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Centroid of a Volume
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The coordinates of the Centroid of
Volume of a body with volume V are
given by

xc =

∫
x dV∫
dV

,

yc =

∫
y dV∫
dV

,

zc =

∫
z dV∫
dV

.

Centroid of an Area

xc =

∫
x dA∫
dA

,

yc =

∫
y dA∫
dA

.

Here,
∫
xdA = Cy and

∫
y dA = Cx

denote the first moments of the area
with respect to the y- and x-axis, re-
spectively.

For composite areas, where the
coordinates (xi, yi) of the centroids
Ci of the individual subareas Ai are
known, we have

xS =

∑
xiAi∑
Ai

,

yS =

∑
yiAi∑
Ai

.

Remarks:

• When analyzing areas (volumes) with holes, it can be expedient to
work with “negative” subareas (subvolumes).

• If the area (volume) has an axis of symmetry, the centroid of the
area (volume) lies on this axis.
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Centroid of a Line
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xc =

∫
xds∫
ds

,

yc =

∫
y ds∫
ds

.

If a line is composed of several sublines
of length li with the associated coordi-
nates xi, yi of its centroids, the location
of the centroid follows from

xc =

∑
xili∑
li

,

yc =

∑
yili∑
li

.

Center of Mass

The coordinates of the center of mass of a body with density ρ(x, y, z)
are given by

xc =

∫
xρdV∫
ρ dV

, yc =

∫
yρdV∫
ρdV

, zc =

∫
zρdV∫
ρ dV

.

Consists a body of several subbodies Vi with (constant) densities ρi
and associated known coordinates xi, yi, zi, of the centroids of the
subvolumes then it holds

xc =

∑
xiρiVi∑
ρiVi

, yc =

∑
yiρiVi∑
ρiVi

, zc =

∑
ziρiVi∑
ρiVi

.

Remark:

For a homogeneous body (ρ = const), the center of mass and the cen-
troid of the volume coincide.
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Location of Centroids
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P2.1Problem 2.1 The depicted area is
bounded by the coordinate axes and
the quadratic parabola with its apex
at x = 0.

Determine the coordinates of the
centroid.

3
2a

a
2

x

y

b

Solution The equation of the parabola is given by

y = −αx2 + β .

The constants α and β follow with the aid of the points x0 = 0, y0 =
3a/2 and x1 = b, y1 = a/2 as β = 3a/2 and α = a/b2. Thus, the
equation of the can be written as

y = −a
(x

b

)2

+
3a

2
.

With the infinitesimal area dA = y dx, it follows

xC =

∫
xdA∫
dA

=

∫
x y dx∫
y dx

=

b∫
0

x

[
−a

(x

b

)2

+
3a

2

]
dx

b∫
0

[
−a

(x

b

)2

+
3a

2

]
dx

=

1

2
ab2

7

6
ab

=
3

7
b .

x

y

dx

dA

dA =
ydx

dA =
xdy

xx

yy

y/2

dx

dy

x

In order to determine the y-coordinate, we choose for simplicity again
the infinitesimal area element dA = y dx instead of dA = x dy,

because we have already used it above. Now, we have to take into
account that its centroid is located at the height y/2. Hence, we obtain

yC =

∫ y

2
y dx

7

6
ab

=
6

14 ab

b∫
0

(
a2 x4

b4
+

3a2

b2
x2 +

9a2

4

)
dx =

87

140
a .
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P2.2 Problem 2.2 Locate the centroid
of the depicted circular sector with
the opening angle 2α.

ry

x
2α

Solution Due to symmetry reasons, we obtain yC = 0. In order to
determine xC we use the infinitesimal sector of the circle (= triangle)
and integrate over the angle θ

xC =

α∫
−α

(
2

3
r cos θ

)
1

2
r r dθ

α∫
−α

1

2
r r dθ

=
r3 2 sinα

3 r2α

=
2

3

sinα

α
r .

θ
dθ

2

3
r

dA =
1

2
r r dθ

C∗

C∗

A
s

r

C AI AII

xC xCI

CI

xCII

CII

In the limit case of a semicircular area (α = π/2), the centroid is located

xC =
4

3π
r .

Remark: Alternatively, the determination
of the centroid may be done by the decom-
position of the area into circular rings and
integration over x. In this case the centroid
C∗ of the circular rings has to be known or
determined a priori.

We may determine the centroid of a circular segment with the aid of
the above calculations and by subtraction:

xC =
xCIAI − xCIIAII

AI −AII

=

2 sinα

3α
r r2α− 1

2
s r cosα

2

3
r cosα

r2α− 1

2
s r cosα

=
s3

12A
.
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P2.3Problem 2.3 Locate the centroids of the depicted profiles. The measu-
rements are given in mm.

