
Chapter 2
Algebraic Moments, Elementary Exponential
Inequalities

2.1 Introduction

In this chapter, we start by giving upper bounds for algebraic moments of partial
sums from a strongly mixing sequence. These inequalities are similar to Rosen-
thal’s inequalities (1970) concerning moments of sums of independent random vari-
ables. They may be applied to provide estimates of deviation probabilities of partial
sums from their mean value, which are more efficient than the results derived from
the Marcinkiewicz–Zygmund type moment inequalities given in Ibragimov (1962)
or Billingsley (1968) for uniformly mixing sequences, or in Yokoyama (1980) for
strongly mixing sequences, in particular for partial sums with a small variance. For
example, Rosenthal type inequalities may be used to obtain precise upper bounds
for integrated L p-risks of kernel density estimators. They provide the exact rates of
convergence, in contrast to Marcinkiewicz–Zygmund type moment inequalities, as
shown first by Bretagnolle and Huber (1979) in the independent case.

In Sects. 2.2 and 2.3, we follow the approach of Doukhan and Portal (1983),
for algebraic moments in the strong mixing case. In Sect. 2.4 we give a second
method, which provides explicit constants in inequalities for the algebraic moments
of order 2p. Applying then the Markov inequality to S2pn , and minimizing the so
obtained deviation bound with respect to p, we then get exponential Hoeffding type
inequalities in the uniform mixing case. We also apply this method to obtain upper
bounds for non-algebraic moments in Sect. 2.5.

2.2 An Upper Bound for the Fourth Moment of Sums

In this section, we adapt the method introduced in Billingsley (1968, Sect. 22) to
bound the moment of order 4 of a sum of random variables satisfying a uniform
mixing condition in the context of stronglymixing sequences.We start by introducing
some notation that we shall use throughout the sequel.
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34 2 Algebraic Moments, Elementary Exponential Inequalities

Notation 2.1 Let (Xi )i∈ZZ be a sequence of real-valued random variables. Set F k =
σ(Xi : i ≤ k) and Gl = σ(Xi : i ≥ l). By convention, if the sequence (Xi )i∈T is
defined on a subset T of ZZ, we set Xi = 0 for i in ZZ \ T .

Throughout Sects. 2.2 and 2.3, the strong mixing coefficients (αn)n≥0 of (Xi )i∈ZZ
are defined, as in Rosenblatt (1956), by

α0 = 1/2 and αn = sup
k∈ZZ

α(Fk,Gk+n) for any n > 0. (2.1)

Starting from Theorem1.1(a), we now give an upper bound for the fourth moment
of the partial sums for nonstationary sequences.

Theorem 2.1 Let (Xi )i∈IN be a sequence of centered real-valued random variables
with finite fourth moments. Let Qk = Q|Xk | and set

M4,α,n(Qk) =
n∑

k=1

∫ 1

0
[α−1(u) ∧ n]3Q4

k(u)du.

Then

IE(S4n) ≤ 3
( n∑

i=1

n∑

j=1

|IE(Xi X j )|
)2+48

n∑

k=1

M4,α,n(Qk).

Proof For i /∈ [1, n], let us replace the initial random variables Xi by the null random
variable. With this convention

S4n = 24
∑

i< j<k<l

Xi X j Xk Xl + 12
∑

j<k
i /∈{ j,k}

X2
i X j Xk + 6

∑

i< j

X2
i X

2
j + 4

∑

i �= j

X3
i X j +

∑

i

X4
i .

(2.2)
It follows that

IE(S4n) ≤ 3
∑

i≤ j≤k≤l

|IE(Xi X j Xk Xl)|(1 + 1Ii< j )(1 + 1I j<k)(1 + 1Ik<l). (2.3)

We now apply Theorem1.1(a) to the product Xi X j Xk Xl at the maximal spacing. So,
let m = sup( j − i, k − j, l − k). If m = k − j > 0, then Theorem1.1(a) applied to
X = Xi X j and Y = Xk Xl yields

|IE(Xi X j Xk Xl)| ≤ |IE(Xi X j )IE(Xk Xl)| + 2
∫ αm

0
QXi X j (u)QXk Xl (u)du. (2.4)

If m = j − i and k − j < m, Theorem1.1(a) applied to X = Xi and Y = X j Xk Xl

yields

|IE(Xi X j Xk Xl)| ≤ 2
∫ αm

0
QXi (u)QX j Xk Xl (u)du. (2.5)
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The case m = l − k and sup(k − j, j − i) < m can be treated in the same way and
gives the same inequality. To complete the proof, we will need the technical lemma
below, due to Bass (1955) in the case p = 2.

