Chapter 2
Algebraic Moments, Elementary Exponential
Inequalities

2.1 Introduction

In this chapter, we start by giving upper bounds for algebraic moments of partial
sums from a strongly mixing sequence. These inequalities are similar to Rosen-
thal’s inequalities (1970) concerning moments of sums of independent random vari-
ables. They may be applied to provide estimates of deviation probabilities of partial
sums from their mean value, which are more efficient than the results derived from
the Marcinkiewicz—Zygmund type moment inequalities given in Ibragimov (1962)
or Billingsley (1968) for uniformly mixing sequences, or in Yokoyama (1980) for
strongly mixing sequences, in particular for partial sums with a small variance. For
example, Rosenthal type inequalities may be used to obtain precise upper bounds
for integrated L”-risks of kernel density estimators. They provide the exact rates of
convergence, in contrast to Marcinkiewicz—Zygmund type moment inequalities, as
shown first by Bretagnolle and Huber (1979) in the independent case.

In Sects.2.2 and 2.3, we follow the approach of Doukhan and Portal (1983),
for algebraic moments in the strong mixing case. In Sect.2.4 we give a second
method, which provides explicit constants in inequalities for the algebraic moments
of order 2p. Applying then the Markov inequality to S,%p , and minimizing the so
obtained deviation bound with respect to p, we then get exponential Hoeffding type
inequalities in the uniform mixing case. We also apply this method to obtain upper
bounds for non-algebraic moments in Sect.2.5.

2.2 An Upper Bound for the Fourth Moment of Sums

In this section, we adapt the method introduced in Billingsley (1968, Sect.22) to
bound the moment of order 4 of a sum of random variables satisfying a uniform
mixing condition in the context of strongly mixing sequences. We start by introducing
some notation that we shall use throughout the sequel.
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Notation 2.1 Let (X;);cz be a sequence of real-valued random variables. Set F; =
0(X;:i <k)and G, =o0(X; :i >1). By convention, if the sequence (X;);cr is
defined on a subset T of Z, we set X; = OforiinZ\ T.

Throughout Sects. 2.2 and 2.3, the strong mixing coefficients (a;,),>0 of (X;)iez
are defined, as in Rosenblatt (1956), by

oy = 1/2 and o, = sup a(Fy, Gi4p) for any n > 0. 2.1
keZZ

Starting from Theorem 1.1(a), we now give an upper bound for the fourth moment
of the partial sums for nonstationary sequences.

Theorem 2.1 Let (X;)iew be a sequence of centered real-valued random variables
with finite fourth moments. Let Qy = Q)x,| and set

noo
Mien(@0) =3 [ 107! @) AT 0wy
k=1

Then

n n

2 n
E(S) = 3(D0 D IECGX 1) +48 D Maan(Q0).
i=1 j=1 k=1

Proof Fori ¢ [1, n], letus replace the initial random variables X; by the null random
variable. With this convention

Sp=24 D XiX;XpX;+12 3 XX Xp+6p XX7+4> X)Xj+ D X
i<j<k<l j<k i<j i#j i
i¢{j.k}
(2.2)
It follows that

E(S,) <3 Z EXGX X X)L+ L)+ o0+ W) (2.3)

i<j<k<l

We now apply Theorem 1.1(a) to the product X; X ; X; X; at the maximal spacing. So,
letm =sup(j —i,k— j,l —k).If m =k — j > 0, then Theorem 1.1(a) applied to
X =X,X;and Y = X; X, yields

E(X; X X X)| < [E(X; X )EX X)) +2/ m Ox,x,(u)Qx,x,(w)du. (2.4)
0

Ifm=j—iandk — j < m, Theorem1.1(a) applied to X = X; and ¥ = X ; X; X;
yields

Qi

HE(X; X; X X))| <2 Ox, () Ox;x,x,(u)du. (2.5)
0
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The case m =1 — k and sup(k — j, j — i) < m can be treated in the same way and
gives the same inequality. To complete the proof, we will need the technical lemma
below, due to Bass (1955) in the case p = 2.

