2. Foundations and Research
Field

The concept of workload is one of the most fundamental aspects in perfor-
mance evaluation of modern computer and communication systems. While
a precise definition of a system’s workload is elusive, a commonly accepted
definition considers the amount of requests offered to a system by its users
during some specific period of time [Fer72, Fer84]. For instance, if the
System Under Test (SUT) is a stand-alone Web server, then its workload
consists of all queries submitted to the server during an observation interval.
A similar definition of a workload can be found in [MADO4]. A system’s
workload is defined as a set of all inputs that the system receives from its
environment. In the context of workload for computer networks, the system
is usually represented by the communication system serving the requests
with their corresponding resource demands. It becomes apparent, that the
workload induced in the communication system is mainly characterized by
the requests offered to it. So, for the purpose of workload modelling, the
requests, which may be created by the environment and handed over to the
system, along with their resource demands have to be described precisely.

A solid understanding of how users typically behave when interacting with
an application and the workload patterns derived from such behaviour helps
the researcher to identify not only users’ needs but also application features
that are more useful and attractive as well as possible system vulnerabilities.
Moreover, the performance optimization, tuning, and management of a
system with many clients and complex server and network infrastructures,
which is typical of many popular Internet applications like, e.g., YouTube
or online social networks, depend heavily on an accurate knowledge of the
workload typically experienced by such a system.

Therefore, the measurement, characterization, modelling, and generation
of real workloads are the key steps driving the design of new cost-effective
network applications and services as well as the optimization of existing ones
[AlA11].

© Springer Fachmedien Wiesbaden GmbH 2017
A. Kolesnikov, Load Modelling and Generation in IP-based
Networks, DOI 10.1007/978-3-658-19102-3_2

18 2. Foundations and Research Field

Workload characterization: consists of identifying the basic components
that compose the target workload, which depend both on the nature of the
target application and on the purpose of the characterization.

Workload modelling: consists of building a representation that mimics the
real workload under study, based on the identified components.

Workload measurement: is a key step to all tasks in performance engi-
neering and relates to gathering representative datasets to support the
characterization task, helping the researcher to obtain workload parameters
and establish a link between the real workload and its model.

Workload generation: consists of the injection of requests, flows, or packets
into a network in a controlled manner. At this point, synthetic (or artificial)
workload and traffic generators can be used to create synthetic loads and
inject synthetic traffic at different interfaces in real or simulated networks
according to a workload or traffic model specified by the experimenter.

Understanding of the important characteristics of offered workloads can
help to improve the design and construction of efficient network systems and
mechanisms. Realistic workload models can further support cost-effective
capacity planning, network and service dimensioning and management deci-
sions, and support performance analysis and optimization studies. Further-
more, workload and traffic models are very often indispensable for generating
synthetic workloads and traffic for experimental purposes during load testing
in the networking research community and industry. We discuss this issue
in the next section in more detail.

2.1. Workload Modelling and Specification
Techniques

A large number of workload and traffic models for different sources of load
and traffic has been proposed in the networking research community. The
studies may differ, among others, in:

The type of workload or traffic sources: the characterization, modelling
and simulation of network workloads can be related to different (types of)
network applications or services, e.g.:

e Web workloads have been studied, e.g., in [BMS11, BMS14] in terms of
different content and service complexity metrics. Characteristics of the

2.1. Workload Modelling and Specification Techniques 19

resulting Web traffic have been investigated, e.g., in [[hP11] in order to
improve the service response time and to evaluate the effectiveness of
caching and intermediary systems. The author in [Chal0] used active
measurements to obtain a set of different characteristics of Web workloads
and traffic in order to assess the efficiency of client side caching for
modern Web sites. The study [SAMFU12] discovered potential pitfalls
in the analyses and modelling of Web/HTTP traffic, such as the non-
consideration of persistent connections or pipelined requests, and the
mismatches between the values reported in the request headers from the
actual content type and data volume being transmitted. The authors in
[CaM10] analysed the Web traffic intensity and its temporal variability
using the Web server logs.

e Voice traffic from Voice over Internet Protocol (VoIP) applications using
different types of voice codecs has been analysed in a series of studies
[MSS05, PEA05, HGB06, MBM09, HHCW10]. The large-scale study in
[BMPR10] presents results of VoIP traffic measurements and analyses
at a backbone link of a commercial ISP in Italy.

e Video traffic from live video streaming applications has been studied, e.g.,
in [BMWO05] using the UDP protocol for the delivery of video packets,
or in [BBM10] for the delivery of real-time video streams using the TCP
protocol. A large-scale study of video streaming applications in opera-
tional networks presented, e.g., in [EGRSS11] may help to understand
such important video streaming characteristics as the use of the adaptive
bit rate streaming protocols, achieved streaming rates, and details of the
user behaviour (e.g., the content popularity or number of cancelled video
sessions). The results of the study may be used, e.g., in order to identify
potentials for object caching during the delivery of the video content.
Further, a number of models for MPEG-like encoded VBR video traffic
sources considering different types of frames in the video stream have
been proposed [Ros95, SRS03].

e The live (multicast) TV component of the Internet Protocol Television
(IPTV) service has been studied, e.g., in [CRCM08, QGL09, GJR11]
in respect to the user access patterns, channel popularity or switching
dynamics of the users in such a system. Corresponding analyses of
the Video on Demand (VoD) service component (where the user access
patterns have a direct impact on the performance of the VoD servers)
have been presented in [GJCG13]. An extensive empirical analysis of
access patterns and user behaviour in a large centralized VoD system at
China Telecom has been conducted in an earlier work [YZZZ06]. Further,

20 2. Foundations and Research Field

results of statistical analysis and modelling of VoD and VoIP workload
characteristics in a nationwide commercial IP network in Korea have
been presented in [CSK11].

e Analyses of SMTP and POP3 email traffic have been conducted, e.g.,
in [OhCO05, AcP12]. Further, models to study the evolution of email
networks in 3G mobile network scenarios have been presented in [SKRO7].

The purpose of the study: one of the major objectives of workload char-
acterisation and modelling studies is the identification and analysis of
basic components that compose the target workload. Understanding of
the key workload features can significantly contribute to the design and
development of efficient network applications, services, and systems. For
example, analyses of the video content popularity [YZZZ06, CKR09] can
help to improve the corresponding techniques for the popularity prediction
and to support the design of more effective caching and content delivery
strategies [HLRO7, QGL09, EGT11].

Realistic workload and traffic models can be used in performance analysis
and optimization studies and support capacity planning and dimensioning
decisions for different network applications and services. For example, traffic
models for HTTP, FTP, near real-time video streaming, VoIP, gaming,
and live video streaming sources have been used in the specifications
of standards proposals for different network technologies, e.g., for the
performance evaluation of the cdma2000 systems [3GPP2] or the multi-
hop relay system in the IEEE 802.16 broadband wireless access systems
[IEEE802.16].

The studies may also focus on the investigation of temporal variations in
the network workload and analyses of the distinct hourly, daily and weekly
patterns which may be present in the corresponding traffic [SPT07]. On the
one hand, when the workload is analysed over a period of great variability
and treated as a static snapshot, the analysis will reflect an “average”
behaviour which might not accurately describe the workload experienced
by the network at any time interval. On the other hand, a sound workload
characterization should be performed over time periods of approximate
stability, to avoid introducing spurious effects due to the aggregation of
multiple workloads [AlA11]. For example, Gaussian traffic models have
been used in [Has06] to bound the probability of overload on network links
and other network resources, which only take the stationary distribution of
the traffic rate into account.

2.1. Workload Modelling and Specification Techniques 21

Further, the workload studies may be concerned with the evolution of
network applications and services, which results in permanently changing
workload patterns. A thorough understanding of the dynamic workload
properties can be exploited in order to optimize the system performance.
For example, understanding of the evolution of the user behaviour and
workload offered to the YouTube and similar Web 2.0 video sharing services
is crucial to evaluate the data rate requirements and scalability of the
YouTube (and similar Web 2.0) video sharing sites [AbS10]. Furthermore,
the analyses of the distribution of the popular video files suggest that proxy
caching of the popular YouTube videos can reduce the network traffic and
increase the scalability of the YouTube Web site.

The workload modelling studies can also be focused on the identification of
qualitative patterns (also called invariants) that may hold across different
workloads of the same target application or different applications of the
same type (e.g., file transfer, Web traffic, video streaming, etc.) and
may provide a valuable and accurate insight into the application design,
optimization, and management [FGV06].

Finally, workload and traffic models can be used for the generation of
network workloads and the corresponding traffic in network simulations
[CCG04, LAJ07] or real network testbeds [BPGP12, BDP12].

The origin of the analysed workload or traffic: for example, workload mod-
elling studies may follow a source-based approach and concentrate on
the characterization of traffic generated by different (types of) appli-
cations and services running on the single hosts in the network (e.g.,
[DPRPV08, ViV09]). Or the studies may also consider the aggregated traf-
fic as it appears, e.g., on backbone or high-speed access links, and analyse
the effects of superimposition of multiple synthetic traffic sources (e.g., the
temporal variability [Has06, LBFE09] and dependency of aggregated traffic
characteristics [SPTO07]).

The modelling methodology: for example, the class of the underlying sto-
chastic model used in the development of the concrete workload or traffic
model (see below).

The challenging task of workload characterization and modelling is further
exacerbated by the problem of limited availability of real representative work-
loads for the analyses due to privacy restrictions imposed, e.g., by service
providers or governmental law authorities. For this reason, measurement-
based studies may very often rely on data sampling, thus raising the issue of

22 2. Foundations and Research Field

a possible sampling bias and its implications for accurate workload charac-
terization [MMVO05].

Furthermore, workload modelling studies may require large-scale real-world
datasets, which may be collected also for different (types of) applications,
across different periods of time (cf. the large-scale studies of user access
patterns for live (multicast) IPTV [GJR11] or VoD applications [GJCG13]).
In such large-scale scenarios, the use of (partially available) local user access
patterns would have inherent limitations in the face of the country-wide
or global nature of the considered applications or services. Once again,
availability of traces with real measurement data is often a strongly restricting
factor, so that the researchers may be inclined to rely on simulation models
to conduct their design and development efforts [CSK11].

Workload characterization and modelling studies can employ a variety
of different modelling techniques, ranging from conventional inferential
statistics, to more sophisticated methods using Markov models, Markov-
modulated processes [Kin90], or arrival curves [KiTO06], in addition to
clustering, principal-component analysis, and other data mining techniques
[HMS00, Jai91]. Furthermore, there exist a series of very complex stochastic
processes aimed mainly at modelling of temporal dependencies in traffic
characteristics at different time scales (e.g., Fractional Auto-Regressive
Integrated Moving Average (FARIMA) [SSLL09], Fractional Sum-Difference
(FSD), or Finite Brownian Motion (FBM), cf. [GrS05)).

Generally, the workload characterization and modelling is a very broad re-
search field with a plethora of studies with their respective specific modelling
purposes and objectives. However, not every workload model developed in
such studies can be directly used for the generation of realistic synthetic
network load or traffic for experimental purposes. At this point, a representa-
tion of the workload or traffic (model) which can be executed in a workload
or traffic generator is of particular importance. Therefore, we recall that one
of the major objectives of this thesis is the elaboration of a generally appli-
cable method for the sufficiently formal, precise, and complete description of
workload models which would allow one to generate the corresponding real
workloads or traffic as a sequence of requests at different service interfaces
in networks. The development of workload models for concrete types of
applications or services in networks is, however, not in the primary focus of
this thesis.