Lemma 2.1 Let Z1, . . . Z p be nonnegative random variables. Then

IE(Z1 . . . Z p) ≤
∫ 1

0
QZ1(u) . . . QZp (u)du. (a)

Furthermore,

∫ 1

0
QZ1Z2(u)QZ3(u) . . . QZp (u)du ≤

∫ 1

0
QZ1(u)QZ2(u) . . . QZp (u)du (b)

and

∫ 1

0
QZ1+Z2 (u)QZ3(u) . . . QZp (u)du ≤

∫ 1

0
(QZ1(u) + QZ2 (u))QZ3(u) . . . QZp (u)du.

(c)

Proof of Lemma2.1 We first prove (a). By Fubini’s Theorem,

IE(Z1 . . . Z p) =
∫

IRp
IP(Z1 > z1, . . . , Z p > z p)dz1 . . . dz p

≤
∫

IRp
inf

i∈[1,p] IP(Zi > zi )dz1 . . . dz p. (2.6)

Now

inf
i∈[1,p] IP(Zi > zi ) =

∫ 1

0
1Iz1<QZ1 (u) . . . 1Iz p<QZp (u)du. (2.7)

Plugging (2.7) into (2.6) and again applying Fubini’s theorem, we then get (a).
Let us now prove (b). Let U be a random variable with the uniform distribution

over [0, 1]. For any nonnegative random variable Z , QZ (U ) has the distribution of
Z . Now (cf. Exercise 1, Chap.1), if H(t) = IP(Z1Z2 > t), then, for any random
variable δ with uniform distribution over [0, 1] independent of (Z1, Z2),

W = 1 − V = H(Z1Z2 − 0) + δ(H(Z1Z2) − H(Z1Z2 − 0))

has the uniform law. Let (T1, T2, · · · , Tp) = (Z1, Z2, QZ3(W ), . . . , QZp (W )). Then
the randomvariable (T1T2, T3, . . . , Tp)has the same lawas (QZ1Z2(U ), QZ3(U ), . . . ,

QZp (U )). Hence, by Lemma2.1(a),

∫ 1

0
QZ1Z2(u)QZ3(u) . . . QZp (u)du ≤

∫ 1

0
QZ1(u)QZ2(u) . . . QZp (u)du,

http://dx.doi.org/10.1007/978-3-662-54323-8_1
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which completes the proof of (b). The proof of (c), being similar, is omitted. �
We now complete the proof of Theorem2.1. Both inequalities (2.4) and (2.5)

together with Lemma2.1(b) applied repeatedly yield

|IE(Xi X j Xk Xl)| ≤ 2
∫ αm

0
Qi (u)Q j (u)Qk(u)Ql(u)du

+ |IE(Xi X j )IE(Xk Xl)|1Ik− j>max( j−i,l−k), (2.8)

wherem = max( j − i, k − j, l − k) > 0 is the maximal spacing. In the casem = 0,
(2.8) still holds since

E(X4
i ) =

∫ 1

0
Q4

i (u)du ≤ 2
∫ 1/2

0
Q4

i (u)du.

Now

∑

i≤ j<k≤l

|IE(Xi X j )IE(Xk Xl)|(1 + 1Ii< j )(1 + 1Ik<l) ≤
( ∑

(i, j)∈[1,n]2
|IE(Xi X j )|

)2
.

Hence, by (2.3) and (2.8),

IE(S4n ) − 3
( n∑

i=1

n∑

j=1

|IE(Xi X j )|
)2 ≤ 12

∑

i≤ j≤k≤l

∫ αm

0
(Q4

i (u) + Q4
j (u) + Q4

k(u) + Q4
l (u))du

≤ 48
n−1∑

m=0

n∑

k=1

∫ αm

αm+1

(m + 1)3Q4
k(u)du, (2.9)

with the convention that αn = 0 in (2.9). Hence Theorem2.1 holds �
Application of Theorem 2.1 to bounded random variables. Suppose that ‖Xi‖∞ ≤ 1
for any i > 0. Then by Theorem2.1 and Corollary1.2,

IE(S4n) ≤ 3
( n∑

i=1

n∑

j=1

|IE(Xi X j )|
)2 + 144n

n−1∑

m=0

(m + 1)2αm

≤ 48n2
(n−1∑

m=0

αm

)2 + 144n
n−1∑

m=0

(m + 1)2αm . (2.10)

Let us compare this result with Lemma4, Sect. 20, in Billingsley (1968). This lemma
gives, in our setting (note that Billingsley’s proof can be adapted to strongly mixing
sequences),

