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Abstract. Monitoring events in communication and computing systems
becomes more and more challenging due to the increasing complexity
and diversity of these systems. Several supporting tools have been cre-
ated to assist system administrators in monitoring an enormous number
of events daily. The main function of these tools is to filter as many
as possible events and present highly suspected events to the adminis-
trators for fault analysis, detection and report. While these suspected
events appear regularly on large and complex systems, such as cloud
computing systems, analyzing them consumes much time and effort. In
this study, we propose an approach for evaluating the severity level of
events using a classification decision tree. The approach exploits exist-
ing fault datasets and features, such as bug reports and log events to
construct a decision tree that can be used to classify the severity level
of other events. The administrators refer to the result of classification to
determine proper actions for the suspected events with a high severity
level. We have implemented and experimented the approach for various
bug report and log event datasets. The experimental results reveal that
the accuracy of classifying severity levels by using the decision trees is
above 80%, and some detailed analyses are also provided.

Keywords: Event monitoring - Fault data analysis - Fault detection -
Classification decision tree * Software bug report

1 Introduction

The increasing complexity and diversity of communication and computing sys-
tems makes management operations more and more challenging. Cloud com-
puting systems [1], as an example, facilitate computing resource management
operations on large computing systems to provision infrastructures, platforms
and software as services. Armbrust [2] has specified 10 hindrances for manag-
ing cloud systems and services. Several hindrances including service availability,
performance unpredictability and failure control are closely involved with event
monitoring, one of the main functions of fault management. Monitoring events
on these systems usually deals with a large number of events. The system admin-
istrators needs the support of tools that filter out many events and keep non-
trivial events. However, these systems provide so many non-trivial events that
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the administrators cannot handle. Furthermore, there is no guarantee that triv-
ial events cannot cause system failure, e.g., warning events can become serious
problems if there is no a proper action.

We have proposed an approach for evaluating the severity level of log events
using classification and regression decision trees (CART trees). The idea of this
approach is to determine the severity level of events automatically, thus providing
the system administrators a decision whether further actions are needed for
fault detection. The approach focuses on constructing a decision tree based on
fault datasets and features, such as bug report and log events, and then using
this tree to classify the severity level of other events. We have used bug report
datasets obtained from existing bug tracking systems (BTSs) and log events
obtained from monitoring systems to implement and experiment decision trees.
The contribution is thus threefold:

1. Proposing an approach of using the classification decision tree for fault data
analysis

2. Applying this approach to fault datasets for classifying the severity level of
events

3. Providing the performance and efficiency evaluation of the approach on var-
ious fault datasets

In this paper, we have extended the previous study [3] to using large and
real datasets of 500.000 bug reports and Mela log events for the evaluation of
the proposed approach. The rest of the paper is structured as follows: the next
section includes several analysis techniques applied to software maintenance,
system failure and reliability, background of classification decision trees in data
analysis. Section 3 describes the fundamentals of growing decision trees based on
classification decision trees, focusing on entropy splitting rule and tree growing
process. Some mathematical formulas and explanations are referred from the
study of Breiman et al. [4]. Section 4 presents the characteristics of fault datasets
and features. It also includes several processes of constructing decision trees
for fault datasets. Several experiments in Sect.5 report the performance and
efficiency evaluation of the fault data analysis approach using the decision tree
before the paper is concluded in Sect. 6.