In the following sections we present some selected well-known methods
proposed for modelling and specification of workloads in the networking
research community. Some of these methods may allow to reflect only one
specific characteristic (or dimension) of workload, e.g., packet inter-arrival

2.1. Workload Modelling and Specification Techniques 23

time or packet size. For example, the models based on the class of univariate
Markov processes [Kin90] or arrival curves [KiTO06] can, in general, support
only one such dimension. This fact may represent a significant challenge for
modelling (in respect to the complexity of the resulting model) because real
network workloads do very often possess a number of different (and possibly
also dependent) characteristics.

2.1.1. Selected Workload Modelling Techniques

In this section we first present the Markov Modulated Poisson Process
(MMPP) [Hef80], Poisson Pareto Burst Process (PPBP) [ZNAO03], and
Batch Markovian Arrival Process (BMAP) [Luc91l] model classes which
can be used for modelling of network workloads in particular in order to
describe the burstiness in the observed traffic. Next, we describe the Hidden
Markov Model (HMM) [Rab89] model class which, among others, provides
a means to build workload models capable to jointly take into account the
first order statistics as well as temporal dynamics and correlation of different
network traffic characteristics such as the inter packet time and packet size.
Finally, we shortly address the techniques for modelling advanced properties
of network workloads such as self-similarity and long range dependence.

Markov Modulated Poisson Process (MMPP)

Markov Modulated Poisson Process (MMPP) is a generalisation of the
Poisson process where the job arrival rate may change over time. The use of
MMPP for the modelling of network traffic has been first proposed in [Hef80].
An m-state MMPP can be viewed as m independent Poisson processes where
\; is the arrival rate of the i*" process. An underlying continuous-time m-
state Markov chain determines which of m arrival processes is active, i.e.,
the one in accordance with which arrivals are generated. After the i*" arrival
process is activated, it remains active for an exponentially distributed amount
of time with mean 0;1. At the end of the active period, the j** process is
chosen as the next active process with probability p; ; where >, p;; =1
and p; ; = 0. So, an m-state MMPP can be characterized by the parameters
iy O'Z-_l, and p; j, where 7,5 = 1,2,...,m.

The effectiveness of MMPP as a traffic model and, in particular, its
ability to capture the burstiness in the traffic, have been evaluated, e.g.,
in the context of resource provisioning in Web applications [RCW12]. An
important issue is the estimation of parameters of an MMPP such that the
job arrivals generated using this MMPP have statistical properties that are

24 2. Foundations and Research Field

similar to those derived from a real trace. Therefore, several algorithms
have been proposed in the literature to fit an MMPP to the observed data
[HeL86, DeM93, BaF07].

Poisson Pareto Burst Process (PPBP)

The use of Poisson Pareto Burst Process (PPBP) for the modelling of aggre-
gated traffic as it appears, e.g., on backbone or high-speed access links or in
the Internet, has been first proposed in [ZNA03]. PPBP allows to specify
multiple overlapping bursts whose lengths follow a heavy-tailed (Pareto)
distribution. The authors in [ZNAO03] presented methods to map the param-
eters of the PPBP to the set of measurable network traffic characteristics,
described a technique for fitting the PPBP to a given traffic trace, and
showed the ability of PPBP to accurately predict the queueing performance
of a sample trace of aggregated Internet traffic.

Batch Markovian Arrival Process (BMAP)

The (continuous-time) Batch Markovian Arrival Process (BMAP) was pro-
posed by Lucantoni [Luc91] as a generalization of the (simple) Markovian
arrival process (introduced, e.g., in [LMN90]) by allowing more than one
arrival at a time. The use of the BMAP model class for the development of
analytically tractable models for aggregate IP traffic focusing on the bursti-
ness and self-similarity properties is presented, e.g., in [KLL03]. The use
of a discrete time version of the BMAP process model (called dBMAP) to
characterize the long-range dependence present in traffic traces of aggregate
link traffic has been proposed, e.g, in [SPV04]. The proposed model jointly
characterizes the packet arrival process and the packet size distribution of
IP traffic. In particular, packet arrivals occur according to a discrete-time
Markov modulated Poisson process (called dAMMPP) and, each arrival is
further characterized by a batch whose size has a general distribution that
may depend on the phase of the AMMPP describing the packet arrival pro-
cess. The authors developed a parameter fitting procedure that is capable of
achieving accurate replication of queuing behaviour for IP traffic exhibiting
long-range dependence.

Hidden Markov Models (HMM)

Hidden Markov Models (HMM) have been used, e.g., in [SaV01, WWT02]
for modelling the states of packet channels using the corresponding loss
probabilities and end-to-end delay distributions. Further, a specific HMM has

2.1. Workload Modelling and Specification Techniques 25

been proposed in [DPRPVO08] and used for the packet-level characterization
of the network traffic in terms of the Inter Packet Time (IPT) and Packet Size
(PS) stochastic processes. The authors in [DPRPV08] followed a source-based
approach, i.e. sessions of traffic generated by different network applications
and services running on single hosts have been analysed separately (and the
proposed models do not focus on aggregated traffic which can be observed,
e.g., on backbone or high-speed access links). A Hidden Markov Model can
be defined as a probabilistic function of a (hidden) Markov chain and is
composed of the following two variables:

e The hidden-state variable z,,, whose temporal evolution follows a Markov-
chain behaviour. The state at discrete time n is represented by z, €
{$1,...,8n} where N is the number of states.

e The observable variable v,,, that stochastically depends on the hidden state.
The observable at discrete time n is represented by y, € {o1,...,0n}
where M is the number of observables.

The authors of [DPRPV08] adopted a specific HMM with the discrete
random state variable x,, introduced to account for memory and correlation
phenomena between IPT and PS, which are assumed to be statistically
independent given the state. The observable variable is a continuous bi-
dimensional vector y, = [d, bn]T where d,, and b,, describe the IPT and
the PS for the nth packet, respectively, and are specified by means of
conditionally independent (given the state) Gamma distributions. The
proposed model allows to capture important joint dynamics (in terms of
both marginal distributions and auto- and cross-covariances) of IPT and
PS and remains still analytically tractable. Further, the model capabilities
of learning, generation, and prediction have been evaluated and concrete
realistic packet-level models have been constructed from the automated
analysis of empirical traffic traces. The approach has been applied to
traffic traces of various application-layer protocols and services, e.g., Simple
Mail Transfer Protocol (SMTP), HTTP, an online network game, and an
instant messaging application. The obtained models have been validated by
comparing the synthetically generated sequences of IPT-PS pairs with the
corresponding values from the original traces. The experimental investigation
conducted by the authors revealed that the proposed HMM-based models
can provide acceptable results with a moderate number of states (N =5
for SMTP and HTTP models, or N = 4 for online gaming and instant
messaging models).

26 2. Foundations and Research Field

Modelling of Advanced Characteristics of Network Workloads

Investigation of the effects of advanced traffic properties such as traffic
variability (i.e. fluctuation of traffic characteristics as a function of time)
has been a subject of a large number of studies in the networking research
community (cf. [WTSW95, CrB96, SPT07, CMCS08, FCS08, LBFE09,
SSLL09], to name a few). High variability in traffic may have, under certain
conditions, a significant impact on the network performance [LTWW94,
ENWO96] and its understanding can help to improve the efficiency of different
network techniques such as traffic-control mechanisms and QoS schemes
[SPT07, LBFEQ9].

One of the reasons for the high variability in traffic could be the long-range
dependence (LRD) property of the traffic process (if such property can be
observed in the concrete traffic trace). In general, a (weakly) stationary
discrete-time real-valued stochastic process X = {X,,,n=0,1,2,...}, with
mean p = E[X,] and variance 0% = E[(X,, — p)?] < oo, is long-range-
dependent if Y °_ r(m) = oo, where r(m) measures the correlation between
samples of X separated by m units of time. If Y>> r(m) < oo, then X is
said to exhibit short-range dependence (SRD).

Several possible causes of correlation and LRD in the aggregated IP
traffic have been identified, such as the inherent structure and interactions
of protocol layers [MiG98] or the superimposition of traffic sources with
heavy-tailed distributions of the transfer durations [CrB96, WTSW95], the
latter being sufficient for the generation of self-similar traffic. Self-similar
processes are often used to build models of traffic which possess the LRD
property.

Self-similarity in the context of network traffic refers to the scaling of
variability (i.e. burstiness) in traffic. A time series X = {X;,t =1,2,...} is

said to be exactly second-order self-similar if X, 4o H Z;itm(t—l)-i-l X, for

HeR,1/2 < H <1 and Vm > 0 where 2 means equality in distribution
and m is the time lag [CrB96]. The parameter H (which is called the Hurst
parameter) measures the degree of self-similarity for the random processes
used for modelling network traffic and represents, basically, a measure of
the speed of decay of the tail of the autocorrelation function. The definition
suggests a simple test for self-similarity in network traffic, called the variance-
time plot. In such a test the variance of Z?:m(tq) 41 X is plotted against
m on log-log axes, where the X; are measurements of traffic in bytes or
packets per time unit. Linear behaviour of the plot with the slope greater
than —1/2 suggests non-trivial self-similarity in the random process used for

2.1. Workload Modelling and Specification Techniques 27

traffic modelling. For further details on the self-similar processes we refer
the reader, e.g., to [GrS05].

We should emphasize, that in this thesis we follow rather the source-based
approach to workload modelling. According to such approach, the workload
model aims to characterize and analyse separately several sessions of traffic
generated by different applications or services on single network hosts and
does not focus on the aggregate link traffic (as it may appear, e.g., on
backbone or high-speed access links or in the Internet). The possible effects
of the superimposition of multiple synthetic traffic sources, e.g., the presence
of self-similarity or long range dependence in the aggregated synthetic traffic,
is outside of the scope of this thesis.

2.1.2. Selected Workload Specification Techniques

In the following we will introduce the user behaviour graphs, finite state
machines, and timed transition automata as a possible means for the specifi-
cation of user behaviour models.

User Behaviour Graphs

The user behaviour graphs have been proposed by Ferrari [Fer84] in order
to describe workloads offered to an interactive communication system whose
performance can be analysed by a product-form closed queueing network
model satisfying the conditions of the BCMP theorem [BASK75, Kin90]. The
basic component of the workload were the possible types of user commands
or interactions of the terminal users with the system. The offered workload
has been described as a set of partially overlapping sequences of commands
issued by terminal users.

In order to describe the behaviour of each of the m interactive terminal
users of the system a probabilistic user behaviour graph has been introduced
in [Fer84]. Each node in the graph represents an interactive command type,
with the exception of node 0, which is the “dormant node”. Users who are
not using the system reside in node 0. When a terminal session starts, the
state of the terminal user becomes 1 (the “login node”). During the session,
different commands are executed by the user and the corresponding nodes
of the graph are visited following the arcs of the graph. At the beginning of
each terminal time period, a terminal user chooses the next command based
on the probabilities from the user behaviour graph. The R different possible
command types modelled in the request nodes in the graph are modelled as
R different classes of customers in the queueing network.

28 2. Foundations and Research Field

It should be noted, that the interactive workload to be modelled and the
workload model to be constructed have been assumed to be stationary in
[Fer84]. This means that the desired workload model is not intended to
reproduce any particular dynamic variations in workload characteristics and
aims at reproducing the approximately similar time-invariant distributions
of characteristics of the original workload.

