5 are identi-
fied.

7. Brainstorm and prioritize scenarios: Scenarios are prioritized involving all
the stakeholders.

8. Analyze the architectural approaches: This step re-applies Step 6 using the
highly ranked scenarios from the previous step. In this step, additional architec-
tural approaches, risks, nonrisks, sensitivity points, and trade-off points might
be identified.

9. Present the results: The information collected during the ATAM steps is pre-
sented to the assembled stakeholders by the ATAM team.

2.3 UML Profiles

UML is a widely used notation to express analysis and design artifacts. Therefore,
we use the UML profile for problem frames [115] and the Architecture profile [70]
that extend the UML meta-model to support problem-oriented requirements analy-
sis as well as the representation of quality-based software architecture with UML.
These profiles can be used to create the diagrams for the problem frames approach.
The description of UMLAPF is given in Section 2.3.1 while the Architecture pro-
file is described in Section 2.3.2. In addition, we introduce the dependability pro-
file [114] in Section 2.3.3 that we use for annotating security requirements. The
MARTE profile [233] used for annotating performance requirements is described
in Section 2.3.4.

3 The terms risk, nonrisk, sensitivity point, and trade-off point are defined in Chapter 11 (see
Section 11.5 on page 367) when applying ATAM.

2.3 UML Profiles 33

2.3.1 UML profile for Problem Frames

Hatebur and Heisel proposed a UML profile for problem frames [115] that extends
the UML meta-model. It allows one to express Jackson’s original notation in UML.
Coté et al. [81] developed an Eclipse-Plugin, called UMLA4PF, that facilitates rep-
resenting the different diagrams occurring in the problem frame approach in UML.
The developed plug-in contains a number of validation conditions in terms of OCL
expressions [236] to check the consistency of model elements within one single di-
agram as well as between different diagrams.

Diagram types

Five kinds of diagrams exist in the UML profile for problem frames, namely the
context diagram, problem frame, problem diagram, domain knowledge diagram,
and technical context diagram. To represent these diagrams the corresponding
stereotypes < ContextDiagram>>, < ProblemFrame>>, <ProblemDiagram>>,
<DomainKnowledgeDiagram:>, and <« TechnicalContextDiagram>> have to
be applied. These stereotypes extend the meta-class Package in the UML meta-
model, as illustrated in Fig. 2.2. The context diagram and the technical context
diagram are special cases of a domain knowledge diagram.

«stereotypes qstereotypes
ProblemDiagram TechnicalContextDiagram

Y

) «stereatypes 4
Package | DomainknowledgeDiagram
-

«stereatypes
ProblemFrame =

«stereotypes
ContextDiagram

Fig. 2.2: Diagram types

Domain types

Domains are represented by classes (extending the meta-class Class) with the
stereotypes <Domain>> and <«Machine>>. More specific stereotypes are de-
fined for different types of domains such as <BiddableDomain>>, «Causal-

34 2 Background

Domain>>, and <LexicalDomain>>>. To describe the problem context, a con-
nection domain (<ConnectionDomain>>) between two other domains may be
necessary. Connection domains establish a connection between other domains by
means of technical devices. Examples are video cameras, sensors, or networks.
This kind of modeling allows one to add further domain types, such as < Display-
Domain>> (introduced in [82]), being a special case of a causal domain. Domain
types are shown in Fig. 2.3.

«stereatypes «stereotypes
ConnectionDomain DisplayDomain

e

{um) «stereotypes esterentypes
D . .
Class omain ——| CausalDomain

«stereatypes
L exicalDomain

5} abbreviation: String
&} description: String

<}
wsterentypes P \ sstereotypes
BiddableDomain Desi 1D i Machine

9

Fig. 2.3: Domain types

Statement types

As depicted in Fig. 2.4, domain knowledge («DomainKnowledge>>) and re-
quirements (< Requirement>>) are special kind of statements. Using the attribute
description of the stereotype < Requirement>>, a requirement can be textually
described. Assumptions (<Assumption>>) and facts (<Fact>>) represent spe-
cial kinds of domain knowledge.