IE(S4n) ≤ 768n2
(n−1∑

m=0

√
αm

)2
. (2.11)

http://dx.doi.org/10.1007/978-3-662-54323-8_1
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For any p > 0, set
�p(α

−1) = sup
0≤m<n

(m + 1)(αm)1/p. (2.12)

Applying (2.10), we get

IE(S4n) ≤ (8π2 + 144)(n�2(α
−1))2 ≤ 223n2(�2(α

−1))2. (2.13)

Since (αm)m≥0 is nonincreasing,

�2(α
−1) ≤

n−1∑

m=0

√
αm, (2.14)

which shows that (2.13) implies (2.11). Now, if the strong mixing coefficients αm

satisfy αm = O(m−2), then (2.13) ensures that IE(S4n) = O(n2). In that case (2.11)
leads to a logarithmic loss. �

2.3 Even Algebraic Moments

In this section, we extend Theorem2.1 tomoments of order 2pwith p > 2 an integer.
Our main result is the following.

Theorem 2.2 Let p > 0 be an integer and (Xi )i∈IN be a sequence of centered real-
valued random variables with finite moments of order 2p. Set Qk = QXk . Then there
exist positive constants ap and bp such that

IE
(
S2pn

) ≤ ap

(∫ 1

0

n∑

k=1

[α−1(u) ∧ n]Q2
k(u)du

)p

+ bp

n∑

k=1

∫ 1

0
[α−1(u) ∧ n]2p−1Q2p

k (u)du.

Remark 2.1 Recall that Qk(U ) and |Xk | have the same law. The weighted moments
on the right-hand side of the above inequality play the same role as the usualmoments
in the independent case. We refer to Annex C for more comparisons between these
quantities and the usual moments.

Doukhan andPortal (1983) give recursive relationswhich allowus to boundap and
bp by induction on p. These upper bounds can be used to derive exponential inequal-
ities for geometrically strongly mixing sequences or random fields (cf. Doukhan
et al. (1984) or Doukhan 1994). For nonalgebraic moments, one can derive moment
inequalities from the algebraic case via interpolation inequalities (see Utev (1985) or
Doukhan 1994). Nevertheless, interpolation inequalities lead to suboptimal mixing
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conditions. In Chap.6, wewill give another way to provemoment inequalities, which
leads to unimprovable mixing conditions.

Proof of Theorem2.2 We follow the line of proof of Doukhan and Portal (1983);
cf. also Doukhan (1994). For any positive integer q, let

Aq(n) =
∑

1≤i1≤···≤iq≤n

|IE(Xi1 . . . Xiq )|. (2.15)

It is easy to check that
IE(S2pn ) ≤ (2p)!A2p(n). (2.16)

Theorem2.2 then follows from similar upper bounds on Aq(n). We will bound these
quantities by induction on q via Lemma2.2 below.

Lemma 2.2 Suppose that the random variables X1, . . . Xn are centered and with
finite absolute moments of order q. Then

Aq(n) ≤
q−1∑

r=1

Ar (n)Aq−r (n) + 2
n∑

k=1

∫ 1

0
[α−1(u) ∧ n]q−1Qq

k (u)du.

Proof As in the proof of Theorem2.1, we may assume that αn = 0. Let

m(i1, . . . , iq) = sup
k∈[1,q[

(ik+1 − ik)

and
j = inf{k ∈ [1, q[ : ik+1 − ik = m(i1, . . . , iq)}. (2.17)

Theorem1.1(a) applied to X = Xi1 . . . Xi j and Y = Xi j+1 . . . Xiq together with
Lemma2.1(b) ensures that

|IE(Xi1 . . . Xiq )| ≤ |IE(Xi1 . . . Xi j )IE(Xi j+1 . . . Xiq )| + 2
∫ αm(i1,...,iq )

0
Qi1(u) . . . Qiq (u)du.

(2.18)
Summing (2.18) over (i1, . . . , iq) we infer that

Aq(n) ≤
q−1∑

r=1

Ar (n)Aq−r (n) + 2
∑

i1≤···≤iq

∫ αm(i1 ,...,iq )

0
Qi1(u) . . . Qiq (u)du. (2.19)

Now, starting from the elementary inequality

Qi1(u) . . . Qiq (u) ≤ q−1(Qq
i1
(u) + · · · + Qiq (u)),

and interchanging the sum and the integral, we get that

http://dx.doi.org/10.1007/978-3-662-54323-8_6
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∑

i1≤···≤iq

∫ αm(i1 ,...,iq )

0
Qi1(u) . . . Qiq (u)du ≤ 1

q

q∑

l=1

n∑

il=1

n−1∑

m=0

∫ αm

αm+1

χ(il,m)Qq
il
(u)du,

where χ(il,m) is the cardinality of the set of (q − 1)-tuples (i1, .., il−1, il+1, .., iq)
such that

i1 ≤ · · · ≤ il−1 ≤ il ≤ il+1 ≤ · · · ≤ iq and sup
k∈[1,q[

(ik+1 − ik) ≤ m.