The representation of the workload model by means of user behaviour
graphs has been used in [Fer84] in order to analyse the problem of reducing
the number of command types that appear in the workload model while
preserving their relative frequencies of occurrence. The author has shown,
that the workload model resulting from a simple aggregation of command
types in command classes (which may ignore the existing sequential depen-
dencies among different command types) may be — under certain conditions
such as steady-state assumption, product-form queueing model — sufficient
to generate workloads with similar characteristics as in the case when the
sequential dependencies are considered.

User behaviour graphs have been used, e.g., by Calzarossa [CMT90] or
later by Menascé [Men03, MeV00] as customer behaviour model graphs
(CBMGs) and customer visit models (CVMSs) for the modelling of workloads
induced by Web e-business applications.

Finite State Machines

Finite state machines provide a simple and straightforward technique for the
specification of workload models because they allow one to directly represent
the waiting of the entities for certain events (inputs), and their reaction to
them (outputs) including the transition to a successor state.

A finite state machine® can be defined (cf. [Konl2]) as a quintuple
(S,1,0,T,sq), where

e S is a finite, non-empty set of user states (|.S| < 00),
e [a finite, non-empty set of inputs,

e O a finite, non empty set of outputs,

T CSx(ITU{r}) x O x S a state transition function, and

sg € S is the initial state of the automaton.

IThe terms finite state machine and automaton are used synonymously in the following.

2.1. Workload Modelling and Specification Techniques 29

A transition ¢t € T is defined by the quadruple (s,3,0,s’) whereby s € S
denotes the current state, ¢ € I U {7} an input (event), o € O the associated
output, and s’ € S the successor state. Note that 7 ¢ I is a special event
which designates an empty input and can be used for modelling spontaneous
transitions to describe internal events. The execution of the transitions takes
place simultaneously.

It should be noted that finite state machines allow to describe only the
functional control flow, e.g., the sequences of requests submitted by the
service users at a service interface. However, the automaton may become too
complex (in terms of the number of required states) in case when changes in
the data structures (e.g., the modifications of values of request attributes)
or timing aspects are to be represented. Therefore, different extensions of
the basic automaton concept have been proposed in order to be able to
adequately represent the data flow and the timing aspects.

The concept of finite state machines has been used as a foundation for the
user behaviour automata introduced by Wolfinger in [WoK90]. In Sec. 3.2 of
this thesis, we present a generalization of the basic concept of user behaviour
automata and propose a set of extensions which are required for the adequate
representation of data flows and timing aspects during the specification of
network workload and user behaviour models.

Timed Transition Automata

The concept of timed transition automata has been used, e.g., in [MJS08]
for the specification of possible user interactions in structured interface
environments like, e.g., Web applications and Web services. The domain
of the action types available to a user in such an environment has been
described by a state transition diagram extended with time constraints and
each possible type of action is represented by a state transition label in the
automaton.

A timed transition automaton (TTA) can be defined (cf. [AID94]) as a
tuple (3, S, sg, C, E, F') where

e Y is a finite alphabet,
e S is a finite set of states,

e 5y is an initial state,

C' is a finite set of clocks,

e [C S is a set of final acceptance states,

30 2. Foundations and Research Field

e £ C SxSxYx2%x®(C) defines the transition table for the automaton.
Each transition e € E is a quintuple e = (s,,a, A, d) representing a
transition from state s into state s’ on input symbol a which can occur at
a certain time 7 when clock constraint § is verified by the current values
of clocks. The transition also resets to 0 the clocks from the subset A C C'
of clocks.

A TTA is able to recognize timed words, i.e. a finite sequence of pairs
[(a0,70)s - - -, (ak, 7)) made by symbols a; € ¥* over a given alphabet ¥ and
time values 7; € R for i € [0, k] with 7; < 7341 with ¢ € [0,k — 1]. The pairs
in the sequence can be seen as a sequence of log records, describing user
actions or events annotated with the time in which they occurred.

The TTA has been used in [MJS08] to specify the timing constraints for
the user actions to be executed only when some certain time conditions are
met (e.g., submitting a reply from a server search engine within a given
interval of time). A domain automaton can then be defined in order to
represent the legal sequences of user actions which can occur in the system.

2.2. State-of-the-Art in Workload Generation

Generation of realistic synthetic workload and traffic is very often required for
experimental activities in networking research. The corresponding workload
and traffic generators can be implemented as hardware or software platforms
or include both hardware and software components.

Commercial hardware platforms are typically able to reach a high degree
of performance and precision and are usually provided with detailed data-
sheets containing certified specifications of the supported precision and
performance characteristics (e.g., packet and data rate). Therefore, due to
their reliability, the hardware-based platforms can be indispensable, e.g.,
for performance, capacity, and stress tests of different network hardware
appliances and devices (such as switches, routers, firewalls, IDPSs, etc.).

For example, Spirent AX/4000 [AX4000] is a large-scale feature-rich
high-performance hardware traffic generator with a modular, multi-port
architecture capable of testing access, mobile backhaul, routing, multicast,
switching, MPLS and other technologies in Asynchronous Transfer Mode
(ATM), IP, Frame Relay and Ethernet networks at speeds up to 10 Gbps.
The platform provides a set of different conformance test suites for a number
of protocols and a set of corresponding traffic models. Hardware appliances
(such as IXTA Optixia series [IXTA], Agilent/HP 1735A LAN Protocol test
modules, or Napatech [Napatech] devices) can also perform a trace-replay,

2.2. State-of-the-Art in Workload Generation 31

i.e., inject traffic from a trace captured on real network links. However, as
the corresponding models and the trace replay capability are implemented in
hardware, introducing new features is rather difficult and the approach may
not provide a sufficient flexibility for selected test scenarios. In particular,
hardware-based traffic generators can hardly be deployed on a large number
of nodes (mainly due to economical reasons), which may in some way limit
their applicability in tests to be performed with complex workloads in large-
scale networks or testbed scenarios in order to be representative of the
reality.

In contrast to a limited flexibility of hardware-based generators, software-
based generators typically allow a very easy configuration of the traffic stream
to be generated (often with graphical interfaces) and can be rapidly modified
and extended for a specific research purpose. Such, new features, statistical
models, support of additional protocol stacks, new operating systems and
hardware platforms can be added and the tools can be more easily deployed
onto a large number of network nodes in order to reproduce distributed
scenarios. Moreover, when executed on top of real operating systems and
network protocol stacks, the software-based generators may allow to perform
more realistic experiments and to test concrete implementations of different
protocol mechanisms [BDP10].

However, the software-based platforms inherently rely on the used hard-
ware (which may be intentionally chosen to be commodity or Commercial
off-the-shelf (COTS) hardware for economical reasons), the adopted oper-
ating system (which may provide explicit real-time extensions), and the
software configuration of the host(s) used for traffic generation. For this
reason, the accuracy, precision and performance characteristics of the traf-
fic generation process can strongly vary among different software-based
generators.

In the following, we will concentrate on the software-based workload and
traffic generators. Generally, software-based workload generators can be
classified according to the modelling methodology which has been applied in
the underlying workload model and implemented in the generator, while the
particular differentiating factors may be, e.g.:

Abstraction level: is determined by the types of objects and entities consid-
ered in the underlying workload model. For example, in case of application-
level model of Web traffic, the HT'TP request/response pairs exchanged
between the Web client and the Web server may be such entities. On
the flow-level, the traffic can be described by means of flows (identified
by the IP address and port number of the sender and the receiver and

32 2. Foundations and Research Field

the number of the transport protocol to be used, e.g. TCP, UDP, or
Stream Control Transmission Protocol (SCTP)) with the specified number
of packets, bytes, and duration. On the packet-level, the traffic may consist
of packets characterized by means of stochastic variables for the distribution
of the packet inter-departure times and packet sizes.

Generation method: the two major approaches to generate synthetic net-
work workload are trace-based and analytical model-based methods which
can be applied at different abstraction levels (see above). Because of the
well-known strengths and weaknesses of these two approaches, workload
generators can combine both techniques in order to achieve a higher degree
of flexibility.

Recall that trace replay provides a simple, straightforward technique to
inject traffic with almost arbitrary application payload pattern and may
be very useful in situations when traffic to be generated is not responsive
to changing network conditions. However, the experiments may be limited
to the concrete available traces and their characteristics. Further, relevant
traffic traces may be subject to privacy restrictions imposed by service
providers and are hardly available for the purpose of testing (while storing
such traces may be officially forbidden).

As opposed to the traced-based techniques, stochastic models may provide
the required flexibility. However, the decisions which relevant properties of
the real workload are to be reproduced and the correctness and validity of
the workload model for the specific scenario must be proven in order to
produce sufficiently realistic workloads.

Open-loop versus closed-loop generation: this feature characterizes the
ability of the workload generator (and the underlying workload model)
to appropriately respond to changing network conditions as emphasized
in [FIPO1]. In the open-loop mode the generator operates independently
from the observations of the network conditions that must be performed
during the workload generation. In the closed-loop mode the tool is able
to change its behaviour during the workload generation according to these
observations and to appropriately modify the characteristics of the traffic to
be generated (e.g., to adjust the parameters of the statistical distributions
of the inter-departure times and sizes of packets, or to change the content
of the packet payloads).

Application field: can the traffic generator be used in the network simulation
(or emulation) environments and/or in the real network testbeds? Is the

2.2. State-of-the-Art in Workload Generation 33

generated workload more appropriate to analyse the characteristics of
the network or the characteristics of the used applications (e.g., a Web
application server)?

Further, the software-based workload and traffic generators may also differ
in their architectural features, e.g.:

Target service interface: a target service interface (or a set of service in-
terfaces) at which the workload generator is able to inject the generated
requests or traffic. Strictly considered, the target service interface is not to
be confused with the abstraction level of the underlying workload model
used in the generator. For example, Web traffic can be generated according
to an application-level model of HTTP traffic sources and injected at the
application layer HT'TP service interface into the network (such as in Surge
[BaC98]). Alternatively, Web traffic can be generated according to a model
which incorporates a set of application-level, flow-level, and packet-level
characteristics of the traffic induced by the HT'TP sources and, thereafter,
be injected at the network layer (such as in Harpoon [SoB04] or LiTGen
[RRBO7a, RRBO7D]) or transport layer (e.g., Swing [ViV06, ViV09)]) service
interface.

Software and hardware co-design: does the generator architecture make
use of dedicated hardware components like, e.g., the Intel IXP2400 Network
Processor (NP) [IXP2400] as it is the case in BRUNO [APF08a, APFO08b] or
Pktgen [BBCROG].

User-space versus kernel-space: the generator architecture may consist of
only user-space modules (e.g., MGEN [MGEN] or D-ITG [AEPVO05]), only
kernel-space modules (e.g., KUTE [ZKAO5]) or include both user-space and
kernel-space modules (as it is the case with the generator proposed in
[BPGP12)).

Distributed workload generation: does the generator provide only central-
ized workload generation function or is it able to produce and inject
workloads from geographically distributed hosts (e.g., D-ITG, or LoadStorm
[loadstorm])?

Scalability on multi-core platforms: does the generator architecture make
use of parallelism and is it able to appropriately exploit the multi-core
processor architectures and multi-queue Network Interface Cards (NICs)
[BPGP12]?

34 2. Foundations and Research Field

Performance characteristics: The performance of a traffic generator can be
characterized, e.g., by the maximum achievable packet and data rate for a
given packet length. Further, according to the definitions in Paredes-Farrera
et al. [PFFGO06], the term of precision is related to the quality and stability
of the system, while the term of accuracy is related to measurements of
the similarity among the created values with the true ones. Therefore,
when one is interested in timeliness of generated packets, the precision can
be referred, e.g., as the standard deviation of generation times, while the
accuracy can be described by the average errors between the actual and
specified generation times.