Interface types

In problem diagrams, interfaces connect domains. For representing interfaces, we
use associations with the stereotype <connection>> (extending the meta-class

2.3 UML Profiles 35

«stareotypes ()
Stat it | Class

P

sstereotypes asterectypes
Requirement DomainKnowledge

E; description: String [1]

[

sstereotypes wstereatypes
Fact Assumption

Fig. 2.4: Statement types

Association). Using the attribute description of the stereotype <connection>>,
a textual description to an interface can be given. For annotating the interfaces
in a more precise way, more specific connections such as <call_return>> and
< stream>> are available as shown in Fig. 2.5.

Dependency types

Each requirement constrains at least one domain. This is expressed by a depen-
dency from the requirement to a domain with the stereotype <constrains>>. A
requirement may refer to several domains in the environment of the machine. This
is expressed by a dependency from the requirement to a domain with the stereo-
type <refersTo>>. These dependencies extend the meta-class Dependency of the
UML meta-model.

36 2 Background

{um))
Association

$

«steraotypes
connection

= description: String [1]

T N

«stereotypes cstereatypes «stereotypes||«stereatypes | («stereotypes ||estereotypes || «stereotypes
shared_memory| |network_connection || call_retum event stream ui physical
«stereotypes «stereotypes «sterentypes «steraotypes «stereotypes|| «steretypes

wireless remote_call asynchronous || synchronous gui electrical

Fig. 2.5: Interface types

UMLAPF Tool Support

For supporting requirements analysis with problem frames the tool UML4PF [81]
is developed as an Eclipse plug-in®. It contains the UML profile for problem frames
which allows creating problem diagrams as class diagrams in UML. For creating
problem diagrams, we use Papyrus’ as the graphical editor, which is available as
an Eclipse plug-in, open-source, and EMF-based. Nevertheless, any other EMF-
based editor can be used for creating the different diagram types.

UMLA4PF maintains a set of validation conditions expressed in OCL® which can
be validated using another Eclipse plug-in for OCL. The components of UML4PF
are shown in Fig. 2.6. Boxes highlighted in gray denote components that UMLAPF
re-uses and those in white represent those components particularly created for
UMLAPF. The features of UMLA4PF can be summarized as follows:

Requirements Editor supports adding new requirements in a textual form.

6 http://www.eclipse.org/
7 https://eclipse.org/papyrus/
8 http://www.omg.org/spec/OCL/2.0/

2.3 UML Profiles 37

UML4PF - Requirements Editor

— Model Generator

UML Profile ’»‘ odC'- VE'L‘?SW — oot _
— sagen Itor expressions
ffor Problem Frames | | _|nigractive Model- P

Transformer

Edtore.g. | | Egjpseincl. EMF&OCL | sdgen
Papyrus

Fig. 2.6: Components of the UML4PF Tool (taken from [81])

Model Generator automatically generates model elements.

OCL Validator checks OCL expressions for validity and consistency of the re-
quirement models.

sdgen Editor supports editing sequence diagrams.

Interactive Model Transformer supports creating software architectures using
interactive model transformations.

2.3.2 Architecture Profile

We describe the structural view of software architectures by composite structure
diagrams consisting of components and connectors.

Component types

For modeling components in the composite structure diagrams, the UML meta-
class Class is extended by the stereotype <Component>>. For each machine
in the context diagram, one or more architectures are developed. The stereotypes
< Initial_architecture>>, < Implementable _architecture>>, and < Layered_ar-
chitecture>> indicate different stages of the software architecture development
(see Fig. 2.7). Furthermore, the stereotypes < Hardware>> and <Software>>
are introduced for representing hardware and software components.

There are different stereotypes that can be used for the machine domain. If
the machine domain represents a distributed system, one uses the stereotype
<distributed>>. By a local system such as a single computer, the stereotype
<local> is used as shown in Fig. 2.8. It offers the attributes Multiprocessor for
stating whether the system is a multiprocessor system, MemorySpeed for giving

38

2 Background

the memory speed, and OS for describing the operating system. The stereotype
<K process>> expresses a process on a certain platform. A process can be de-
scribed by the attributes Multiprocessor and usedOS. The stereotype <task>>
represents a single task within a process with the attribute usedOS for describing

the used operating system.

