2. Fundamentals of Boundary—Layer Theory

2.1 Boundary—Layer Concept

Flows of fluids with low viscosity values and thus very high Reynolds numbers
occur in many technical applications. As was shown in the examples from the
last chapter, the limiting solution Re = oo is often a good approximation. A
notable shortcoming of this limiting solution is that the no—slip condition is
not satisfied, i.e. the velocities at the wall are not zero but are finite. The
viscosity must be taken into account in order to satisfy the no—slip condition.
This takes care of the velocity transition from the limiting solution’s finite
value close to the wall to the value of zero directly at the wall. At large
Reynolds numbers this transition takes place in a thin layer close to the wall,
called by L. Prandtl (1904) the boundary layer or frictional layer. As will
be shown, the boundary layer is thinner the higher the Reynolds number,
i.e. the smaller the viscosity.

The concept of the boundary layer, therefore, implies that flows at high
Reynolds numbers can be divided up into two unequally large regions. In
the bulk of the flow region, the viscosity can be neglected, and the flow
corresponds to the inviscid limiting solution. This is called the inviscid outer
flow. The second region is the very thin boundary layer at the wall where the
viscosity must be taken into account.

Within the boundary layer the two different flow forms mentioned in the
previous chapter can both occur, that is, the flow can be laminar or turbulent.
One then speaks of laminar boundary-layer flows, or laminar boundary layers
for short, and equivalently of turbulent boundary layers.

It will be seen later that the division of the flow field into the inviscid
outer flow and the boundary layer leads to considerable simplifications in the
theoretical treatment of high Reynolds number flows. In fact it is only due
to this idea of Prandtl that any theoretical headway could be made on these
flows at all.

Before coming to the focus of this book, the mathematical theory, this
chapter will be used to explain the main concepts of boundary layers purely
physically, without using any mathematical methods.
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30 2. Fundamentals of Boundary—Layer Theory

2.2 Laminar Boundary Layer on a Flat Plate
at Zero Incidence

Figure 2.1 is a snapshot of the flow along a thin flat plate which is being
dragged through water. Aluminium particles have been sprinkled on the sur-
face of the water to make the streamlines visible. The length of each particle
streak is proportional to the flow velocity. It can be seen that directly at the
wall is a thin layer where the velocity is considerably lower than it is at some
distance from the wall. The thickness of this layer increases along the plate
from front to back. In Fig. 2.2 the velocity distribution in this boundary layer
on the plate is shown schematically, where the dimension in the transverse
direction is enlarged greatly. At the leading edge there is a constant velocity
distribution perpendicular to the plate. As the distance from the leading edge
gets larger, the layer of particles slowed down by the friction becomes ever
larger, since more and more fluid particles are caught up by the retardation.
The thickness of the boundary layer §(z) is therefore a monotonically in-
creasing function of x. Here, however, it must be made absolutely clear that
the concept of boundary-layer thickness ¢ has been artificially introduced.
The transition from boundary-layer flow to outer flow, at least in the case of
laminar flows, takes place continuously, so that a precise boundary cannot, in
principle, be given. Since the concept of boundary—layer thickness is so vivid,
it is very often used in practice. Frequently the boundary is arbitrarily given
as being at the point where the velocity reaches a certain percentage of the
outer velocity, e.g. 99%. For clarity, an index is often used, e.g dgg.

Fig. 2.1. Flow along a thin flat
late, after L. Prandtl; O. Tietjens
- (1931)
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Estimation of the boundary—layer thickness. For laminar plate bound-
ary layers the boundary—layer thickness can easily be estimated as follows:
in the boundary layer the inertial forces and the friction forces are in equi-
librium. As was explained in Sect. 1.3, the inertial force per unit volume is
equal to pudu/dz. For a plate of length z, du/dz is proportional to Us,/z,
where Uy, is the velocity of the outer flow. Thus the inertial force is of the
order of magnitude ¢ U2 /x. On the other hand, the friction force per unit
volume is equal to d7/dy, and in laminar flows this is equal to u02%u/dy?,
by assumption. The velocity gradient perpendicular to the wall du/dy is of
order Uy, /6, so that for the friction force per unit volume 87/9y ~ uUs /6.
Setting the inertial and friction forces equal we reach the relation
U _ 0UZ,

s ™ o

or, solved for the boundary-layer thickness ¢:

T vr
5N\/QU :\/U _ (2.1)

The unknown numerical factor remaining in this equation can be determined
from the exact solution of H. Blasius (1908) which is fully treated in Chap.
6. For the laminar boundary layer at a plate at zero incidence we have:

vx
(599(2?) = 5\/Uoo . (22)
The dimensionless boundary—layer thickness related to the plate length [ is
then

(599(517) . 5 xr
I \/Re\/l ’ 23)

where Re = Uyl/v is the Reynolds number formed with the plate length
. We see from Eq. (2.3) that the boundary-layer thickness decreases with
increasing Reynolds number, so that in the limiting case Re = oo the bound-
ary layer does indeed vanish. In addition we see from Eq. (2.3) that the
boundary-layer thickness grows in proportion to /z.