Lemma 2.1 Let Z,, ... Z, be nonnegative random variables. Then

E(Z...Z,) 5/01 07,)...Q0z du. (a)
Furthermore,
/01 Qz,2,w)Qz,(u) ... Qz,(w)du < /01 Qz,w)Qz,)...Q0z,w)du  (b)
and

1 1
/0 Qzl+zz(u)Qz3(u)-.-Qz,,(u)duS/O (Qz,(w) + Qz,w)Qz,w) ... Oz, w)du.

(©
Proof of Lemma 2.1 We first prove (a). By Fubini’s Theorem,
]E(lep)z/ IP(Z]>Z],...,Zp>Zp)d21...de
R?
< / inf P(Z; > z;))dzy...dzp. (2.6)
Rr i€ll,p]
Now .
lllf IP(ZL > Z,‘) = / HZ]<QZ W) -« - - IIZp<QZ (u)du. (27)
i€[l,p] 0 ! ’

Plugging (2.7) into (2.6) and again applying Fubini’s theorem, we then get (a).

Let us now prove (b). Let U be a random variable with the uniform distribution
over [0, 1]. For any nonnegative random variable Z, Q,(U) has the distribution of
Z. Now (cf. Exercise 1, Chap. 1), if H(t) = P(Z,Z, > t), then, for any random
variable § with uniform distribution over [0, 1] independent of (Z;, Z;),

W=1—-V=H(ZZ,—0)+0(H(Z,Z,) — H(Z,Z, — 0))
has the uniform law. Let (T3, T», - -+ , T),) = (Z1, Z2, Qz, (W), ..., QZP(W)).Then

therandom variable (717>, T3, ..., T,) hasthe samelaw as (Q 7,2, (U), Qz, (U), ...,
0z,(U)). Hence, by Lemma?2.1(a),

1 1
/) Qz,2,(u)Qz,(u) ... Qz,(u)du S/O Qz,()Qz,(u) ... 0z, (u)du,
(
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which completes the proof of (b). The proof of (c), being similar, is omitted. W
We now complete the proof of Theorem2.1. Both inequalities (2.4) and (2.5)
together with Lemma2.1(b) applied repeatedly yield

E(X; X; X X))| < 2/ h Qi) Q;j(u)Qx(u)Qr(u)du
0
+ IEX; X HDEXG XD I M— jomax(j—ii—k)»  (2.8)

where m = max(j — i, k — j, [ — k) > 0is the maximal spacing. In the case m = 0,
(2.8) still holds since

1/2

1
E(X}) =/ 0} (uydu <2 O (u)du.
0 0
Now

2
Z IE(X; X HIEX X1+ 1L ) (1 + M) < ( Z |]E(Xin)|) .

i<j<k<l (i, j)ell,n]?

Hence, by (2.3) and (2.8),

n n 2 Qi
EsH =33 Y Exx)) =12 Y /0 Q@) + Q4 + 0f ) + f (w)du

i=1 j=1 i<j<k<l
n—1 n am

=48> > / (m +1)* Q¢ w)du, (2.9)
m=0 k=1 " @m+1

with the convention that v, = 0 in (2.9). Hence Theorem2.1 holds W

Application of Theorem 2.1 to bounded random variables. Suppose that || X;||.o < 1
for any i > 0. Then by Theorem 2.1 and Corollary 1.2,

n n n—1
EsH =33 |1E(X,-xj)|)2 +144n > (m + 1Ya,

i=1 j=I m=0

n—1 ) n—1
< 48n2(z am) +144n> " (m + 1. (2.10)
m=0 m=0

Let us compare this result with Lemma4, Sect. 20, in Billingsley (1968). This lemma
gives, in our setting (note that Billingsley’s proof can be adapted to strongly mixing

sequences),
n—1

E(5%) < 768 (Z m)
m=0

2
. @2.11)
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For any p > 0, set
Ap(@™)y = sup (m+ D(am)'?. (2.12)

