
Chapter 1
Mechanics

Abstract From Kepler’s laws to hydrodynamics via Lagrange and Hamilton func-
tions this first chapter covers classical mechanics, i.e. without relativistic or quantum
effects.

Theoretical physics is the first science to be expressed mathematically: the results of
experiments should bepredicted or interpreted bymathematical formulae.Mathemat-
ical logic, theoretical chemistry and theoretical biology arrived much later. Physics
had been understood mathematically in Greece more than 2000 years earlier, for
example the law of buoyancy announced by Archimedes—lacking Twitter—with
Eureka! Theoretical Physics first really came into flower, however, with Kepler’s
laws and their explanation by Newton’s laws of gravitation and motion. We also
shall start from that point.

1.1 Point Mechanics

1.1.1 Basic Concepts of Mechanics and Kinematics

A point mass is a mass whose spatial dimension is negligibly small in comparison
with the distances involved in the problem under consideration. Kepler’s laws, for
example, describe the earth as a point mass “circling” the sun. We know, of course,
that the earth is not really a point, and geographers cannot treat it in their field of
work as a point. Theoretical physicists, however, find this notion very convenient
for describing approximately the motion of the planets: theoretical physics is the
science of successful approximations. Biologists often have difficulties in accepting
similarly drastic approximations in their field.

The motion of a point mass is described by a position vector r as a function of
time t , where r consists of the three components (x, y, z) of a rectangular coordinate
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2 1 Mechanics

system. (A boldface variable represents a vector. The same variable not in boldface
represents the absolutemagnitude of the vector, thus for example r = |r|). Its velocity
v is the time derivative

v (t) = dr
dt

= (ẋ, ẏ, ż) , (1.1)

where a dot over a variable indicates the derivative with respect to time t . The
acceleration a is

a (t) = dv

dt
= d2r

dt2
= (

v̇x, v̇y, v̇z
)
, (1.2)

the second derivative of the position vector with respect to time.
Galileo Galilei (1564–1642) discovered by experimentally dropping objects, pre-

sumably not from the Leaning Tower of Pisa, that all objects fall to the ground equally
“fast”, with the constant acceleration

a = g and g = 9.81m/s2. (1.3)

Nowadays this law can be conveniently “demonstrated” in the university lecture
room by allowing a piece of chalk and a scrap of paper to drop simultaneously: both
reach the floor at the same time ... don’t they?

It will be observed that theoretical physics is often concerned with asymptotic
limiting cases: (1.3) is valid only in the limiting case of vanishing friction, never
fully achieved experimentally, just as good chemistry can be carried out only with
“chemically pure” materials. Nature is so complex that natural scientists prefer to
observe unnatural limiting cases, which are easier to understand. A realistic descrip-
tion of Nature must strive to combine the laws so obtained, in such a way that they
describe the reality, and not the limiting cases.

The differential equation (1.3), d2r/dt2 = (0, 0,−g) has for its solution the well
known parabolic trajectory

r (t) = r0 + v0t + (0, 0,−g)t2/2,

where the z-axis is taken as usual to be the upward vertical. Here r0 and v0 are the
position and the velocity initially (at t = 0); the number 1.3 is an equation number,
denoted as 1.3 or eq. (1.3) etc. in other publications. It is more complicated to explain
the motion of the planets around the sun; in 1609 and 1619 Johann Kepler accounted
for the observations known at that time with the three Kepler laws:

1. Each planet moves on an ellipse with the sun at a focal point.
2. The radius vector r (from the sun to the planet) sweeps out equal areas in

equal times.
3. The ratio (orbital period)2/(major semi-axis)3 has the same value for all

planets in our solar system.
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Fig. 1.1 Examples of an
ellipse, an hyperbola, and a
parabola as limiting case
(ε = 1/2, 2 and 1,
respectively)

Ellipses are finite conic sections and hence differ from hyperbolae; the limiting
case between ellipses and hyperbolae is the parabola. In polar coordinates (distance
r , angle φ) we have

r = p/(1 + ε cosφ),

where ε < 1 is the eccentricity of the ellipse and the planetary orbit. (Circle ε = 0;
parabola ε = 1; hyperbola ε > 1; see Fig. 1.1). Hyperbolic orbits are exhibited by
comets; mathematically, Halley’s Comet is not a comet in this sense, but a very
eccentric planet.

It is remarkable, especially for modern science politicians, that from these laws
of Kepler for the motion of remote planets, theoretical physics and Newton’s law of
motion resulted. Modern mechanics was derived, not from practical, “down to earth”
research, but from a desire to understand themotion of the planets in order to produce
better horoscopes. Kepler also occupied himself with snowflakes (see Chap. 5). That
many of his contemporaries ignored Kepler’s work, and that he did not always get
his salary, places many of us today on a par with him, at least in this respect.

1.1.2 Newton’s Law of Motion

Regardless of fundamental debates on how one defines “force” and “mass”, we
designate a reference system as an inertial system if a force-free body moves in a
straight line with a steady velocity. We write the law of motion discovered by Isaac
Newton (1642–1727) thus:

f = ma

force = mass × acceleration. (1.4)

http://dx.doi.org/10.1007/978-3-662-53685-8_5
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For free fall we state Galileo’s law (1.3) as

weight = mg. (1.5)

Forces are added as vectors (“parallelogram of forces”), for two bodies we have
action = −reaction, and masses are added arithmetically. So long as we do not need
to take account of Einstein’s theory of relativity, masses are independent of velocity.

The momentum p is defined by p = mv, so that (1.4) may also be written as

f = d p
dt

, (1.6)

which remains valid even with relativity. The law action = −reaction then states for
two mutually interacting point masses that

The sum of the momenta of the two masses remains constant. (1.7)

It is crucial to these formulae that the force is proportional to the acceleration and
not to the velocity. For thousands of years it was believed that there was a connection
with the velocity, as is suggested by one’s daily experience dominated by friction.
For seventeenth century philosophers it was very difficult to accept that force-free
bodies would continue to move with constant velocity; children of the space age have
long been familiar with this idea.

It is not stipulated which of the many possible inertial systems is used: one can
specify the origin of coordinates in one’s office or in the government’s Department
of Education. Transformations from one inertial system to another (“Galileo trans-
formations”) are written mathematically as:

r ′ = Rr + v0t + r0; t ′ = t + t0 (1.8)

with arbitrary parameters v0, r0, t0 (Fig. 1.2). HereR is a rotational matrix with three
“degrees of freedom” (three angles of rotation); there are three degrees of freedom
also in each of v0 and r0, and the tenth degree of freedom is t0. Corresponding to
these ten continuous variables in the general Galileo transformation we shall later
find ten laws of conservation.

There are interesting effects if the system of reference is not an inertial system.
For example we can consider a flat disk rotating (relative to the fixed stars) with an
angular velocityω = ω(t) (Fig. 1.3). The radial forces then occurring are well known
from rides on a carousel. Let the unit vector in the r direction be er = r/|r |, and the
unit vector perpendicular to it in the direction of rotation be eφ, where φ is the angle
with the x-axis: x = r cosφ, y = r sin φ. The time derivative of er is ωeφ, that of eφ

is −ωer, with the angular velocity ω = dφ/dt . The velocity is
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Fig. 1.2 Example of a
transformation (1.8) in
two-dimensional space

Fig. 1.3 Polar coordinates
(r , φ) on a flat disk rotating
with angular velocity ω,
viewed from above

v = d (rer) /dt = erdr/dt + rωeφ

according to the rule for the differentiation of a product Similarly for the acceleration
a and the force f we have

f
m

= a = v̇ =
(
d2r

dt2
− ω2r

)
er + (2ṙω + r ω̇)eφ. (1.9)

Of the four terms on the right hand side the third is especially interesting. The
first is “normal”, the second is “centrifugal”, the last occurs only if the angular
velocity varies. In the case when, as at the north pole on the rotating earth, the
angular velocity is constant, the last term disappears. The penultimate term in (1.9)
refers to the Coriolis force and implies that in the northern hemisphere of the earth
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swiftlymoving objects are deflected to the right, as observedwith various phenomena
on the rotating earth: Foucault’s pendulum (1851), the precipitous right bank of the
Volga, the direction of spin on the weather map for European depressions, Caribbean
hurricanes and Pacific typhoons. For example, in an area of low pressure in the North
Atlantic the air flows inwards; if the origin of our polar coordinates is taken at the
centre of the depression (and for the sake of simplicity this is taken at the north pole),
dr/dt is then negative, ω is constant, and the “deflection” of the wind observed from
the rotating earth is always towards the right; at the south pole it is reversed. (If the
observer is not at the north pole, ω has to be multiplied by sinψ, where ψ is the
latitude: at the equator there is no Coriolis force.)

1.1.3 Simple Applications of Newton’s Law

(a) Energy Law
Since f = ma we have:

f dr/dt = m (dr/dt)
(
d2r/dt2

) = d
(
mv2/2

)
/dt = dT/dt,

where T = mv2/2 is the kinetic energy. Accordingly the difference between the
kinetic energy at position 1 (or time 1) and that at position 2 is given by

T (t2) − T (t1) =
∫ 2

1
f v dt =

∫ 2

1
f dr,

which corresponds to the mechanical work done on the point mass (“work = force
times displacement”). (The product of two vectors such as f and v is here the scalar
product, viz. fxvx + fyvy + fzvz. The multiplication point is omitted. The cross
product of two vectors such as f × v comes later.) The power dT/dt (“power =
work/time”) is therefore equal to the product of force f and velocity v, as one
appreciates above all on the motorway, but also in the study.

A three-dimensional force field f (r) is called conservative if the above integral
over f dr between two fixed endpoints 1 and 2 is independent of the path followed
from 1 to 2. The gravity force f = mg, for example, is conservative:

∫
f dr = −mgh,

where the height h is independent of the path followed. Defining the potential energy

U (r) = −
∫

f dr
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we then have:

The force f is conservative if and only if a potential U exists such that

f = −gradU = −∇U. (1.10)

Here we usually have conservative forces to deal with and often neglect frictional
forces, which are not conservative. If a point mass now moves from 1 to 2 in a
conservative field of force, we have:

T2 − T1 =
∫ 2

1
f dr = − (U2 −U1) ,

so that T1 +U1 = T2 +U2, i.e. T +U = const:

The energy T +U is constant in a conservative field of force. (1.11)

Whoever can find an exception to this law of energy so central to our daily life can
produce perpetual motion. We shall later introduce other forms of energy besides T
andU , so that frictional losses (“heat”) etc. can also be introduced into the energy law,
allowing non-conservative forces also to be considered. Equation (1.11) showsmath-
ematically that one can already predict important properties of the motion without
having to calculate explicitly the entire course of the motion (“motion integrals”).

(b) One-Dimensional Motion and the Pendulum
In one dimension all forces (depending on x only and thus ignoring friction) are
automatically conservative, since there is only a unique path fromone point to another
point in a straight line. Accordingly E = U (x) + mv2/2 is always constant, with
dU/dx = − f and arbitrary force f (x). (Mathematicians should know that physicists
pretend that all reasonable functions are alwaysdifferentiable and integrable, andonly
now consider that knownmathematical monsters such as “fractals” (see Chap. 5) also
have physical meaning.) One can also see this directly:

dE/dt = (dU/dx)(dx/dt) + mv dv/dt = − f v + mva = 0.

Moreover we have dt/dx = 1/v = [(E −U )2/m]−1/2, and hence

t = t (x) =
∫

dx√
(E −U (x))2/m

. (1.12)

Accordingly, towithin an integration constant, the time is determined as a function
of position x by a relatively simple integral. Many pocket calculators can already
carry out integrations automatically at the push of a button. For harmonic oscillators,

http://dx.doi.org/10.1007/978-3-662-53685-8_5
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Fig. 1.4 Periodic motion
between the points a and b,
when the energy E lies in the
trough of the potential U (x)

such as the small amplitude pendulum, or the weight oscillating up and down on
a spring, U (x) is proportional to x2, and this leads to sine and cosine oscillations
for x(t), provided that the reader knows the integral of (1 − x2)−1/2. In general,
if the energy E results in a motion in a potential trough of the curve U (x), there
is a periodic motion (Fig. 1.4), which however need not always be sin(ωt). In the
anharmonic pendulum, for example, the restoring force is proportional to sin(x) (here
x is the angle), and the integral (1.12) leads to elliptic functions, which we do not
propose to pursue any further.

Notwithstanding the exact solution by (1.12), it is also useful to consider a com-
puter program, with which one can solve f = ma directly. Quite basically (I leave
better methods to the numerical mathematicians) one divides up the time into indi-
vidual time steps Δt . If we know the position x at that time we can calculate the
force f and hence the acceleration a = f/m. The velocity v varies in the interval
Δt by aΔt , the position x by vΔt . We thus construct the command sequence of the
program PENDULUM, which is constantly to be repeated

calculate f (x)
replace v by υ + ( f/m)Δt
replace x by x + vΔt
return to calculation of f .

At the start we need an initial velocity v0 and an initial position x0. By suitable
choice of the unit of time the mass can be set equal to unity. Programmable pocket
calculators can be eminently suitable for executing this program. It is presented here
in the computer language BASIC for f = − sin x . It is clear that programming can be
very easy; one should not be frightened by textbooks, where a page of programming
may be devoted merely to the input of the initial data.
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In BASIC and FORTRAN

a = b + c (a := b + c); (in PASCAL)

signifies that the sum of b and c is to be stored at the place in store reserved for the
variable a. The command

n = n + 1

is therefore not a sensational newmathematical discovery, but indicates that the vari-
able n is to be increased by one from its previous value. By “goto” one commands the
computer control to jump to the program line corresponding to the number indicated.
In the above program the computer must be stopped by a command. In line 40 the
appropriate force law is declared. It is of course still shorter if one simply replaces
lines 40 and 50 by

40 v = v − sin(x) ∗ dt.

About computer programming: The programs in this book are supposed to be
understood, not to be merely used as black boxes. The language BASIC is used for
them since that name suggests that the language is simple. FORTRAN is quite similar
while C++ is different. Translating a BASIC program into your preferred program-
ming language will help understanding it. For much longer programs than those in
this book, structured programming with subroutines is recommended. Graphic com-
mands have to be adjusted to the computer you use except if you print out all the
numbers and then plot them by hand.