Noting that χ(il,m) ≤ (m + 1)q−1, we then get Lemma2.2. �

End of the proof of Theorem 2.2. Let

Mq,α,n =
n∑

k=1

∫ 1

0
[α−1(u) ∧ n]q−1Qq

k (u)du. (2.20)

We will prove by induction on q that

Aq(n) ≤ aqM
q/2
2,α,n + bqMq,α,n. H(q)

By Corollary1.2, H(2) holds true with a2 = 2 and b2 = 0. Suppose now that H(r)
holds for any r ≤ q − 1 Then, from Lemma2.2 we get that

Aq(n) ≤
q−2∑

r=2

(ar M
r/2
2,α,n + br Mr,α,n)(aq−r M

(q−r)/2
2,α,n + bq−r Mq−r,α,n) + 2Mq,α,n .

Hence H(q) will hold true if we prove that, for any r in [2, q − 2],

(ar M
r/2
2,α,n + br Mr,α,n)(aq−r M

(q−r)/2
2,α,n + bq−r Mq−r,α,n) ≤ aq,r M

q/2
2,α,n + bq,r Mq,α,n . (2.21)

To prove (2.21) we apply Young’s inequality qxy ≤ r xq/r + (q − r)yq/(q−r) to the
left-hand side of (2.21). Noting that (v + w)s ≤ 2s−1(vs + ws) for any s ≥ 1, we
get that (2.21) will hold true if

Mq/r
r,α,n ≤ cq,r (M

q/2
2,α,n + Mq,α,n). (2.22)

Now, let

Mp,α,n(Qk) =
∫ 1

0
[α−1(u) ∧ n]p−1Qp

k (u)du.

By Hölder’s inequality,

Mr,α,n(Qk) ≤ (Mq,α,n(Qk))
(r−2)/(q−2)(M2,α,n(Qk))

(q−r)/(q−2).

http://dx.doi.org/10.1007/978-3-662-54323-8_1
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Therefore

Mr,α,n =
n∑

k=1

Mr,α,n(Qk) ≤
n∑

k=1

(Mq,α,n(Qk))
(r−2)/(q−2)(M2,α,n(Qk))

(q−r)/(q−2).

Hence, by Hölder’s inequality applied with exponents (q − 2)/(r − 2) and
(q − 2)/(q − r) together with the appropriate Young’s inequality,

Mr,α,n ≤ M (r−2)/(q−2)
q,α,n M (q−r)/(q−2)

2,α,n ≤ c′
r,q(M

r/q
q,α,n + Mr/2

2,α,n),

which implies (2.22). Whence (2.21) holds, and Lemma2.2 follows by induction on
q. Both (2.16) and Lemma2.2 then imply Theorem2.2. �
Application to bounded random variables. Suppose that ‖Xi‖∞ ≤ 1 for any i > 0.
Then

IE(S2pn ) ≤ (2ap + bp)n
p(�p(α

−1))p. (2.23)

Consequently, if the strong mixing coefficients (αm)m≥0 satisfy αm = O(m−p), then
(2.23) implies the Marcinkiewicz–Zygmund type inequality IE(S2pn ) = O(np). In
that case Yokoyama’s inequalities (1980) are not efficient (cf.Annex C for more
details). �

2.4 Exponential Inequalities

The constants ap and bp appearing in Theorem2.2 can be bounded by explicit con-
stants. Nevertheless, in the case of geometrically mixing sequences, it seems that it
is difficult to obtain the exact dependence in p of the constants (recall that one can
derive exponential inequalities from moment inequalities with explicit constants).
In this section, we give a different way to obtain moment inequalities, which is
more suitable for deriving exponential inequalities. Next we will derive exponential
inequalities for geometrically strongly mixing inequalities from these new inequal-
ities. We will also obtain the so-called Collomb inequalities (1984) for uniformly
mixing sequences via this method. We refer to Delyon (2015) and Wintenberger
(2010) for additional results.

Notation 2.2 Let Fi = σ(X j : j ≤ i). We set IEi (Xk) = IE(Xk | Fi ).

The fundamental tool of this section is the equality below.