0<m<n
Applying (2.10), we get
E(SH < 87 + 144)(nAy (")) < 223n* (Ax(a™"))% (2.13)

Since (v )m=0 1s nonincreasing,

n—1
Al =D, (2.14)

m=0

which shows that (2.13) implies (2.11). Now, if the strong mixing coefficients
satisfy «,, = O(m™?), then (2.13) ensures that ]E(Sj) = O(n?). In that case (2.11)
leads to a logarithmic loss. MW

2.3 Even Algebraic Moments

In this section, we extend Theorem 2.1 to moments of order 2 p with p > 2 an integer.
Our main result is the following.

Theorem 2.2 Let p > 0 be an integer and (X;);eN be a sequence of centered real-
valued random variables with finite moments of order 2p. Set Qr = Qx,. Then there
exist positive constants a, and b, such that

1 n »
E(S¥) <a, (/0 > la @) A n]Q,E(u)du)
k=1
n 1
+b, Z/ [ ) A nP*~ O (u)du.
k=1 0

Remark 2.1 Recall that Q¢ (U) and | X | have the same law. The weighted moments
on the right-hand side of the above inequality play the same role as the usual moments
in the independent case. We refer to Annex C for more comparisons between these
quantities and the usual moments.

Doukhan and Portal (1983) give recursive relations which allow us to bound a,, and
b, by induction on p. These upper bounds can be used to derive exponential inequal-
ities for geometrically strongly mixing sequences or random fields (cf. Doukhan
et al. (1984) or Doukhan 1994). For nonalgebraic moments, one can derive moment
inequalities from the algebraic case via interpolation inequalities (see Utev (1985) or
Doukhan 1994). Nevertheless, interpolation inequalities lead to suboptimal mixing
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conditions. In Chap. 6, we will give another way to prove moment inequalities, which
leads to unimprovable mixing conditions.

Proof of Theorem?2.2 We follow the line of proof of Doukhan and Portal (1983);
cf. also Doukhan (1994). For any positive integer ¢, let

A= D [EX; ... X))l 2.15)

I<ii<--<ig=n

It is easy to check that
E(S}7) < (2p)!As,(n). (2.16)

Theorem 2.2 then follows from similar upper bounds on A, (). We will bound these
quantities by induction on g via Lemma?2.2 below.

Lemma 2.2 Suppose that the random variables Xy, ... X, are centered and with
finite absolute moments of order q. Then

qg—1 n 1
Ayn) = 3 A A0 +2 3 [ o @) Ant ! O .
r=1 k=1

Proof As in the proof of Theorem2.1, we may assume that o, = 0. Let

m(ila e lq) = Ssup (lk+l - lk)
kell,q(
and
j=inflk € [1,ql: irsr —ix = mGy. ... ig)}. 2.17)

Theorem1.1(a) applied to X = X;, ... X;, and ¥ =X
Lemma2.1(b) ensures that

X;, together with

ijn e

Qo (i ig)
IE(X;, ... X;,)| < [E(X;, ...Xij)]E(Xl-jH...X,~q)|—|—2/0 b Qi) ... Q;, (wydu.
(2.18)
Summing (2.18) over (iy, ..., iy) we infer that

Qi ,....iq

q—1 )
Ag(m) < D A A () +2 Y Qi (u)... Qi (wydu.  (2.19)
r=1

i1<-<iy
Now, starting from the elementary inequality
Qi () ... Qi) < g " (QF () +--- + Q;, (W),

and interchanging the sum and the integral, we get that
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..... non-loea,

Qm(iy.....iq) q
> /0 Qh(u)...Qiq(u)duséZZZ/ X1, m) Qf (wdu,

i1 <<iy I=1 ij=1 m=0" @m+l

where x(i;, m) is the cardinality of the set of (g — 1)-tuples (i1, .., ij—1, {41, -., ig)
such that