Initial_architecture

Implementable_architecture

Layered_architecture

{umi)
Property
«stereotypes
Hardware
{um) \ estereotypes
Class Comp =]
=
«stereotypes
Software
A
«stereotypes estereotypes «stereatypes

Fig. 2.7: Technical component types
fumi)
Class
asteractypes wsterectypes wsteredtypes «sterectypes
Distributed Local Process Task

= Multiprocessor. Boolean
= MemorySpeed: String
= OS5 String

= Multiprocessor. Boolean
= used0S: String

= used0S: String

Fig. 2.8: Component types

2.3 UML Profiles 39

Connector types

For modeling connectors in software architectures, we use the same stereotypes
that we used for interfaces in the UML profile for problem frames. The stereotypes
for connectors, however, extend the meta-class Connector instead of the meta-class
Association for interfaces.

2.3.3 Dependability Profile

We use the UML profile for dependability proposed by Hatebur and Heisel [114]
to annotate problem diagrams with security requirements.

Modeling confidentiality

For modeling a confidentiality requirement, the stereotype < Confidentiality>>
has to be applied. It is a specialization of the stereotype < Dependability>>, as
shown in Fig. 2.9, which extends the meta-class Class in the UML meta-model.
The stereotype < Confidentiality>> states that the confidentiality of the domain
which is constrained in the problem diagram should be preserved by the stake-
holder and its disclosure should be prevented from the attacker. The constrained
domain is a causal domain. The attackers should be described in detail. The objec-
tive, skills, equipment, knowledge, preparation time, and the attack time have to be
described. For describing the attackers, the stereotype <<Attacker> (not shown
in Fig. 2.9) has to be used which is a special biddable domain.

Modeling integrity

For modeling an integrity requirement, the stereotype <Integrity>> has to be
applied which is similarly to the stereotype <Confidentiality>>, a specializa-
tion of the stereotype < Dependability>>, as shown in Fig. 2.9. The stereotype
< Integrity>> states that the data or service of the domain which is constrained
in the problem diagram (constrainedByFunctional) must be either correct or the
domain which is influenced by a violation (influencedViolation) must perform an
action (actionlfViolation).

40 2 Background

Modeling authenticity

An authenticity requirement can be modeled using the stereotype < Authenticity>>.
It is a specialization of the stereotype < Dependability>> (see Fig. 2.9). The
stereotype < Authenticity>> states that access to the influenced domain (influ-
enced) must be permitted for known domains (known) and must be denied for
unknown domains (unknown).

fuml) «stereatypes «steredtypes
Class Dependabhility Confidentiality

£} / constrained: CausalDomain [1..%]
£} stakeholder: Domain [1..7]
] attacker: Attacker[1.%]

A

«stereotypes \

Authenticity «ateraatypes
= #influenced: CausalDomain [1..%] Integrity
= known: Domain _[1--:] =} /constrainedByFunctional: CausalDomain [1..7]
= unknown: Domain [*] =/ actionlfviolation: String [1..%]

= /influencedifviolation: CausalDomain [1..%]

Fig. 2.9: Relevant stereotypes of dependability profile

2.3.4 MARTE Profile

The UML profile for Modeling and Analysis of Real-Time and Embedded sys-
tems (MARTE) [233] adopted by OMG consortium extends the UML modeling
language to support modeling of performance and real-time concepts. MARTE
replaced the UML profile for Schedulability, Performance, and Time specifi-
cation (SPT) [232]. The MARTE profile consists of the three main packages
MARTE foundations, MARTE design model, and MARTE analysis model, shown
in Fig. 2.10.

The package MARTE foundations contains elements to be reused by two other
packages. It consists of the sub-packages for defining core elements (CoreEle-
ments package), modeling non-functional properties (NFP package), time prop-

2.3 UML Profiles 41

erties (Time package), generic resource modeling (GRM package), and resource
allocation (Alloc package).