(c) Angular Momentum and Torque
The cross product L = r × p of position and momentum is the angular momentum,
and M = r × f is the torque. Pedantic scientists might maintain that the cross prod-
uct is not really a vector but an antisymmetric 3 × 3 matrix. We three-dimensional
physicists can quite happily live with the pretence of handling L and M as vectors.
As the analogue of f = d p/dt we have
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Fig. 1.5 The triangular area
swept out by the radius
vector r per unit time is a
half of the cross-product
r × v. The upper picture is as
seen, looking along the axis.
The lower picture shows in
three dimensions the angle φ
and the vectors L and ω

M = dL
dt

, (1.13)

which can also be written as

M = r × ṗ = d(r × p)/dt − ṙ × p = L̇,

and since the vector dr/dt is parallel to the vector p, the cross product of the two
vectors vanishes. Geometrically L/m = r × v is twice the rate at which area is swept
out by the radius vector r (Fig. 1.5); the second law of Kepler therefore states that
the sun exerts no torque on the earth and therefore the angular momentum and the
rate at which area is swept out remain constant.

(d) Central Forces
Central Forces are those forces F which act in the direction of the radius vector r ,
thus F(r) = f (r)er with an arbitrary scalar function f of the vector r . Then the
torque M = r × F = (r × r) f (r)/|r| = 0:

Central forces exert no torque and leave the angular momentum unchanged.
(1.14)

For all central forces the motion of the point mass lies in a plane normal to the
constant angular momentum L:

rL = r(r × p) = p(r × r) = 0

using the triple product rule

a(b × c) = c(a × b) = b(c× a).
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The calculation of the angular momentum in polar coordinates shows that for this
motion ωr2 remains constant: the nearer the point mass is to the centre of force, the
faster it orbits round it Question: Does this mean that winter is always longer than
summer?

(e) Isotropic Central Forces
Most central forceswithwhich theoretical physicists have to deal are isotropic central
forces. These are central forces in which the function f (r) depends only on the
magnitude |r| = r and not on the direction: F = f (r)er. With

U (r) = −
∫

f (r)dr

we then have F = −gradU and f = −dU/dr : the potential energyU also depends
only on the distance r . Important examples are:

U ∼ 1/r, so f ∼ 1/r2 : gravitation, Coulomb’s law;
U ∼ exp(−r/ξ)/r : Yukawa potential; screened Coulomb potential;
U = ∞ for r < a, U = 0 for r > a : hard spheres (billiard balls);
U = ∞, −U0 and 0 for r < a, a < r < b and r > b :

spheres with potential well;
U ∼ (a/r)12 − (a/r)6 : Lennard-Jones or “6–12” potential;
U ∼ r2 : harmonic oscillator.

(Here ∼ is the symbol for proportionality, also denoted by the symbol ∝.)
For the computer simulation of real gases such as argon the Lennard-Jones poten-

tial is the most important: one places 106 such point masses in a computer and
moves each according to force = mass × acceleration, where the force is the sum
of the Lennard-Jones forces from the neighbouring particles. This method is called
“molecular dynamics” and uses a lot of computer time.1

Since there is always a potential energy U , isotropic central forces are always
conservative. If one constructs any apparatus in which only gravity and electrical
forces occur, then the energy E = U + T is necessarily constant. In amanner similar
to the one-dimensional case the equation of motion can here be solved exactly, by
resolving the velocity v into a component dr/dt in the r -direction and a component
rdφ/dt = rω perpendicular thereto and applying L = mωr2:

E = U + T = U + 1

2
(mv2)

= U + 1

2
m

[
(dr/dt)2 + r2ω2

] = U + 1

2
m

[
(dr/dt)2 + L2/m2r2

]
.

1W.G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam 1991).
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(In order to economise on parentheses, physicists often write a/bc for the fraction
a/(bc)). Accordingly, with Ueff = U + L2/2mr2, we have:

dr

dt
= √

2(E −Ueff/m), t =
∫

dr√
2(E −Ueff/m)

. (1.15)

By defining the effective potential Ueff we can thus reduce the problem to the
same form as in one dimension (1.12). However, we now want to calculate also the
angle φ(t), using

L = mr2ω = mr2
dφ

dr

dr

dt
: dφ

dr
= L

mr2
√
2(E −Ueff)/m

. (1.16)

Integration of this yields φ(r) and everything is solved.

(f) Motion in a Gravitational Field
Two masses M and m separated by a distance r attract each other according to
Newton’s law of gravity

U = −GMm/r and f = −GMm/r2, (1.17)

where G the gravitational constant is equal to 6.67 × 10−8 in cgs units. (The old
familiar centimetre-gram-second units such as ergs and dynes are still in widespread
use in theoretical physics; 1 dyne = 10−5newton = 1gcm/s2; 1 erg = 10−7joule or
watt − second = 1gcm2/s2.) Unlike mutually repulsive electrical charges, mutually
repulsive masses have so far not been discovered. For planets M is the mass of the
sun and m is the mass of the planet.

Since
∫

(1 − x2)−1/2dx = − arccos x

integration of (1.16) leads to the result

r = p/(1 + ε cos φ)

corresponding toKepler’s ellipse lawofSect. 1.1.1with theparameter p = L2/GMm2

and the eccentricity ε = (1 + 2Ep/GMm)1/2. For large energies ε > 1 and we
obtain a hyperbola (comet) instead of an ellipse (ε < 1).Kepler’s second law states, as
mentioned above, the conservation of angular momentum, a necessary consequence
of isotropic central forces such as gravitation. The third law, moreover, states that

(period)2

(major semi − axis)3
= 4π2

GM
. (1.18)
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(The derivation can be made specially simple by using circles instead of ellipses
and then setting the radial force mω2r equal to the gravitational force GMm/r2 :
period = 2π/ω.)

The computer simulation also makes it possible to allow hypothetical deviations
from the law of gravitation, e.g.,U ∼ 1/r2 instead of 1/r . The computer simulation
shows that there are then no closed orbits at all. The BASIC program PLANET
illustrates only the correct law, and with the inputs 0.5, 0, 0. 01 leads to a nice ellipse,
especially if one augments the program with the graphic routine appropriate for
the computer in use. In contrast to our first program, we are here dealing with two
dimensions, using x and y for the position and vx and vy for the velocity; the force
also must be resolved into x- and y-components: fx = x f/r , fy = y f/r . (“Input”
indicates that one should key in the numbers for the start of the calculation, and “sqr”
is the square root.) For an artificial law of gravitation with U ∼ 1/r2 one has only
to replace the root “sqr(r2)” in line 50 by its argument “r2”; the graphics will then
show that nothing works so well any more.

1.1.4 Harmonic Oscillator in One Dimension

The harmonic oscillator appears as a continuous thread through theoretical physics
and is defined in mechanics by

T = mv2/2, U = Kx2/2, E = T +U = p2/2m + Kx2/2. (1.19)

For example, a weight hanging on a spring moves in this way, provided that the
displacement x is not too great, so that the restoring force is proportional to the
displacement.
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(a) Without Friction
The calculation of the integral (1.12) with ω2 = K/m gives the solution

x = x0 cos(ωt + const.),

which one can however obtain directly: it follows from (1.4) that

m
d2x

dt2
+ Kx = 0, (1.20)

and the sine or the cosine is the solution of this differential equation. The potential
energy oscillates in proportion to the square of the cosine, the kinetic energy in
proportion to the square of the sine; since cos2 ψ + sin2 ψ = 1 the total energy E =
U + T is constant, as it must be.

In electrodynamics we shall come across light waves, where the electric and
magnetic field energies oscillate. In quantum mechanics we shall solve (1.19) by the
Schrodinger equation and show that the position x and the momentum p cannot both
be exactly equal to zero (“Heisenberg’s Uncertainty Principle”). In statistical physics
we shall calculate the contribution of vibrations to the specific heat, for application
perhaps in solid state physics (“Debye Theory”). Harmonic oscillations are also
well known in technology, for example as oscillating electrical currents in a coil (≈
kinetic energy) and a condenser (≈ potential energy), with friction corresponding to
the electrical resistance (“Ohm’s Law”).

(b) With Friction
In theoretical physics (not necessarily in reality) frictional forces are usually propor-
tional to the velocity. We therefore assume a frictional force −Rdx/dt ,

md2x/dt2 + Rdx/dt + Kx = 0.

This differential equation (of the second order) is linear, i.e. it involves no powers
of x , and has constant coefficients, i.e. m, R and K are independent of t . Such
differential equations can generally be solved by complex exponential functions
exp(iφ) = cosφ + i sin φ, of which one eventually takes the real part. In this sense
we try the solution

x = a eiωt → dx/dt = iωx → d2x/dt2 = −ω2x

and try to find the complex numbers a and ω. For the case without friction (1.20) is
quite simple:

−mω2x + Kx = 0, or ω2 = K/m.

With friction we now obtain

−mω2x + iω Rx + Kx = 0.
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This quadratic equation has the solution

ω = iR/2m ±
√
K/m − R2/4m2.

If we resolve ω into its real part Ω and its imaginary part 1/r , ω = Ω + i/r , we
obtain

x = aeiΩte−t/r .

Quite generally, with a complex frequency ω = Ω + i/τ the real part Ω corre-
sponds to a cosine oscillation and the imaginary part to a damping with a decay time
r . In the above expression, if we set a = 1 for simplicity, the real part is

x = cos(Ωt)e−t/r . (1.21)

Similarly other linear differential equations of n-th order with constant coeffi-
cients can be reduced to a normal equation with powers up to ωn . The imaginary
and complex numbers, with i2 = −1, existing originally only in the imagination of
mathematicians, have thus become a useful tool in practical physics.

So what does the above result mean? If 4K/m > R2/m2, then the square root is
real and equal to Ω , and 1/τ = R/2m. Then (1.21) describes a damped oscillation.
If on the other hand 4K/m < R2/m2, then the square root is purely imaginary, ω no
longer has a real partΩ , and we have an overdamped, purely exponentially decaying
motion. The “aperiodic limiting case” 4Km = R2 involves a further mathematical
difficulty (“degeneracy”)whichwewillingly leave to the shock absorption engineers.
Figure1.6 shows two examples.

(c) Resonance
We shall discuss resonance effects when a damped harmonic oscillator moves under
the influence of a periodic external force. “As everyone knows”, resonance presup-
poses that the oscillator and the force have about the same oscillation frequency.

We again use complex numbers in the calculation; the external force, which obeys
a sine or cosine law, is accordingly expressed as a complex oscillation f exp(iωt),
and not as proportional to cos(ωt). Then the inhomogeneous differential equation

Fig. 1.6 Displacement x as
a function of time t for
K = 1, m = 1 and R = 1
(oscillation) and R = 4
(damping). In the first case
the decay period τ is marked
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becomes:

md2x/dt2 + Rdx/dt + Kx = f eiωt.

The trial solution x = a exp(iωt) leads again to the algebraic equation

−mω2a + Riωa + Ka = f ;

the factor exp(iωt) has dropped out, retrospectively justifying the trial solution. It is
clearer if we put ω2

0 = K/m and 1/τ = R/m, since ω0 is the eigenfrequency of the
oscillator without the external force, and τ is its decay time. The above equation can
be solved quite simply:

a = ( f/m)/
(
ω2
0 − ω2 + iω/τ

)
.

This amplitude a is a complex number, a = |a| exp(−iψ), where the “phase” ψ
represents the angle by which the oscillation x lags behind the force f . The modulus,
given by |a|2 = (Re a)2 + (Im a)2, is of greater interest:

|a| = ( f/m)
√

(ω2
0 − ω2)2 + ω2/τ 2

. (1.22)

This function |a| of ω is an even function, i.e. its value is independent of the
sign of ω, so we can now assume ω ≥ 0. If the friction is small, so that τ is large,
then this function looks something like Fig. 1.7: a relatively narrow peak has its
maximum in the neighbourhood of ω = ω0, the width of this maximum being of
the order 1/τ . (Experts will know that it is not the amplitude, but the energy loss
through friction, that is maximal when ω = ω0; for weak damping the difference
is unimportant.) Similar phenomena often occur in physics: the eigenfrequency is
given approximately by the position of the resonance maximum, the reciprocal of
the decay time by the width.

Fig. 1.7 Representation of
the resonance function (1.22)
for small damping. The
maximum lies close to the
eigenfrequency ω0, the width
is given by 1/τ



1.1 Point Mechanics 17

When ω = ω0 then |a| = ( f/m)/(ω0/τ ) = f τ/(Km)1/2. The smaller the damp-
ing, the longer is the decay time, and so the higher is the maximum near ω = ω0. In
the limiting case of infinitely small damping, τ = ∞, there is an infinitely high and
infinitely sharpmaximum, and a resonance experiment is then impossible in practice:
one would have to hit the correct frequency ω0 exactly. It is therefore realistic to have
only a very weak damping, and the effect of radio tuning is well known. One has to
set the frequency approximately right in order to obtain a perceptible amplification.
The smaller is the damping, the more exactly one has to hit the required frequency.
One who finds radio programs too boring might well study the film of a particularly
elegant road bridge (Tacoma Narrows, U.S.A.), which collapsed decades ago, as the
wind produced oscillation frequencies which coincided with the eigenfrequencies of
the torsional oscillations of the bridge. (A historian compared this instability with the
international situation leading to the First World War; another compared Newton’s
law of gravity with the difficulty of keeping even far-away parts of an empire under
control of the central government.)

1.2 Mechanics of Point Mass Systems

Up to this point we have considered a single point mass in a steady force field; in this
section we pass on to several moving point masses, exerting forces upon each other.
We shall find a complete solution for two such point masses; for more than two we
restrict ourselves to general conservation laws.

1.2.1 The Ten Laws of Conservation

(a) Assumptions
Let there be N point masses with masses m i, i = 1, 2, ..., N , which exert the forces
Fik = −Fki mutually between pairs. All these forces are isotropic central forces, i.e.
mass k exerts on mass i the force

Fki = fki (rki) rki/ |rki| = fki (rki) eki

with rki = rk − r i. For convenience we define fii = 0 and then have to solve the
following equations of motion:

m id
2r i/dt2 =

∑

k

fkieki.

(b) Energy Law
Let the kinetic energy T = ΣiTi = Σim iv

2
i /2 be the sum of all the particle energies

Ti, the potential energyU the double sumΣiΣkUik/2 of all the two-particle potentials
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Uik and let there be no explicit dependence on time. Then the energy conservation
law is:

The energy E = U + T is constant in time. (1.23)

Proof

dT/dt =
∑

i

m iviv̇i =
∑

ik

fkiekivi =
∑

ik

( fkiekivi + fikeikvk) /2

=
∑

ik

eki (vi − vk) fki/2 = −
∑

ik

eik ṙki fki/2

= −
∑

ik

(∂Uki/∂rki) ṙki/2 = −dU/dt,

where fki = fik and eki = −eik has been used. Energy conservation with its asso-
ciated problems is therefore based here on the chain-rule of differentiation and the
exchange of indices in the double sums. (The partial derivative ∂ f/∂x of a function
f (x, y, z, ...) is the derivative at constant y, z, ...)