For example, the experimenter may be interested in the ability of a particu-
lar traffic generator to saturate the capacity of a 1 Gigabit or a 10 Gigabit
Ethernet link (also with the smallest possible 64 byte long Ethernet pack-
ets).

Conditions and availability: is the workload generator available as a com-
mercial tool or is it freely available, may be also as an open source tool?

The following list of workload and traffic generators is not pretended to be
complete. In contrast, we tried to choose the most representative examples of
traffic generators for networking research in order to be able to demonstrate
the different possible approaches followed by various solutions. Related
surveys of the traffic generation tools available for networking research can
also be found, e.g., in [AEPV05], [BDP10], or [BDP12].

At this point we should emphasize, that the workload modelling and
generation approach proposed in this thesis is strongly oriented on the target
service interface for workload generation. This target service interface for
load generation is to be chosen by the experimenter strongly according to
the objectives of the particular workload study being carried out. For this
reason, we decided to arrange the list of existing traffic generators according
to the target service interface, at which the generated traffic is injected.
We start with the generation of Web traffic at the application level HTTP
service interfaces.

2.2.1. Web Workload and Traffic Generation

Software-based Web workload and traffic generators are based either on traces
reflecting real Web user sessions or on workload models that are designed and
implemented to generate HTTP requests. Floyd and Paxson demonstrated in
their study [FIP01] how difficult it is to generate representative Web requests,

2.2. State-of-the-Art in Workload Generation 35

especially when some particular characteristics in a dynamic Web site should
be modelled, and how these characteristics impact on the behaviour of the
Web clients.

One of the first studies trying to identify the common characteristics in
Web server workloads is the work done by Arlitt and Williamson [ArW97],
which used logs of Web server accesses at six different sites (three from
university environments, two from scientific research organizations, and
one from a commercial Internet service provider). The observed workload
characteristics were used to identify the possible strategies for the design of
a caching system to improve Web server performance.

Web workload generation at the application-level (emulated Web
clients, real Web servers)

Barford and Crovella [BaC98] applied a number of observations of Web
server usage to create a realistic Web workload generation tool, called SURGE
(Scalable URL Reference Generator) which mimics a set of real users accessing
a server and generates Uniform Resource Locator (URL) references matching
empirical measurements of request and server file size distribution, relative
file popularity, embedded file references, temporal locality of reference, and
idle periods of individual users. The relevance of these Web workload
characteristics as well as their concrete values were identified based on single
(non-recurring) measurements, so that later revisiting done by Williams et
al. [WAWO05] was required due to emerging Web technologies and a nearly
30-fold increase in overall traffic volume in 2005.

The study [ACCO02] proposes different benchmarks (partly based on the
TPC-W benchmark [TPC-W] which has been declared obsolete in 2005)
to be used for online book-store applications, auction sites, and bulletin
boards with dynamic Web content. The benchmarks use a real Web server
infrastructure (consisting of a Web, application, and a database server)
and specify a predefined set of Web pages and database items which can
be requested by the experimenter from the client side. Along with the
real Web server application objects, the authors provided a freely available
workload generator tool (a Web client emulator) to drive a dynamic content
Web server with various workloads specified in the benchmarks. Following
the TPC-W specifications, the workload generated by the client emulator
consists of a specified number of concurrent clients and their interactions
with the SUT. Each emulated client opens a session (which is a persistent
connection) with the SUT and repeatedly makes a request, parses the server’s
response to the request, and, after emulating the specified amount of time

36 2. Foundations and Research Field

(“thinking time”) of a real client, follows a (hyper-)link embedded in the
response. The tool uses a simple state machine with a transition probability
matrix to determine the next link (contained in the server response) to be
followed in the automaton. A state in the transition matrix corresponds to
a particular interaction of the SUT and the Web page while a transition
corresponds to clicking on a link in the page. Different system utilization
statistics can be collected on the machines belonging to the SUT including,
e.g., the throughput and response time statistics, and utilization of Central
Processing Unit (CPU), memory, network and disk for the duration of the
experiment. The tool has been used for different research studies on dynamic
Web content generation, clustering, caching, and Web application server
design.

GUERNICA [OSPGO09] is a Web workload generator with the ability to
precisely generate the dynamic workload of Web 2.0 by implementing the
Dweb model introduced in [OSPGO05]. The underlying model makes use of
the customer behaviour model graphs proposed by Menascé et al. [MeV00]
and is based on the following three main concepts: 1) navigation, which
defines the behaviour of a single dynamic Web user interacting with the Web
server(s) and is specified as a sequence of URLs for HTTP requests where
each visited URL depends on the previously visited one, 2) workload test,
consisting of the set of navigations launched during the simulation process
which can be executed concurrently, and 3) workload distribution, which
refers to a set of workload tests that are concurrently executed by one or
more generators in different nodes or in different machines when simulating
the Web client’s behaviour.

GUERNICA consists of three main components implemented as Web appli-
cations using the Web services technology: the workload generators, the
performance evaluator, and the performance tests planner. These compo-
nents allow to carry out the workload test process consisting of the following
four steps: 1) defining the client behaviour by using the navigation concept,
2) defining the workload of the target site by using the workload test and the
workload distribution concepts, 3) executing the workload tests gathering
performance statistics, and 4) analysing the performance of the target site
on the basis of the obtained statistics. Further, in order to obtain concrete
sequences of users’ navigations, an external Mozilla plug-in has been in-
tegrated in GUERNICA to capture the URL requests from the users in the
Mozilla browser.

The following two tools are examples of commercial Web workload gen-
erators performing an application-level trace replay of Web/HTTP traffic
recorded from real browser user sessions (e.g., in the HTTP archive format

2.2. State-of-the-Art in Workload Generation 37

[Odv15]).

LoadStornm [loadstorm] is a cloud-based platform for load testing of Web
applications and (mobile) Web services. The tool is provided with the large
supplemental set (a “cloud”) of dedicated load generation machines and
allows to perform the generation of Web traffic also from geographically very
strongly distributed Web clients (e.g., hosts located in the USA, Ireland,
Singapore, and Tokyo can participate in the same load experiment, provided
there are dedicated LoadStorm cloud hosts available in these regions). In
order to mimic the behaviour of real users, LoadStorm relies on the recordings
of user interactions which can be captured using the developer tools of the
browser and stored, e.g., in the HT'TP archive (HAR) format (cf. [Odv15]).
The recording contains every request made by the browser (including
Hypertext Markup Language (HTML), Cascading Style Sheet (CSS), images,
Javascript, and Asynchronous JavaScript and XML (AJAX)) and can be
customized for each individual virtual user to be emulated using the advanced
user interface. For example, the experimenter can specify customized test
data and think times between subsequent requests, time-outs for different
types of object requests, user names and passwords, custom query strings, and
provide different application security identifiers (CSRF tokens, SessionIDs,
hidden input fields, etc.). The tool includes a scenario builder to specify
different actions of virtual users like open a new page, click a specific
link, click a random link, or submit a form. Finally, LoadStorm provides
reporting of key performance characteristics (such as the number of active
users, throughput, requests rate, response time, error rate, etc.) and in-depth
request error analysis during the test (of errors captured, e.g., from response
status codes, request time-outs, and server connection problems).

WAPT Pro is a tool for workload, stress, and performance testing for Web
applications provided by the SoftLogica Inc. http://www.loadtestingtool.
com. The procedure of performing the load tests is similar to LoadStorm,
i.e. the experimenter constructs the test by navigating through the Web
site in the browser to record a user session. Each session is recorded to
a virtual user profile as a sequence of HTTP requests. WAPT provides an
extended framework for editing the properties of every particular request
in the profile (e.g., request headers, page elements, and other options) and
can then replay different profiles with a specified number of virtual users
(also considering the specifications how the number of virtual users changes
during the test). Furthermore, it includes capabilities to perform testing
from different geographical locations using a number of load agents. The
tool automatically generates cookies and session variables for correct user
sessions, supports testing secure HTTPS web sites with different types of

38 2. Foundations and Research Field

user authentication and client certificates, and provides detailed reports on
different performance characteristics and errors after the test completion.

Web workload generation at the application-level (emulated Web
clients and Web servers)

In the context of a comprehensive study [SCKO03] a set of models has been
derived from an analysis of the content from six representative news and
e-commerce sites. The models capture the characteristics of dynamic Web
content both in terms of independent parameters (such as the number of
objects, distribution of the object sizes and object freshness times) as well
as derived parameters (such as content reusability across time and linked
documents). The authors proposed a Java-based dynamic content emulator
(DYCE), which emulates a Web server that serves dynamic Web content. The
emulator uses the proposed models to generate parameterizable server-side
include-based dynamic content and serve requests for the whole documents or
separate objects being requested (e.g., from an idealized Web cache simulator
provided by the authors for the validation of DYCE). Further, it uses delay
models from previous research in order to replicate the appropriate delays
induced by the dynamic content generation [ICDDO00]. In comparison, e.g.,
to SURGE [BaC98] which has been designed to model client access patterns
to static Web pages, DYCE focuses on the complementary goal of emulating
the behaviour of the Web server, both in terms of its workload properties
and the nature of the dynamic content itself.

ParaSynTG [KRLOS] is a synthetic trace generator for source-level repre-
sentation of Web traffic with different characteristics such as document size
and type, popularity (in terms of frequency of reference), temporal locality,
and the fraction of dynamic requests and of requests been requested only
once (“one-timers”). ParaSynTG is able to consider the dependency between
the size of the documents and their frequency of reference as well as between
the type of documents and their size. The tool has been designed for the
generation of synthetic Web workload traces only (which can be used, e.g.,
in simulation experiments) and, in the opposite to the design objectives of
our Web workload generator UniLoG, provides no facilities to generate and
to inject real HTTP requests into the network.

Generation of Web-like traffic at the packet-level or flow-level

The Web traffic generators presented above have been designed with the
primary goal to generate the workload for a Web service or a Web ap-

2.2. State-of-the-Art in Workload Generation 39

plication (which are hosted at a Web server or a number of Web servers
and may involve additional application and database servers). Therefore,
these generators attempt to include more application details and follow a
“page-based” approach, i.e. they explicitly consider the Web page structure,
the location of page components on the server(s), the human actions of
thinking and page selection to control the creation of new HTTP requests,
etc. Such page-based methods can also be used when the researcher’s aim is
to generate a “Web-like” traffic at the transport layer interface (e.g., at the
TCP service interface) as it has been done e.g. in [BaC98] or in [LAJ07].

For example, the Web traffic generator used in [LAJOT7] in order to study
the effects of Active Queue Management (AQM) and Explicit Congestion
Notification (ECN) techniques on Web performance consisted of a program
to emulate client-side user actions (the “browser”) and a server-side program
to respond to client generated requests (the “server”). The client and
the server communicate by means of the TCP socket interface using the
socket operations connect(), send(), and recv(). For each request, the
client generates a message of random size sampled from the request size
distribution and sends this message over the network to an instance of the
server program. The message specifies the number of bytes the server has
to return as a response (which is determined according to the distribution
of response sizes separately for top-level or embedded request). The server
generates a message of the specified size and transmits it back to the browser.
Despite a relatively comprehensive model for the HTTP source used by the
client-side “browser”, the resulting test traffic remains to be an HTTP-like
TCP traffic, because the tool does not set the HT'TP request headers in the
generated messages. Such HTTP-like traffic may be sufficient in [LAJ07]
for the performance evaluation of AQM and ECN techniques (which are
both QoS mechanisms employed at the network layer) but it will be not
suitable for the performance evaluation of, e.g, Web proxies and caches at
the application layer.