45

4

45
4

20

6

20

6

20

305 5

a) b)

Solution a) The coordinate system is placed, such that the y-axis
coincides with the symmetry axis of the system. Therefore, we know
xC = 0. In order to determine yC , the system is decomposed into three
rectangles with known centroids and it follows

yC =

∑
yiAi∑
Ai

=
2 (4 · 45) + 14(5 · 20) + 27 (6 · 20)

4 · 45 + 5 · 20 + 6 · 20

=
5000

400
= 12.5 mm .

x

y

b) The origin of the coordinate system is placed in the lower left corner.
Decomposition of the system into rectangles leads to

xC =
22.5 (4 · 45) + 2.5 (5 · 20) + 10 (6 · 20)

4 · 45 + 5 · 20 + 6 · 20

=
5500

400
= 13.75 mm ,

yC =
2 (4 · 45) + 14 (5 · 20) + 27 (6 · 20)

400

= 12.5 mm .

y

x

Remark: Note that a displacement of the system in the x-direction does
not change the y-coordinate of the centroid.
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P2.4 Problem 2.4 Locate the
centroid of the depicted
area with a rectangu-
lar cutout. The measure-
ments are given in cm.

2

3 1 1

1

2

2

4

2

y

x

Solution First we decompose the system into two triangles (I,II) and
one rectangle (III), from which we subtract the rectangular cutout (IV).
The centroids are known for each subsystem.

III

I II

IV

The calculation is conveniently done by using a table.

Sub- Ai xi xiAi yi yiAi

system

i [cm2] [cm] [cm3] [cm] [cm3]

I 10
10

3

100

3

10

3

100

3

II 4
17

3

68

3

10

3

40

3

III 14
7

2
49 1 14

IV -2
7

2
-7 2 -4

A =
∑

Ai = 26
∑

xiAi = 98
∑

yiAi =
170

3

Thus, we obtain

xC =

∑
xiAi

A
=

98

26
=

49

13
cm , yC =

∑
yiAi

A
=

170/3

26
=

85

39
cm .
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P2.5Problem 2.5 A wire with constant
thickness is deformed into the depic-
ted figure. The measurements are gi-
ven in mm.

Locate the centroid.

40

30

80

Solution We choose coordinate axes, such that y is the symmetry
axis. Then, due to symmetry reasons, we can identify xC = 0. The
y-coordinate of the centroid follows generally by decomposition as

yC =

∑
yi li∑
li

.

Three alternative solutions will be shown. The total length of the wire
is

l =
∑

li = 2 · 30 + 2 · 80 + 40 = 260 mm .

I

II II

III III
x

y

II

I

40

IIIIII

x

y

1010

40

VV

IV y

x

a)

yC =
1

260
(80 · 40︸ ︷︷ ︸

I

+2 · 40 · 80︸ ︷︷ ︸
II

)

=
9600

260
= 36.92 mm .

b)

yC =
1

260
(40 · 40︸ ︷︷ ︸

I

− 2 · 40 · 30︸ ︷︷ ︸
III

)

= −3.08 mm .

c) We choose a specific subsystem IV
such that its centroid coincides with the
origin of the coordinate system:

yC =
1

260

[
2 · (−40) · 10︸ ︷︷ ︸

V

]
= −3.08 mm .

The advantage of alternative c) is, that only the first moment of sub-
system V has to be taken into account.
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P2.6 Problem 2.6 A thin wire is bent
to a hyperbolic function.

Locate the centroid.
a a

y

x

a

y = −a cosh x
a + 2a

C

Solution The centroid is located on the y-axis due to the symmetry
of the system (xC = 0). We obtain the infinitesimal arc length ds with
aid of the derivative y′ = − sinh x

a as

ds =

√
(dx)2 + (dy)2 =

√
1 + (y′)2dx =

√
1 + sinh2 x

a
dx = cosh

x

a
dx .

The total arc length follows by integration:

s =

∫
ds =

∫ +a

−a

cosh
x

a
dx = 2 a sinh 1 .

The first moment of the line with respect to the x-axis is given by

Sx =

∫
y ds = a2

(
4 sinh 1− 1

2
sinh 2− 1

)
.

Hence, the centroid is located at

yC =

∫
y ds∫
ds

=
4 a2 sinh 1− 1

2
a2 sinh 2− a

2 a sinh 1
= 0.803 a .

P2.7 Problem 2.7 From the
triangular-shaped metal sheet
ABC, the triangle CDE has
been cut out. The system is
pin supported in A.