2 Related Work

The authors of the study [5] have proposed an approach for analyzing fault
cases in communication systems. The approach exploits the characteristics of
semi-structured fault data by using multiple field-value and semantic vectors
for fault representation and evaluation. Note that a fault case usually contains
administrative field-value and problem description parts. The approach encoun-
ters the problem of high computation cost when processing semantic matrices
for large fault datasets. Another study [6] from the same authors has reduced the
computation problem by analyzing several types of fault classifications and rela-
tionships. This approach exploits package dependency, fault dependency, fault
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keywords, fault classifications to seek the relationships between fault causes.
These approaches have been evaluated on software bug datasets obtained from
different open source bug tracking systems. Sinnamon et al. [7] has applied the
binary decision diagram to identify system failure and reliability. Large systems
usually produce thousands of events that consume a large amount of processing
time. This diagram associated with if-then-else rules and optimized techniques
reduces time consuming problem. The study [8] has proposed an analysis strat-
egy aiming at increasing the likelihood of obtaining a binary decision diagram
for any given fault tree while ensuring the associated calculations as efficient
as possible. The strategy contains 2 steps: simplifying the fault tree structure
and obtaining the associated binary decision diagram. The study also includes
quantitative analysis on the set of binary decision diagrams to obtain the proba-
bility of top events, the system unconditional failure intensity and the criticality
of the basic events. The authors of the study [9] have presented two new tree-
based techniques for refining the initial classification of software failures based
on their causes. The first technique uses tree-like diagrams to represent the
results of hierarchical cluster analysis. The second technique refines an initial
failure classification that relies on generating a classification tree to recognize
failed executions. This technique uses classification and regression tree for each
subject of programs. Zheng et al. [10] has presented a decision tree learning app-
roach based on the C4.5 algorithm to diagnose failures in large Internet sites.
The approach records runtime properties of each request and applies automated
machine learning and data mining techniques to identify the causes of failures.
The approach has been evaluated on application log datasets obtained from the
eBay centralized application logging framework. The study [11] proposes a nine-
state model of adaptive behavior to enable fault detection in mobile applications.
This model detects faults caused by erroneous adaptation process, and asynchro-
nous update of context information, which leads to inconsistencies between the
external physical context and internal representation within an application. The
study [12] proposes a dynamic adaptation model that offers increased expressive
power to compose complex adaptation rules, and guarantees soundness in fault
detection. The recent study [13] introduces an elasticity analytic technique for
cloud services. It also defines the concepts of elasticity space and elasticity path-
way, and applies these concepts in evaluating the elasticity of cloud services. The
Mela tool as the result of this study is an open source tool for monitoring and
analyzing the elasticity of cloud services. This tool has been used in this study
to collect log events.

Classification and regression trees (CART) [14] have been introduced by
Breiman et al. and widely been used in data mining. Two main types of deci-
sion trees are classification and regression trees. The former tree predicts the
outcome that belongs to one of the classes of the input data, e.g., predicting
that today’s weather is sunny, rainy or cloudy, while the later tree predicts the
outcome that can be considered a real number, e.g., predicting that today’s tem-
perature is 25.3, 27.5, or 29.7 °C. Trees used for regression and classification have
some similarities and also differences, such as the procedure used to determine
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where to split. There are several variants of decision tree algorithms. Iterative
Dichotomiser 3 (ID3) [15] was developed in 1986 by J.R. Quinlan. This algorithm
creates a multi-level tree that seeks a categorical feature for each node using a
greedy method. The features yield the largest information gain for categorical
targets. Trees are grown to their maximum size and then applied to generalize
to unseen data. The algorithm C4.5 [16] is an extension of the ID3 algorithm
that converts the trained trees as the output of the ID3 algorithm into sets of if-
then rules. The accuracy of rules is evaluated by determining the order in which
these rules are applied. This algorithm uses numerical variables to define a dis-
crete attribute and partitions the continuous attribute values into a discrete set
of intervals. It avoids finding categorical features. Chi-squared automatic inter-
action detector (CHAID) [17] uses multi-level splits to compute classification
trees. This algorithm focuses on categorical predictors and targets. It computes
a chi-square test between the target variable and each available predictor and
then uses the best predictor to partition the sample into segments. It repeats the
process with each segment until no significant splits remain. There are several
differences between the CHAID and CART algorithms: (i) CHAID uses the chi-
square measure to identify splits, whereas CART uses the Gini or Entropy rule;
(ii) CHAID supports multi-level splits for predictors with more than two levels,
whereas CART supports binary splits only and identifies the best binary split
for complex categorical or continuous predictors; (iii) CHAID does not prune
the tree, whereas CART prunes the tree by testing it against an independent
(validation) dataset or through n-fold cross-validation.

3 CART Approach

The CART approach [4] uses a binary recursive partitioning process to build
a decision tree. This process starts with the root node where data features are
split into two children nodes and each of the children node is in turn split into
grandchildren nodes based on splitting rules. The process runs recursively until
no further splits are possible due to lack of data features and the tree reaches a
maximal size. The process deals with continuous and nominal features as targets
and predictors.

3.1 Entropy Splitting Rule

A decision tree is built top-down from a root node and involves partitioning
data into subsets that contain instances with similar values (homogeneous). The
CART algorithm uses entropy to calculate the homogeneity of a sample.