Theorem 2.3 Let (Xi )i∈ZZ be a sequence of real-valued random variables and ψ be
a convex differentiable map from IR into IR+, withψ(0) = 0, and such that the second
derivative of ψ in the sense of distributions is absolutely continuous with respect to
the Lebesgue measure on IR. Let ψ′′ denote the density of the second derivative of
ψ. Suppose that for any i in [1, n] and any k in [i, n],
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IE(|(ψ′(Si ) − ψ′(Si−1))Xk |) < ∞. (a)

Then

IE(ψ(Sn)) =
n∑

i=1

∫ 1

0
IE

(
ψ′′(Si−1 + t Xi )

(
−t X2

i + Xi

n∑

k=i

IEi (Xk)
))

dt.

Proof By the Taylor integral formula of order 2

ψ(Sn) =
n∑

i=1

(ψ(Si ) − ψ(Si−1))

=
n∑

k=1

ψ′(Sk−1)Xk +
n∑

i=1

∫ 1

0
(1 − t)ψ′′(Si−1 + t Xi )X

2
i dt.

Now

ψ′(Sk−1) =
k−1∑

i=1

(ψ′(Si ) − ψ′(Si−1)) =
k−1∑

i=1

∫ 1

0
ψ′′(Si−1 + t Xi )Xidt.

Plugging this equality into the Taylor formula, we get that

ψ(Sn) =
n∑

i=1

∫ 1

0
ψ′′(Si−1 + t Xi )

(
−t X2

i + Xi

n∑

k=i

Xk

)
dt. (2.24)

Now, taking the mean of the above equality, noticing that, under assumption (a), the
random variables (1 − t)ψ′′(Si−1 + t Xi )X2

i and ψ′′(Si−1 + t Xi )Xi Xk are integrable
with respect to the product measure λ ⊗ IP and applying Fubini’s theorem, we get
that

IE(ψ(Sn)) =
n∑

i=1

∫ 1

0
IE

(
ψ′′(Si−1 + t Xi )

(
−t X2

i + Xi

n∑

k=i

Xk)
))

dt.

Theorem2.3 then follows from this equality and the fact that

IE
(
ψ′′(Si−1 + t Xi )Xi Xk

) = IE
(
ψ′′(Si−1 + t Xi )Xi IEi (Xk)

)
. �

We now derive a Hoeffding type inequality from Theorem2.3 (cf. Theorem B.4,
AnnexB, forHoeffding’s inequality for bounded and independent randomvariables).
This inequality is an extension of the Azuma inequality (1967) for martingales to
dependent sequences.

Theorem 2.4 Let (Xi )i∈ZZ be a sequence of real-valued bounded random variables
and let (m1,m2, . . . ,mn) be an n-tuple of positive reals such that
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sup
j∈[i,n]

(
‖X2

i ‖∞ + 2 ‖Xi

j∑

k=i+1

IEi (Xk)‖∞
)

≤ mi for any i ∈ [1, n], (a)

with the convention
∑i

k=i+1 IEi (Xk) = 0. Then, for any nonnegative integer p,

IE(S2pn ) ≤ (2p)!
2p p!

( n∑

i=1

mi

)p
. (b)

Consequently, for any positive x,

IP(|Sn| ≥ x) ≤ √
e exp

( − x2/(2m1 + · · · + 2mn)
)
. (c)

Proof Define the functions ψp by ψ0(x) = 1 and ψp(x) = x2p/(2p)! for p > 0. Set
Mi = ‖Xi‖2∞. We prove (b) by induction on p. At range 0, (b) holds true for any
sequence (Xi )i∈ZZ, since S0n = 1. If (b) holds at range p for any sequence (Xi )i∈ZZ,
then, applying Theorem2.3 to ψ = ψp+1 and noting that ψ′′

p+1 = ψp, we get that

2IE(ψp+1(Sn)) ≤
n∑

i=1

∫ 1

0
IE(ψp(Si−1 + t Xi ))(mi + (1 − 2t)Mi )dt. (2.25)

We now apply the induction hypothesis to the sequence (X ′
l)l∈ZZ defined by X ′

l = Xl

for any 1 ≤ l < i , X ′
i = t Xi and X ′

l = 0 for l /∈ [1, i]. For l < i and j < i ,

X ′
l

j∑

m=l+1

IEl(X
′
m) = Xl

j∑

m=l+1

IEl(Xm).

For l < i and j ≥ i ,

X ′
l

j∑

m=l+1

IEl(X
′
m) = t Xl

i∑

m=l+1

IEl(Xm) + (1 − t)Xl

i−1∑

m=l+1

IEl(Xm).