Determine x such that BC ad-
justs horizontal.

I

D

A

II

a

2

3

2
a

√
3

2
a

CEB

x

Solution The system is in the required position, if the centroid is
located vertically below A. Consequently, the first moments of the
triangular-shaped subsystems ADC and ABE have to be equal with
respect to the point A:

1

2

(√
3

2
a− x

)
3

2
a︸ ︷︷ ︸

area ADC

1

3

3

2
a︸ ︷︷ ︸

distance

=
1

2

a

2

√
3

2
a︸ ︷︷ ︸

area ABE

1

3

a

2︸︷︷︸
distance

� x =
4

9

√
3 a .
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P2.8Problem 2.8 A piece of a pipe of
weight W is fixed by three spring scales as
depicted. The spring scales are equally dis-
tributed along the edge of the pipe. They
measure the following forces:
F1 = 0.334 W , F2 = 0.331 W ,
F3 = 0.335 W .

Now an additional weight shall be attached
to the pipe in order to shift the centroid of
the total system into the center of the pipe
(=static balancing). Determine the location
and the magnitude of the additional weight.

1 2

3

Solution We know, due to the different
measured forces, that the system is not ba-
lanced. Thus, the gravity center C (=locati-
on of the resulting weight) is not located in
the middle of the ring, but coincides with
the location of the resultant of the spring
forces. Therefore, in a first step, we determi-
ne the location of the center of these forces.
This can be done by the equilibrium of mo-
ments about the x- and y-axis:

2

3

1

x
30◦

y

I

I Z

M

y

x
C

yC W = r sin 30◦(0.334W + 0.331W )− r 0.335W ,

� yC = −0.0025 r ,

xC W = r cos 30◦(0.331W − 0.334W ) ,

� xC = −0.0026 r .

In order to recalibrate the gravity center
into the center M of the ring, the additional
required weight Z has to be applied on the
intersection point of the ring and the line
CM . The weight of Z can be determined
from the equilibrium of the moments about
the perpendicular axis I :

r Z = CM W � r Z =
√

x2
C + y2

C W

� Z =
√

(0.0025)2 + (0.0026)2 W = 0.0036 W .
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P2.9 Problem 2.9 A thin sheet
with constant thickness and
density, consisting of a square
and two triangles, is bent to the
depicted figure (measurements
in cm).

Locate the center of gravity.

4

4

3

2

I
III

II

3

x

z

y

Solution The body is composed by three parts with already known
location of centers of mass. The location of the center of mass of the
complete system can be determined from

xC =

∑
ρixiVi∑
ρiVi

, yC =

∑
ρiyiVi∑
ρiVi

, zC =

∑
ρiziVi∑
ρiVi

.

Since the thickness and the density of the sheet is constant, these terms
cancel out and we obtain

xC =

∑
xiAi∑
Ai

, yC =

∑
yiAi∑
Ai

, zC =

∑
ziVi∑
Ai

.

The total area is

A =
∑

Ai = 4 · 4 + 1

2
· 4 · 3 + 1

2
· 4 · 3 = 28 cm2 .

Calculating the first area moments of the total system about each axis,
in each case one first moment of a subsystem drops out because of zero
distance: xII = 0, yIII = 0, zI = 0. Thus, we obtain

xC =
xIAI + xIIIAIII

A
=

2 · 16 + (
2

3
· 4) 6

28
= 1.71 cm ,

yC =
yIAI + yIIAII

A
=

2 · 16 + 2 · 6
28

= 1.57 cm ,

zC =
zIIAII + zIIIAIII

A
=

(
1

3
· 3) 6 + (

1

3
· 3) 6

28
= 0.43 cm .
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P2.10Problem 2.10 A semi-circular
bucket is produced from a steel sheet
with the thickness t and density ρS.

a) Determine the required distance of
the bearing pivots to the upper edge,
such that it is easy to turn the empty
bucket around the pivots.

b) Consider a steel bucket which is filled with material of the density
ρM . How does this change the required distance of the pivots?
Given: b = r, t = r/100, ρM = ρS/3

b

t

r

zC z

Solution The bucket tilts easiest by positioning the pivots in the axis
of the center of mass.

a) In case of an empty bucket (=homogeneous body), the center of
mass coincides with the center of volume. Since the sheet thickness is
constant, it cancels out. With the centroids of the subareas

semi circle z1 =
4 r

3π

semi circular arc z2 =
2r

π

we obtain

zCE
=

z1A1 + z2A2

A1 +A2
=

4r

3π
2
πr2

2
+

2r

π
πrb

2
πr2

2
+ πrb

=
4 r + 6 b

3π(r + b)
r .

b) In case of the filled bucket, we obtain with the mass of the steel
bucketmS = π

(
r2 + rb

)
tρS and the mass of the fillingmM = 1

2
πr2b ρM

the location of the mass center as

zCF
=

zCE
mS +

4r

3π
mM

mS +mM

=
4 (2r + 3b) t ρS + 4 rb ρM
3π

[
2 (r + b) t ρS + r b ρM

] r .