Displacement thickness. As already stated, the boundary-layer thick-
ness has been introduced arbitrarily. A correct and fluid mechanically inter-
pretable measure for the thickness of the boundary layer is the displacement
thickness §1. It is defined by

Usy(z) = / (U —u)dy . (2.4)
y=0

U is the velocity on the outer edge of the boundary layer at the position x.
From this, the two shaded areas in Fig. 2.3 must be equal. The displacement
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thickness tells us how far the streamlines of the outer flow are displaced by
the boundary layer. For a plate at zero incidence we have

o1(x) 1721 Jx
I \/Re\/l , (25)

i.e. the displacement thickness d; is about 1/3 of the boundary—layer thickness
d99-

Fig. 2.3. Displacement thickness §; of the boundary layer

Estimation of the friction forces. As with the boundary-layer thickness,
the wall shear stress 7 and thus the entire friction drag of the plate can also
be estimated. According to Newton’s law of friction, Eq. (1.2), we have:

n@ =u(5r) - (29)

where the index w denotes the value at the wall. Using Ju/0y ~ Us/d we
find 7 ~ pUs /0, and inserting the value of § from Eq. (2.1),

3
() ~ uUmV oo _ J Heloo (2.7)
T T

Therefore the wall shear stress is proportional to Uogo/ 2, and, particularly
worth emphasising, to 1/4/x. The wall shear stress of a flat plate is therefore
not a constant, but a function which decreases monotonically with z. The
shear stresses are particularly large close to the leading edge of the plate.
Using 7w ~ uUs/d it follows that the wall shear stress is inversely propor-
tional to the boundary—layer thickness, i.e. the thinner the boundary layer
the higher the wall shear stress. The constant of proportionality in Eq. (2.7)
can again be determined from the exact solution, see Chap. 6. Therefore the
skin—friction coefficient is

Tw(z)  0.664 \/l
cr = = ) 2.8
! sUZ VRe V (28)
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Knowing the relation of the wall shear stress to position 7 (z), integration
can be used to determine the entire friction drag. A plate wetted on one side
with breadth b and length [ has a friction drag of

!
D=b [ ry(z)dz . (2.9)
/

With Eq. (2.8), the drag coefficient related to the wetted surface S = b -1
follows as

D ~1.328
202, b1 VRe
This drag law is depicted in Fig. 1.3. The asymptotic character of this law

can be seen, and for Reynolds numbers Re > 10* the measurements are very
close to the theory.

cp = (2.10)

2.3 Turbulent Boundary Layer on a Flat Plate
at Zero Incidence

As was already mentioned in connection with Fig. 1.3, in reality the boundary
layer on a plate does not always remain laminar. After a certain distance
T = Ty (from the leading edge of the plate), the boundary layer becomes
turbulent. In analogy to Eq. (1.12), the critical Reynolds number formed with
the distance to the transition point is

U
Reycrit = ( x> =5-10° (plate) . (2.11)
crit

The boundary layer on a plate is laminar close to the leading edge and be-
comes turbulent further downstream, whereby the position of the transition
point s can be determined by the critical Reynolds number Rey (it given.
Although the transition from laminar to turbulent is a region of finite length,
a transition point is used for simplicity and it is frequently assumed that
the transition is sudden (see the footnote on p. 437). The numerical value of
Recris is strongly dependent on how free from perturbation the outer flow is.
In strongly perturbed flow Regs = 3-10° is typical, whereas for particularly
smooth flow values of Reqis = 3 - 108 have been reached, cf. Chap. 15.

The first investigations into the laminar—turbulent transition in the
boundary layer were carried out by B.G. Van der Hegge Zijnen (1924),
J.M. Burgers (1924) and M. Hansen (1928). The transition from laminar to
turbulent flow forms is most noticeable by a great increase in the boundary—
layer thickness and in the wall shear stress. Figure 2.4 shows the dimensionless
combination dgg/ \/ vz /Uy, depicted as a function of the dimensionless dis-
tance Rex = Usox /v according to measurements by M. Hansen (1928). From
Eq. (2.2), in laminar boundary layers this combination has approximately the
constant value 5. For Rey = Rexqrit = 3-10°, the measurements demonstrate
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a strong sudden increase. As will be shown later in Sect. 18.2.5, the thickness
of the turbulent boundary layer on the plate is:
0Uso ex