PackMime-HTTP [CCGO04] is a tool for generating realistic synthetic Web
traffic in network simulations using the source-level models for aggregated
HTTP traffic proposed in [CCGO04] and implemented as the corresponding
objects in the ns-2 network simulator. Aggregated HTTP traffic (as it
appears, e.g., on backbone or high-speed access links) is described as a
collection of independent TCP connections, each characterized by a set of
source variables: arrival time of the connection, round-trip time for the
client and for the server, number of request/response exchanges, time gaps
between exchanges, sizes of individual requests and responses, and server
delays.

40 2. Foundations and Research Field

The authors argued, that such a “connection-based” approach for mod-
elling of HTTP traffic is able to capture relationships and significant depen-
dencies in the collection of the source variables which were not considered
in the existing page-based models. Further, the approach is more likely
to scale to modelling the traffic generated by other application classes and
different application traffic mixes (provided that the applications use TCP
for transport, e.g., file transfer, Internet video streaming, instant messaging,
peer-to-peer file sharing)?. Therefore, the authors recommend to use their
connection-based approach for the generation of synthetic Web traffic carried
by network links, routers, and protocol stacks (i.e., in the “traffic for the
network” scenarios).

In PackMime-HTTP a lot of effort has been spent by the authors on the
ability to consider different network and protocol characteristics (such as
the round-trip times for the client and the server, link capacities and error
rates, and the dynamic TCP interactions between Web clients and servers).
As a consequence, not only the Web clients and Web servers but also the
other components of the network under study have to be modelled. For
example, the authors in [CCGO04] had to provide the interaction of the
proposed PackMime-HTTP model with the TCP layer objects in the ns-2
network simulator. Therefore, the application field of the traffic generators
following the approach of PackMime-HTTP in [CCGO04] or Swing in [ViV(9]
can be assumed to be rather restricted to scenarios, which are similar to
those covered by the network simulation experiments.

Finally, Harpoon [SoB04] and LiTGen [RRB07a, RRB07b] are open-loop
generators of aggregated network traffic at the flow level which are able to
generate traffic also from HTTP sources. We will describe these solutions
later in this section, as they are, strictly considered, generators of IP traffic
at network layer service interfaces.

2.2.2. Traffic Generation at Transport Layer Service
Interfaces

MGEN

The Multi-Generator (MGEN) is an open source software developed by the
Naval Research Laboratory (NRL) PROTocol Engineering Advanced Net-

2The connection-based approach proposed in [CCGO04] has been later used in [ViV09]
in order to generate realistic and responsive network traffic consisting of mixes from
different application classes. The corresponding traffic generator Swing developed in
[ViV09] will be presented later in this section (because it is, strictly considered, a
generator of TCP traffic streams).

2.2. State-of-the-Art in Workload Generation 41

working (PROTEAN) Research Group which provides (in its current version
5.0) the ability to generate, receive, and log real-time traffic patterns of
unicast and/or multicast UDP and TCP applications in order to perform
IP network performance tests and measurements [MGEN]. The tool suite
currently runs on various Unix-based (including MacOS X) and Win32
platforms, is implemented in user-space, and can also be used in network
simulation environments like ns-2 and Opnet. Traffic generated by MGEN
consists of a series of sequence-numbered messages with different sizes and
inter-departure times determined according to a traffic pattern specified by
the experimenter. Currently, MGEN supports the pattern types PERIODIC,
POISSON, BURST, JITTER, and CLONE (the latter allows to extract the message
sizes and/or inter-message times from a trace file in the binary tcpdump
format). Further, script files are used in order to control the generated
loading patterns over the course of time. Finally, MGEN log data can be used
to calculate performance statistics, e.g., on throughput, packet loss rates,
and communication delay. However, the performance of MGEN is reported
to be rather low [DBP07, BDP10]. Such, the maximum achievable packet
rate for small packets of 64 byte length remains below 80.000 pps. Further,
the accuracy of the message inter-departure times may be violated when the
precise option is disabled (which activates polling, if needed, to precisely
schedule the message inter-departure times).

RUDE/CRUDE

RUDE/CRUDE (Real-time UDP Data Emitter / Collector for RUDE) is a small
and flexible user-space generator of UDP traffic which can be received and
logged using the corresponding collector module [RUDE]. The development
of RUDE was motivated mainly by the accuracy limitations in the MGEN traffic
generator due to the used low-resolution system timers in the Linux kernel
on PC-platforms (the precise option was not available in MGEN at that time).
Therefore, the operation and configuration of RUDE are very similar to MGEN.
The tool can generate and measure only UDP traffic, is provided with a
non-extensible script language to control the generated traffic patterns over
time, and is not suitable to work at high packet rates, especially with small
frame lengths (cf. [BGPS05, BDP10]). The RUDE project seems to be not
longer supported (since the last release 0.70 in 2002, cf. [RUDE]).

42 2. Foundations and Research Field

ITG / D-ITG

The Internet Traffic Generator (ITG) has been introduced in [APV04, AEPV04]
with the aim to generate (network, transport, and application layer) traffic

at packet level and accurately replicate appropriate stochastic processes for

both inter departure time (IDT) and packet size (PS) random variables.

For this reason, ITG supported a set of different statistical distributions

(e.g., exponential, uniform, constant, Pareto, Cauchy, normal, etc.) and has

been first used to generate synthetic UDP and TCP traffic according to the

source-level models for different application-level traffic sources, e.g., Telnet,

SMTP, Network News Transfer Protocol (NNTP), FTP, HTTP, Domain

Name System (DNS), VoIP, Video, etc.

In [AEPVO05] a distributed platform for traffic generation (called D-ITG)
has been developed on the basis of ITG in order to increase the number of
application and traffic scenarios and improve the scalability and performance
of the original centralized ITG traffic generator. D-ITG provides facilities
for measurement of different traffic parameters at the packet level (like
delay, jitter, packet loss and throughput). In the first variant of the proposed
architecture, a log server is in charge of recording the information transmitted
by senders and receivers and the required communication is based either on
TCP or UDP. In the second variant senders and receivers make use of a
Message Passing Interface (MPI) library to implement a control channel.

As of [AEPVO05], D-ITG was provided with a set of classical packet-level
models for different traffic sources, e.g.:

e TELNET, NNTP, SMTP, and FTP traffic sources [DJCME92, Pax94,
LFJ97],

e WWW traffic [CrB96, ArW97, LFJ97],
e VoIP traffic [LFJ97, Cisco2], and
e MPEG encoded video streams [GaW94, KrH95, Ros95, LFJ97].

However, the aforementioned models could probably be seen as rather
out-dated already at the time of introduction of D-ITG. For this reason, a
Hidden Markov Model (HMM) for Internet traffic sources at packet level has
been proposed in [DPRPVO08], which allows to jointly analyse Inter Packet
Time (IPT) and Packet Size (PS) stochastic processes. The model is able
to capture the behaviour of marginal distributions, mutual dependencies,
and temporal structures of the traffic generated by a heterogeneous set
of sources and can be used for traffic generation in D-ITG. According to

2.2. State-of-the-Art in Workload Generation 43

the source-based approach, the model does not focus on the aggregate link
traffic but aims at replication of separate traffic sessions originating from
single hosts and related to specific application-level protocols. The proposed
approach has been applied to various real traffic traces in order to obtain
concrete source models of packet-level traffic generated by SMTP, HTTP, a
network game (“Age of Mythology”), and an instant messaging application
(MSN Messenger).

According to the experimental results presented in [BDP10], D-ITG offers
a quite moderate performance and accuracy. Such, the tool can achieve a
maximum packet rate of ca. 140.000 pps, meaning that it is not able to
saturate the capacity of a Gigabit Ethernet link with the smallest possible
(64 byte) Ethernet packets (because the corresponding data rate achievable
with such packets in D-ITG cannot exceed 650 Mbit/s).

The authors of D-ITG frequently emphasized that they aim to simulate
(i.e., to reproduce a traffic profile according to the stochastic models of IDT
and PS), and not to emulate the traffic (which is defined by the authors as
a reproduction of traffic resulting from a specific protocol, e.g., reproduction
of HTTP messages without using a browser). So, every time when the
authors speak about the generation of, e.g, VoIP traffic, they actually mean
a reproduction of a “VoIP-like” traffic induced at the transport service
interface (e.g., UDP in this case) meaning that only the UDP header fields
(with the randomly chosen payload buffer) and no other VoIP specific payload
fields are set in the generated traffic. In the consequence, the traffic generated
by ITG using its analytical modelling function can be used in the performance
experiments on the network or transport layer (e.g., to evaluate performance
of an IP router) but not in the experiments at the application layer (e.g., to
evaluate performance of a VoIP gateway) because the generated “VoIP-like”
traffic will not be recognized as real VoIP traffic by a real VoIP/SIP gateway.
The same would be valid for the traffic from other network applications and
services at the application layer.

For these reasons, the functionality of D-ITG has been extended in a new
version [BDP12] in order to be able to combine the already existing analytical
models with the trace-based techniques. As of [BDP12], the tool is now
able of replicating Packet Capture (PCAP) traces which allows to support
arbitrary payload patterns (i.e., also from application layer traffic sources).
Further, the authors mentioned the possibility to improve the performance
characteristics of the generator by means of using novel socket families (e.g.,
PF_RING DNA, cf. [ntopl] and later in this section) in the traffic transmitter
component.

44 2. Foundations and Research Field

Network throughput measurement tools

iPerf [iPerf3] and Netperf [netpert] are typical examples of tools developed
with the aim to be used primarily as network throughput measurement and
benchmark tools. iPerf was originally developed by NLANR/DAST and the
current version iPerf3 of the tool provides facilities for active measurements
of the maximum achievable throughput in IP networks. It supports tuning
of various parameters related to timing, buffers and protocols (TCP, UDP,
SCTP with IPv4 and Internet Protocol Version 6 (IPv6)). For each test it
reports the throughput, packet loss, delay jitter, and other parameters (like,
e.g., observed buffer sizes). Netperf provides tests for both unidirectional
throughput, and end-to-end latency for TCP and UDP traffic via BSD
Sockets as well as SCTP traffic for both IPv4 and IPv6.

Benchmark tools like iPerf3 and Netperf usually generate as much
traffic as possible to measure the network performance. Therefore, strictly
considered, they are no traffic generators because they cannot generate
specific traffic profiles specified by the experimenter, e.g., in terms of inter-
departure times and sizes of packets.

2.2.3. Traffic Generation at Network Layer Service
Interfaces

Harpoon

Harpoon is a tool developed by Sommers and Barford in [SoB04] for gen-
erating representative packet traffic at the IP flow level. A flow is defined
as a series of IP packets between a given pair of tuples (IP address, port
number) using a specific transport protocol (e.g., TCP or UDP). The tool
can be used in a router or emulation testbed environment and generates
TCP and UDP packet flows that have the same byte, packet, temporal (in
terms of the inter-arrival times of connections) and spatial (in terms of the
IP address ranges for the sender and receiver) characteristics as measured at
routers in live environments. Harpoon is distinguished from other tools that
generate statistically representative traffic in that it can self-configure by
automatically extracting parameters for its hierarchical traffic model from
standard Netflow [Ciscol] logs or packet traces.