Using the given data b = r, t = r/100, ρM = ρS/3 , it follows

zCE
=

10

3π · 2 r = 0.53 r , zCF
=

4 · 5 1

100
+ 4 · 1

3

3π

(
4 · 1

100
+

1

3

) r = 0.44 r .

Remark: Since the mass of the filling is much bigger than the mass of
the bucket, we find the common center of mass close to the center of
mass of the filling: zCM

= 4r/(3π) = 0.424 r.



42 Center of Mass

P2.11 Problem 2.11 The depicted stirrer
consists of a homogenous wire that rotates
about the sketched vertical axis.
Determine the length l, such that the cen-
ter of mass C is located on the rotation
axis.

a

a

l

a/2

C

Solution Using the given coordinate
system and decomposing the stirrer in-
to four subparts, we obtain the center of
mass from

xC =

∑
xi li∑
li

.

4

3

1

2

x

y

C

For convenience, we use a table.

i li xi xi li

1 a 0 0

2
a

2

a

4

a2

8

3 a
a

2

a2

2

4 l
a

2
− l

2

al

2
− l2

2∑ 5a

2
+ l − 5a2

8
+

al

2
− l2

2

The centroid shall lie on the rotation axis. Therefore, from the condition
xC = 0, follows the quadratic equation

∑
xi li =

5a2

8
+

al

2
− l2

2
= 0 � l2 − al − 5a2

4
= 0 .

It has two solutions

l1,2 =
a

2
±

√
a2

4
+

5a2

4
=

a

2
±

√
6

2
a ,

from which only the positive one is physically reasonable:

l =
a

2
(1 +

√
6) .
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P2.12Problem 2.12 Determine the
location of the centroid for the
depicted surface of a hemisphere
with the radius r.

r

z

y

x

Solution We choose the
coordinate system, such that the
y-axis coincides with the symme-
try axis. Therefore, we know:

xC = 0 , zC = 0 .

T he remaining coordinate yC , fol-
lows from

yC =

∫
y dA∫
dA

.

As infinitesimal area element, we
choose the circular ring with the
width r dα and the circumference
2π R as our infinitesimal area ele-
ment:

dA R

r
y

α

y

z

x

dA = 2π R r dα .

Using R = r cosα and y = r sinα, it follows

dA = 2π r2 cosα dα.

Now, we can determine the surface area as

A =

∫
dA = 2π r2

∫ π/2

α=0

cosα dα = 2π r2 sinα

∣∣∣∣π/2

0

= 2π r2

and the first moment of the area as∫
y dA = 2π r3

∫ π/2

α=0

sinα cosα dα︸ ︷︷ ︸
d sinα

= 2π r3
1

2
sin2 α

∣∣∣∣π/2

0

= π r3 .

Thus, the location of the centroid results as

yC =
1

A

∫
y dA =

r

2
.
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P2.13 Problem 2.13 Determine the center
of the volume for the depicted he-
misphere of radius r.

r

z

y

x

Solution Due to the axisymmetric
geometry, we know

xc = 0 , zc = 0 .

The remaining coordinate is deter-
mined from

yC =

∫
y dV∫
dV

.

As infinitesimal volume element
we select the circular disk with ra-
dius R and thickness dy:

dV = R2 π dy .

dy

yr

α

z

x

y

R

By parametrization of the radius R and coordinate y

R = r cosα , y = r sinα � dy = r cosα dα ,

the volume of the hemisphere follows as

V=

∫
dV =

∫ π/2

α=0

π r3 cos3 α dα =

∫ π/2

α=0

π r3 (1− sin2 α) cosα dα︸ ︷︷ ︸
d sinα

= π r3
(
sinα− sin3 α

3

) ∣∣∣∣π/2

0

=
2

3
π r3 .

With the the first moment of the area as∫
y dV = π r4

∫ π/2

α=0

cos3 α sinα dα︸ ︷︷ ︸
−d cosα

= −π r4

4
cos4 α

∣∣∣∣π/2

0

=
π r4

4
,

the center of the volume is determined as

yC =
1

V

∫
y dV =

πr4

4

3

2π r3
=

3

8
r .
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