MARTE foundations

«profiles
CoreElements

eprafiles
Alloc

sprofiles
GRM

«profiles
Time

wprofiles
NFP

A A

MARTE design model MARTE analysis model

«profiles #profiles eprofier

GCM HLAM GQAM

«profiles “profiles «profiles «profile
SRM HRM SAM PAM

Fig. 2.10: Package structure of the MARTE profile

The packages MARTE design model and MARTE analysis model are structured
for designing systems and annotating system properties for analysis purposes. The
package MARTE design model contains the sub-packages Generic Component
Model package (GCM) that supports the modeling of component-based systems,
High-Level Application Modeling package (HLAM) for modeling of high-level
features, Software Resource Modeling (SRM), and Hardware Resource Modeling
(HRM) for detailed modeling of software and hardware resources.

The package MARTE analysis model contains the sub-packages Generic Quan-
titative Analysis Modeling (GQAM), Schedulability Analysis Modeling (SAM), and
Performance Analysis Modeling package (PAM). The package GOQAM provides
generic concepts for analysis modeling that are further specialized by the packages
PAM for analysis of performance properties and SAM for analysis of schedulability
properties.

To model performance requirements and domain knowledge, we use the pack-
ages CoreElements, NFP, Time, GRM, HRM, GOAM, and PAM. There is an open-
source implementation of the MARTE specification based on Eclipse® provided
by Papyrus UML'?, which we use to annotate our requirements analysis models
with performance analysis properties.

9 http://www.eclipse.org/
10 https://www.eclipse.org/papyrus/

42 2 Background

2.4 Life-Cycle Expressions

The problem frames approach decomposes the overall problem into smaller sub-
problems that fit to problem frames. We use lightweight life-cycle expressions to
describe the relation between the requirements of the corresponding problem di-
agrams to be achieved to solve the overall problem. They are used in different
methods of the QuaDRA framework. The life-cycle expressions can be built using
the following syntax.

LC =R | (LC) | [LC] | LC* | LCH |
LC; LC | LC| LC | LC || LC

The syntactical elements have the following semantics. Each requirement R
represents a life-cycle expression. Round braces are used to define the evaluation
order of the expression for a clear precedence of the operators. Let L and M be
life-cycle expressions, then

[L] is the life-cycle, where L is optionally executed.

L* is the life-cycle, where L is executed O or more times.

L™ is the life-cycle, where L is executed at least once.

L; M is the life-cycle, where at first L is executed and then M.

L | M is the life-cycle, where either L or M is executed.

L || M is the life-cycle, where L and M are executed concurrently.

2.5 Variability Modeling

In software product line engineering (SPLE), orthogonal variability modeling
(OVM) describes an approach to capture a product line’s variability. In contrast
to other approaches, which integrate variability into existing design artifacts, (e.g.
using UML profiles, cf. [256]) OVM explicitly captures variability in distinct mod-
els. Using traceability links, elements from OVM models can be connected to
arbitrary design or development artifacts or elements within these artifacts, e.g.
requirements, a state within a UML state machine, or implemented classes [194].

OVM comprises a set of model elements that allow for modeling variability.
The central model element is the abstract variation point (VP). A VP defines a
place where single products may differ. Since a VP is an abstract model element, an
instance must either be an infernal VP or an external VP. Internal VPs are visible
only to the developers, whereas external VPs are visible to every stakeholder. This

2.6 Case Study Smart Grid 43

visibility concept allows for creating views that contain only elements that are
relevant for non-developers.

Since an OVM model defines the variability of an entire SPL, it provides a
concept to derive products. Several model elements (including VPs) support a se-
lection concept. A single product is defined through all elements that have been
selected. To indicate a choice for the developer, selectable VPs may be optional.
In contrast, if a VP is considered essential, it is declared mandatory. A mandatory
VP must be selected for every product.

While VPs define where products may differ, variants define how they differ.
Variants and VPs are linked through variability dependencies (VD), where a vari-
ant has to be associated with at least one VP (in turn, a VP must be associated
with at least one variant). Similar to VPs, variability dependencies may be either
optional or mandatory. If a VP is selected and is associated with a variant through
an optional VD, this very variant may be selected. However, if the association is a
mandatory one, the variant must be selected.