Uoo _ o.14lfReXG<1nRex) . (2.12)
The function G(InRey) is only weakly dependent on In Rey. It has a limiting
value of 1 for InRe, — oo; this will be discussed more fully in Sect. 17.1.3.
In the region of interest here 10° < Re, < 10%, G ~ 1.5. The dependence on
In Rex which appears in Eq. (2.12) is typical for turbulent boundary layers,
and has to do with an asymptotic formula for large Reynolds numbers. Ac-
cording to this formula, the boundary—layer thickness grows as § ~ z/In z for
large z. At a given x, the boundary—layer thickness decreases with increasing
Reynolds number, but only very slowly with §/x ~ 1/In Re. The combina-
tion corresponding to Eq. (2.12) shown in Fig. 2.4 shows good agreement
with the measurements of M. Hansen. Since Eq. (2.12) holds for the case
where a turbulent boundary layer is already present at the leading edge of
the plate, a virtual origin of the boundary layer was assumed at Re, = 1.5-10°
in drawing the curve of Eq. (2.12). This means that precisely at the transi-
tion point Rey = 3 - 10°, the value of the combination is approximately 5.0,
and therefore a continuous transition of the boundary layer from laminar to
turbulent follows. The boundary-layer thicknesses for typical cases of water
and air flows have been calculated from Eq. (2.12) and are given in Table 2.1.
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Friction forces. As will also be shown in Sect. 18.2.5, the formula analogous
to Eq. (2.8) for the skin—riction coefficient of a turbulent boundary layer
reads

2

;=2 [m gex G(ln Rex)} : (2.13)
where G(In Rey ) is again the function mentioned in connection with Eq. (2.12).
The quantity x = 0.41, called the Karman constant, is of fundamental im-
portance for all turbulent wall boundary layers. It is a universal constant.
From Eq. (2.13), the skin—friction coefficient for turbulent plate boundary
layers decreases with increasing Reynolds number, but it does this extremely
slowly, even more slowly than any small negative power of the Reynolds num-
ber. Assuming a turbulent boundary layer from the leading edge of the plate
on, integration of the skin—friction coefficient over the length of the plate [
gives the drag coeflicient for a plate wetted on one side:

2

cp =2 G(lnRe)| , (2.14)

K
InRe
where the Reynolds number Re is now formed with the plate length .
This function is shown in Fig. 1.3. The drag coefficient also decreases ex-
tremely slowly with increasing Reynolds number. Note that the functions G
in Egs. (2.13) and (2.14) are different, cf. Sect. 18.2.5.

Viscous sublayer. A peculiarity of turbulent boundary layers will be indi-
cated at this point. In laminar boundary layers, the boundary layer is the
region in the flow field affected by the viscosity, but this is not the case in
turbulent boundary layers. The entire flow field is now divided into the outer
flow, free from turbulence (or at least lacking in turbulence), and the turbu-
lent flow, characterised by random fluctuating motion, inside the boundary
layer. Since “apparent” friction forces occur in the turbulent boundary layer,
as will be shown in Chap. 18, a turbulent boundary layer is also called a
frictional layer. Within this turbulent frictional layer, the effect of the vis-
cosity is restricted to a layer directly at the wall which is much thinner than
the boundary layer. This is called the wviscous sublayer or viscous wall layer.
Therefore the turbulent boundary layer has a double layered structure. The
larger part is a frictional layer only because of the “apparent friction” due
to the turbulent fluctuating motion, and is unaffected by the viscosity. In
the very thin viscous sublayer, the effects of the viscosity are in the form of
“true” friction forces.

Although the transition between the two layers is continuous here too, in
practice the concept of the thickness of the viscous sublayer ¢, is used. As
will be shown in Sect. 17.1.2

50
- (2.15)

- )
c
T Req/Y
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where the skin—friction coefficient ¢s is given by Eq. (2.13). From this, J, ~
Inz grows very slowly with distance from the leading edge. It also decreases
with increasing Reynolds number at a fixed z as §, ~ In Re,/Rex.

The ratio of the sublayer thickness d,, to the total thickness § follows from
Egs. (2.12) and (2.15)

Oy In% Rey

5 = 680 Re,
As Rey increases, the part of the total frictional layer that makes up the
viscous sublayer gets ever smaller.

Numerical examples of the absolute thickness of the sublayer are given in
Table 2.1.