H(S) = —Xwex P(x)logP(x) (1)

where, S is the current (data) set for which entropy is being calculated. X is
a set of classes in S. P(z) is the proportion of the number of elements in class
x to the number of elements in set S. When H(S) = 0 the set S is perfectly
classified.
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Information gain IG(A,S) is the measure of the difference in entropy from
before to after the set S is split on an attribute A. In other words, how much
uncertainty in S was reduced after splitting set S on attribute A.

IG(A,S) = H(S) - Sier P()H(t) (2)

where, H(S) is entropy of set S. T is the subset created from splitting set S
by attribute A. P(t) is the proportion of the number of elements in t to the
number of elements in set S. H(t) is entropy of subset ¢. Information gain can
be calculated (instead of entropy) for each remaining attribute. The attribute
with the largest information gain is used to split the set S on this iteration.

3.2 Tree Growing Process

The tree growing process uses a set of data features as input. A feature can
be ordinal categorical, nominal categorical or continuous. The process chooses
the best split among all the possible splits that consist of possible splits of each
feature, resulting in two subsets of data features. Each split depends on the
value of only one feature. The process starts with the root node of the tree and
repeatedly runs three steps on each node to grow the tree, as shown in Fig. 1.

Stopping Rules

Training 3 Find the best split w| Find the node for ~ Split the node Decision
Data for each feature 71 the best split 71 using its best split P Tree

Fig. 1. A process of growing a CART decision tree

The first step is to find the best split of each feature. Since feature values can
be computed and sorted to examine candidate splits, the best split maximizes
the defined splitting criterion. The second step is to find the best split of the
node among the best splits found in the first step. The best split also maximizes
the defined splitting criterion. The third step is to split the node using its best
split found in the second step if the stopping rules are not satisfied. Several
stopping rules are used:

— If a node becomes pure; that is, all cases in a node have identical values of the
dependent variable, the node will not be split.

— If all cases in a node have identical values for each predictor, the node will not
be split.

— If the current tree depth reaches the user-specified maximum tree depth limit
value, the tree growing process will stop.

— If the size of a node is less than the user-specified minimum node size value,
the node will not be split.
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— If the split of a node results in a child node whose node size is less than the
user specified minimum child node size value, the node will not be split.

Figure6 plots a sample CART tree with 4 levels (refer to the end of the
paper). The tree grows enormously as the data size increases.

4 Fault Data Analysis

Fault data analysis in this study focuses on using a decision tree to evaluate the
severity level of suspected fault cases, such as bug reports, log events or trace
messages. We have used bug report datasets for analysis because bug reports are
already verified while log events are usually not verified yet.

4.1 Bug Report Data

Bug report data contains software and hardware bug reports obtained from
forums, archives and BTSs. Several tracker sites available on the Internet, such
as Bugzilla [18], Launchpad [19], Mantis [20], Debian [21] provide web interfaces
to their bug data. Tracker sites differ from data inclusion and presentation, but
share several similar administration and description fields. While the administra-
tion fields are represented as field-value pairs, such as severity, status, platform,
content, component and keyword, the problem description field details the prob-
lem and follow-up discussions represented as textual attachments. We have used
a web crawler to get as much access to bug data as ordinary users. The crawler
retrieves the HTML pages of bug reports, then few parsers extract the con-
tent of bug reports and save the content to a database following a unified bug
schema [22]. Table1 reports popular BTSs and numbers of downloadable bug
reports for tracker sites.

A bug report contains several features shown in the unified bug schema [22].
Some features cause less impact on determining the severity of the bug report,

Table 1. Popular bug tracking sites (as of November 2014). A plus indicates that the
numbers present a lower bound

Tracker site System Bugs

bugs.debian.org Debian BTS | 900.000™
bugs.kde.org Bugzilla 400.000"
bugs.eclipse.org Bugzilla 400.000™
bugs.gentoo.org Bugzilla 350.000"
bugzilla.mozilla.org | Bugzilla 800.000"
bugzilla.redhat.com | Bugzilla 900.000™
qa.netbeans.org Bugzilla 250.000"

bugs.launchpad.net | Launchpad | 1.200.000™"



https://www.debian.org/Bugs/
https://bugs.kde.org/
https://bugs.eclipse.org/bugs/
https://bugs.gentoo.org/
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https://qa.netbeans.org/
https://bugs.launchpad.net/
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Table 2. List of important features

Feature Description Data types
Status The open, fixed or closed status of the bug | Enumerate
Component | The component contains the bug Enumerate
Software The software contains the bug Enumerate
Platform The platform where the bug occurs Enumerate
Keyword The list of keywords that describe the bug | Text
Relation The list of bugs related to the bug Numeric
Category The category of the bug Enumerate

such as owner, created time, updated time, etc. Our approach therefore focuses
on the features as shown in Table2. Note that each bug report contains the
severity feature with a value. It is necessary to ignore this feature when build-
ing the tree to avoid some side effect. The keyword feature that contains the
description and discussion of the bug requires further data processing.