(c) Momentum Law
The total momentum P , hence the sum Σi pi of the individual momenta, is likewise
constant:

dP/dt =
∑

i

∑

k

eki fki =
∑

ik

(eki + eik) fki/2 = 0,

The momentum P is constant in time. (1.24)

(d) Law of Centre of Mass
R = Σim ir i/Σim i is the centre of mass, and M = Σim i is the total mass. Since both
P and M are constant, the velocity V of the centre of mass is also constant, because
P = Σim ivi = MdR/dt = MV . Hence

R = R0 + V t. (1.25)

It is often appropriate to choose the “centre of mass system” as the system of ref-
erence, in which the centre of mass lies always at the origin: V = R0 = 0 (Fig. 1.8).
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Fig. 1.8 Divorce in outer space: the two point masses fly asunder, but their centre of mass remains
fixed

(e) Angular Momentum Law
For the constancy of the total angular momentum L = ΣiLi we use

r i × Fki + rk × Fik = r ik × Fik = 0.

Hence one can show that

The angular momentum L is constant in time. (1.26)

Altogether we have here found ten conservation laws, since the constants P , V
and L each have three components; E has only one component. Laterwe shall explain
how these ten conservation laws are associated with ten “invariants”; for example,
the total angular momentum is constant since no external torque is present and since
therefore the total potential is invariant (unchanged) in a rotation of the whole system
through a specified angle.

1.2.2 The Two-Body Problem

Systems with two point masses have simple and exact solutions. Let there be two
point masses with isotropic central forces. We have to reconcile 12 unknowns (r
and v for each of the two particles), the ten conservation quantities given above and
Newton’s laws of motion for the two particles. The problem should therefore be
solvable. We use the centre of mass reference system already recommended above.

In this system we have r1 = −(m2/m1)r2, so that r = r1 − r2 and er = e21 lie
in the direction to r1 from r2. We therefore have:

d2r/dt2 = e21 f21/m1 − e12 f21/m2 = er f21

(
1

m1
+ 1

m2

)
= er f (r)/μ.

Accordingly Newton’s law of motion is valid for the difference vector r , with an
effective or reduced mass μ:

μ
d2r
dt2

= er f (r) with μ = m1m2

m1 + m2
. (1.27)
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The problem of the two point masses has therefore been successfully reduced to
the already solved problem of a single point mass.

In the motion of the earth around the sun the latter does not, of course, stand
still but also moves, despite Galileo, around the combined centre of mass of the
sun-earth system, which however lies inside the surface of the sun. The earth, like
the sun, rotates on an ellipse, whose focal point lies at the centre of mass. Kepler’s
second law also applies to this centre of mass, both for the earth and for the sun. In
Kepler’s third law, where different planets are compared, there is now introduced a
correction factor m/μ = (M + m)/M , which is close to unity if the planetary mass
m is very much smaller than the solar mass M . This correction factor was predicted
theoretically and confirmed by more exact observations: a fine, if also rare, example
of successful collaboration between theory and experiment.

In reality this is of course still inaccurate, since many planets are simultaneously
orbiting round the sun and all of them are exerting forces upon each other. Thismany-
body problem can be simulated numerically on the computer for many millions of
years; but eventually the errors can become very large because the initial positions
and velocities are not known exactly (and also because of the limited accuracy of
the computer and the algorithm). Physicists call it “chaos” (see Chap. 5) when small
errors can increase exponentially and make the eventual behaviour of the system
unpredictable.2 If the exhausted reader therefore lets this book fall to the ground,
that tiny tremor will later cause so great an effect in the planetary system (supposing
that this system is chaotic) that the decay of the planets’ accustomed orbits will
thereby be affected (positively or negatively). This will, however, not take place
before your next exams!

1.2.3 Constraining Forces and d’Alembert’s Principle

In reality the earth is not an inertial system, even if we “ignore” the sun, because of the
gravitational force with which the earth attracts all masses. Billiard balls on a smooth
table nevertheless represent approximately free masses, since they are constrained
to move on the horizontal table. The force exerted by the smooth table on the balls
exactly balances the force of gravity. This is a special case of the general conditions
of constraint now to be considered, in which the point masses are kept within certain
restrictive conditions (in this case on the table).

(a) Restrictive Conditions
We shall deal only with holonomic-scleronomic restrictive conditions, which are
given by a condition f (x, y, z) = 0. Thus the motion on a smooth table of height
z = hmeans that the condition 0 = f (x, y, z) = z − h is fulfilled, whereas 0 = f =

2H.G. Schuster, Deterministic Chaos (Physik Verlag, Weinheim, second edition 1989); M.
Schroeder, Fractals, Chaos, Power Laws (Freeman, New York 1991); J. Guckenheimer and P.
Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields (Springer,
Berlin, Heidelberg 1983).

http://dx.doi.org/10.1007/978-3-662-53685-8_5
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z · tan(α) − x represents a sloping plane with inclination angle α. In general f = 0
indicates a surface, whereas the simultaneous fulfillment of two conditions f1 = 0
and f2 = 0 characterises a line (intersection of two surfaces).

The opposite of scleronomic (fixed) conditions are rheonomic (fluid) conditions
of the type f (x, y, z, t) = 0. Non-holonomic conditions on the other hand can only
be represented differentially: 0 = a · dx + b · dy + c · dz + e · dt , and not by some
function f = 0. Railways run on fixed tracks, whose course can be described by
an appropriate function f (x, y, z, t) = 0: holonomic. Cars are, in contrast, non-
holonomic: the motion dr follows the direction of the wheels, which one can steer.
So in parking, for example, one can alter the y-coordinate at will, for a specified x-
coordinate, by shuffling backwards and forwards in the x-direction (and more or less
skillful steering). This shunting is not describable holonomically by f (x, y) = 0. The
car is rheonomic, because one turns the steering-wheel, the railway is scleronomic.

(b) Constraining Forces
Those forces which hold a point mass on a prescribed path by the (holonomic-
scleronomic) restrictive conditions are called constraining forces Z. The billiard
balls are held on the horizontal table by the constraining forces which the table exerts
on them and which sustain the weight. The other forces, which are not constraining
forces, are called imposed forces F. We accordingly have: md2r/dt2 = F + Z, the
constraining forces act perpendicularly to the surface (or curve) on which the point
mass has to move, and only the imposed forces can cause accelerations along the
path of the point masses.

Mathematically the gradient grad f = ∇ f = (∂ f/∂x, ∂ f/∂y, ∂ f/∂z) is perpen-
dicular to the surface defined by f (x, y, z) = 0. The constraining force is therefore
parallel to grad f

Z = λ∇ f (one condition)
Z = λ1∇ f1 + λ2∇ f2 (two conditions),

with λ = λ(r, t). We accordingly have the Lagrange equations of the first kind for
one and two conditions, respectively:

m
d2r
dt2

= F + λ∇ f, m
d2r
dt2

= F + λ1∇ f1 + λ2∇ f2. (1.28)

after Joseph Louis Comte de Lagrange (born in 1736 as Guiseppe Luigi Lagrangia
in Turin, working also in Berlin.)

In practice one can solve this equation by resolving the imposed force F into
one component Ft tangential and another component Fn normal (perpendicular) to
the surface or curve of the restrictive condition: F = Ft + Fn, Z = Zn + 0 = −Fn.
Something on an inclined plane is treated quite simply in this way, as you learn at
school; we use it instead to treat the pendulum (Fig. 1.9):
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Fig. 1.9 Constraining force
and imposed gravity force in
a pendulum, with resolution
into normal and tangential
components

A mass m hangs on a string of length l; the string is tied to the origin of coordi-
nates. Mathematically this is signified by the restriction 0 = f (r) = |r| − l; hence
grad f = er and Z = λer: the string force acts along the string. The resolution of
the imposed gravity force F = mg into tangential component Ft = −mg sin φ and
normal component Fn = −mg cosφ (φ = angular displacement) givesmld2φ/dt2 =
mat = Ft = −mg sin φ. The mass cancels out (since gravity mass = inertial mass),
and there remains only the pendulum equation already treated in Sect. 1.1.3b. Mon-
sieur Lagrange has therefore told us nothing new, but we have demonstrated with
this familiar example that the formalism gives the correct result.

(c) Virtual Displacement and d’Alembert’s Principle
Wedefine a virtual displacement as an infinitely small displacement of the pointmass
such that the restrictive conditions are not violated. (“Infinitely small” in the sense
of the differential equation: in f ′(x) = dy/dx , dy is the variation in the function
y = f (x) caused by an infinitely small variation dx .) With an inclined plane this
virtual displacement is therefore a displacement along the plane, without leaving it.

A virtual displacement δr accordingly occurs along the surface or the curve rep-
resenting the restrictive conditions and is therefore perpendicular to the constraining
force Z. Constraining forces therefore do no work: Zδr = 0, as is known from cur-
riculum reform. Since −Z = F − ma we have:

(
F − md2r/dt2

)
r = 0; (1.29)

in equilibrium: Fδr = 0; (1.30)

if F is conservative: δU = ∇Uδr = 0. (1.31)

One generalises this principle to a system of N point masses m i (i = 1, 2, ..., N )

with ρ restrictive conditions fμ = 0, (μ = 1, 2, ..., ρ), so we have

Lagrange 1st kind: m id
2r i/dt2 = Fi +

∑

μ

λμ∇i fμ(r1, ..., rN); (1.32)
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Fig. 1.10 Atwood’s
Machine or: How the
theoretical physicist presents
an experimental apparatus

d’Alembert:
∑

i

(
Fi − m i

d2r i
dt2

)
δr i = 0; (1.33)

in equilibrium:
∑

i

Fiδr i = 0; (1.34)

if Fi conservative: δU = 0, (1.35)

where U is the total potential energy.
The last equation δV = 0 summarises in only four symbols all the equilibrium

questions of point mechanics. A machine may be arbitrarily complicated, with struts
between the different masses, and rails on which the masses must move: nevertheless
with this machine in equilibrium it is still true that a quite small displacement of any
part cannot change the total potentialU : the principle of virtual work. So this part of
theoretical physics is seen to be not only elegant, but also practical. The law of levers
is a particularly simple application: if the left-hand arm of a balance has length a and
the righthand one length b, then the changes in height with a small rotation are as
a : b. The potential energies magz and mbgz do not change in sum if maga = mbgb
or maa = mbb. As an example for d’Alembert we can take Atwood’s machine in
Fig. 1.10: two point masses hang from a stringwhich passes over a frictionless pulley.
With what acceleration does the heavier mass sink?

Since the length of the string is constant, we have δz1 = −δz2 for the virtual
displacements in the z-direction (upwards). The imposed gravity forces in the z-
direction are F1 = −m1g and F2 = −m2g. Hence we have

0 =
∑

i

(
Fi − m id

2zi/dt
2
)
δzi

= (−m1g − m1d
2z1/dt

2
)
δz1 + (−m2g − m2d

2z2/dt
2
)
δz2

= δz1 (−m1g + m1a + m2g + m2a)
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for arbitrary δz1. So the contents of the brackets must be zero:

a = −g(m2 − m1)/(m2 + m1),

which as a clearly sensible result confirms the d’Alembert formalism.
In the next section we present this formalism in more detail; even this last section

could be counted as analytical mechanics.

1.3 Analytical Mechanics

In this sectionwe present the discussion, already begun, inmore general formalmeth-
ods. Later in quantum mechanics we shall become acquainted with their practical
uses, e.g., the Hamilton function of position and momentum.

1.3.1 The Lagrange Function

(a) Generalised Coordinates and Velocities
Now we renumber the coordinates of all the N particles thus: instead of x1, y1, z1,
x2, y2, z2, ..., xN, yN, zN we write x1, x2, x3, x4, x5, x6, ..., x3N−1, and x3N . Now
d’Alembert’s principle from (1.33) has the form

∑

i

(
Fi − m id

2xi/dt
2
)
δxi = 0.

These coordinates xi, however, are not very convenient if constraints limit the
motions. Then we should rather use generalised coordinates q1, q2, ..., gf , if there are
3N − f restrictive conditions and hence f “degrees of freedom”. These generalised
coordinates should automatically fulfill the restrictive conditions, so that on inserting
any numerical values for the qμ there is no violation of the restrictive conditions,
while on the other hand the declaration of all the qμ completely specifies the system.
If, for example, a motion follows a plane circular orbit with radius R, then instead
of the traditional coordinates x1 and x2 with the condition x21 + x22 = R2 it is much
simpler to write the angle φ as the single generalised coordinate q. These generalised
coordinates therefore do not necessarily have the dimension of a length; we usually
restrict ourselves in practice to lengths and angles for the qμ.

(b) Lagrange Equation of the Second Kind
The d’Alembert’s principle mentioned above can now be rewritten in the new vari-
ables qμ. For economy of effort we give the result immediately:

d
[
∂L/∂q̇μ

]

dt
= ∂L

∂qμ
, (1.36)
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where the Lagrange Function L = T −U is the difference between the kinetic and
the potential energies, written as a function of the qμ and their time derivatives. It
is easy to decide where the dot for timewise differentiation occurs in (1.36) from
dimensional considerations; and if one does not believe the whole equation it is
easy to demonstrate it using the example L = Σim iv

2
i /2 −U (x1, x2, ..., x3N), in the

absence of restrictive conditions (hence qμ = xi, and υi = dqμ/dt). Then we obtain
from (1.36): m idvi/dt = −∂U/∂xi, as required by Newton. If there are restrictive
conditions, then they are elegantly eliminated from the Lagrange equation of the
second kind (1788) by concealing them in the definition of the generalised coordi-
nates qμ.

Accordingly one proceeds in general as follows:

• choice of coordinates qμ corresponding to the restrictive conditions;
• calculation of dxi/dt as a function of qμ and dqμ/dt ;
• substitution of the results in the kinetic energy T ;
• calculation of the potential energy U as a function of the qμ;
• derivation of L = T −U with respect to qμ and dqμ/dt , substitution in (1.36).

We have therefore found a general method of calculating systems with arbitrarily
complex restrictive conditions. In practice it often looks simpler than these general
rules: for the pendulum of length l the coordinate q is the angle φ, the kinetic energy
is mv2/2 = ml2(dφ/dt)2/2 and the potential energy is −mgl cosφ, if φ = 0 is the
rest position.