(2.16)

Table 2.1. Boundary—layer thickness 0 and thickness of the viscous sublayer §, at
the end of a flat plate at zero incidence in turbulent flow according to Egs. (2.12)
and (2.15). I: plate length, Us: free stream velocity, v: kinematic viscosity

Uso l Usol B 5o
Re =

m/s m v mm mm

50 1 3.3-10° 8 0.4

air 100 1 6.6 - 10° 8 0.2

2

v=15- 10*6“2 100 5 3.3-107 36 0.2
200 10 1.3- 108 69 0.1

1 2 2.10° 17 1

water 2 5 1-107 39 0.6

6m2

v=10" 5 50 2.5-108 321 0.4
10 200 2.10° 1122 0.1

2.4 Fully Developed Turbulent Flow in a Pipe

In Chap. 1, in connection with Fig. 1.4., mention has already been made
of fully developed turbulent flow in a pipe. This case of an internal flow is
initially not a flow with typical boundary—layer character. However it has,
just like the turbulent frictional layer described in the previous section, a
double layer structure with a turbulent core and a viscous sublayer. As the
Reynolds number increases, the thickness of the sublayer decreases, so that
the final limiting solution is of a flow with homogeneous velocity. In this man-
ner this flow can also be treated using the methods of boundary—layer theory.
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Pipe friction factor. The pipe friction factor A depicted in Fig. 1.4 is defined
as follows:

d dp ATy
A= =02 g = 02 (2.17)
2°m 2°m

As will be shown in Sect. 17.2.3, in the case of a smooth surface, the depen-
dence on the Reynolds number Re = u,,d/v is given by:

2

A=38 G(nRe)| . (2.18)

K
InRe
Here G(InRe) is again a function which monotonically decreases with increas-
ing In Re, and which has a limit of 1 for Re — oco. In the region of interest in
practice, 2300 < Re < 107, its value is about G = 1.35. The law of friction in
Eq. (2.18) is shown in Fig. 1.4, and agrees well with experimental results.

Thickness of the viscous sublayer. The thickness of the viscous sublayer
can also be determined approximately (see Chap. 17):

O InRe
=122 . 2.19
d Re G(InRe) (2.19)
As already mentioned, the thickness of the viscous sublayer decreases to zero
with increasing Reynolds number. Numerical values of 4, are given for prac-

tical examples of turbulent pipe flows of air and water in Table 2.2.

Table 2.2. Thickness of the viscous sublayer 4, in fully developed turbulent pipe
flow (smooth surface), according to Eq. (2.19)

tm d Re G %
m/s m mm
3 0.01 2-10% 1.47 3.2
3 0.1 2.10* 1.38 4.4
air 3 1.0 2.10° 1.33 5.6
2
v=15- 10*6‘“: 30 0.01 2.10* 1.38 0.4
30 0.1 2.10° 1.33 0.6
30 1.0 2.10° 1.39 0.7
0.2 0.01 2.10° 1.47 3.2
0.2 0.1 2.10* 1.38 4.4
water 0.2 1.0 2.10° 1.33 5.6
2
v=10"°" 20 0.01 2.10° 1.33 0.06
S
20 0.1 2.106 1.29 0.07
20 1.0 2.107 1.26 0.08
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2.5 Boundary Layer on an Airfoil

The boundary layers on flat plates at zero incidence treated in Sects. 2.2 and
2.3 were particularly simple, since the inviscid outer flow and thus the limit-
ing solution were translation flows with constant pressure in the entire field.
However, in the case of flow past an arbitrarily shaped body, additional pres-
sure forces occur. Figure 2.5 shows the boundary layer on an airfoil, where,
for reasons of clarity, the dimension in the transverse direction is enlarged
greatly. As with the plate, a laminar boundary layer begins to develop at
the nose of the airfoil. After a certain distance z.,; along the contour of the
body, the laminar—turbulent transition occurs, so that the boundary layer
is turbulent for & > x.;. Because of the geometry of the body, the invis-