The flow-level traffic generation is abstracted into a series of application-
independent file transfers that use either TCP or UDP protocols for transport.
Harpoon uses a hierarchical two-level flow-based traffic model which consists
of sessions comprising a series of connections separated by durations drawn

2.2. State-of-the-Art in Workload Generation 45

from the inter-connection time distribution. Source and destination IP ad-
dress selection is weighted to match the frequency distribution of the original
flow data. The number of active sessions determines the overall average load
offered by Harpoon. A heavy-tailed empirical file size distribution and an
ON/OFF transfer model can generate self-similar packet-level behaviour.
In summary, the model used in this tool is made up of a combination of
five distributional models for TCP sessions: file size, inter-connection time,
source and destination IP address ranges, and number of active sessions.
Each of this distributions can be specified manually or extracted from packet
traces or Netflow data collected at a live router.

It is important, that the approach taken in Harpoon uses source-level
traffic descriptions that do not make assumptions about the transport layer,
rather than packet-level descriptions based on prior network state embedded
in low-level timings [F1PO1].

Swing

Swing is a closed-loop, network responsive traffic generator for network em-
ulation test-beds developed by Vishwanath and Vahdat in [ViV06, ViV09].
The tool uses a rather comprehensive structural model for the traffic observed
at a single point in the real network and automatically extracts distribu-
tions for different characteristics of user, application, and network behaviour
in order to generate synthetic traffic at a single target link modelled as
a dumb-bell in a network emulation environment ModelNet [VYWO02]. In
particular, the proposed structural model consists of four levels: 1) Users,
characterized by the client IP address, the number of requests, and the think
time between individual requests, 2) Sessions, characterized by the number
of parallel connections and the time between the start of connections, 3) Con-
nections, characterized by the destination or server IP address, the number
of request-response exchanges per connection, the size of the request and the
corresponding response, think time between exchanges on a connection, type
of the transport protocol (TCP or UDP), and packet size and packet arrival
distributions for individual responses, 4) Network characteristics including
link capacities, loss rates, and latencies (delays) for paths connecting each
host in the original trace to the target link.

The authors claim that their main contributions are 1) the ability to
both extract wide-area network conditions from an existing packet trace
and to replay these network conditions with sufficient fidelity to reproduce
essential characteristics of the original trace, and 2) the understanding of the
requirements for matching the burstiness of the packet arrival process of an

46 2. Foundations and Research Field

original trace (e.g., well-known Auckland, MAWTI, and CAIDA traces) at a
variety of time scales, ranging from fine-grained (e.g., 1 ms) to coarse-grained
(e.g., multiple minutes). Swing aims at matching burstiness in terms of 1)
both number of bytes and number of packets, 2) both directions (arriving
and departing) of a network interface, 3) a variety of individual applications
within a trace (e.g., HT'TP, peer-to-peer file sharing, SNMP, NNTP, etc.),
and 4) original traces at a range of speeds and taken from a variety of
locations.

The modelling methodology proposed with Swing has also some known
limitations. First, the application behaviour is modelled based on the
information extracted from the publicly available packet traces (Auckland,
MAWTI, CAIDA) which contain only network and transport layer headers.
Second, the accuracy of the tool is limited by the accuracy of the used traces
and the model parameters extracted for user, application, and network
behaviour. Further, the focus is on generating traffic for the single network
link modelled as a dumb-bell in a network emulation environment. So, the
distribution of requests and responses among particular clients and servers
in the original trace is not modelled.

LiTGen

LiTGen is an easy to use and tune open-loop traffic generator developed
by Rolland, Ridoux, and Baynat in [RRB07a, RRB0O7b] that statistically
models IP traffic on a per user and application basis. From a packet level
capture originating in the operational wireless access network of Sprint Labs,
and taking the example of Web (in [RRB07a]) and P2P and mail wireless
traffic (in [RRBO7D]), the authors show that their hierarchical traffic model is
sufficient to reproduce accurately the traffic burstiness and scaling properties
at small and large time scales. LiTGen relies on a hierarchical description of
traffic entities, which are represented by one or several uncorrelated random
variables either related to a time (duration or inter-arrival time) or a size
metric. For example, the model used for Web traffic in [RRBO07a] consists
of four levels with the following corresponding entities: 1) Session level,
characterized by the number of downloaded pages and the inter-session
durations, 2) Page level, characterized by the page size (defined as the
number of objects involved in a page) and the corresponding page reading
duration, 3) Object level, with the objects inter-arrival times within a page
and the number of packets in an object, and 4) Packet level, characterized
by the inter-arrival times between packets in an object. Selected entities can

2.2. State-of-the-Art in Workload Generation 47

be removed from the model for simplicity, if needed (as it has been done,
e.g., with the page level in [RRBO7b]).

The authors emphasize that the proposed model is intentionally kept
simple since the client / server interactions are not modelled and the network
or protocol characteristics (like, e.g., round-trip times, link capacities, TCP
dynamics) are not considered. So, the model does not rely on a complex
emulator (that would reproduce the link layer or TCP dynamics) and allows
fast computation when being executed on a commodity hardware (while,
e.g., Swing relies on a third-party network emulator ModelNet requiring
high computing resources). Similar to the methodology in [ViV06, ViV09],
the authors used second-order analysis (wavelet-based methods) in order
to identify the dependencies across the random variables composing the
underlying traffic model and to prove the ability of LiTGen to reproduce
accurately the captured traffic and its properties over a wide range of time
scales. The analysis showed that an introduction of a simple dependency
between the object sizes and the distribution of the packet inter-arrival times
can succeed in reproducing the traffic correlation structure accurately. The
authors claimed, therefore, that under certain conditions it can be possible
to reproduce the second order traffic characteristics without introducing
more complex non-renewal processes and considering network or protocol
peculiarities in the LiTGen model while leading to a much simpler traffic
generator than, e.g., Swing.

However, in order to use LiTGen in an operational network, one must
characterize the dependency of the packets inter-arrival times distribution
on the objects sizes. The authors propose to model this relation analytically,
by finding suitable distributions for different object sizes or by involving
simple (e.g., Markovian) TCP and/or network models as an input of the
traffic generator. And this is exactly the same modelling effort made in
Swing in order to provide for realistic and responsive traffic generation in
network emulation environments. So, in the general case, the critique on
the open-loop traffic generators stressed in [F1P01] can be applied also to
LiTGen.

2.2.4. Traffic Generation at Data Link Layer Service
Interfaces

KUTE

KUTE (a Kernel-based UDP Traffic Engine) is a generator of UDP traffic
which is designed to achieve high performance over Gigabit Ethernet [KUTE,

48 2. Foundations and Research Field

ZKAO5]. It is based on two Linux 2.6 kernel modules (the sender and the
receiver) that operate directly on the network device driver bypassing the
Linux kernel networking subsystem. The KUTE sender generates packets for
a specified duration, computes the inter-packet gaps based on the specified
sending rate (in packets per second), and uses polling of the CPU cycle
counter in order to wait for the sending time of packets. The following
parameters can be specified: source and destination IP address, source and
destination ports, packet rate, packet length, duration of the flow, packet
payload, Time To Live (TTL), Type of Service (ToS), and whether the
UDP checksum and IP identification field should be used. The sender can
create up to four different flows concurrently. The flows may have different
packet rates, but must have the same duration. The KUTE receiver creates a
packet inter-arrival histogram that can be accessed via the Linux proc file
system. Furthermore, when the module is unloaded, it outputs the necessary
information to compute the mean and standard deviation of the distribution
into the kernel log file.

It should be noted that KUTE is strongly restricted to the generation of
UDP packets and their injection as Ethernet frames (at the data link layer)
with specified inter-departure times. The tool achieves a maximum packet
rate of 740.000 pps (for packet length of 64 byte and infinitesimal inter-arrival
times) and is able to saturate the capacity of the Gigabit Ethernet link with
packets of 256 byte length [BGPS05]. However, KUTE does not provide any
further traffic modelling support and cannot compute the traffic statistics
directly because the Linux kernel does not provide floating point arithmetic.
The sender can not be controlled from user-space while it is running. Since
the architecture of the tool is strictly related to the architecture of the
kernel, it lacks of extensibility and cannot take advantage of the support of
kernel-space extensible interfaces.

BRUTE

The Browny and RobUst Traffic Engine (BRUTE) presented in [BGPS05] is
a user-space application running on Linux 2.4-6, that is able to accurately
generate customizable IPv4 and IPv6 Ethernet traffic flows with very high
data rates. BRUTE uses a script language in order to control the generated
traffic pattern over time and can be further extended by means of additional
traffic patterns (T-modules) implemented in C language. A parser is respon-
sible for reading the user commands from the script files and storing them
in an internal database. The traffic engine examines the database entries
and instantiates the corresponding traffic handlers (micro-engines) defined

2.2. State-of-the-Art in Workload Generation 49

in the T-modules. The micro-engines are sequentially executed in order to
generate the specified traffic. BRUTE is provided at [BRUTE] with a set of
predefined traffic patterns (T-modules): CBR (constant bit rate), CIDT (con-
stant inter-departure time), POISSON (exponential inter-departure time),
PAB (Poisson Arrival of Burst), CBR-EXP/OFF-EXP (VoIP), RTCP SR
(send-report message to measure RTT), and TRIMODAL (trimodal Ethernet
frame size distribution).

BRUTE is reported to be able to achieve a maximum packet rate of
650.000 pps for packets of 64 byte length (which corresponds to a data
rate of approximately 400 Mbit/s) [BGPS05]. So, its performance is compa-
rable to the performance of KUTE (which is a kernel-based solution) while
providing a high level of accuracy and precision of the packet inter-arrival
times. Further, as reported in [APF08a], BRUTE can achieve higher values of
throughput (up to 1.090.000 pps) with 64 byte packets only in intermittent
bursts.

BRUNO

A possible solution to improve the performance and accuracy of the traf-
fic generation process may be the use of flexible hardware platforms and
cooperative software/hardware design. For example, the Intel IXP2400
Network Processor (NP) is a multi-core processor dedicated to packet pro-
cessing [IXP2400] which has been used in traffic generators presented, e.g.,
in [BBCRO6] (Pktgen) and [APF08a, APF08b] (BRUNO).

BRUNO (BRUte on Network prOcessor) available at [BRUNQ] is based on
a modified version of BRUTE which has been designed to run on the PC that
hosts the Network Processor card and is responsible for the computing of
the packet lengths and departure times according to the specified traffic
model [APF08a]. The host PC writes the computed data into the memory
shared with the packet processing units of the Network Processor (so-called
micro-engines) which are responsible for the generation of real packets and
sending them with the proper timeliness.

In this way, BRUNO retains the high flexibility of BRUTE while improving
its performance characteristics in terms of the achievable packet and data
rate. Furthermore, a feedback mechanism and a time correction scheme
have been introduced in BRUNO in order to improve the system precision and
accuracy in reproduction of packet departure times determined according to
the traffic model. The Traffic Generator micro-engines report in a feedback
ring the actual packet departure times, which are then used by the Load
Balancer micro-engine for an adaptive time modification. The experiments

50 2. Foundations and Research Field

carried out in [APF08a] prove the effectiveness of this approach in reducing
the mean inter-departure time error. Further, results of experimental tests
have shown the ability of BRUNO to generate 64 byte packets with a short
term packet rate (calculated as a mean over intervals of 0.10 s) of up to
1.488.000 pps (which means that the tool can saturate the capacity of a
Gigabit Ethernet link already with the 64 byte packets).