We accordingly have

L = 1

2
ml2φ̇2 + mgl cosφ,

so that (1.36) gives the usual pendulum equation ml2d2φ/dt2 = −mgl sin φ from
Sect. 1.1.3b. Lagrange turns out to be correct.

(c) the Hamilton Principle of Least Action
We have here an extremal principle similar to many others in physics: the actual
motion of a system is such that the action W is extremal, i.e. it is either a maximum
or a minimum, when one considers all the possible motions from a specified starting
point “1” to a specified endpoint “2”. Here action is defined by the integral

W =
∫ t2

t1

L
(
qμ, q̇μ

)
dt

along themotionpathqμ = qμ(t), q̇μ = q̇μ(t).With somecalculation, and application
of (1.36) and of partial integration one can show thatwith fixed endpoints “1” and “2”:

δW = 0. (1.37)

This Hamilton principle (1834) accordingly states that the action does not change if
one alters the actual motion of the system very slightly. Vanishing of small variations



26 1 Mechanics

is a well known characteristic of a maximum or a minimum. To experts in variational
analysis (1.36) is readily recognised as the indication of an extremal principle.

Similarly, light “moves” in such a way that another integral, namely the traveling
time, is minimal: Fermat’s principle. From this follows, for example, the principle
of geometric optics.

1.3.2 The Hamilton Function

It seems strange that the Lagrange function L is the difference and not the sum
of the kinetic and the potential energies. This is different in the Hamilton function
H = T +U ; so this does not differ from the total energy, onlywewrite it as a function
of the (generalised) coordinates and momenta: L = L(x, v), but H = H(x, p) for a
particle with position x , velocity v and momentum p = mv in one dimension. The
partial derivative d/dx accordingly leaves unchanged the velocity v in L , but the
momentum p in H .

In case constraints are again present we define a generalised momentum

pμ = ∂L/∂q̇μ,

which in the absence of constraints coincides with the ordinarymomentummdqμ/dt .
The Lagrange equation of the second kind now has the form dpμ/dt = ∂L/∂qμ.
Accordingly if a coordinate qμ does not appear in the Lagrange function L of the
system under consideration, so that L is invariant to changes in the variable qμ, then
the corresponding momentum pμ is constant. For every invariance with respect to
a continuous variable qμ there accordingly is a conservation law. This was demon-
stratedmore rigorously by EmmyNoether in 1918. Thus the constancy of the angular
momentum follows from invariance with respect to a rotation of the total system, and
the invariance of the total momentum from invariance with respect to a translation,
as discussed in Sect. 1.2.1.

The total time derivative of the Lagrange function L is given by

dL

dt
=

∑

μ

(
∂L

∂qμ

dqμ

dt
+ ∂L

∂q̇μ

dq̇μ

dt

)

=
∑

μ

[
d(∂L/∂q̇μ)

dt

dqμ

dt
+ ∂L

dq̇μ

∂q̇μ

dt

]

= d

(
∑

μ

q̇μ
∂L

∂q̇μ

)

/dt.

Since the energy E = −L + Σμq̇μ∂L/∂q̇μ we therefore have dE/dt = 0: the
energy is constant. The fact that this E is actually the total energy T +U , shows
that U is independent of the velocities, whereas T depends quadratically on the



1.3 Analytical Mechanics 27

(generalised) velocities dqμ/dt , and hence

∑

μ

q̇μ pμ =
∑

μ

q̇μ
∂T

∂q̇μ
= 2T .

We can therefore summarise as follows:

pμ = ∂L

∂q̇μ
, ṗμ = ∂L

∂qμ
, T +U = E = H =

∑

μ

pμq̇μ − L , (1.38)

and this energy E is constant:
dE

dt
= 0. (1.39)

The energy is conserved here, because external forces and time dependent poten-
tials were neglected.

Comparing now the differential dH = Σμ(∂H/∂qμ)dqμ + (∂H/dpμ)dpμ with
the analogous differential dL , and taking account of (1.38), we find the canonical
equations

ṗμ = −∂H

∂qμ
, q̇μ = ∂H

∂ pμ
, H = H(qμ, pμ). (1.40)

It is evident from the one-dimensional example of the free particle, H = p2/2m,
that these equations lead to the correct results dp/dt = 0, dq/dt = p/m. One also
finds from this example where the minus sign is needed in (1.40).

As already mentioned, the Hamilton function plays an important role in quantum
mechanics. The so-called commutator of quantum mechanics resembles the Poisson
bracket of classical physics, defined by

{F,G} =
∑

μ

(
∂F

∂qμ

∂G

∂ pμ
− ∂F

∂ pμ

∂G

∂qμ

)
, (1.41)

where F and G are any functions dependent on the positions q and the momenta p.
Using the chain rule of differentiation it then follows that

dF

dt
= {F, H} (1.42)

just as the timewise variation of the quantum mechanical average value of a quantity
F is given by the commutator FH − HF (where F and H are “operators”, i.e. a
sort of matrices).

As example we take once again the one-dimensional harmonic oscillator: T =
mv2/2,U = Kx2/2, with no restrictions, so that q = x, p = mv. Then theHamilton
function is
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H (q, p) = p2/2m + Kq2/2.

From the canonical equations (1.42) it follows that dp/dt = −Kq and dq/dt =
p/m, which is correct. From (1.42), with F = p in the Poisson bracket, it follows
that

dp/dt = {p, H} = ∂ p

∂q

∂H

∂ p
− ∂ p

∂ p

∂H

∂q
= −∂H/∂q = −Kq.

which is also a correct result. We have thus successfully transcribed the simple law
that force = mass times acceleration into a more complicated form, but one which is
also more elegant, and suitable for the reader interested in practical applications in
quantum mechanics. The next section, however, presents a different application.

1.3.3 Harmonic Approximation for Small Oscillations

A very commonly used approximation in theoretical physics is the harmonic approx-
imation, where one develops a complicated function as a Taylor series and then
truncates the series after the quadratic term. Applied to the potential energy U of a
particle this gives

U (x) = U0 + xdU/dx + (x2/2)d2U/dx2 + ...,

where U0 and dU/dx drop out if we take the origin of coordinates at the mini-
mum of the energyU (x). The Hamilton function is then H = p2/2m + Kx2/2 with
K = d2U/dx2 + ... (derivatives at the point x = 0), i.e. the well known function of
the harmonic oscillator. In a solid body there are many atoms, which exert compli-
cated forces upon each other. If we develop the total potential energy U about the
equilibrium position of the atoms and truncate this Taylor series after the quadratic
term, then this harmonic approximation leads to a large number of coupled harmonic
oscillators. These are the lattice vibrations or phonons of the solid body. Before we
mathematically decouple these 1024 oscillators, we must first learn with just two
oscillators.

(a) Two Coupled Oscillators
Let two point masses of mass m be connected to one another by a spring, and
connected to two rigid walls, each by a further spring (Fig. 1.11). The three springs
all have the force constant K . Let the system be one-dimensional, the coordinates
x1 and x2 giving the displacements of the two point masses from their rest positions.
Then the Hamilton function, with vi = dxi/dt , is:

H = (m/2)
[
v2
1 + v2

2

] + (K/2)
[
x21 + x22 + (x1 − x2)

2] .
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Fig. 1.11 Two coupled one-dimensional oscillators between two fixed walls. All three spring
constants are equal

The kinetic energy is here a straight sum of two quadratic terms, but the potential
energy on account of the coupling is proportional to (x1 − x2)2. What is to be done
about it?

Although there are no restrictive conditions here, we make use of the possibility
discussed above of mathematically simplifying (“diagonalising”) the problem by
appropriate choice of coordinates qμ. Thus, with q1 = x1 + x2 and q2 = x1 − x2, so
that x1 = (q1 + q2)/2 and x2 = (q1 − q2)/2, we obtain

H = m

4

[
q̇2
1 + q̇2

2

] + K

4

[
q2
1 + 3q2

2

] = H osc
1 + H osc

2 ,

where H osc
1 depends only on q1 and q̇1 and has the structure of the Hamilton function

of a normal harmonic oscillator, similarly H2. With the generalised momenta

pi = ∂L/∂q̇i = ∂H/∂q̇i = mq̇i/2

and the canonical equations (1.40)

(m/2)d2qi/dt
2 = ṗi = −∂H/∂qi

we find the two equations of motion

md2qi/dt
2 = −Kiqi

with K1 = K and K2 = 3K . They are solved by q1 ∼ exp(iωt) and q2 ∼ exp(iΩt)
with ω2 = K/m and Ω2 = 3K/m. If q2 = 0, so that x1 = x2, then the system oscil-
lates with the angular velocity ω; if on the other hand q1 = 0, so that x1 = −x2
then it oscillates with the larger Ω = ω

√
3. The masses therefore oscillate together

with a lower frequency than if they swing against each other. In solid state physics
one speaks of acoustic phonons when the vibrations are sympathetic, and of optical
phonons when they are opposed. The general oscillation is a superposition (addition,
or linear combination) of these two normal oscillations. The essential aspects of the
harmonic vibrations in a solid body are therefore represented by this simple example;
the next section does the same, only in a more complicated case.

(b) Normal Vibrations in the Solid State
We now calculate in a similar way the vibration frequencies of the atoms in a solid
bodywhich has atomsofmassm andonly one type. Let the equilibriumposition of the
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i-th atombe r0i , and letqi = ri − r0i be the displacement fromequilibrium.We expand
the potential U quadratically (“harmonic approximation”) about the equilibrium
position qi = 0 and again number the coordinates i from 1 to 3N :

U (q) = U (0) +
∑

ik

(
∂2U/∂qi∂qk

)
qiqk/2,

since the first derivatives vanish at equilibrium (minimum of the potential energyU ).
With the “Hesse matrix”

Kik = ∂2U/∂qi∂qk = Kki

the Hamilton function has the form

H = U (0) +
∑

i

(
p2i /2m

) +
∑

ik

Kikqiqk/2.

The canonical equation (1.40) then gives

−md2qj/dt
2 = − ṗj = ∂H/∂qj = ∂U/∂qj =

∑

k

Kjkqk,

which can of course also be derived directly from

mass · acceleration = force = −gradU.

(In the differentiation of the double sum there are two contributions, one from
i = j and the other from k = j ; since Kik = Kki the two terms are equal, so the factor
1/2 disappears.) For this system of linear differential equations (constant coefficients)
we try the usual exponential solution: qj ∼ exp(iωt). This leads to

mω2qj =
∑

k

Kjkqk. (1.43)

Mathematicians recognise that on the right-hand side the 3N -dimensional vector
with the components qk, k = 1, 2, ..., 3N is multiplied by the Hesse matrixK of the
Kjk and that the result (on the left-hand side) should be equal to this vector, to within
a constant factor mω2. Problems of this type

factor · vector = matrix · vector

are called eigenvalue equations (here the eigenvalue of the matrix is the factor, and
the vector is the eigenvector). In general the equation system matrix · vector = 0
has a solution (with a vector which is not null) only if the determinant of the matrix
is zero. If E is the unit matrix of Kronecker deltas, so that Ejk = δjk = 1 for j = k
and = 0 otherwise, then eigenvalue equations have the form
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(matrix − factor · E) · vector = 0,

which leads to

determinant of (matrix − factor · E) = 0,

as the condition for a solution. The determinant det of a two-dimensional matrix is

det

(
a b
c d

)
= ad − bc;

the reader will find larger matrices treated in books on linear algebra.
In the case of rigid body vibrations we therefore have to set to zero the determinant

of a 3N -dimensional matrix:

det(K − mω2E) = 0. (1.44)

From linear algebra it is well known that the eigenvalues of a symmetric matrix
(Kjk = Kkj) are real and not complex. If the potential energy in equilibrium is a
minimum, which it must be for a stable equilibrium, then no eigenvalues mω2 are
negative, so that ω is also not imaginary. We therefore have true vibrations, and not
disturbances decaying exponentially with time.

The so-called secular equation (1.44) is a polynomial of degree 3N , which is
really troublesome to calculate with N = 1024 atoms. It is easier if one assumes that
in equilibrium all atoms lie in positions on a periodic lattice. Then one makes the
trial solution of a plane wave:

qj ∼ exp(iωt − iQr0j ), (1.45)

where q j is now a three-dimensional vector, j = 1, 2, ..., N , and Q indicates a wave
vector. With this simplification the eigenvalue problem is reduced to that of a three-
dimensional “polarisation vector” q with the associated eigenvalue mω2, both of
which depend on the wave vector Q. (See textbooks on solid state physics.) To
determine the eigenvalues of a 3 × 3 matrix leads to an equation of the third degree;
in two dimensions one has a quadratic equation to solve. Typical solutions for the
frequency ω as a function of the wave vector Q in three dimensions have the form
of Fig. 1.12, where A stands for “acoustic” (sympathetic vibrations), O for “optical”
(opposed vibrations), and L for longitudinal (displacement q in the direction of the
wave vector Q) and T for transverse. With only one sort of atom there are only three
acoustic branches (left), with two different sorts of atoms there are also three optical
branches (right). In quantum mechanics these vibrations are called phonons.

(c) Linear Chains
We now wish to calculate explicitly the frequency spectrum ω(Q) in one dimension,
i.e. in an infinitely long chain of identical point masses m. Between the points j and



32 1 Mechanics

Fig. 1.12 Typical phonon spectra in three-dimensional crystals

j + 1 there is a spring with the force constant K ; if neighbouring point masses are
separated by the distance a the spring force is zero and the atoms are in equilibrium:
x0j = aj for −∞ < j < +∞.

The Hamilton function or total energy is then

H =
∑

j

(p2j /2m) + K

2

∑

j

(qj+1 − qj)
2 =

∑

j

(p2j /2m) +
∑

jk

Kjkqjqkr/2

with qj = xj − x0j and the matrix elements Kjk = 0, −K , 2K , −K and 0 for k <

j − 1, k = j − 1, k = j , k = j + 1, and k > j + 1, respectively. The trial solution
of a plane wave (1.45) with wave vector Q, qj ∼ exp(iωt − iQaj), using (1.43),
gives

mω2 exp(iωt − iQaj) =
∑

k

Kjk exp(iωt − iQak) or

mω2 =
∑

k

Kjk exp(iQa( j − k))

= −K exp(iQa) + 2K − K exp(−iQa)

= −K (exp(iQa/2) − exp(−iQa/2))2 = 4K sin2(Qa/2)

so that
ω = ±2(K/m)1/2 sin(Qa/2). (1.46)

To be meaningful the wave vector Q is limited to the region 0 ≤ |Q| ≤ π/a,
because in a periodic chain the wave vectors Q and Q + 2π/a, for example, are
completely equivalent (between the atoms there is nothing that could move). In this
so-called Brillouin zone between Qa = 0 and Qa = π the sine in (1.46) rises from
0 to 1, just as it does schematically for the longitudinal acoustic phonon branch in
Fig. 1.12.
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1.4 Mechanics of Rigid Bodies

The theme of this section is the motion of solid bodies as entities. With an iron plate
we no longer consider this plate as a point mass, as in Sects. 1.1 and 1.2, nor as a
system of 1025 or more inter-vibrating atoms, as on the previous pages, but we ask,
for example, what forces act on the plate if it is attached to a motor and then rotated.
Why do gyroscopes behave in the way they do? In general, then, we consider rigid
bodies, in which the distances and the angles between different atoms are fixed (more
precisely: in which the changes in distances and angles are negligible).