4.2 Data Processing

Processing features improves the quality of the training datasets and thus
enhance the performance of the decision tree. A bug report contains a tex-
tual part of the problem description and some discussions that hide distinct
keywords or groups of keywords. We have applied the term frequency—inverse
document frequency (tfxidf) method to reveal these keywords for the keyword
feature. This method measures the significance of keywords to bug reports in a
bug dataset by the occurrence frequency of the keywords in a bug report over
the total number of the keywords of the bug report (term frequency) and the
occurrence frequency of the keywords in other bug reports over the total num-
ber of bug reports (inverse document frequency). A distinct group of keywords
contains related keywords with high significance. As a consequence, the keyword
feature includes a set of keywords and groups that best describe the bug report.
However, since bug reports are obtained from various BTSs, their descriptions
and discussions contain redundant words, nonsense words or even meaningless
words, such as: memory address, debug information, system path, article, etc.
Algorithm 1 filters out these words from the bug dataset. We have implemented
this algorithm in Python programming language.

The first step is to load the bug dataset focusing on the keyword feature.
The next three steps are to filter useless keywords. The stop-word set is the set
of popular keywords that usually appear in textual description such as a, an,
the, of, etc. The regular expression contains characters [0-9], [a-f] and [A-F],
while the special characters contains -, —, \. The final step is to apply the tfxidf
method on the whole keyword set and remove trivial keywords, i.e., keywords
with low tfxidf values.
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Algorithm 1. Filtering keywords for a bug dataset

Input : Raw keyword set

Output: Filtered keyword set

Load raw keyword set;

Remove duplicated words and redundant words by using stop-word set;
Remove meaningless words by using regular expression;

Remove memory addresses by filtering special characters;

Process tfxidf on the whole keyword set;

return Filtered keyword set;

D Uk W N

4.3 Tree Construction

The previous section explains using Entropy splitting rule to grow a decision tree.
We present in this section using Scikit Learn library [23] to construct decision
trees for bug datasets. Scikit Learn is an open source machine learning library for
Python programming language and provides several classification, regression and
clustering algorithms. It is designed to interoperate with Python numerical and
scientific libraries such as NumPy [24] and SciPy [25]. The CART algorithm is
one of the main classification algorithms supported by Scikit Learn. Algorithm 2
presents main steps to construct decision trees using the Scikit Learn library:

Algorithm 2. Constructing a decision tree for a bug dataset

Input : Processed bug dataset

Output: Decision tree

Load the dataset into pandas data-frame and drop the platform feature;
Factorize the features;

Load sample data and class label,

Split the dataset into the training set and testing set;

Fit the training set into decision tree classifier;

Construct the tree using entropy criterion;

o O A W N

The first step is to load the dataset into pandas data-frame that is a spe-
cial tabular data structure to prepare data for the CART algorithm. It is also
important to drop the platform feature in the data-frame because the dataset is
already grouped by this feature. Since the CART algorithm cannot deal with
non-numerical values, while the feature values in the bug dataset are non-
numeric, i.e., enumerate or text, all the feature values need to be factorized
into numerical values in the second step. The pandas library supports for con-
verting non-numerical values to numerical values. Each distinct value is replaced
by a unique integer, e.g., the severity feature contains 4 values: feature, minor,
normal and critical corresponding to 0, 1, 2, 3 after factorization. The next step
is to separate the data-frame into 2 parts. The first part is the sample data that
contains the numerical values of all features, while the second part is the class
label that marks the numerical classes for each particular bug. The most impor-
tant step in this algorithm is to partition the sample data and class label into the
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training set and testing set. The training set is used for training the decision tree,
while the testing set is used for evaluating the decision tree. The percentages of
the training and testing sets are 75% and 25% respectively. Finally, the decision
tree is trained by a method supported by Scikit Learn library. The input of this
method is the training set found in the previous step. Figure 7 plots a part of a
decision tree for the Linux platform dataset (refer to the end of the paper).