Tools for packet-trace replay

Packet trace replay can be performed in a flexible manner in software at
different network interfaces and a series of corresponding tools have been
proposed in the network research community. The most prominent example
is probably Tcpreplay, which has originally been designed for a classic
packet-level trace replay of TCP traffic in order to inject malicious traffic
patterns into IDPSs. In the meantime, Tcpreplay has strongly evolved and
has obtained capabilities to replay traffic patterns to Web servers. Currently,
Tcpreplay is a suite of free (GPLv3 licensed) open source utilities for UNIX
and Win32 operating systems for editing and replaying previously captured
network traffic in libpcap format (PCAP) with the aim to test a variety
of network devices (such as switches, routers, firewalls, and IDPSs). In
particular, Tcpreplay suite includes a set of PCAP file editors and network
playback utilities, e.g.:

tcpprep: is a multi-pass PCAP file pre-processor that allows the researcher
to classify the captured packets as originating from the client or server
and split them into different output files to be used by tcprewrite and
tcpreplay.

tcprewrite: is a PCAP file editor which allows to modify and rewrite the
Ethernet, IP, and TCP/UDP packet headers.

tcpreplay: is the tool to replay PCAP files at arbitrary speeds onto the
network with an option to replay with random IP addresses. tcpreplay
supports both single and dual NIC modes for testing both sniffing and
in-line devices.

tcpreplay-edit: extends the tcpreplay tool by a large set of functions to
modify the packets on the fly during the replay.

tepliveplay: provides the replay function for TCP traffic stored in a PCAP
file with the possibility to adapt the rate to the responses of a concrete

2.2. State-of-the-Art in Workload Generation 51

remote TCP server. The utility can be used to conduct tests at the
application layer.

As of the current version 4.0, Tcpreplay has been enhanced to support the
corresponding functions for testing and tuning IP Flow/NetFlow hardware.
The accuracy and the performance of the playback tool has been significantly
improved by introducing support for the modified netmap device drivers for
10 Gigabit Ethernet NICs [netmap].

Similar tools have been proposed for high performance packet replay,
e.g., TCPopera [HoWO06] and TCPivo [FGBO03|. TCPopera tries to accomplish
two primary goals: (1) replaying TCP connections in a stateful manner,
and (2) supporting traffic models for trace manipulation. To achieve these
goals, TCPopera emulates a TCP protocol stack and replays trace records
interactively in terms of TCP connection-level and IP flow-level parameters.
The second tool, TCPivo, employs novel mechanisms for managing trace
files and accurate low-overhead timers in order to achieve high throughput
and accuracy. In addition, through the use of low-latency kernel patches
and priority scheduling, TCPivo can be made highly resilient to background
system load. Using these mechanisms, the tool is able to support packet
replay and achieve sufficient packet and data rate, e.g., for the OC-3 links.
Both tools TCPopera and TCPivo have been used in test environments
for Intrusion Detection and Prevention Systems (IDPSs). However, these
projects seem not to be supported any more for quite a long period of time.

High-performance traffic generation for 10 Gigabit Ethernet

With the rapidly increasing capacities of the links deployed on production
networks (e.g., 10 Gigabit Ethernet links are becoming common) the high-
performance traffic generation becomes very important. A possible direction
of research to improve the performance of traffic generation is the use of
parallelism, which is increasingly provided by modern commodity hardware?.
One can expect that traffic generators can efficiently generate packets on
multi-core systems if they are able to properly exploit such architectures.
Further, the design of currently available 10 Gigabit Ethernet NICs (such as
those based on the Intel 82599 controller) is already logically partitioned into
several independent receive and transmit (RX/TX) hardware queues, so that
multiple cores can therefore receive and transmit packets in parallel. From

3For example, the recently released processor family Intel Xeon Processors E7 v2 can
have up to 15 cores providing up to 30 logical processors to the applications by means
of the hyper-threading technology.

52 2. Foundations and Research Field

the operating system point of view, it is possible to simultaneously poll and
send packets per queue thus maximizing the overall throughput. Therefore,
it is important that the operating system makes these queues available to
applications and does not force the multi-threaded applications to serialize
their operations when all threads need to access the same Ethernet device
[RDC11].

An other crucial factor for the performance of a traffic generator on multi-
core systems is a capacity of the socket which is used for sending packets
towards the NIC device driver. Most of the software-based generators
presented in this section use either the PF_PACKET socket family (on Linux
distributions) or AF_INET socket family (on Windows systems). However,
these socket families have been designed in a single-core architecture and
show a number of strong limitations and bottlenecks when being used on
multi-core systems (cf. [BPGP12)):

e The PF_PACKET socket does not allow to select a specific hardware queue
for transmission when used on top of multi-queue NICs. This results
in thread serialisation when multiple threads send packets on the same
device, no matter if they share the same socket or not.

e It is based on a per-packet send () system call which represents a remark-
able overhead. The system calls versions provided for batch transmission
(e.g. sendmmsg() on Linux and a version of send() on Windows) are
hardly useful for a traffic generator, because the inter-departure times of
packets in the batch cannot be specified in these calls.

e The packet payload must be transferred into the kernel, which induces a
higher overhead than a normal memcpy operation performed to a memory-
mapped region in the user-space.

e Further, packets are not immediately directed to the NIC device driver
but pass through a series of mechanisms (like, e.g., registered packet filters,
traffic control modules, etc.) which induce additional overhead. A single
socket cannot be used exclusively for packet transmission, so that a severe
performance penalty may result in a multi-core scenario when several
sockets are used for parallel transmission.

A series of different solutions have been proposed to improve the efficiency
of Linux networking subsystem in respect to the above-mentioned bottlenecks
in the PF_PACKET socket. For example, netmap [netmap] integrates in the
same interface a number of heavily modified device drivers mapping the

2.2. State-of-the-Art in Workload Generation 53

NIC transmit and receive buffers directly into the user space. A version
of this driver has been integrated into the new PF_RING DNA framework
[ntopl] and allows to saturate the capacity of a 10 Gigabit Ethernet link
with the smallest possible (64 byte long) packets both in generation and in
transmission, when simple test programs are used, e.g., for packet generation.
However, even when the bottlenecks in the packet transmission are removed
by using such a properly modified driver, a non multi-core aware design of
the packet generation application itself may strongly limit the performance of
the overall system (as it has been reported, e.g., in [ntop2] for the Ostinato
packet traffic generator available at [Sril6] used in combination with PF_RING
DNA).

Based on the research in [APF08a, APF08b], a modular architecture of an
Ethernet traffic generator using the integrated co-design of both kernel-space
and user-space components is presented in [BPGP12]. A set of traffic engines
(which are completely user-space threads) is responsible for the generation
of a global ordered stream of packets according to a set of independent
traffic models and dispatching the generated packets across a set of packet
transmitters. A set of parallel packet transmitters is in charge of actually
sending the generated packets to the NIC (using polling in order to precisely
meet the specified inter-departure times). Each transmitter is implemented
using a novel socket type PF_DIRECT proposed by the authors (see below)
and an active context implemented as a kernel-space thread, which can be
assigned to a specific hardware queue on the NIC.

In order to avoid the above-mentioned limitations of the Linux networking
subsystem, the authors in [BPGP12] designed a novel socket type PF_DIRECT
which consists of 1) a memory-mapped single-producer-single-consumer
queue for payload and meta-data (which avoids the overhead of a system
call to copy data into the kernel-space and provides a wait-free mechanism
for data sharing), 2) a pool of pre-allocated socket buffers (which allows to
keep using the mandatory sk_buff socket structures in order to work with
non-modified NIC device drivers), and 3) a direct interface to a hardware
queue (in order to avoid the overhead induced by the optional traffic control
or packet filter modules).

The results of experimental tests® revealed that the proposed traffic
generator is able to saturate the capacity of a 10 Gigabit Ethernet link

4The experiments have been conducted on a machine using 6 cores with an Intel
X5650 Xeon CPU (2.66 GHz clock, 12 MB cache), 12 GB DDR3 RAM, and an
Intel E10G42BT NIC with the 82599 controller on board, running Linux with the
3.0.1 kernel and the izgbe 3.4.24 NICs driver. The hyperthreading has been enabled,
so that the experiments have been carried out on 12 virtual cores.

54 2. Foundations and Research Field

with 128 byte long packets and can achieve a packet rate of 13.000.000 pps
with minimum size (64 byte) packets, which is very close to the theoretical
maximum of 14.880.000 pps for the packet rate achievable on a 10 Gigabit
Ethernet link.

The authors in [BPGP12] claim that the proposed modular architecture
allows to transparently use parallelism for generating traffic according to
arbitrary traffic models, which must conform to a simple interface and can be
added by the user through a factory pattern implemented in C++. However,
the presented experimental tests have been conducted with the simplistic
models for CBR and Poisson Ethernet traffic only. Further, the closed-loop
traffic generation required, e.g, to emulate TCP traffic is not supported by
the tool in general.

A flexible high-speed packet generator MoonGen has been recently proposed
for the generation of Ethernet packet traffic on 10 Gigabit Ethernet links
[EGRWC15]. It can saturate the capacity of a 10 Gigabit Ethernet link with
minimum-sized packets while using only a single CPU core by running on top
of the packet processing framework Data Plane Development Kit (DPDK)
[DPDK] and commodity hardware. The authors note, that MoonGen utilizes
several hardware features of commodity NICs that have not been used
in Ethernet packet generators previously. In particular, it uses hardware
time-stamping capabilities of the NIC in order to perform measurements
of latency with sub-microsecond precision and accuracy. Furthermore, the
authors proposed a novel method to control the inter-packet gaps (between
the Ethernet packets) in software in order to mitigate the timing issues
arising with the software-based packet generator.

From the point of view of the author of this thesis, one can legitimately
question how realistic the resulting traffic will be in respect of the variety of
existing network applications which are currently using and probably will
continue to use the original sockets (and not their versions optimized for
performance in the proposed manner) on Linux and Windows platforms.
We should note, that a significant drawback of the approach followed in
[BPGP12, EGRWCI15] is that it allows the traffic generating application to
take direct control of the network hardware removing all software layers and
making the application extremely vulnerable in case of a crash or malicious
attack. This can hardly be allowed for regular network applications and
services in particular due to the reasons of network security and stability.
Therefore, the architecture proposed, e.g., in [BPGP12] is expected to
remain a very specific solution for open-loop Ethernet traffic generation for
performance tests in selected 10 Gigabit Ethernet scenarios.

Finally, we can conclude that the architecture of the workload generator to

2.2. State-of-the-Art in Workload Generation 55

be developed in this thesis should, wherever possible, make use of parallelism
in the workload generation process in order to be able to exploit the potentials
of current state-of-the-art multi-core system platforms equipped with multi-
queue NICs used in combination with the appropriate multi-core aware
device drivers and the corresponding network sockets software. We note,
however, that the improvement of the networking subsystem of the underlying
operating system, development of novel types of sockets or specialized NIC
drivers (e.g., optimized for performance) is definitely outside of the scope of
this thesis.

2.2.5. Workload Tests in Research and Industry

After the presentation of a comprehensive list of different workload and traffic
generators in previous sections, we should address a remaining question how
these tools can be actually used for workload tests in networking research
experiments. Load testing can be generally defined as the simulation of
multiple users using the observed service or application at the same time
and working with it concurrently. According to this rather general definition
the load testing may comprise several different types of testing. According
to the testing objectives and procedure, the following types of testing can
be identified.