1.4.1 Kinematics and Inertia Tensor

(a) Rotations
If a rigid body rotates about an axis with the angular velocity ω = ∂φ/∂t , then the
vector ω lies in the direction of the axis (Fig. 1.5). The body rotates in the clockwise
direction when regarded in the direction of +ω: the rule of the thumb of the right
hand. The fact that here right has precedence over left is due, not to politics, but to
the cheating of physicists: they regard certain asymmetric 3 × 3 matrices as axial
vectors, although they are not true vectors. These pseudo-vectors correspond to cross-
products, magnetic fields, and vectors, such as ω itself, defined by the direction
of rotation. With the definition of tensors later on, and in Sect. 2.3.2 (Relativistic
Electrodynamics), we shall see more of these imposters.

The velocity v of a point on the rotating rigid body at a position r relative to the
origin is the cross-product

v = ω × r, (1.47)

assuming (as we shall always assume in future) that the origin of coordinates lies on
the axis of rotation. Not only v but also r are genuine polar vectors, ω and the cross-
product of two polar vectors are axial vectors. Axial vectors, unlike polar vectors,
change their sign if the x-, y- and z-axes all change their signs (“inversion” of the
coordinate system). The two sign changes inω and the cross-product therefore cancel
out in (1.47). In general (1.47) can best be made clear by considering points on a
plane which is at right-angles to the axis of rotation; points on the rotation axis have
no velocity v.

If one holds the axle of the front wheel of a bicycle, sets it spinning rapidly, and
then tries to turn the axle into a different direction, one will notice the tendency
of the axle to turn at right-angles to the force being exerted on it. This evasion at
right-angles is easy to explain in principle: the timewise variation of the angular
momentum L is according to (1.13) equal to the torque M. This again is r × f ; if
then the force f is applied perpendicular to the axle at the position r , then the torque
M and the change in the angular momentum are perpendicular both to the axle and to
the force (Fig. 1.13). We should find this easy to understand. In the following section

http://dx.doi.org/10.1007/978-3-662-53685-8_2
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Fig. 1.13 Simple
explanation of the
perpendicular evasion of the
applied force F. The angular
momentum L points
upwards. On the left the gyro
is viewed from above, on the
right from the side. L
changes in the direction of
the torque M

we shall replace this qualitative explanation by a more precise, but unfortunately
more complicated, argument.

The gyrocompass is a practical application. Since the earth is not an inertial
system, but spins daily on its axis, this terrestrial rotation exerts a torque on every
rotating rigid body having its axis of rotation fixed to the earth’s surface. If instead
the axis of rotation is suspended in such a way that it can rotate horizontally to
the earth’s surface, but not vertically, then the torque from the terrestrial rotation
leads in general to the above mentioned deflection perpendicular to the axis of the
gyroscope. This continuing deflection of the axis of the gyroscope (“precession”)
causes frictional losses; gradually the gyroscope axis sets itself in the north-south
direction, where the precession no longer occurs. The flight of the boomerang is also
based on the gyroscopic effect; its demonstration by a theoretical physicist in a fully
occupied lecture hall, however, has certain disadvantages.

(b) Angular Momentum and Inertia Tensor
For the cross-product with a cross-product we have the transformation a × (b × c) =
b(ac) − c(ab) into scalar products. We apply this rule to the angular momentum L i,
of the ith atom or mass element:

Lim i = r i × vi = r i × (ω × r i)

= ω(r ir i) − r i(r iω) = ωr2i −
3∑

ν=1

øωνriν r i,

or in components (μ, ν = 1, 2, 3):

L iμ/m i = ωμr
2
i −

∑

v

ωνriμriν =
∑

ν

ων

(
r2i δμν − riμriν

)

with again the Kronecker delta δμν = 1 for μ = ν and = 0 otherwise. For the com-
ponents of the total angular momentum L = ΣiLi we have

Lμ =
∑

ν

ωνΘμν or L = Θω, Θμv =
∑

i

m i
(
r2i δμv − riμriν

)
. (1.48)
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The matrix Θ of the Θμν so defined is called the inertia tensor. Overlooking
this matrix property the relation L = Θω for the rotation of a rigid body is quite
analogous to the momentum definition p = mv for its translational motion. Tensors
are “true” matrices with physical meaning. More precisely: a vector for a computer
program is any combination of (in three dimensions) three numbers, e.g., the number
triplet consisting of, in the first place the Dow Jones Index from Wall Street, in the
second place the body weight of the reader, and in the third place the size of the
university budget. For physics this is gibberish, whereas, for example, the position
vector is a true vector. For the physicist, moreover, true vectors are those number
triplets which transform like a position vector under a rotation of the coordinate
system. Similarly, not every square array of numbers which a computer could store as
a matrix would be regarded by a physicist as a tensor. Tensors are only those matrices
whose components are transformed under a rotation of the coordinate system in such
a way that the tensor before and after links the same vectors. Accordingly, for true
vectors and tensors the relation: vector1 = tensor · vector2 is independent of the
direction of the coordinate axes. Only then do equations such as (1.48) make sense.

Since the inertia tensor Θ is symmetric, Θμν = Θνμ, it has only real eigenvalues.
Moreover, for all symmetric tensors one can choose the eigenvectors so that they are
mutually perpendicular. If we therefore set our coordinate axes in the directions of
these three eigenvectors, then any vector lying in the x-axis will, after multiplication
by the tensor Θ , again lie in the x-axis, but with its length multiplied by the first
eigenvalue, calledΘ1. Similarly, any vector in the y-direction, after application of the
matrixΘ , will be stretched or shortened by the factorΘ2, without change of direction.
The third eigenvalueΘ3 applies to vectors in the z-direction.General vectors aremade
up of their components in the x-, y- and z-directions, and after multiplication by Θ

are again the sum of their three components multiplied by Θμ. Accordingly in the
new coordinate system with its axes in the direction of the eigenvectors we have

L =
⎛

⎝
Θ1 0 0
0 Θ2 0
0 0 Θ3

⎞

⎠ · ω = Θω or Lμ = Θμωμ (1.49)

for μ = 1, 2, 3. The tensor Θ therefore has a diagonal form in the new coordinate
system; outside the diagonal the matrix consists of zeros.

Mathematicians call this choice of coordinate system, possiblewith any symmetric
matrix, its principal axes form; one has referred the tensor to its principal axes, or
“diagonalised” it. Physicists call the eigenvaluesΘ1 of the inertia tensor the principal
moments of inertia.

If one uses these principal axes one has

Θμ = Θμμ =
∑

i

m iρ
2
i with ρ2i = r2i − r2iμ, (1.50)

where ρ is the distance of the position r from the μ-axis; when μ = 1, i.e. the x-
axis, we accordingly have ρ2 = x2 + y2 + z2 − x2 = y2 + z2, as it should be. If one
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rotates the rigid body about a fixed axle, not just about an imaginary axis, then (1.50)
is likewise valid with the axle in place of the μ-axis: L = Σim iρ

2
i ω. In this case one

calls Σim iρ
2
i the moment of inertia ϑ; ϑ is then a number and no longer a tensor. Do

you still remember the Steiner rule? If not, have you at least come across Frisbee
disks?

(c) Kinetic Energy
If the centre of mass of the rigid body of mass M does not lie at the origin then
its kinetic energy is T ′ = T + P2/2M , where P is the total momentum and T the
kinetic energy in the coordinate system whose origin coincides with the centre of
mass of the rigid body. It is therefore practical, here and elsewhere, to use the latter
system at once and calculate T .

We have

2T =
∑

i

m iv
2
i =

∑

i

m ivi(ω × r i) = ωL,

where at the end we have again applied the “triple product” formula (volume of a
parallelepiped) a(b × c) = b(c× a) = c(a × b). Hence:

2T = ωL = ωΘω =
∑

μν

ωμΘμνων = ω2
1Θ1 + ω2

2Θ2 + ω2
3Θ3, (1.51)

where the last relation is valid only in the principal axes systemof the body. If the body
rotates with moment of inertia ϑ about a fixed axis, (1.51) is simplified to 2T = ϑω2.
Since in the absence of external forces the kinetic energy is constant, ΣμνωμΘμνων

is therefore constant. This condition describes an ellipsoid of inertia in ω-space. If
the three principal moments of inertia are equal this “ellipsoid” clearly degenerates
into a sphere. One usually calls any rigid body with three equal principal moments of
inertia a “spherical gyroscope”, although besides the sphere a homogeneous cube also
qualifies for this. “Symmetric” gyroscopes are those with two of the three principal
moments of inertia Θμ equal.

The angular momentum L is according to (1.49) the gradient (in ω-space) of
the kinetic energy T according to (1.51) and is therefore normal to this ellipsoid
of inertia; in general grad f is normal to the surface defined by f (r) = const. In
general, therefore, as shown by Fig. 1.14, the vectors ω and L are not parallel. Only
when the ellipsoid degenerates into a sphere, i.e. all three moments of inertia are
equal, are ω and L always parallel. Mathematicians will see this directly from the
relation (1.49).

1.4.2 Equations of Motion

(a) Fundamentals
The rigid body is in equilibrium only if no external torque nor any external force
acts on it. This is not quite trivial for individual point masses, as is a well known
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Fig. 1.14 Two-dimensional
illustration of (1.49) and
(1.51). If the inertia ellipse
(in principal axis form
Θ1ω

2
1 + Θ2ω

2
2 = 2T ) does

not degnerate into a circle,
the vectors ω and L are in
general not parallel

fact from daily experience, since enormous constraining forces, and perhaps torques
also, act between the atoms of the rigid body. However, these all balance out, as one
sees from the principle of virtual work (1.32). If the whole body is displaced through
the distance δR and rotated through the angle δφ, then δri = δR + δφ × r i, so since
these virtual displacements do no work we have:

0 =
∑

i

Fiδr i = δR
∑

i

Fi + δφ
∑

i

r i × Fi

for all small δR and δφ. Then the sums must also vanish: ΣiFi = 0 = Σir i × Fi.
Accordingly the total force and also the total torque vanish.

If an external force F and an external torque M act on the rigid body, these
determine the changes in the total momentum P and the total angular momentum L,
precisely because the inner forces and torques all cancel out:

F = dP
dt

, M = dL
dt

= d(Θω)

dt
(1.52)

in an inertial system. These are six equations for six unknowns, so we find ourselves
in a promising situation.

(b) Euler’s Equations
If a body rotates, then all its principal axes rotate with it, and also the entire inertia
tensor. We consider this body from an inertial system under the influence of an
external torque M and denote by eμ the unit vectors in the directions of the principal
axes (eigenvectors of the inertia tensor). Then these eμ change in time at the rate
deμ/dt = ω × eμ, μ = 1, 2, 3. The angular momentum is then seen from the inertial
system, taking account of the diagonal form (1.49) of the tensor Θ , to be:

L = Θω =
∑

μ

Θμωμeμ.
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Here we useω = Σμωμeμ, which sounds trivial but establishes that now the three
ωμ are the components relative to the eμ system of reference fixed in the body, and
not relative to the inertial system.

For the time derivative of L we therefore have

M = L̇ =
∑

μ

(
Θμω̇μeμ + Θμωμ ėμ

)
.

Substituting

de1/dt = (ω1e1 + ω2e2 + ω3e3) × e1 = ω3e2 − ω2e3,

and similar relations for the two other components, finally reduces the above expres-
sion for M to the Euler equations:

M1 = Θ1dω1/dt + (Θ3 − Θ2) ω2ω3

M2 = Θ2dω2/dt + (Θ1 − Θ3)ω3ω1 (1.53)

M3 = Θ3dω3/dt + (Θ2 − Θ1) ω1ω2.

If one knows one of these equations, the others follow from it naturally by cyclic
exchange of the indices: 1 by 2, 2 by 3, 3 by 1. In a spherical gyroscope all three Θμ

are equal and hence we simply have

M = Θμdω/dt.

A remarkable thing about these equations is first of all that they are not linear, but
quadratic in ω. Since we often can only solve linear differential equations exactly,
we program their simulation by the method already described in Sect. 1.1, for the
case M = 0 (see Program EULER).
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Whether linear or nonlinear, it is all the same to the BASIC program; it is more
important that wemust denote ω byw. The three principal moments of inertia are 10,
1 and 1/10, the time-step dt is 1/100. If we allow the body to rotate about a principal
axis, e.g. by the input 0, 1, 0, then nothing changes at all. If we introduce small
disturbances, however, inputing one of the three ωμ as 1, the other two as 0.01, then
the picture changes. A rotation about the principal axis with the greatest moment of
inertia (here axis 1) is stable, i.e. the small disturbances in the two other components
oscillate about zero and remain small, while ω1 remains in the neighbourhood of
1. This is obtained by inputing 1.0, 0.01, 0.01. With the input 0.01, 1, 0.01, on the
other hand, i.e. with a rotation about the axis with the middle moment of inertia, the
body totters about all over the place: the initially small ω3 becomes up to ten times
larger, but above all ω2 changes its sign. The initially dominant rotation component
ω2 is thus influenced quite critically by the small disturbances. Of course, none of
these disturbances grows exponentially without limit (contrary to linear differential
equations), since the kinetic energy must be conserved. The rotation about the third
principal axis with the smallest moment of inertia is again stable.

One can try experimentally to demonstrate the stability (instability) for rotation
about the axis with the greatest (middle) moment of inertia by skilful throws of filled
matchboxes. But here one comes close to the border between accurate observation
and hopeful faith. Instead, one can treat the Euler equations in harmonic approxima-
tion and theoretically distinguish clearly between instability (exponential increase
of disturbances) and stability; Euler (1707–1783) knew no BASIC.