To ensure flexibility in the product derivation, OVM offers the possibility to
define alternate choices. An alternate choice groups a set of variants that are as-
sociated with the same VP through optional dependencies and defines a minimum
and a maximum value. In product derivation, a number of n with minimum <
n < mazimum variants have to be selected if their corresponding VP has been
selected.

Since in practice relationships and interactions between variants and VPs can
be observed, OVM allows for defining these relationships through variability con-
straints. Variability constraints can be set up between two variants, two VPs, or
a variant and a VP. OVM provides two types of variability constraints: requires
and excludes. The requires constraint is directed from a source to a target element
and requires the target to be selected if the source has been selected. The excludes
constraint is undirected and prevents selecting one element if the other element has
been selected.

2.6 Case Study Smart Grid

To illustrate the application of our framework, we use the real-life case study of
smart grid. As sources for real functional and quality requirements, we consider di-
verse documents such as “Application Case Study: Smart Grid” and “Smart Grid
Concrete Scenario” provided by the industrial partners of the EU project NES-

44 2 Background

SoS!!, the “Protection Profile for the Gateway of a Smart Metering System” [155]
provided by the German Federal Office for Information Security'?, “Smart Me-
tering Implementation Programme, Overview Document” [106] and “Smart Me-
tering Implementation Programme, Design Requirements” [105] provided by the
UK Office of Gas and Electricity Markets'?, and “D1.2 Report on Regulatory Re-
quirements [201]” and “Requirements of AMI (Advanced Multi-metering Infras-
tructure”) [200] provided by the EU project OPEN meter'*.

The smart grid case study is suitable for illustrating the applicability of the
methods proposed in the QuaDRA framework due to the following reasons:

Consideration of quality requirements: In the smart grid case study, different
kinds of quality requirements have to be taken into account. We list them in the
following:

Security: For instance, a smart grid involves a wide range of data that should
be treated in a secure way. Additionally, introducing new data interfaces to
the grid (smart meters, collectors, and other smart devices) provides new
entry points for attackers. Therefore, special attention should be paid to se-
curity concerns.

Performance: The number of smart devices to be managed has a deep impact
on the performance of the whole system. This makes performance of smart
grids an important issue.

Considering these different kinds of quality requirements in the smart grid case
study allows us to illustrate:

o the elicitation and modeling of quality requirements (Phase 1: context elici-
tation & problem analysis, Chapter 4)

o the selection of architectural patterns (Phase 2: architectural pattern selec-
tion, Chapter 5)

e the capturing of quality-related domain knowledge and its integration in the
requirement models (Phase 3: domain knowledge analysis, Chapter 6),

o the exploration of quality-specific solution alternatives (Phase 5: quality so-
lution identification & analysis, Chapter 8).

Consideration of stakeholders: Due to the fact that different stakeholders with
diverse and partially contradicting interests are involved in the smart grid, the

11 http://www.nessos-project.eu/
12 www.bsi.bund.de
13 http://www.ofgem.gov.uk

14 http://www.openmeter.com/

2.6 Case Study Smart Grid 45

requirements for the whole system contain conflicts or undesired mutual influ-
ences. Therefore, the smart grid is a very good candidate to illustrate

o the applicability of our method for detecting interactions among functional
and quality requirements (Phase 4: requirement interaction analysis, Chap-
ter 7),

e the resolution of interacting requirements by generating requirement alter-
natives, selecting, and applying quality-specific solution alternatives (Phase
6: quality solution selection & application, Chapter 9),

e the derivation of architecture alternatives (Phase 7: quality-based software
architecture alternative derivation & evaluation).

We give a description of smart grids in Section 2.6.1. Section 2.6.2 presents
the functional requirements of the smart grid case study that we use throughout
this work. The relevant security and performance requirements are given in Sec-
tions 2.6.3 and 2.6.4.

2.6.1 Description of Smart Grids

To use energy in an optimal way, smart grids make it possible to couple the genera-
tion, distribution, storage, and consumption of energy. Smart grids use information
and communication technology (ICT) which allows for financial, informational,
and electrical transactions.