Since the decision tree contains multiple levels, we only present the first 4
levels. The leaf nodes contains the following values:

The first component counts samples that have the severity of feature
The second component counts samples that have the severity of critical
The third component counts samples that have the severity of minor
The fourth component counts samples that have the severity of normal

=W

5 Evaluation

We have used a dataset of 500.000 bug reports approximately for experiments. A
large dataset usually yields a large decision tree that possibly causes the perfor-
mance problem due to the complexity and memory consumption of the tree. The
authors of the study [26] have already proposed an approach to construct deci-
sion trees from large datasets. This approach builds a set of decision trees based
on tractable size training datasets which are the subsets of the original dataset.
As a result, the approach reveals the over-fitting problem of large decision trees.
We have separated bug reports into 4 smaller datasets following the platform
feature: 180.000 bug reports occurring on all platforms (All platform), 160.000
bug reports occurring on Windows platform (Win platform), 80.000 bug report
occurring on Linux platform (Linux platform) and 80.000 bug report occurring
on Macintosh platform (Mac platform). We have built several decision trees and
performed all experiments on laboratory workstations with Intel Core i5-4590
CPU 3.30 GHZ, 8 GB of RAM and Ubuntu 14.04 LTS. In addition, we have used
the Mela tool to collect log events with an interval of 5s. The interval is suffi-
cient to capture changes on the monitored system, but it also produces several
duplications on idle time. We have filtered duplicated events in the Mela dataset
for experiments.

The first experiment measures time consumption for constructing decision
trees over various datasets. Time consumption linearly increases as the size of
datasets increases, as shown in Fig. 2. It takes 340 ms to 380 ms approximately
to build a decision tree of 160.000 bug reports. Note that time consumption
depends on numbers of events and features of bug reports. Bug reports in the Win
platform dataset contain less one feature than bug reports in the whole dataset,
i.e., the platform feature is eliminated in a platform specific dataset, thus time
consumption for both datasets is slightly different. It takes 900 ms approximately
to construct a decision tree of 500.000 bug reports. However, log files usually
contain millions of events, reducing processing time is an important task.
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Fig. 2. Time consumption for constructing decision trees over various datasets

The datasets contain thousands of bug reports that possibly miss several fea-
tures. It is necessary to apply the median imputation method for these datasets
to fill the missing features. Dealing with the missing values is one of the most
common problems in data training process. This problem occurs when data
values are unavailable for observations due to the lack of responses: data is pro-
vided for neither several features nor a whole case. Lacking values are sometimes
caused by researchers due to collecting data improperly or making mistakes in
data input.

Using training datasets with the missing values can affect accuracy in clas-
sification. Several prevailing methods that are capable of dealing with this issue
have been developed before. Case deletion method discards cases with the miss-
ing values for at least one feature. A variant of this method only eliminates
cases with a high level of the missing values while determining the extent of fea-
tures for cases with a low level of the missing values. Mean imputation method
replaces the missing values for features by the mean of all known values of these
features in the class to which the case with the missing values belongs. Similar
to the mean imputation method, the median imputation method replaces the
missing values for features by the median of all known values of the features in
the class to which the case with missing values belongs. Using median avoids the
presence of outliers and also assures the robustness of the method. This method
is suitable for datasets that the distribution of the values of a certain feature is
skewed. Modified K-nearest neighbor method determines the missing values for
a case by considering a certain number of the most similar cases. The similarity
of two cases is measured by a distance function.

The second experiment fills the missing values for bug reports using the mean
imputation method. It then compares cross-validation scores for both datasets
with and without imputation. Figure3 on the left side reports the difference of
cross-validation scores for the All platform dataset with and without imputation.
The All platform dataset with imputation obtains the average cross-validation
score of 0.68 that improves considerably a number of the missing values from
the All platform dataset without imputation. Especially with imputation, the All
platform dataset of 160.000 bug reports reaches the cross-validation score of 0.7.
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Fig. 3. Cross-validation comparison for the All platform (left) for the Win platform
(right) with and without imputation

Similarly, the Win platform dataset with imputation obtains the average cross-
validation score of 0.62 that slightly improves a number of the missing values
from the Win platform dataset without imputation, as shown in Fig.3 on the
right side. With imputation, the Win platform dataset of 160.000 bug reports
reaches the cross-validation score of 0.6. The Win platform dataset performs
worse than the All platform dataset. We observe that the missing values of
bug reports in the All platform dataset are less specific than that the missing
values of bug reports in the Win platform dataset. Note that the number of
the missing values increases as the size of datasets increases, thus using the
imputation technique can improve the accuracy score of classification.