(c) Nutation
The stable rocking of a gyroscope without external torque is called nutation; we call
precession the gradual rotation of the rotation axis under the influence of a weak
torque. Other definitions also occur in the literature. We now calculate the nutation
frequency, which we could observe empirically in the quantity ω2 with the above
computer program. We consider the symmetric gyroscope, Θ1 = Θ2, and assume
that the gyroscope spins fast about the third axis with moment Θ3, but that ω1 and
ω2 are not exactly zero. In this stable case how do the two components ω1 and ω2

oscillate, i.e. how does the instantaneous axis of rotation rock, when seen from the
rigid body? The ωμ in (1.53) and here are still always the components in the principal
axes system fixed in the rigid body.

The Euler equations with the abbreviation τ = (Θ1 − Θ3)/Θ1 now become

dω1/dt = τω2ω3, dω2/dt = −τω3ω1, dω3/dt = 0.

The principal component ω3 therefore remains constant and we have

d2ω1/dt
2 = τω3dω2/dt = −r2ω

2
3ω1.

This is once again the equation of the harmonic oscillator and is similarly valid
for ω2. The well known solution is
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ωμ ∼ eiΩt (μ = 1, 2), Ω/ω3 = τ = (Θ1 − Θ3)/Θ1. (1.54)

Accordingly, if the axis of rotation in the direction of ω does not exactly coincide
with the body axis e3 of the symmetrical gyroscope, so that ω1 and ω2 are not zero,
then the axis of rotation wobbles with the nutation frequency Ω about the body axis
e3. This nutation frequency is proportional to the actual rotation frequency ω3; the
factor of proportionality is a ratio of the moments of inertia.

Since the three ω-components are measured from the rotating reference system
fixed in the body, one can easily become dizzy. It is safer if we take the planet
earth as the example of a rigid body. It is known that the earth is not a sphere, but
is slightly flattened; the principal moment of inertia Θ3 relating to the north-south
axis is therefore somewhat greater than the other two in the equatorial plane. The
reference system fixed in the body is now our longitude and latitude, familiar from
maps. If we define the south pole by the direction of the principal moment of inertia
e3, the instantaneous axis of rotation will not coincide exactly with this pole, but
will nutate about it. Since τ = 1/300 the nutation frequency Ω must correspond to
a period of about 300 days. Actually the pole is observed to wobble with a period
of 427 days, as the earth is not a rigid body. Volcanic eruptions show that it is fluid
inside.

If one observes the nutating symmetric gyroscope from the inertial system instead
of from the system fixed in the body, it is no longer the axis e3 of the body that is
always in the same direction, but the angular momentum (provided that there is no
external torque). Around this fixed direction of the angular momentum the axis e3 of
the body describes the “nutation cone”. The instantaneous axis of rotation ω rotates
on the “rest cone” or “herpolhode cone”, while ω itself spins about the body axis on
the “rolling cone” or “polhode cone”.

(d) Precession
What happens when an external torque acts on a symmetric gyroscope? For example,
this is the situation for a toy spinning-top whose tip rests on the ground and which is
not perfectly upright. For the reader whose youth was so occupied with video-games
that he had no time for such toys, Fig. 1.15 shows a sketch of this experimental
apparatus.

If m is the mass of the top, R the distance of its centre of mass from its tip (point
of support) and g the downward acceleration of terrestrial gravity, then the weight
mg exerts the torque mR × g on the top. The vector R lies in the direction of the
body axis (at least when the top is perfectly round), and this is in the direction of
the angular momentum L if we neglect the nutation. (We thus assume that the top is
spinning exactly about its axis of symmetry.) We therefore have

dL
dt

= M = ωL × L, (1.55)

where the vector ωL, acts upwards and has the magnitude mRg/L . The solution of
this equation is simple: the horizontal component of the angular momentum (and
therefore also that of the body axis) rotates with the angular velocity ωL about the
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Fig. 1.15 Example of a
symmetric spinning-top in
the field of gravity. The
angular momentum L is
almost parallel to ω, the
torque M is perpendicular to
the plane of the paper

vertical. This slow rotation proportional to the external torque is called precession
(other names also occur in the literature for our nutation and precession). The mag-
nitude of L and its vertical component L3 accordingly remains constant. With real
tops, of course, there are also frictional forces. This explains why the top does not
fall over, but moves perpendicular to the direction in which it would be expected to
fall.

Another example of the application of (1.55) is the “Larmor precession” of mag-
netic moments (“spins”). In the classical atom an electron orbits around the nucleus,
and because of its electrical charge produces a circular electrical current and hence
a magnetic dipole moment μ. An atom therefore usually has a moment of inertia
and an angular momentum L, and also a magnetic dipole moment μ proportional
to L. (We shall learn later in electrodynamics that charges at rest cause electric
fields, while moving charges cause magnetic fields and oscillating charges waves.)
In a magnetic field B a magnetic dipole moment experiences a torque B × μ. Then
(1.55) is again valid, with the Larmor frequency ωL = |B × μ|/L . In the absence
of quantum mechanics, elementary magnets would therefore continually precess if
they were not exactly parallel to the magnetic field. The “gyromagnetic” ratio μ/L
is proportional to the ratio of the elementary electric charge e to the product of mass
m and the velocity of light c : ωL = eB/mc in appropriate units.

Such effects are applied in spin resonance (NMR, MRI: since 1946) to the study
of solid bodies and biological macromolecules, but more recently also in medicine
to diagnosis without an operation and without X-radiography (NMR tomography,
NMR = Nuclear Magnetic Resonance).

Precession is also important for horoscopes. Because of the flattening of the earth
the gravitation of the sun exerts a torque on the earth, and the angular momentum of
the earth processeswith a period of 26,000 years.Accordingly the agreement between
the stellar constellations and the calendar months becomes worse and worse with the
passage of time; every 26,000/12 years the signs of the zodiac move along by one
sign. Since the signs of the zodiac had already been fixed a long time ago, they are no
longer correctly placed today. Modern foretellers of the future therefore always have
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Fig. 1.16 Motion of the
peak of a spinning-top with
weak (bottom) and with
strong (top) precession, as
well as steady nutation. This
garland may be regarded as a
laurel wreath (Nobel Prize
substitute) fashioned for the
reader

to read between the signs, casting the horoscope according to the average value of
the two predictions of two neighbouring signs of the zodiac. In this way we arrived
at the prediction that this textbook would be a great success.

Whether it concerns mechanical gyroscope or magnetic spin, the torque precesses
with the angular velocity ωL on a cone about the vertical, if the gravitational force or
magnetic field acts downwards. This simple result holds only, of course, when both
friction and nutation are neglected. If there is a weak nutation, since the symmetric
gyroscope does not rotate exactly around the body axis e3, the vector e3 no longer
moves on the cone, so its end no longer moves on a circle. Instead, the end of e3
moves in a series of loops (strong amplitude of nutation) or waves (weak nutation)
formed by the superposition of two circular motions (Fig. 1.16).

1.5 Continuum Mechanics

1.5.1 Basic Concepts

(a) Continua
Elastic solids, flowing liquids and drifting gases are the continua of this Section
on elasticity and hydrodynamics. If in this sense a solid is not rigid, then one has
actually to treat all the molecules separately. In a glass of beer there are about 1025

particles, and there are more congenial methods to go about this than to solve New-
ton’s equations of motion for all of them simultaneously. Instead, we once again use
an approximation: we average over many atoms. If wewish to describe the flow of air
round a motor-car or the deformation of an iron plate supporting a heavy load, then
in these engineering applications we are scarcely interested in the thermal motion
of the air molecules or the high frequency phonons in the iron. We wish to find a
mean velocity of the air molecules and a mean displacement of the atoms of iron
from their equilibrium positions. We need therefore to average over a “mesoscopic”
region, containing many molecules, but small compared with the deformation of
the solid or with the distances over which the velocity of the fluid flow changes
significantly.
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Actually we do not really carry out this averaging; only in recent years has hydro-
dynamics been studied on the computer by the simulation of every individual atom.
We accordingly restrict ourselves here to postulating that there is a mean deforma-
tion and a mean velocity. On this assumption we construct the whole of continuum
mechanics, without actually calculating these mean values from the individual mole-
cules. We shall later use similar tricks with Maxwell’s equations in matter and in
thermodynamics. If we do not know a quantity which would in principle be calcu-
lated from the individual molecules, then we give this quantity a name (“density”,
“viscosity”, “susceptibility”, “specific heat”) and assume that it can be measured
concurrently by experimental physics. We then work with this measured value, in
order to predict other measured values and phenomena. This may be regarded as
cheating, but this method has been vindicated over hundreds of years. A theory is
generally called “phenomenological” if certainmaterial properties are not calculated,
but only measured experimentally.

Almost all the formulae in this section hold in common for gases, liquids and
solids. In any case, one cannot always distinguish clearly between these phases,
since iron plates can be deformed evenmore easily than glass, and at the critical point
(see van der Waals’ equation) the difference between vapour and liquid disappears.
Nevertheless, when the discussion is about strain, the reader can think of a single-
crystal solid; in velocity fields it is best to think of the flow of “incompressible”
water, and shock waves can be envisaged in “compressible” air.

(b) Strain Tensor ε
In an elastic solid let u be the mean displacement of the molecules from the equi-
librium configuration; u depends on the position r in the solid under consideration.
(For liquids and gases u is the displacement from the position at time t = 0.) For
sufficiently small distances r between two points in the solid we have the Taylor
expansion:

u(r) = u(0) +
∑

k

xk∂u/∂xk, k = 1, 2, 3.

We define

div u = ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

(1.56)

curl u =
(

∂u3
∂x2

− ∂u2
∂x3

,
∂u1
∂x3

− ∂u3
∂x1

,
∂u2
∂x1

− ∂u1
∂x2

)
(1.57)

as the divergence and the curl of the quantity u(r). Many authors write div u as the
scalar product of the nabla operator ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) with the vector u;
in this sense curl u is the cross-product ∇ × u. Many rules concerning scalar and
cross-products are also valid here. The point of prime importance is that the curl is
a vector, and the divergence is not.
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After some manipulation the above Taylor expansion becomes

u(r) = u(0) + curl(u) × r/2 + εr (1.58)

with the strain tensor ε, a 3 × 3 matrix, defined by

εik = (∂ui/∂xk + ∂uk/∂xi) /2 = εki. (1.59)

This shows clearly that the displacement u can be represented in small regions (r
not too large) as a superposition of a translation u(0), a rotation through the angle
curl(u)/2, and a distortion or strain of the elastic solid. For the rigid solids of the
previous section the distortion is absent, and curl(u) is uniform over space.

Since the strain tensor ε is always symmetric, there is a rectangular coordinate
system in which the matrix of the εik is diagonal: εik = 0 except when i = k. In this
coordinate system the volume change ΔV of a distorted prism of length x , breadth
y and height z is especially convenient to calculate, since now Δx = ε11x , etc.:

ΔV/V = [(x + Δx)(y + Δy)(z + Δz) − xyz]/xyz ≈ ε11 + ε22 + ε33 = Tr(ε)

with the trace Tr(ε) = Σiεii. Mathematicians have proved that the trace of a matrix
does not change with a rotation of the coordinate system. The trace of the unit tensor
E , defined as the matrix of the Kronecker delta δik, is trivially equal to 3. With the
definition

ε = ε′ + Tr(ε)E/3

the strain tensor is partitioned into a shear ε′ without volumechange (since Tr(ε′) = 0)
and a volume change without change of shape (since it is proportional to the unit
matrix). This analysis of the general displacement u into a translation, a rotation, a
change of shape and a change of volume is very plausible even without mathematics.

(c) Velocity Field
In gases and liquids the displacement field u(r) can be described as the displacement
of the molecules from their positions at time t = 0; there is no equilibrium position.
It is more appropriate, however, to talk of a mean velocity v(r) of the molecules:
v = du/dt . The velocity field v depends on the time t , as well as on the position r .

A clear distinction must be made between the total time derivative d/dt and the
partial time derivative ∂/∂t . This distinction can be clarified physically by consider-
ing the temperature T in a stream of water. If one measures it at a fixed position, e.g.,
at a bridge, then the position r is held constant and the measured rate of temperature
change is consequently ∂T/∂t . If, on the other hand, one drops the thermometer into
the stream, so that it drifts along with the current, then one measures the heating
or cooling of the portion of water in which the thermometer remains all the time it
is drifting. This rate of change of temperature, with varying position, is therefore
dT/dt .
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Mathematically the two derivatives are connected via the temperature gradient
grad T :

dT/dt = ∂T/∂t + (∂T/∂x)(∂x/∂t) + (∂T/∂y)(∂y/∂t) + (∂T/∂z)(∂z/∂t)

= ∂T/∂t +
∑

i

vi∂T/∂xi = ∂T/∂t + (v grad)T,

where (v grad) is the scalar product of the velocitywith the nabla operator∇. Another
notation for this operator (v grad) is (v · ∇); anybodywho finds this operator notation
difficult can always replace the expression (v grad)T byΣivi∂T/∂xi with i = 1, 2, 3
for the three directions.

What was said for temperature is equally true for any other quantity A:

dA

dt
= ∂A

∂t
+

∑

i

vi
∂A

∂xi
. (1.60)

One speaks also of the Euler notation, working with ∂/∂t , and of the Lagrange
notation, working with the total derivative d/dt . Simple dots as symbols for deriva-
tives with respect to time are dangerous in hydrodynamics.

If we now apply Newton’s law of motion

force = mass · acceleration,

then the acceleration is the total time derivative of the velocity, since the particles of
water are accelerating (“substantial derivative” dv/dt):

force = m
dv

dt
= m

[
∂v

∂t
+ (v grad)v

]
.

Here (v grad)Awith a vector Ameans that (v grad) is applied to each of the three
components and that the result is a vector:

[
(v grad)A

]
k =

∑

i

vi∂Ak/∂xi.

It is important to notice that the velocity v now occurs in Newton’s law of motion
not just linearly, but quadratically. Many problems in hydrodynamics accordingly
are no longer soluble exactly for high velocities, but use up much calculation time
on supercomputers. Clearly we measure dv/dt if we throw a scrap of paper into the
stream and follow its acceleration; ∂v/∂t is being assessed if we hold a finger in
the stream and feel the changing force on it. In both cases a bath-tub as a measuring
environment is more practical than a bridge over the Mississippi.