Performance testing: In this type of tests, the workload is increased gradu-
ally by adding more and more virtual users to the test while the performance
parameters of the System Under Test (SUT), e.g., throughput, response
time, error rate, etc., are monitored at any test phase.

Capacity testing: This type of test is concerned with one of the most com-
mon questions in load testing: how many concurrent users the service or
application can handle while maintaining an acceptable response time and
error rate? Virtual users are added gradually to the test, but in this case
the values of the performance parameters are known in advance and the
experimenter just needs to check that the expected target values are really
achieved. Performance or capacity tests help to reveal potential bottlenecks
in the observed service or application. For example, a Web application can
consist of several modules used to process requests. If one of them has a
technical limitation, it limits the performance of the whole system.

Stress testing: When the load goes beyond the capacity limit of the SUT,
the observed service or application starts responding very slowly and can
even produce errors. The main purposes of stress testing are: a) to find

56 2. Foundations and Research Field

the capacity limit, b) to check that when the capacity limit is reached,
the system handles the stress situation correctly, i.e. it produces graceful
overload notifications and does not crash, c¢) when the load is reduced
back to regular level, the system returns to normal operation retaining the
performance characteristics.

Volume testing: During a volume test, the experimenter tries to maximize
the amount of processed data and/or the complexity of each transaction,
operation, or request. For example, for testing the file upload facility of
a Web application, the experimenter should use the largest files available.
And, in order to test the application’s search engine functions, he should
try to produce the longest search results possible.

Endurance testing: This type of testing is used to check that the system
can stand the load for a long time or a large number of transactions or
requests. It usually reveals various types of resource allocation problems.
If a small memory leak is present, this may not be evident on a quick
test, but will influence the performance after a long time. For endurance
testing it is recommended to use changing periodic load to provoke resource
reallocation.

Regression testing: Integration of the load testing as a part of the regular
development process by creating regression load tests and applying them
to every new version of the application or service being designed.

Considering the above-mentioned types of load testing with their partially
different testing goals, it will be a very interesting and challenging task to
elaborate a unified method for load specification and generation which would
allow to perform such different types of tests in one single coherent approach.

2.3. A Unified Approach to Workload Modelling
and Generation in Computer Networks

The wide range of complex tasks to be fulfilled in a computer network forces
one to structure the communication software and to use layered architectures
for the horizontal layering of different network functions. Such architectures
define the functionality of the particular layers, the interaction principles
between them, and specify the concrete types of services provided by every
layer at the corresponding service interface(s) [Kén12].

2.3. A Unified Approach to Workload Modelling and Generation 57

So, for the task of workload modelling and generation, it is very important
to choose the target service interface, at which the workload is to be consid-
ered. The choice of the service interface, in turn, determines the possible
types of requests submitted by the service user(s) (comprising the environ-
ment E) to the service providing components (representing the system S)
at the target service interface (IF).

In this dissertation, we will use the definition of workload for computer
and communications systems proposed by Wolfinger in [WoK90].

Definition (Workload). The workload L = L(E, S, IF,T) denotes the
total sequence of requests which is offered by an environment F to a service
system S at a well-defined interface I F' during the time interval T

It should be emphasized, that the workload definition given above is
strongly oriented on the target service interface I'F' for the modelling and
generation of workload. Therefore, an appropriate approach for modelling
and generation of workloads based on this interface-oriented definition must
provide a means for the characterization of 1) the arrival process of requests at
IF during T, and 2) the resource requirements and other relevant attributes
of the individual requests. Such characterization must be as precise and
as realistic as it is necessary for the specific research purpose and desired
spectrum of use of the workload model. Furthermore, considering the
discussion of various workload and traffic generators in networking research
along with different possible types of load testing presented in Sec. 2.2, a
unified approach for workload modelling and generation in this thesis should
meet at least the following basic requirements:

Support for different levels of abstraction: it should be possible to specify
workload models using different levels of abstraction, e.g., application-level,
flow-level, or packet-level models, cf. Sec. 2.2).

Support for different levels of detail: it should be easily possible to refine
or coarsen the specification of the relevant workload characteristics if
required in a concrete modelling study. The choice of the appropriate level
of detail refers to both inter-arrival times and attributes of requests.

Measurement-based workload modelling: directly use measurements re-
garding arrival process as well as types and attribute values of requests as
observed in measurement studies tracing workload and traffic generation
from real network applications and services. In particular, the approach
should be able to combine both trace-based and analytical model-based
techniques (cf. Sec. 2.2) in order to achieve a high degree of flexibility in
the specification of different model entities.

58 2. Foundations and Research Field

Step 3 + 4: Modelling of
Users of the virtual users by means of UBA

network service Service Users UBA;3 UBA , 8
WOLOWO @@@@

Abstract Abstract
reactions

Environment (E)

requests

t—

IF PZZZFZFZZZZ7A | >IF //// T | > FIFFIFIFFFFFFFFZZ7] IF
1P Ui Step 1: Service System Step 2: S
) System (S) Load
Ethernet (Data link) [decomposition modeling L~~~ ——
Network node with Conceptual model Load model components

TCP/IP protocol stack

Figure 2.1.: Unified approach to workload modelling illustrated for the case of
modelling at the IPv4 network service interface (own Fig.).

Support for different service interfaces: it should be possible to generate
the workload as a sequence of requests at a concrete real service interface
according to the specifications in the underlying workload model. For
example, Web traffic can be generated as a sequence of HT'TP requests
and the corresponding HTTP responses at the (application layer) HTTP
service interface according to an application-level model of Web traffic.

Consider the current system state: wherever required, the approach should
provide support also for the “closed-loop” workload models which reflect
the dependency of the workload generation process from the current net-
work state and are, therefore, responsive to changing network conditions
[F1IP01]. We note that it can be necessary to consider the current state of
the system S in the workload model in case when the internal behaviour
of the service provider (affected, e.g., by the changing network conditions)
significantly influences the interactions of the user with the system at the
service interface.

A generalized approach for workload modelling and description has been
introduced by Wolfinger in [WoK90]. According to the proposed approach,
the procedure of constructing a workload model can be accomplished sys-
tematically based on the four main steps which are illustrated in Fig. 2.1
and are described in the following. The first of these steps is motivated by
the fact that workload modelling necessarily requires a well-defined interface
at which the workload is offered (cf. the definition of workload).

Step 1: Decomposition of system and environment. At the beginning, the
modeller (which may be a single researcher, experimenter, test engineer or

2.3. A Unified Approach to Workload Modelling and Generation 59

a whole quality assurance team) has to decide where to place the boundary
line between what he considers as system S on the one hand and envi-
ronment F on the other hand. This decomposition directly provides the
interface IF between S and E which can, e.g., consist of one particular
local interface I F; or correspond to the union of several (also geographically
distributed) interfaces I'Fy, IFs, ..., IF} in the network. Further, the
modeller identifies the set of load generating users which are relevant for
the given modelling task and, therefore, belong to the load generating
environment E. These users can correspond, e.g., to human end users or
to some load generating applications or system processes.

Step 2: Choice of abstraction level in modelling. At this step the mod-
eller has to decide which requests (passed from E to S) and which reactions
(produced by S and observable by E) have to be taken into account in the
load model. For this reason, relevant users are observed and analysed in
respect to the requests they are generating. Depending on the objectives of
the current modelling task the modeller can decide, e.g., to include only the
typical requests from users in the load model. These typical requests are
further characterized by the unique request type (so that disjoint request
classes are to be built by the modeller for this reason) and the set of associ-
ated type-specific attributes (with predefined domains for attribute values).
The possible system reactions are to be handled in the same manner (in
respect of reaction types and attributes).

Step 3: Analysis and description of possible interactions. At this step, the
modeller is concerned with the specification of possible sequences of interac-
tions between E and S at the chosen interface IF. This is quite similar to
some service specification for a communication service, which also specifies
the sequences of service primitives which are possible over time. In order
to specify the interactions between the service users and the system S, real
service users are mapped to virtual users which are represented by the
corresponding components in the modelling domain. Finally, the behaviour
of virtual users is described by means of an appropriate formal specification
method (e.g., by means of UBAs introduced in Chapter 3). For the choice
of an appropriate specification method it is very important that the model
description allows its execution without lot of effort (e.g., by means of a
corresponding load generator).

Step 4: Description of actual interactions between E and S. In order to
describe the actual interactions between the environment £ and the system
S, the following two tasks have to be solved:

60 2. Foundations and Research Field

e For each virtual user U € E in the environment the sequence of requests
L(U,S,I1F,T) which U generates during the time interval T and passes
to S, has to be described. For a given interface I F' a sequence of requests
generated by the user U can be represented by a finite vector of (time,
request)-tuples L(U, S, IF,T) = ((t1,r1), (t2,r2), ..., (tk, rx)) for some
k € N. In each (time, request)-tuple (t;,7;) the value of ¢; € T denotes
the generation time of the request r; at IF. The request generation
times ¢; are assumed to be real values (t; € R) and their sequence (¢,
to, ..., tr) characterizing the arrival process of requests in the described
request sequence is assumed to be non-decreasing (thus, t; < t; for any
i<jieNFeN1<i<k1<j<k).

e The total workload L(E, S, IF,T) offered from the environment E to the
system S is described by means of the superposition of the sequences of
requests generated by the virtual users U being part of the environment
E. The superposition of request sequences may be specified in different
ways, depending on the interface I'F' chosen for workload modelling. For
example, the requests from different users can be arranged according
to a chosen service discipline (e.g., First-Come, First-Served (FCFS))
before they are handed over to the system S.

At the end of step 4, the experimenter should be able to generate the total
workload L for an experiment of the given observation time interval 7. To
accomplish this task, each of the users U being part of the environment
FE can be replaced by an individual load generator creating the specified
sequence of requests L(U, S, [F,T).

We should emphasize, that the target service interface I F for workload
modelling must be chosen by the experimenter strongly according to the
objectives of the specific experiment or the particular study to be carried
out. For example, the experimenter would choose the target interface
presumably to the IP service interface in order to evaluate the performance
of IP forwarding functions in a router. But the experimenter would rather
decide to select the HTTP service interface as a target interface for workload
modelling in order to estimate the mean response time of a Web server under
different server loads. Further, in the case study presented in Chapter 11
of this thesis, values of different QoS metrics for RTSP video streaming
in Wireless Local Area Networks (WLANSs) have been obtained while the
reliable TCP transport service has been used for the transmission of the RTP
video frames. Therefore, it was straightforward to choose the TCP transport
service interface in order to generate background traffic (represented by
additional TCP traffic sources) in the experimental WLAN.

2 Springer
http://www.springer.com/978-3-658-19101-6

Load Modelling and Generation in IP-based Networks
& Unified Approach and Tool Support

Kolesnikow, A

2017, XX, 316 p. 58 illus., 11 illus. in color., Softcover
ISBEMN: 278-3-658-19101-6

	2. Foundations and Research Field
	2.1. Workload Modelling and Specification Techniques
	2.1.1. Selected Workload Modelling Techniques
	2.1.2. Selected Workload Specification Techniques

	2.2. State-of-the-Art in Workload Generation
	2.2.1. Web Workload and Traffic Generation
	2.2.2. Traffic Generation at Transport Layer Service Interfaces
	2.2.3. Traffic Generation at Network Layer Service Interfaces
	2.2.4. Traffic Generation at Data Link Layer Service Interfaces
	2.2.5. Workload Tests in Research and Industry

	2.3. A Unified Approach to Workload Modelling and Generation in Computer Networks