Hence the sequence (X ′
l)l∈ZZ satisfies assumption (a) with the new sequence (m ′

i )i
defined by m ′

l = ml for l < i and m ′
i = t2Mi . Consequently, applying (b) to S′

i =
X ′
1 + · · · + X ′

i , we get that

2p p! IE(ψp(Si−1 + t Xi )) ≤ (m1 + · · · + mi−1 + t2Mi )
p.

Now mi + (1 − 2t)Mi ≥ mi − Mi ≥ 0. Hence
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2p+1 p!
∫ 1

0
IE(ψp(Si−1 + t Xi ))(mi + (1 − 2t)Mi )dt

≤
∫ 1

0
(m1 + · · · + mi−1 + t2Mi )

p(mi + (1 − 2t)Mi )dt

≤
∫ 1

0
(m1 + · · · + mi−1 + tmi + t (1 − t)Mi )

p(mi + (1 − 2t)Mi )dt,

(2.26)

since tmi + t (1 − t)Mi ≥ t2Mi . Now

(p + 1)
∫ 1

0
(m1+ · · · + mi−1 + tmi + t (1 − t)Mi )

p(mi + (1 − 2t)Mi )dt =
(m1 + · · · + mi )

p+1 − (m1 + · · · + mi−1)
p+1, (2.27)

whence

2p+1(p + 1)!
∫ 1

0
IE(ψp(Si−1 + t Xi ))(mi + (1 − 2t)Mi )dt ≤

(m1 + · · · + mi )
p+1 − (m1 + · · · + mi−1)

p+1. (2.28)

Finally, both (2.25) and (2.28) ensure that the induction hypothesis holds at range
p + 1 for the sequence (Xi )i∈ZZ. Hence (b) holds true by induction on p.

In order to prove (c), we will apply the Markov inequality to S2pn for some appro-
priate p. Set

A = x2/(2m1 + · · · + 2mn) and p = [A + (1/2)],

the square brackets designating the integer part. (c) holds trivially for A ≤ 1/2.Hence
we may assume that A ≥ 1/2. Then p > 0, and applying the Markov inequality to
S2pn , we get that

IP(|Sn| ≥ x) ≤ (4A)−p(2p)!/p! (2.29)

If A belongs to [1/2, 3/2], (2.29) yields

IP(|Sn| ≥ x) ≤ (2A)−1 ≤ √
e exp(−A),

since 2A ≥ exp(A − 1/2) for A in [1/2, 3/2].Next, if A ≥ 3/2, using the fact that the
sequence (2πn)−1/2(e/n)nn! is nonincreasing, we get that (2p)! ≤ √

2(4p/e)p p!,
whence

IP(|Sn| ≥ x) ≤ √
2 (eA)−p pp.

Now, taking the logarithm of this inequality, we obtain

A + log IP(|Sn| ≥ x) ≤ log
√
2 + f p(A),
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with f p(A) = (A − p) − p log(A/p). Here p ≥ 2 and A belongs to [p − 1/2, p +
1/2[. Since f ′

p(A) = (A − p)/A and f ′′
p (A) = p/A2, the function f p is convex.

Consequently themaximum of f p is attained at A = p − 1/2 or A = p + 1/2. Since
f p reaches its minimum at point p and f ′′

p is decreasing, the maximum of f p is
attained for A = p − 1/2. Hence

A + log IP(|Sn| ≥ x) ≤ log 2 − 1

2
+ p log

( 2p

2p − 1

)
≤ log 2 − 1

2
+ 2 log(4/3),

since p ≥ 2. Thus we get that

IP(|Sn| ≥ x) ≤ 16
√
2

9
√
e

exp(−A) ≤ √
e exp(−A),

which completes the proof of Theorem2.4(c). �

We now apply Theorem2.4 to uniformly mixing sequences, as defined below.

Definition 2.1 The uniform mixing coefficients of (Xi )i∈ZZ are defined by

ϕ0 = 1 and ϕn = sup
k∈ZZ

ϕ(Fk,σ(Xk+n)) for any n > 0.

The sequence (Xi )i∈ZZ is said to be uniformly mixing if ϕn converges to 0 as n tends
to ∞.

Corollary2.1 below provides a Hoeffding type inequality for uniformly mixing
sequences of bounded random variables.

Corollary 2.1 Let (Xi )i∈ZZ be a sequence of centered and real-valued bounded ran-
dom variables. Set θn = 1 + 4(ϕ1 + · · · + ϕn−1) and Mi = ‖Xi‖2∞. Then, for any
positive integer p,

IE(S2pn ) ≤ (2p)!
p!