Just as in the whole of continuum mechanics, we do not wish to consider the
atoms individually, but to average them. We define therefore the density ρ as the
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ratio of mass to volume. More precisely ρ is the limiting value of the ratio of mass
to volume, when the mass is determined in a notionally defined partial volume of
the liquid, and this volume is very much greater than the volume of a single atom,
but very much smaller than the total volume or the volume within which the density
changes significantly. We take ρ simply to be the mass per cm3, since the Mississippi
is broader than a centimetre.

In a completely analogous manner we define the force density f as the force per
cm3 acting on a fluid ( f = force/volume). Newton’s law now has the form

f = ρ

[
∂v

∂t
+ (v grad)v

]
. (1.61)

An example of the force density f is the force of gravity, f = ρg. Later we shall
also meet areal forces such as the pressure.

A “universally known” law is that of Gauss:

∮
j d2S = ∫ div( j)d3r (1.62)

for a vector field j = j(r). The left-hand side is a two-dimensional integral over
the surface of the volume, over which the right-hand side is integrated three-
dimensionally. The areal element d2S is normal to this surface and points outwards.
Notation. Two- or three-dimensional integrals, taken over a plane or a space, we
denote by just an integral sign, and write the integration variable, for example, as
d3r . An area integral, which extends, for example, over the closed surface of a three-
dimensional volume, is denoted by an integral sign with a circle, as in (1.62); the
area element is then a vector d2S, in contrast to d3r . In Stokes’s law (1.81) will occur
a closed one-dimensional line integral, which is also marked with a circle; these line
integrals have a vector dl as integration variable pointing in the direction of the line.
The notation dV for d3r will be avoided here; in the section on heat the quantity V
will be the magnitude of the volume in the mechanical work −PdV .

We now apply this calculation rule (1.62) to the current density j = ρv of the
fluid stream; j thus represents how many grams of water flow per second through
a cross-sectional area of one square centimetre, and points in the direction of the
velocity v. Then the surface integral (1.62) is the difference between the outward
and the inward flowing masses per second in the integration volume, and hence in
the limit of a very small volume

−∂(mass)/∂t = div( j) · volume.

Accordingly after division by the volume we obtain the equation of continuity

∂ρ

∂t
+ div( j) = 0. (1.63)
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This fundamental relation between density variation and divergence of the relevant
current density is valid similarly in many fields of physics, e.g., with electrical charge
density and electrical current density. It is also familiar in connection with bank
accounts: the divergence of outgoings and ingoings determines the growth of the
reader’s overdraft, and the growth in wealth of the textbook author.

A medium is called incompressible if its density ρ is constant:

div( j) = 0, div(v) = 0. (1.64)

Water is usually approximated as being incompressible, whereas air is rather
compressible. Elastic solids also may be incompressible; then div u = 0.

1.5.2 Stress, Strain and Hooke’s Law

The force of gravity is, as mentioned, a volume force, which is measured by

force density = force/volume.

The pressure on the other hand has the dimension of force/area, and is therefore an
areal force. In general we define an areal force as the limiting value of force/area for
small area. Like force it is a vector, but the area itself can have various orientations.
The areal force is therefore defined as a stress tensor σ:

σik is the force (per unit area) in the i-direction

on an area at right-angles to the k-direction; i, k = 1, 2, 3. (1.65)

This tensor also is, like nearly all physical matrices, symmetric. Its diagonal
elements σii describe the pressure, which can indeed depend on the direction i in
compressed solids; the non-diagonal elements such as σ12 describe the shear stresses.
In liquids at rest the pressure P is equal in all directions, and there are no shear
stresses: σik = −Pδik.

In the case when in a certain volume there is not only a volume force f but also
an areal force σ acting on its surface, then the total force is

F =
∮

σd2S + ∫ f d3r = ∫(div σ + f )d3r,

where we understand the divergence of a tensor to be the vector whose components
are the divergences of the rows (or columns) of the tensor:
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(div σ)i =
∑

k

∂σik/∂xk =
∑

k

∂σki/∂xk.

In this sense we can apply Gauss’s law (1.62) in the above formula. In the limiting
case of small volume we therefore have

areal force

volume
= div σ, (1.66)

e.g., for the force which pressure differences exert on a cm3.
Because of (1.66) the equation of motion now becomes

ρ
dv

dt
= div σ + f (1.67)

with the total derivative according to (1.60), for solids as for liquids and gases. In a
liquid at rest under the influence of gravity f = ρg we therefore have f = −div σ =
div(Pδik) = grad P , and accordingly at height h: P = const. − ρgh. For every ten
metres of water depth the pressure increases by one “atmosphere” ≈ 1000millibars
= 105 pascals. Anybody who dives in the sea for treasure or coral must therefore
surface very slowly, as the sudden lowering of pressure would allow dangerous
bubbles to grow in the blood vessels. The relation div σ = −grad P is also generally
valid in “ideal” fluids without frictional effects (Euler 1755):

ρ
dv

dt
= −grad(P) + f . (1.68)

Equation (1.68) gives three equations for four unknowns, v and ρ. If the flow is
compressible we need also to know how the density depends on the pressure. As
a rule we use a linear relation: ρ(P) = ρ(P = 0)(1 + κP), the compressibility κ
being defined thereby.

In an elastic solid the stress tensor σ is no longer given by a unique pressure P ,
and instead of a unique compressibility we now need many elastic constants C . We
again assume a linear relationship, only now between the stress tensor σ and the
strain tensor ε,

σ = Cε, (1.69)

analogous to Hooke’s law: restoring force= C · displacement. Robert Hooke (1635–
1703) would be somewhat surprised to be regarded as the father of (1.69), since σik

and εmn are indeed tensors (matrices). Consequently C is a tensor of the fourth order
(the only one in this book), i.e. a quantity with four indices:

σik =
∑

mn

C ik
mnεmn (i, k,m, n = 1, 2, 3).
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These 81 elements of the fourth order tensor C reduce to two Lamé constants μ
and λ in isotropic solids:

σ = 2με + λETr(ε) (1.70)

with the unitmatrixE , andhenceσik = 2μεik + λδikΣjεjj. The compressibility is then
(see Exercise) κ = 3/(3λ + 2μ), the ratio of pressure to relative change of length is
the Young’s modulus E = μ(2μ + 3λ)/(μ + λ). The ratio: relative change of length
perpendicular to the direction of force divided by the relative change of length parallel
to the direction of force is the Poisson’s ratio λ/(2μ + 2λ). Accordingly, without
proof, the elastic energy is given by Σikμ(εik)

2 + (λ/2)(Trε)2.

1.5.3 Waves in Isotropic Continua

Sound waves (long-wave acoustic phonons) propagate in air, water and solids with
different velocities. How does it function? The mathematical treatment is the same
in all cases, so long as frictional effects (acoustic damping) are ignored and we are
dealing only with isotropic media, in which sound propagates with the same velocity
in all directions. Then we have (1.70), but with μ = 0, λ = 1/κ for gases and liquids.

Acoustic vibrations have such small amplitudes (in contrast to shock waves) that
they are treated in the harmonic approximation; quadratic terms such as (v grad)v
accordingly drop out: dv/dt = ∂v/∂t . Therefore, taking account of (1.70), after
some manipulation (1.67) takes the form

ρ
∂v

∂t
= div σ + f = μ∇2u + (μ + λ)grad div u + f . (1.71)

Here even for gases and liquids the displacement u makes sense, in that v =
∂u/∂t , since all vibrations do indeed have a rest position. The Laplace operator ∇2

is the scalar product of the nabla operator ∇ with itself:

∇2A = ∇(∇A) = div grad A = Σi∂
2A/∂x2i

for a scalar A. For a vector u,∇2u is a vector with the three components∇2u1,∇2u2,
∇2u3. One should notice also the difference between div grad and grad div: operators
are seldom commutative.

For the calculation of the sound velocitywe neglect the gravity force f and assume
sound propagation in the x-direction:

ρ
∂2u
∂t2

= μ
∂2u
∂x2

+ (μ + λ)grad

(
∂ux
∂x

)
(1.72)

or

ρ∂2ux/∂t
2 = (2μ + λ)∂2ux/∂x

2, ρ∂2uy/∂t
2 = μ∂2uy/∂x

2,
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in components, with the z-component analogous to the y-component. These equa-
tions have the form of the general wave equation

∂2Ψ

∂t2
= c2

∂2Ψ

∂x2
(or = c2∇2Ψ ) (1.73)

for the vibration Ψ , which for a plane wave has the solution

Ψ ∼ ei(Qx−ωt) with ω = cQ. (1.74)

(For arbitrary direction of propagation Qx is to be replaced in the trial solution
by Qr .) The sound velocity is given by c = ω/Q, the velocity with which a definite
phase is propagated, such as, for example, a zero of the real part cos(Qx − ωt).
(This phase velocity is to be distinguished from the group velocity dω/dQ, which
may be smaller for high frequency phonons, but here coincides with ω/Q.) In three
dimensions Q is the wave vector with magnitude Q = 2π/(wavelength); it is often
denoted by q, k or K .

If we compare (1.73) with (1.72) in their three components we immediately see
that

c2 = (2μ + λ)/ρ (1.75)

for the case when the displacement u is parallel to the x-direction (longitudinal
vibrations), and

c2 = μ/ρ (1.76)

for transverse vibrations perpendicular to the x-direction. In general the sound is
a superposition of longitudinal and transverse types of vibration. The longitudinal
sound velocity is greater than the transverse velocity in solids, since in the longitudi-
nal vibrations the density must also be compressed. In liquids and gases with μ = 0
and λ = 1/κ only longitudinal sound waves can exist (at low frequencies, as here
assumed) with

c2 = 1/(κρ). (1.77)

Since the densities ρ can be different even in gases with the same compressibility
κ, the sound velocity c always depends on the material. Usually one naturally thinks
of sound in air under normal conditions.

1.5.4 Hydrodynamics

In this section we think less about solids but rather of isotropic liquids and gases.
Nearly always we shall assume the flow to be incompressible, as suggested by water
(hydro- comes from the Greek word for water).
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(a) Bernoulli’s Equation and Laplace’s Equation
We call the flow static if v = 0, and steady if ∂v/∂t = 0. (Is zero growth in the
economy static or steady?) If the volume force f is conservative there is a potential φ
with f = −grad φ. Then in a steady incompressible flow with conservative volume
force we have according to Euler’s equation (1.68): ρ(v grad)v = −grad(φ + P);
here the pressure clearly becomes a sort of energy density (erg per cm3).

Streamlines are the (averaged) velocity direction curves of the water molecules,
and thus given mathematically by dx/vx = dy/vy = dz/vz. If l is the length coordi-
nate along a streamline, and ∂/∂l the derivative with respect to this coordinate in the
direction of the streamline (hence in the direction of the velocity v), then we have
|(v grad)v| = v∂v/∂l, and hence for steady flows

−∂(φ + P)/∂l = | − grad(φ + P)| = ρv∂v/∂l = ρ∂(v2/2)/∂l

analogous to the derivative of the energy law in one dimension (see Sect. 1.1.3a).
Along a steady streamline we therefore have

φ + P + ρv2/2 = const. (1.78)

(Bernoulli 1738). This is a conservation law for energy if one interprets the pres-
sure, which derives from the forces between the molecules, as energy per cm3; then
φ is, for example, the gravitational energy and ρv2/2 the kinetic energy of a unit vol-
ume. This mechanical energy is therefore constant along a streamline, since friction
is neglected. By measurement of the pressure difference one can then calculate the
velocity.

A flow v is called a potential flow if there is a functionΦ whose negative gradient
is everywhere equal to the velocity v. Since quite generally the curl of a gradient is
zero, for potential flows curl v = 0, i.e. the flow is “vortex free”. If a potential flow
is also incompressible, then we have 0 = div v = −div gradΦ = −∇2Φ and

∇2Φ = 0 (Laplace Equation). (1.79)

It can also be shown that (1.78) is then valid not only along a streamline, but also
when comparing different streamlines:

φ + P + ρv2/2 = const. (1.80)

in the whole region of an incompressible steady flow without friction, with conser-
vative forces.

(b) Vortex Flows
The well-known Stokes’s law states that

Γ =
∮

vdl =
∫ ∫

curl(v)d2S, (1.81)
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Fig. 1.17 Author’s dream of
the Lorelei and her whirlpool
(schematic). Below and to
the right is seen a vortex:
velocity υ as a function of
distance r from the vortex,
with core radius a → 0

with the line integral dl along the rim of the area over which the integral d2S is
integrated. In hydrodynamicsΓ is called the circulation or vortex strength; it vanishes
in a potential flow. Since Thomson (1860) it is known that

dΓ

dt
= 0, (1.82)

for incompressible fluids without friction (even unsteady), i.e. the circulation moves
with the water particles.

With vortex lines, such as are realised approximately in a tornado, the streamlines
are circles about a vortex axis, similar to the force lines of the magnetic field round
a wire carrying a current. The velocity v of the flow is inversely proportional to the
distance from the vortex axis, as can be observed at the drain hole of a bath-tub. In
polar coordinates (r ′,φ) about the vortex axis an ideal vortex line therefore has the
velocity

v = eφΓ/2πr ′, r ′ > a

v = eφωr
′, r ′ < a

with the core radius a and the angular velocity ω = Γ/2πa2 within the core. Under
these conditions curl v = 0 outside the core and= 2ω in the core: the vortex strength
is concentrated almost like a point mass at the core, assumed small.

For a hurricane, the core is called the eye, and there it is relatively calm; the
film Key Largo is a good hurricane teacher. In the out-flowing bath-tub the core is
replaced by air. Inmodern physical research vortices are of interest no longer because
of the Lorelei, which enticed the Rhine boatmen into the whirlpool of old (Fig. 1.17),
but because of the infinitely long lifetime of vortices in superfluid helium3 at low
temperatures because of quantum effects (Onsager, Feynman, around 1950). Also
the lift of an aeroplane wing arises from the circulation about the wing; the wing is
therefore the core of a sort of vortex line.

If two or more vortex lines are parallel side by side in the fluid, the core of each
vortex line must move in the velocity field arising from the other vortex lines. For

3E.L. Andronikashvili andYu.G.Mamaladze, p. 79 in: Progress in LowTemperature Physics, vol.V,
edited by C.J. Gorter (North Holland, Amsterdam 1967).
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Fig. 1.18 Motion of a vortex pair with equal (left) and opposite (right) circulations

Fig. 1.19 Flow between two
plates (side view) for
determination of the
viscosity η. The upper plate
moves with velocity v0 to the
right, in contrast to the lower
plate, which is fixed

the circulation is concentrated on a thin core and must move with the fluid, as stated
above. So two parallel vortex filaments with Γ1 = −Γ2 follow a straight line course
side by side, whereas if Γ1 = +Γ2 they dance round each other (Fig. 1.18). If one
bends a vortex line into a closed ring, then for similar reasons this vortex ring moves
with unchanging shape in a straight line: each part of the ring must move in the
velocity field of all the other pans. This vorticity is also the reason why one can blow
out candles, but not suck themout (danger of burning in proving this experimentally!).
Also experienced smokers can blow smoke-rings (if the non-smokers let them).