The third experiment evaluates the accuracy of the decision trees using var-
ious sizes of datasets. The idea is to divide the original dataset with imputation
into the training and testing datasets. While the training dataset is used to
build a decision tree, the testing dataset is used to evaluate the accuracy of
this decision tree. The extreme case of cross-validation, namely leave-one-out
cross-validation, has been used for this experiment. We have used the decision
trees to classify bug reports from the testing dataset into severity levels, then
compared these classified severity levels with the correct severity levels of the
testing dataset. Accuracy score is calculated based on the number of matching
severity levels.

Figure4 on the left side reports high and stable accuracy scores for the All
and Win platform datasets with the average score of 0.9 approximately. Both
datasets perform similarly. We observed that bug reports for these platforms
tend to be common problems that can be easily reproduced, determining severity
levels for these bug reports is rather straightforward and precise. However, some
bug reports from a specific platform are very specific and difficult to be classified
into severity levels properly. These bug reports reduces accuracy scores. Figure 4
on the right side also presents the similar accuracy scores of the Linux and Mac
platform datasets with the average score of 0.85 approximately. The All and
Win platform datasets are larger than the Mac and Linux platform datasets
that possibly cause an impact on accuracy scores as the size of these datasets
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Fig. 5. Accuracy of the decision tree constructed by the whole dataset using various
querysets

increases. In addition, average time to train a decision tree of 160.000 bug reports
is considerably fast.

The last experiment measures the accuracy of the decision tree constructed
by the whole dataset using three querysets. The first queryset contains queries
extracted from the testing dataset. The second queryset contains queries
extracted from the existing BTSs. These queries are bug reports in open sta-
tus and some features, such as, keyword, relation, category and severity are
insufficient. The last queryset contains queries extracted from some monitor-
ing tools, such as Nagios [27], Ganglia [28] and Mela [13]. These queries are
only warning and error events that possess different features from bug reports.
Figure 5 presents the accuracy score of the decision tree with three querysets.
The first queryset outperforms the other querysets and its accuracy score con-
siderably matches with the results of the above experiments because queries are
from the testing dataset. The accuracy score decreases as the decision tree is
large. The second queryset obtains the average accuracy score of 0.7. Queries
from this queryset contain the same bug format with incomplete features, but
still achieve reasonable accuracy scores. The third queryset performs poorly with
the average accuracy score lower than 0.5. There are several differences in fea-
tures between bug reports and log events that prevent the decision tree from
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classifying these queries precisely. Log events need additional data referred to as
context-ware data including system load, network status, memory usage, number
of processes, etc. to fulfill the missing features.

6 Conclusions

We have proposed an approach of using the CART decision tree for fault data
analysis that can be applied to monitoring and detecting faults in communication
networks and distributed systems. The log event data is so huge that system
administrators and even supporting tools might miss critical signs, messages
or events accidentally. This decision tree is characterized by the capability of
learning from the training fault dataset and then determining the severity level
of log events from the testing dataset. We have used a bug report dataset for
evaluating the decision tree. Bug reports obtained from BTSs are to some extent
related to log events with a severity level. Evaluating the approach focuses on
the performance and efficiency of the decision tree. We have computed the time
consumption of constructing the decision tree, the accuracy of classification and
the imputation of the missing features. The experimental results reveal that the
accuracy of classifying severity levels by using the decision trees is above 80%,
especially 90% for the All platform dataset. Applying methods to deal with
the missing features in the training dataset improves efficiency. Moreover, the
decision tree with a tractable size training dataset consumes less processing time
and possibly yields high efficiency. The decision tree constructed by bug reports
does not perform well with log events due to the lack of significant features.
Future work focuses on exploiting more common features in bug reports or log
events, especially exploiting distinct keywords from textual description. While
monitoring systems, log events can be extended to include additional context-
aware features, such as system load, network status, memory usage, number of
processes, etc. to evaluate precisely the severity level of log events [12,13].
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