(θn

2

)p
(M1 + · · · + Mn)

p. (a)

Next, for any positive x,

IP(|Sn| ≥ x) ≤ √
e exp

(
− x2/(2θnM1 + · · · + 2θnMn)

)
. (b)

Proof Let us apply Theorem2.4 to the sequence (Xi )i∈ZZ. Since the random variables
Xk are centered at expectation, by Theorem1.4(b) and the Riesz–Fisher theorem,

‖IEi (Xk)‖∞ ≤ 2ϕk−i‖Xk‖∞.

Hence we may apply Theorem2.4 with

http://dx.doi.org/10.1007/978-3-662-54323-8_1
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mi = Mi + 4
n∑

k=i+1

√
MiMk ϕk−i .

Summing on i , we have:

m1 + · · · + mn ≤
n∑

i=1

Mi + 4
∑

1≤i<k≤n

√
MiMk ϕk−i

≤
n∑

i=1

Mi + 2
∑

1≤i<k≤n

(Mi + Mk)ϕk−i ≤ θn

n∑

i=1

Mi .

Corollary2.1 then follows from both Theorem2.4 and the above upper bound.

2.5 New Moment Inequalities

In this section, we derive from Theorem2.3 new moment inequalities for strongly
mixing sequences. These inequalities are similar to the Marcinkiewicz–Zygmund
type inequalities for independent random variables. Throughout the section, the
strong mixing coefficients are defined in the following way:

α0 = 1/2 and αn = sup
k∈ZZ

α(Fk, Xk+n) for any n > 0. (2.30)

Our main result is as follows.

Theorem 2.5 Let p be any real in ]1,∞[. Let (Xi )i∈ZZ be a strictly stationary
sequence of real-valued random variables with mean 0 and finite moment of order
2p. Set Q = QX0 . Then, with the notations of Sect.2.4, for any positive n,

IE(|Sn|2p) ≤ (4np)p sup
l∈[1,n]

IE
(∣∣∣X0

l−1∑

i=0

IE0(Xi )

∣∣∣
p)

. (a)

Consequently,

IE(|Sn|2p) ≤ (8np)p
∫ 1

0
[α−1(u) ∧ n]pQ2p(u)du. (b)

Remark 2.2 Inequality (a) may be applied to some dynamical systems with hyper-
bolicity, as shown byMelbourne and Nicol (2008). Inequality (b) can be improved if
the strong mixing coefficients are defined by (2.1). We shall obtain Marcinkiewicz–
Zygmund type inequalities Marcinkiewicz–Zygmund type inequalities under a
weaker mixing condition in Chap. 6 (see Sect. 6.4 and (C.15) in Annex C).

http://dx.doi.org/10.1007/978-3-662-54323-8_6
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Proof We prove Theorem2.5 by induction on n. Our induction hypothesis is the
following. For any integer k ≤ n and any t in [0, 1],

IE(|Sk−1 + t Xk |2p) ≤ (4p)p(k − 1 + t)p sup
l∈[1,k]

IE
(∣∣∣X0

l−1∑

i=0

IE0(Xi )

∣∣∣
p)

.

First, for any integer k ≤ 4p,

‖Sk−1 + t Xk‖2p ≤ (k − 1 + t)‖X0‖2p ≤ √
4p(k − 1 + t) ‖X0‖2p.

Hence the induction hypothesis holds for k ≤ [4p].
Now let n > 4p. If the induction hypothesis holds at range n − 1, then, applying

Theorem2.3 with ψ(x) = |x |2p, and setting

hn(t) = IE(|Sn−1 + t Xn|2p) and �n = sup
l∈[1,n]

‖X0

l−1∑

i=0

IE0(Xi )‖p,

we obtain that

hn(t)

4p2
≤

n−1∑

i=1

∫ 1

0
IE

(
|Si−1 + sXi |2p−2Xi

n∑

k=i

IEi (Xk)
)
ds

+
∫ t

0
IE(|Sn−1 + sXn|2p−2X2

n)ds.

We now apply Hölder’s inequality with exponents p/(p − 1) and p:

IE
(
|Si−1 + sXi |2p−2Xi

n∑

k=i

IEi (Xk)
)

≤ (hi (s))
(p−1)/p‖Xi

n∑

k=i

IEi (Xk)‖p.

From the stationarity of (Xi )i∈ZZ,

hn(t) ≤ 4p2�n

(n−1∑

i=1

∫ 1

0
(hi (s))

(p−1)/pds +
∫ t

0
(hn(s))

(p−1)/pds
)
.