(c) Fluids with Friction
In the “ideal” fluids investigated up to this point there is no friction, and so the stress
tensor σ consists only of the pressure P: σik = −Pδik. If, however, we stir honey
with a spoon we create shear stresses such as σ12, which are proportional to the
velocity differences.

Just as two elastic constants μ and λ sufficed in the elasticity theory for isotropic
solids in (1.70), we need only two viscosities, η and ζ (with E = unit tensor) for the
stresses caused by friction:

σ′ = 2ηε′ + (ζ − 2η/3)E Tr(ε′). (1.83)

Here σ′ is the stress tensor without the pressure term, and ε′ has the matrix ele-
ments (∂vi/∂xk + ∂vk/dxi)/2, since the corresponding expression with u in (1.59)
makes little sense for fluids. The trace of the tensor ε′ is then simply div v, so that in
incompressible flows the complicated second term in (1.83) drops out. Thus hydrody-
namics usually requires only one friction coefficient whereas elasticity theory needs
two.

Let us consider as an example the flow between two parallel plates perpendicular
to the z-axis (Fig. 1.19). The upper plate at z = d moves with velocity v0 to the right,
the lower plate at z = 0 is fixed. After some time a steady fluid flow is established
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between the plates: v points only in the x-direction to the right, with vx(z) = v0z/d,
independently of x and y. Accordingly div v = 0: the flow is incompressible then,
even if the fluid itself is compressible. The tensor σ′ = 2ηε′ according to (1.83)
contains many zeros, since only ε′

13 = ε′
31 = (∂vx/∂z + 0)/2 = v0/2d is different

from zero:

σ′
13 = ηv0/d.

This is therefore the force in the x-direction, which is exerted on each square
centimetre of the plates perpendicular to the z-direction, in order to overcome the
frictional resistance of the fluid. In principle the viscosity η can be measured in this
way, although falling spheres (see below) are amore practicalmethod for determining
the viscosity. The other viscosity ζ only comes into it if the density changes, as for
example in the damping of shock waves.

With this stress tensor σ′ and the pressure P , (1.67) has the form

ρdv/dt = div σ′ − grad P + f ,

which can be rewritten (see (1.83)) to be analogous to (1.71)

ρ
dv

dt
= η∇2v + (ζ + η/3)grad divv − grad P + f . (1.84)

In the special case of incompressible flow div v = 0 and f = 0 this yields the
celebrated Navier-Stokes equation (1822):

ρ
dv

dt
= η∇2v − grad P, (1.85)

which has already used up much work and storage in many computers. Since ρ is
now constant we can, if the pressure is also constant, define the kinematic viscosity
ν = η/ρ, and write

dv

dt
= ν∇2v. (1.86)

This equation has the form of a diffusion or heat conduction equation, ignoring
the difference (negligible for small velocities) between dv/dt and ∂v/∂t . A high
velocity concentrated in one place is therefore propagated outwards by friction just
like the temperature of a solid briefly heated in one place, until eventually the whole
fluid has the same velocity. The solution is exp(−t/τ ) sin(Qr) with 1/τ = νQ2, if
sin(Qr) is the starting condition, whether it is the propagation of small velocities in
a viscous fluid, heat in a solid, or molecules in a porous material. In air, water and
glycerine ν is of order 10−1, 10−2 and 10cm2/s, respectively.
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Fig. 1.20 Poiseuille flow
through a long tube, with
parabolic velocity profile
vx(r), 0 < r < R

(d) Poiseuille Law (1839)
A somewhat more complicated flow than that described above between moving and
fixed plates is that through a long tube (Fig. 1.20). In the middle the water flows
fastest, at the walls it “sticks”. For the steady solution we require the Navier-Stokes
equation: 0 = −grad P + η∇2v, or since all the flow is only towards the right in the
x-direction: ∂P/∂x = η∇2vx. P is independent of y and z, whereas vx is a function
of the distance r from the centre of the tube; vx(r = R) = 0 at the wall of the tube
with radius R.

For a quantity A independent of angle we have in general

∇2A = d2A/dr2 + d − 1

r
dA/dr

in d dimensions. Here d = 2 (polar coordinates for the cross-section of the tube);
moreover P ′ = ∂P/∂x = −ΔP/L in a tube with length L and pressure difference
ΔP . Accordingly, we have to solve

P ′ = η

(
d2vx/dr

2 + 1

r
dvx/dr

)
= η

r
d(rdvx/dr)/dr,

(these transformations of ∇2 are also useful elsewhere). We find that

rdvx/dr = P ′r2/2η + const.,

vx = P ′r2/4η + const ln(r) + const.′.

Since the velocity at r = 0 must be finite, the const is zero, and since at r = R
the velocity must be zero, const.′ = −P ′R2/4η, so that

vx = ΔP

4Lη
(R2 − r2), (1.87)

and the velocity profile is a parabola. The total flow through the tube (grams per
second) is

J = ρ

∫ ∫
vx(r)dzdy = (ρΔPπ/8Lη)R4
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so that
J ∼ R4. (1.88)

The flow of water through a tube is therefore not proportional to the cross-section,
but to the square of the cross-section, since the maximal velocity in the centre of the
tube, (1.87), is itself proportional to the cross-section. This law also can be applied to
the measurement of the viscosity. It no longer holds when the steady flow becomes
unstable at high velocities because of turbulence.

Modern research in hydrodynamics has to do with, for example, the flow of oil
and water through porous media. When an oil well “runs dry” there is still a great
deal of oil in the porous sand.When one tries to squeeze it out by pumping water into
the sand, complex instabilities arise, with beautiful, but unhelpful, fractal structures
(see Chap.5). Hydrodynamics is no dead formalism!

Fractal4 is the name given to objects with masses proportional to (radius)D and
a fractal dimension D differing from the space dimension d; other fractals are
snowflakes, the path of a diffusing particle, polymer chains in solutions, geographical
features, and also the “clusters” which the magnetism program of Sect. 2.2.2 pro-
duces on the computer near the Curie point. Since about 1980, fractals (see Chap.5)
have been a rapidly expanding research field in physics.

(e) Similarity Laws
Quite generally, one should always tryfirst to solve complicated differential equations
in dimensionless form. Thus, if one divides all velocities by a velocity typical of the
flow v0, all lengths by a typical length l, etc., setting r/ l = r ′, v/v0 = v′, t/(l/v0) =
t ′, P/(ρv2

0) = P ′ then (1.85) takes the dimensionless form

dv′/dt ′ = ∇′2v′/Re − grad′ P ′,

where Re is the so-called Reynolds number, defined as

Re = v0lρ/η = v0l/ν (1.89)

We can study the Navier-Stokes equation without knowing v0 and l; one only
needs to know the value of Re. If one has found a solution (exact, on the computer,
or by experiment) of the Navier-Stokes equation for a certain geometry, the flow for
a similar geometry (uniform magnification or shrinking factor) is similar, if only the
Reynolds number is the same. A tanker captain can therefore get initial experience
in the control of a ship in a small tank, if the flow conditions in the tank reproduce
the full-scale flow with the same Reynolds number (if we neglect gravity).

It turns out, for example, that the steady solutions obtained so far are stable only
up to Reynolds numbers of about 103. Above that value turbulence sets in, with the
spontaneous formation of vortices. This also is a current field of research.

4See, e.g., B. Mandelbrot: The Fractal Geometry of Nature (Freeman, New York, San Francisco
1982); also Physica D 38 (1989).

http://dx.doi.org/10.1007/978-3-662-53685-8_5
http://dx.doi.org/10.1007/978-3-662-53685-8_2
http://dx.doi.org/10.1007/978-3-662-53685-8_5
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If, for example, one heats a flow between two plates from below, “Rayleigh-
Benard” instabilities occur with large temperature differences Δ, and these are also
observed in the atmosphere (spacewise periodic clouds). With particularly large Δ

the heat flow increases with an experimentally determined Δ1.28 (Libchaber and co-
workers 1988) in contrast to normal heat conduction; theoretically an exponent 9/7
is predicted.

If a sphere of radius R sinks under its own weight through a viscous fluid with
velocity v0, then the ratio: force/(ρv2

0R
2) is dimensionless and therefore according

to the Navier-Stokes law is a function only of the Reynolds number Re = v0R/ν.
For small Re this frictional force F is proportional as usual to the velocity: F =
const.(ρv2

0R
2)/Re = const.v0Rη. Exact calculation gives const. = 6π and hence

the Stokes law
F = 6πηv0R. (1.90)

Our dimensional analysis has thus spared us much calculation, but of course does
not provide the numerical factor 6π. The Stokes law provides a convenient method
for measuring η.

Another dimensionless ratio is the Knudsen number Kn = λ/ l, where λ is the
mean free path length of gas molecules. Our hydrodynamics is valid only for small
Knudsen numbers. Other examples are the Peclet number, the Nusselt number and
the Rayleigh number.

In conclusion it should be noticed that the forces acting on solids, liquids andgases,
such as we have been treating here, are quite generally linked by linear combinations
of the tensors ε and σ, their traces and their time derivatives. Our results up to now are
therefore special cases: our simple equation ρ(P) = ρ(P = 0)(1 + κP) uses only
Tr(σ) and Tr(ε): the muchmore complicated equation (1.69) links σ and ε and (1.83)
also does this (only ε is then defined by the time derivative of the position).

Questions

Section1.1

1. State Kepler’s third law.
2. When do force-free bodies move in a straight line?
3. What force does a stone exert on a string when it is whirled round at constant

speed?
4. With what speed must we throw a stone upwards, in order that it should escape

the earth’s gravity field? (Energy conservation: potential energy is −GMm/r ,
where r is the distance from the centre of the earth.)

5. Estimate the numerical value of the mean density of the earth ρ, from G, g and
the earth’s radius R.

Section1.2

6. What is the “reduced mass” in the two-body problem?
7. State d’Alembert’s Principle on constraining forces.
8. State the principle of virtual displacement with constraining forces.
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Section1.3

9. Why does Hamilton’s principle apply only with fixed endpoints?
10. What are the variables of the Lagrange function L , and those of the Hamilton

function H?
11. What are optic and acoustic phonons?

Section1.4

12. What are the relationships between torque M, angular momentum L, inertia
tensor Θ and angular velocity ω? Is ω a vector?

13. What are the “principal axes” of an inertia tensor, and what are the (principal)
moments of inertia?

14. What is the nutation frequency of a cube rotating about an axis of symmetry?
15. Do the Euler equations determine the amplitude of the nutation of a symmetrical

gyroscope?
16. Why does the axis of the gyroscope move perpendicularly to the applied force?
17. What is “Larmor precession” and what is it used for?

Section1.5

18. What is the difference between ∂/∂t and d/dt in continuum physics?
19. What is an equation of continuity?
20. What are the relationships between pressure, stress tensor and strain tensor?
21. What is the difference between: hurricane, typhoon and tornado?
22. What is the meaning of: incompressible, vortex-free, ideal, steady, static?
23. Forwhat values of the “Knudsen number”λ/R is Stokes’s formula for themotion

in air of spheres (radius R) valid?
24. With what diffusion constant D does a cluster of spheres disperse in a viscous

fluid, when according to Einstein diffusivity/mobility = kBT ?

Problems

Section1.1

1. Is a uniformmotion in a straight line transformed into uniformmotion in a straight
line by a Galileo transformation?

2. Describe in one or two pages the Coriolis force, e.g., when shooting polar bears
at the north pole.

3. A point mass moves on a circular orbit round an isotropic force centre with
potential ∼r−x . For what values of x is this orbit stable, i.e., at a minimum of the
effective potential energy?

4. With what velocity does a point mass fall from the height h to earth, first if h �
earth radius, then generally?
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Section1.3

5. Using the principle of virtual displacements, calculate the pressure on the piston,
if the force F acts on the wheel.

6. Lagrange equation of the first kind in cylindrical coordinates: a point mass moves
in a gravity field on a rotationally symmetric tube ρ = W (z), with ρ2 = x2 + y2,
where the height h and the angular velocity ω are constant (“centrifuge”). What
shape W (z) must the tube have, if ω is to be independent of z? Hint: resolve the
acceleration into components er , eφ and ez in cylindrical coordinates.

7. Study the Lagrange equation for a thin hoop rolling down a hillside.
Hint: T = Ttrans + Trot; all point masses are at the same distance from the centre.

8. Prove in the general case that {qμ, pν} = δ¯v, {pμ, pv} = {qμ, qv} = 0,
{F1F2,G} = F1{F2,G} + F2{F1,G} and hence study d p/dt = { p, H} for the
three-dimensional oscillator, U = Kr2/2.

9. Using the harmonic approximation calculate the vibration frequencies of a particle
in a two-dimensional potential U (x, y).

Section1.4

10. Discuss in the harmonic approximation the stability of free rotation of a rigid
body about its principal axes, with Θ1 > Θ2 > Θ3.

11. Which properties of matrices does one need in theoretical mechanics? Is
(Θ1,Θ2,Θ3) a vector? IsΘ1 + Θ2 + Θ3 a “scalar”, i.e., invariant under rotation
of the coordinate axes?

12. Calculate the inertia tensor of a cylinder with mass M , radius R and height H
in a convenient system of reference.
Hint:

∫ 1
0 (1 − x2)dx = π/4 and

∫ 1
0 (1 − x2)3/2dx = 3π/16.

Section1.5

13. What is the form of the strain tensor if a specimen expands in the x-direction
by one part in a thousand, shrinks in the y-direction by one part in a thousand,
and stays unchanged in the z-direction? What is the volume change? What is
changed if we also have ε13 = 10−3? What follows generally from εki = εik?

14. An iron wire is extended by a tension ΔP (= force/area). Prove that ΔP =
(Δl/ l)E for the change in length,with E = (2μ + 3λ)μ/(μ + λ), andΔV/V =
ΔPκ/3 for the volume change, with κ = 3/(2μ + 3λ).
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15. Use the Gaussian theorem ∇21/r = −4πδ(r) to show that a vortex line is
(almost) a potential flow.Atwhat speed do two vortices with the same circulation
move around each other?



http://www.springer.com/978-3-662-53683-4
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