Inviscid outer flow

Laminardurbulent Turbulent
transition boundary layer

Laminar
boundary layer

f Fig. 2.5. Development of the
boundary layer at an airfoil

cid outer flow gives rise to a pressure distribution on the outer edge of the
boundary layer. This pressure distribution is “imposed” onto the boundary
layer, i.e. at every point x, the pressure in the boundary layer perpendicu-
lar to the wall is constant. Therefore the pressure distribution on the outer
edge of the boundary layer is identical to the pressure distribution at the
wall. Any differences between these two pressure distributions could only
arise from streamline curvature and the resulting pressure gradients perpen-
dicular to the main flow direction as a compensation for centrifugal forces.
Since boundary layers are very thin compared to the radius of curvature of
the body’s contour at high Reynolds numbers, to first order, pressure gradi-
ents perpendicular to the wall do not occur. The pressure is imposed on the
boundary layer by the outer flow and is only a function of x. Additionally,
the dependencies mentioned in the case of the plate boundary layer are also
valid: as the boundary layer develops along the contour of the body, in gen-
eral the boundary-layer thickness 6(z) increases and the wall shear stress 7
decreases. The increase in boundary—layer thickness downstream is greater in
the case of turbulent boundary layers than laminar. As the Reynolds number
formed with the free stream velocity V' and a characteristic length of the
body [ increases, the thickness of the boundary layer decreases to zero in the
limiting case Re — oo. The pressure distribution imposed by the outer flow
is of considerable importance in the formation of the boundary layer. For
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example, the position of the laminar—turbulent transition depends strongly
on it. If the pressure greatly increases in the flow direction, as can occur in
the region towards the back of the airfoil, or on the back of blunt bodies, it is
possible that the boundary layer can separate from the wall. This extremely
important phenomenon of boundary-layer separation will be treated in more
detail in the next section.

2.6 Separation of the Boundary Layer

In order to explain the important phenomenon of boundary—layer separation,
let us consider the flow past a blunt body, e.g. past a circular cylinder as in
Fig. 2.6. In inviscid symmetric flow (Fig. 1.14a), an accelerated flow with
pressure drop is present on the front half from D to E; from E to F on the
back there is a decelerated flow with pressure increase. After setting the flow
in motion, as long as the boundary layer remains very thin, an almost inviscid
flow first forms. For a particle in the outer flow moving from D to E, pressure
is transformed into kinetic energy, and moving from E to F, kinetic energy
is transformed into pressure. A fluid particle directly at the wall in the

Fig. 2.6. Separation of the boundary layer
and vortex formation at a circular cylinder
(schematic). S = separation point

boundary layer is also acted on by the same pressure distribution as in the
outer flow, since this is imposed on the boundary layer. Because of the strong
friction forces in the thin frictional layer, a boundary—layer particle loses so
much of its kinetic energy that it cannot manage to get over the “pressure
mountain” from E to F. Such a particle cannot make much headway into
the region of increasing pressure from E to F. It comes to a standstill, and
is pushed backwards into motion by the pressure distribution of the outer
flow. The flow portraits in Fig. 2.7 are a time sequence of this process on
the back of a blunt body. The pressure increases along the contour of the
body from left to right. The flow has been made visible by little particles
of aluminium which have been sprinkled onto the surface of the water. The
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boundary layer is easily seen in the figures by the short streaklines of the
particles. In Fig. 2.7a (shortly after starting) the reversed motion has just
begun at the trailing edge. In Fig. 2.7b, the boundary layer has thickened,
and the start of the reversed motion has moved forward considerably. It can
be seen from Fig. 2.7c that a large vortex has formed from the backflow,
and this is even larger in Fig. 2.7d. This vortex then soon separates from the
body and moves on downstream. This process changes the flow portrait at
the back of the body fully and the pressure distribution is drastically changed
compared to that of inviscid flow. The final flow state for the cylinder can
be seen in Fig. 1.16. As the pressure distribution in Fig. 1.13 shows, there
is quite a strong negative pressure in the region filled with vortices. This
negative pressure is the origin of the large form drag of the body.

Fig. 2.7 a-d. Development in time of the separation at the back of a blunt body,
after L. Prandtl; O. Tietjens (1931)

Separation condition. As well as the friction drag, boundary—layer theory
is also able, via the separation process, to explain the form drag (pressure
drag). There is always danger of separation in regions where the pressure
increases, and it is even greater the larger the increase, particularly for bodies
with blunt rear sides. We can now understand why the pressure distribution
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observed in Fig. 1.8 for the slender airfoil agrees so well with the theoretical
inviscid flow. The pressure increase at the back is so weak that the boundary
layer does not separate. As a result, not much form drag occurs and the total
drag consists mainly of the friction drag and remains therefore small.

The flow portrait of boundary—layer flow close to separation is of the kind
depicted in Fig. 2.8. As a result of the backflow close to the wall, a strong
thickening of the boundary layer takes place and with this, boundary—layer
mass is transported away into the outer flow. At the point of separation, the
streamlines leave the wall at a certain angle. The position of separation is
given by the condition that the velocity gradient perpendicular to the wall
vanishes at the wall, i.e. the wall shear stress 7, vanishes:

Tw = (gZ) =0 (separation) . (2.20)

The position of separation can only be determined by exact calculation (in-
tegration of the boundary—layer differential equations).