Now if the induction hypothesis holds at range n − 1, then

∫ 1

0
(hi (s))

(p−1)/pds ≤ (4p�n)
p−1

∫ 1

0
(i − 1 + s)p−1ds

≤ (4�n)
p−1 pp−2(i p − (i − 1)p).

Set gn(s) = (4p(n − 1 + s)�n)
p. The above inequalities ensure that
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hn(t) ≤ gn(0) + 4p2�n

∫ t

0
(hn(s))

(p−1)/pds.

Now, let

Hn(t) =
∫ t

0
(hn(s))

(p−1)/pds.

The above differential inequality may be written as

H ′
n(s)(gn(0) + 4p2�nHn(s))

−1+1/p ≤ 1.

Integrating this differential inequality between 0 and t yields

(hn(t))
1/p − (gn(0))

1/p ≤ 4pt�n,

which implies that hn ≤ gn . Hence (a) holds true.
To prove (b), it is enough to prove that

�n ≤ ‖(α−1 ∧ n)Q2‖p.

Let q = p/(p − 1). Clearly

�n ≤ ‖
n−1∑

i=0

|IE0(Xi )|X0‖p.

Hence, by the Riesz–Fisher theorem, there exists a random variable Y in Lq(F0)

such that ‖Y‖q = 1 and

�n ≤ IE(Y
n−1∑

i=0

|X0IE0(Xi )|) ≤
n−1∑

i=0

‖Y X0IE0(Xi )‖1.

Hence, by (1.11c),

�n ≤ 2
n−1∑

i=0

∫ αi

0
QY X0(u)QXi (u)du.

Finally, by Lemma2.1(b)

�n ≤ 2
∫ 1

0
QY (u)[α−1(u) ∧ n]Q2(u)du,

which implies (b) via Hölder’s inequality on [0, 1] applied to the functions QY and
[α−1 ∧ n]Q2. �

http://dx.doi.org/10.1007/978-3-662-54323-8_1
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To conclude this section, we give a pseudo exponential inequality for geometri-
cally strongly mixing sequences. Our result is similar to the results of Theorem 6 in
Doukhan et al. (1984).

Corollary 2.2 Let (Xi )i∈ZZ be a sequence of centered real-valued random variables
each bounded a.s. by 1, and (αn)n≥0 be defined by (2.30). Suppose that, for some
a < 1, lim supn α

1/n
n < a. Then there exists some positive x0 such that, for any x ≥ x0

and any positive integer n,

IP
(
|Sn| ≥ x

√
n log(1/a)

)
≤ ax/2.

Proof It is easy to check that

lim sup
p→∞

p−1‖α−1Q2‖p < (−e log a)−1.

Hence there exists some p0 > 1 such that, for any p ≥ p0,

‖Sn‖22p ≤ 4np2(−e log a)−1.

By the Markov inequality applied to S2pn , we infer that

IP
(
|Sn| ≥ x

√
n log(1/a)

)
≤ e−p

( −2p

x log a

)2p
.

Set p = −(x/2) log a. Then the above inequality yields Corollary2.2 if p ≥ p0,
which holds true as soon as x ≥ −(2p0/ log a). �

Exercises

(1) Let (Xi )i∈ZZ be a sequence of centered real-valued random variables with finite
fourth moments, and let (αn)n≥0 be defined by (2.1).

(a) Let i ≤ j ≤ k ≤ l be natural integers. Prove that

|IE(Xi X j Xk Xl)| ≤ 2
∫ 1

0
1Iu<α j−i1Iu<αl−k Qi (u)Q j (u)Qk(u)Ql(u)du. (1)

(b) Prove that

IE(S4n) ≤ 12
∑

1≤i≤ j≤k≤l≤n

|IE(Xi X j Xk Xl)|(1 + 1I j<k).
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(c) Prove that

IE(S4n) ≤ 24
n∑

j=1

n∑

k=1

∫ 1

0
[α−1(u) ∧ n]2Q2

j (u)Q2
k(u)du. (2)

(d) Suppose now that ‖Xk‖∞ ≤ 1 for any k in [1, n]. Derive from the above
inequalities that

IE(S4n) ≤ 24n2
n−1∑

m=0

(2m + 1)αm . (3)

Compare (3) with (2.13) and (2.11).
(2) Let (Sn)n≥0 be a martingale sequence in L p for some p > 2 and Xn = Sn − Sn−1.
Either use Inequality (2.3) in Pinelis (1994) or adapt the proof of Theorem2.5 to prove
the inequality (4) below, given in Rio (2009):

‖Sn‖2p ≤ ‖S0‖2p + (p − 1)
n∑

k=1

‖Xk‖2p. (4)
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