CLs

. (e.g. e-car)

{e.g. solar planet) ~

i
Consumer

LMN

Meter

Gateway (TOE) C >}

=)
WAN Authorized

Authorized externalentity

external entity

Fig. 2.11: The context of a smart grid system

46 2 Background

Figure 2.11 shows the simplified context of a smart grid system based on the
protection profile [155]. We first define the terms specific to the smart grid domain
taken from the protection profile:

Gateway represents the central communication unit in a smart metering system.
It is responsible for collecting, processing, storing, and communicating meter
data.

Meter data refers to meter readings measured by the meter regarding consump-
tion or production of a certain commodity.

Meter represents the device that measures the consumption or production of a
certain commodity and sends it to the gateway.

Authorized external entity could be a human or IT unit that communicates with
the gateway from outside the gateway boundaries through a Wide Area Network
(WAN). The roles defined as external entities that interact with the gateway
and the meter are consumer, grid operator, supplier, gateway operator, gateway
administrator, ... (for the complete list of possible external entities see the
protection profile [155]).

WAN (Wide Area Network) provides the communication network that intercon-
nects the gateway with the outside world.

LMN (Local Metrological Network) provides the communication network be-
tween the meter and the gateway.

HAN (Home Area Network) provides the communication network between the
consumer and the gateway.

LAN (Local Area Network) provides the communication network that intercon-
nects domestic equipment or metrological equipment!>.

Consumer refers to the end user or producer of commodities (electricity, gas,
water, or heat).

2.6.2 Functional Requirements

The functionality of the smart grid is described as use cases. The use cases given
in the documents of the open meter project are divided into the three categories
minimum, advanced, and optional. Minimum use cases are necessary to achieve
the goals of the system, whereas advanced use cases are of high interest, but might
not be absolutely required, and optional use cases provide add-on functions. As
treating all 20 use cases would go beyond the scope of this work, we decided to

15 In protection profile, LAN is referred to as hypernym for LMN (Local Metrological Network)
and HAN (Home Area Network).

2.6 Case Study Smart Grid 47

consider only the use case Meter Reading for Billing. This use case is concerned
with gathering, processing, and storing meter readings from smart meters for the
billing process. The considered use case belongs to the category minimum.

The protection profile [155, p.18] states that “the Gateway is responsible for
handling Meter Data. It receives the Meter Data from the Meter(s), processes it,
stores it, and submits it to external parties.” Therefore, we define the requirements
RI-R3 to receive, process, and store meter data from smart meters. The require-
ment R4 is concerned with submitting meter data to authorized external entities.
The gateway shall also provide meter data for consumers for the purpose of check-
ing the billing consistency (R5). Requirements with their descriptions are listed in
Table 2.2.

Table 2.2: Requirements for smart metering

Requirement | Description Related
functional
requirement

R1 Smart meter gateway shall receive meter data from smart meters -

R2 Smart meter gateway shall process meter data from smart meters |-

R3 Smart meter gateway shall store meter data from smart meters -

R4 Smart meter gateway shall submit processed meter data to autho-|-

rized external entities

RS The gateway shall provide meter data for consumers for the purpose |-

of checking the billing consistency

R6 The gateway shall provide the protection of integrity when receiving|R1

meter data from a meter via the LMN

R7 The gateway shall provide the protection of confidentiality when re-|R1

ceiving meter data from a meter via the LMN

RS The gateway shall provide the protection of authenticity when re-|R1

ceiving meter data from a meter via the LMN

R9 Data shall be protected from unauthorized disclosure while persis-|R3

tently stored in the gateway

R10 Integrity of data transferred in the WAN shall be protected R4

R11 Confidentiality of data transferred in the WAN shall be protected R4

R12 Authenticity of data transferred in the WAN shall be protected R4

R13 The gateway shall provide the protection of integrity when transmit- |R5

ting processed meter data locally within the LAN

R14 The gateway shall provide the protection of confidentiality when|RS5

transmitting processed meter data locally within the LAN

R15 The gateway shall provide the protection of authenticity when trans- |R5

mitting processed meter data locally within the LAN

R16 Data shall be protected from unauthorized disclosure while tem-|R1

porarily stored in the gateway

48 2 Background

R18 The time to retrieve meter data from the smart meter and publish it|R1
through the WAN shall be less than 5 seconds (together with R20,
R22, R24)