1|

Fig. 2.8. Boundary-layer
flow close to the separation
point (schematic). S = sepa-
ration point

LV

The same process of separation discussed for flow past a circular cylin-
der also occurs in a channel which widens in the direction of flow (diffuser)
(Fig. 2.9a). Up until the narrowest cross—section the pressure drops in the
direction of flow. Here the flow is right along the walls, just as in inviscid
flow. After the narrowest point, the expansion is so great and therefore the
pressure increase so large that the boundary layer separates from both walls.
The flow now only fills a small part of the cross—section of the channel. How-
ever, if the boundary layer is sucked away at the walls (Figs. 2.9b and 2.9c¢),
the separation comes to a stop.

The flow portraits in Fig. 2.10 show that the pressure gradient along the
wall acts together with the friction along the wall to govern the separation
process. The picture on the left shows the flow against a wall placed perpen-
dicular to it (plane stagnation—point flow). On the streamline of symmetry
which leads to the stagnation point, there is a strong pressure increase in
the direction of flow. However, there is no separation here because there is
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Fig. 2.9. Flow in a widening channel (diffuser) (a) separation at both diffuser
walls, (b) suction of the boundary layer at the upper diffuser wall, (c¢) suction at
both diffuser walls (after L. Prandtl; O. Tietjens (1931))
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no wall friction present. There is even no separation at the wall itself, because
here the boundary layer in both directions flows in the direction of falling
pressure. If a very thin wall is now placed at right angles to the first wall
at the stagnation point (Fig. 2.10b), it now has on it a boundary layer with
increasing pressure in the flow direction. Because of this, the boundary layer
here separates from the flat wall.

Fig. 2.10. Stagnation point flow, after H. Féttinger (1939), (a) free stagnation—
point flow without separation, (b) retarded stagnation—point flow, with separation

The flow separation is frequently quite sensitive to small changes in the
shape of the body, particularly if the pressure distribution is strongly affected
by the change of shape of the body.

Other examples of separation. An instructive example is to be found
in the flow portraits of the model of a motor vehicle (a VW—van) shown in
Fig. 2.11 (E. Moller (1951), H. Schlichting (1954)). If the front of the van
is square (a), the flow past the sharp front edge produces strong negative
pressures and therefore a strong increase in pressure along the side walls.
This leads to a complete separation of the boundary layer along the whole
side wall and therefore to a large “dead water” area behind the body. The
drag coefficient for this van with a square front is ¢p = 0.76. For a rounded
front (b), on the other hand, the strong negative pressures at the front edge
are avoided and a flow attached to the entire side wall is achieved. There is a
considerable reduction in the drag coefficient to cp = 0.42. Further detailed
investigations on such vehicles, also for asymmetric free streams, have been
carried out by W.H. Hucho (1972, 1981).

Separation is also important in the production of lift on an airfoil. At small
angles of attack (up to about 10°), the flow moves along both sides without
separation, so that, to good approximation, an inviscid lift—producing flow
is found. This pressure distribution was given in Fig. 1.9 (attached flow,
Fig. 2.12a). As the angle of attack is increased, there is danger of separation
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on the suction side. This is because the pressure increase is greater here. At
a certain angle of attack, about 15°, separation occurs. The position of sepa-
ration is quite close to the nose of the airfoil. The separated flow (Fig. 2.12b)
has a large area of “dead water”. The inviscid lift—-producing flow has been
destroyed and the drag is now very high. The start of separation coincides
approximately with the maximum lift of the airfoil.

a) Square front

PR 0.76

=2 o 0 o wie ©

Separation

b) Rounded front

dd
i)
56 94!
5099

0.42

(i
&

No separation

Fig. 2.11. Flow past a model of a vehicle (Volkswagen van), after E. Moller
(1951). (a) Square front with fully separated flow along the entire side walls and
large drag coefficient cp = 0.76. (b) Rounded front with attached flow along the
entire side wall and small drag coefficient cp = 0.42.

Boundary-layer separation can even play a role when the angle of attack
on an airfoil is moderate, if flow close to the speed of sound is considered. As
already explained in Fig. 1.11, a shock generally forms on the suction side of
the airfoil. If the shock is strong enough, the pressure distribution it causes
can lead the boundary layer to separate. Because of the additional form drag
occurring, a drastic increase of the drag can take place close to the speed of
sound; this is frequently called the “sound barrier”.

Finally we present a particularly instructive example of how the drag of
a body can be dramatically decreased if the separation of the boundary layer
is completely avoided and additionally if the shape is suitably chosen. Figure
2.13 shows the effect of a suitable shaping (streamline form) on the drag: the
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Fig. 2.12. Flow past an air-
foil, (a) attached flow, (b) sep-
arated flow, after L. Prandtl;
O. Tietjens (1931)

Circular cylinder

l=167d

" Airfoil: NACA 63,~021
j i 1

Fig. 2.13. Relative sizes of an airfoil and a circular cylinder at equal free stream

velocities (parallel to the symmetry axis of the airfoil) which have the same drag.

Airfoil: laminar airfoil NACA 634 — 021 with laminar boundary layer.
Drag coefficient ¢cp = 0.006 at Re; = 10%t0 107

Circular cylinder: drag coefficient cp = 1.0 at Re; = 10*to 10° (Fig. 1.12)

The ratio of the chord of the airfoil [ to the diameter of the cylinder d has the value

l/d =1.0/0.006 = 167

relative sizes of a symmetric airfoil and a circular cylinder (a thin wire) are
sketched such that they have the same drag at the same free stream velocity.
The cylinder has a drag coefficient of about cp = 1, related to its frontal
area, cf. Fig. 1.12. The airfoil has a very small drag coefficient of cp = 0.006,
related to its outline area. This extremely small drag coefficient was achieved
by the fact that, because of suitable shaping, the boundary layer remains
laminar almost along the entire length (laminar airfoil); see alse Chap. 15, in
particular Fig. 15.27.
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Difference between laminar and turbulent boundary—layer separa-
tion. A particularly remarkable phenomenon connected with the laminar—
turbulent transition in boundary layers occurs at blunt bodies, such as cylin-
ders and spheres. It can be seen from Figs. 1.12 and 1.19 that, for Reynolds
numbers Vd/v of about 5-10° and 3-10° respectively, a sudden large drop in
the drag coefficient takes place. This was first noted for spheres by G. Eiffel
(1912), and has to do with the fact that the boundary layer becomes turbu-
lent. The point of separation thus is moved further backwards, since, because
of the turbulent mixing motion, the energizing action of the outer flow on the
turbulent boundary layer is much greater than in the laminar case. The sepa-
ration point for laminar flow lies approximately at the equator, but when the
boundary layer becomes turbulent, the point is moved some distance down-
stream. Thus the “dead water” area behind the body becomes considerably
narrower, and the pressure distribution becomes closer to that of inviscid flow
(Fig. 1.17). As the dead water area shrinks, a considerable lessening of the
form drag takes place, seen as a jump in the curve ¢cp = f(Re). L. Prandtl
(1914) was able to show that this is the correct explanation by placing a thin
wire ring around the sphere just in front of the equator (a “trip wire”). This
artificially makes the laminar flow turbulent at a lower Reynolds number,
and the same drop in drag which normally only happens at higher Reynolds
numbers occurs. Figure 2.14 shows flow portraits where the flows have been
made visible with smoke. On the left is a sphere in subcritical flow state, with
a large dead water area and drag, and on the right, the supercritical state
with small dead water area and drag. The second state has been produced
using Prandtl’s trip wire. This experiment shows clearly that the jump in
the resistance curve of the sphere and cylinder can only be understood as a
boundary-layer effect.

Fig. 2.14. Flow past a sphere, according to C. Wieselsberger (1914). (a) subcrit-
ical flow in subcritical Reynolds number regime, (b) supercritical flow in subcritical
Reynolds number regime. Applying a thin trip wire enforces the subcritical flow

Other bodies which have a blunt rounded back side (e.g. elliptic cylin-
ders) show in principle a similar drag coefficient dependence on the Reynolds
number. For ever narrower bodies, the jump in the drag curve moves back
further and further. In the case of a slender airfoil (Fig. 1.8), where basically
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no boundary-layer separation takes place, there is also no jump in the cp
curve. The smooth increase in pressure on the back of this body is overcome
by the boundary layer without separation. As we will see more clearly later,
the pressure in the outer flow has an important effect on the position of the
laminar—turbulent transition. In the area from the nose to the pressure min-
imum where the pressure decreases, the boundary layer is laminar, whereas
from then on, in the region of rising pressure, it is mostly turbulent. It is im-
portant to note that separation can in general only be prevented if the flow
in the boundary layer is turbulent. As will be seen later, a laminar boundary
layer can tolerate only an extremely small pressure rise, so that separation
occurs even if the body is very slender. This is particularly true even for air-
foil flow with a pressure distribution as in Fig. 1.9. The danger of separation
is largest here on the suction side. Here too, smooth, separation—free, lift—
producing flow is only possible if the boundary-layer flow is turbulent. This
can be summarised by saying that both the small drag of slender bodies as
well as the lift of airfoils are generally due to the turbulence in the boundary
layer.

One particular difference between laminar and turbulent boundary—layer
separation should also be mentioned here. After the boundary layer has sep-
arated and left the body, it develops into so—called free shear layers further
downstream, and forms the wake. In the limiting case Re = oo, the laminar
free shear layers reduce to lines and surfaces of discontinuity, cf. Fig. 1.14b.
In contrast, the turbulent free shear layers have a finite thickness at Re = oc.
If turbulent free shear layers form from separation, the limiting solution at
Re = oo has no viscosity, but does have friction: an apparent friction, due to
the turbulent fluctuating motion, exists.