R19 The time to retrieve meter data from the smart meter and publish it|R1
through the HAN shall be less than 10 seconds (together with R21,
R23, R25)

R20 The time to retrieve meter data from the smart meter and publish it|R2
through the WAN shall be less than 5 seconds (together with R18,
R22,R24)

R21 The time to retrieve meter data from the smart meter and publish it|R2
through the HAN shall be less than 10 seconds (together with R19,
R23, R25)

R22 The time to retrieve meter data from the smart meter and publish it|R3
through the WAN shall be less than 5 seconds (together with R18,
R20, R24)

R23 The time to retrieve meter data from the smart meter and publish it|R3
through the HAN shall be less than 10 seconds (together with R19,
R21, R25)

R24 The time to retrieve meter data from the smart meter and publish it|R4
through WAN shall be less than 5 seconds (together with R18, R20,
R22)

R25 The time to retrieve meter data from the smart meter and publish it|RS
through the HAN shall be less than 10 seconds (together with R19,
R21,R23)

2.6.3 Security Requirements

To ensure security of meter data, the protection profile [155, pp. 18, 20] demands
protection of data from unauthorized disclosure while received from a meter via
the LMN (R7), temporarily or persistently stored in the gateway (R9, R16), trans-
mitted to the corresponding external entity via the WAN (R/7), and transmitted
locally within the LAN (R/4). The gateway shall provide the protection of au-
thenticity and integrity when receiving meter data from a meter via the LMN, to
verify that the meter data has been sent from an authentic meter and has not been
altered during transmission (R6, R8). The gateway shall provide the protection of
authenticity and integrity when sending processed meter data to an external entity,
to enable the external entity to verify that the processed meter data has been sent
from an authentic gateway and has not been changed during transmission (R0,
RI12,RI13, RIS).

2.6 Case Study Smart Grid 49

2.6.4 Performance Requirements

The report “Requirements of AMI” [200, p. 199-201] demands that the time to
retrieve meter data from the smart meter and publish it through the WAN shall be
less than 5 seconds. Since we decompose the whole functionality, from retriev-
ing meter data to publishing it, into requirements R/-R4, we also decompose this
performance requirement into the requirements R/8 (related to R1), R20 (related
to R2), R22 (related to R3), and R24 (related to R4). The requirements RIS, R20,
R22, and R24 shall be fulfilled in a way that in total they do not need more than 5
seconds.

Further, the report “Requirements of AMI” states that for the benefit of the
consumer, actual meter readings are to be provided to the end consumer device
through HAN. It demands that the time to retrieve meter data from the smart meter
and publish it through HAN shall be less than 10 seconds. Similar to the previous
requirement, we decompose this requirement into the requirements R/9 (related
to RI), R21 (related to R2), R23 (related to R3), and R25 (related to R5). These
requirements together shall be fulfilled in less than 10 seconds.

2 Springer
http://www.springer.com/978-3-658-17693-8

Bridging the Gap between Requirements Engineering
and Software Architecture

& Problem-Oriented and Quality-Driven Method
Alebrahim, A,

2017, X, 500 p. 141 illus., Softcover

ISBEN: 978-3-658-17693-8

	2
Background
	2.1 Requirements Engineering
	2.1.1 Quality Requirements
	2.1.2 Problem Frames

	2.2 Software Architecture Concepts
	2.2.1 Definition of Software Architecture
	2.2.2 Difference between Architecture and Design
	2.2.3 Architectural Patterns
	2.2.4 Quality-specific Mechanisms and Tactics
	2.2.5 Viewpoint Models
	2.2.6 Architecture Description Languages vs UML
	2.2.7 Architecture Evaluation

	2.3 UML Profiles
	2.3.1 UML profile for Problem Frames
	2.3.2 Architecture Profile
	2.3.3 Dependability Profile
	2.3.4 MARTE Profile

	2.4 Life-Cycle Expressions
	2.5 Variability Modeling
	2.6 Case Study Smart Grid
	2.6.1 Description of Smart Grids
	2.6.2 Functional Requirements
	2.6.3 Security Requirements
	2.6.4 Performance Requirements