Unsteady wakes. As already discussed in Chap. 1 in connection with the
flow past a cylinder (Figs. 1.15 and 1.16 and Table 1.1), in spite of steady free
stream conditions, the flow after separation is in no way steady. By this we
mean varying processes in the mean motion, which move slowly compared to
any turbulent fluctuating processes. This phenomenon does not only occur
in the case of a circular cylinder, but also in the cases of blunt bodies of
arbitrary shape and airfoils at large angles of attack. Sometimes a regular
arrangement of vortices rotating clockwise and anticlockwise appears behind
the body; this is known as the Karman vortex street. The unsteady character
of the wake clearly has a great effect on the drag of the body, cf. Fig. 1.15. Un-
derstandably, in particular cases it is extremely difficult to establish whether
unsteady flow takes place, and how it is to be determined. Research into this
is still very much underway: see the summaries by L. Rosenhead (1931/32),
M.V. Morkovin (1964), R. Wille (1966), E. Berger; R. Wille (1972), T. Sarp-
kaya (1975), W.J. McCroskey (1977), H-W. Férsching (1978) and D.P. Telio-
nis (1981), as well as H. Schlichting (1982).
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Measures to prevent separation. The separation of the boundary layer is
generally undesirable, since it leads to great losses in energy. Certain measures
have been devised to artificially prevent separation of the boundary layer.

It is physically easiest to move the wall in the flow direction too and
thus to remove the velocity difference between wall and outer flow, the origin
of boundary—layer formation. Of course, technically this is very difficult to
realise. However L. Prandtl; O. Tietjens (1931) used a rotating cylinder to
show that this method does work: on the side where the motion of the wall
and the outer flow are the same there is no boundary—layer separation at all.

Another useful method to prevent boundary—layer separation is suction.
The slowed boundary—layer material is sucked into the inside of the body
through narrow slits on the wall. If the suction is strong enough, boundary—
layer separation can be prevented. Boundary-layer suction was applied by
L. Prandtl in 1904 in his first fundamental work on boundary layers on a
circular cylinder. Separation can almost be completely prevented by suction
through a slit on the back of the cylinder. Figure 2.9 shows an example of
boundary-layer suction on the flow in a greatly diverging channel. Without
suction there is strong separation (Fig. 2.9a). When suction is applied only on
one side, the flow moves along this wall (Fig. 2.9b) and when suction is set in
motion on both sides, the flow fills up the entire channel (Fig. 2.9¢c). We then
obtain the flow portrait for inviscid flow. Suction has been used effectively to
increase the lift on airfoils too. Applied to the back of the upper side, suction
can be used to keep the flow along side the airfoil at much larger angles of
attack than otherwise. This leads to a considerable increase in the maximum
lift, O. Schrenk (1935).

Separation of the boundary layer can also be prevented by blowing tan-
gentially into the boundary layer. Using a “wall jet” blown through a slit
on the contour of the boundary layer parallel to the main flow direction, the
boundary layer can be given enough kinetic energy to prevent separation.
The maximum lift can be considerably increased using this principle.

In principle, a slat can be used on airfoils to prevent separation. In this
case the pressure distribution on the airfoil is suitably influenced by the pres-
ence of the slat. Positive pressure gradients are avoided and thus separation
prevented.

A summary of flow separation and its control may be found in P.K. Chang
(1970), P.K. Chang (1976).

2.7 Overview of the Following Material

Now that we have briefly presented the essential physical fundamentals of
flows with very low viscosity, the rational theory of these phenomena will be
developed from the fluid—dynamic equations of motion of viscous fluid flows.
This will be organised as follows: in Part I the general Navier—Stokes equa-
tions are derived. From these, in Part II Prandtl’s boundary—layer equations
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will be derived, based on the simplifications which follow from the small-
ness of the viscosity. The theory of integrating the boundary-layer equations
for laminar flows will follow this. The problem of the onset of turbulence
(laminar—turbulent transition) will be treated in Part III. Part IV will con-
sist of the boundary-layer theory of fully developed turbulent flows. While the
theory of laminar boundary layers can be treated purely by deduction from
the Navier—Stokes differential equations, this has not been possible in the case
of turbulent flows. Because they are so complicated, a purely theoretical ap-
proach is not possible. The theoretical treatment of turbulent flows therefore
must depend on experimental results, and it is therefore a semi—empirical
theory. The numerical methods of boundary—layer theory are treated in
Part V.
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