W< <1< <iq1 <---=<ig and sup (ixq41 — i) < m.
kell,ql

Noting that x(i;, m) < (m + 1)7~!, we then get Lemma2.2. W

End of the proof of Theorem 2.2. Let
n 1
Myon= Z/ [a~" () Anl""" Qf (w)du. (2.20)
k=10

We will prove by induction on ¢ that

Agn) < agM3 |+ byMy . H(q)

2,a,n

By Corollary 1.2, H(2) holds true with a; = 2 and b, = 0. Suppose now that H(r)
holds for any r < g — 1 Then, from Lemma?2.2 we get that

2,a,n 2,a,n

q—2
Ag(n) < D @My + by My ) ag— My by My 00) +2My .
r=2

Hence H(g) will hold true if we prove that, for any r in [2, ¢ — 2],

(aer/Z

2,a,n

—r)/2 2
+ber,a,n)(aq7rM(q "/ +bq7qu7r,a',n) =< aq,ng_/,yn +bq,qu,a,n- (221)

2,a,n

To prove (2.21) we apply Young’s inequality gxy < rx?/" + (g — r)y?/4~" to the
left-hand side of (2.21). Noting that (v + w)* < 2°~'(v* + w*) for any s > 1, we
get that (2.21) will hold true if

M < ey (M2 4+ My o). (2.22)

r,a,n — 2,0,n

Now, let

1
My on(00) = / o () A n]P! QF (u)du.
0
By Holder’s inequality,

My on(Q1) < (My (O 279D (M 4, (Qp)) 4072,
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Therefore

Mr,a,n = ZMr,a,n(Qk) =< Z(Mq,a,n(Qk))(r_Z)/(q_Z)(MZ,a,n(Qk))(q_r)/(q_z)'

k=1 k=1

Hence, by Holder’s inequality applied with exponents (¢ —2)/(r —2) and
(g — 2)/(g — r) together with the appropriate Young’s inequality,

Mr,a',n < M‘;’:;’i)/(q—Z) Méfin:;)/(q—z) < C:«yq (ng/g‘” + M;,/(in)’
which implies (2.22). Whence (2.21) holds, and Lemma 2.2 follows by induction on
q.Both (2.16) and Lemma2.2 then imply Theorem?2.2. W

Application to bounded random variables. Suppose that || X;|. < 1 for any i > 0.
Then
E(S2) < (2a, + by)n” (A, (™))" (2.23)

Consequently, if the strong mixing coefficients (o, )m>0 satisfy a,, = O (m~?), then
(2.23) implies the Marcinkiewicz—Zygmund type inequality ]E(S,fp )=0(®n?). In
that case Yokoyama’s inequalities (1980) are not efficient (cf. Annex C for more
details). W

2.4 Exponential Inequalities

The constants a, and b, appearing in Theorem 2.2 can be bounded by explicit con-
stants. Nevertheless, in the case of geometrically mixing sequences, it seems that it
is difficult to obtain the exact dependence in p of the constants (recall that one can
derive exponential inequalities from moment inequalities with explicit constants).
In this section, we give a different way to obtain moment inequalities, which is
more suitable for deriving exponential inequalities. Next we will derive exponential
inequalities for geometrically strongly mixing inequalities from these new inequal-
ities. We will also obtain the so-called Collomb inequalities (1984) for uniformly
mixing sequences via this method. We refer to Delyon (2015) and Wintenberger
(2010) for additional results.

Notation 2.2 Let F; = o(X; : j <i). Weset E;(Xy) = E(Xy | F7).
The fundamental tool of this section is the equality below.

Theorem 2.3 Let (X;);cz be a sequence of real-valued random variables and 1) be
a convex differentiable map from R into R, with1)(0) = 0, and such that the second
derivative of 1 in the sense of distributions is absolutely continuous with respect to
the Lebesgue measure on R. Let 1" denote the density of the second derivative of
1. Suppose that for any i in [1, n] and any k in [i, n],
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E( (" (S1) = ¢'(Si-1)) X]) < o0. (a)

Then
n 1 n
EW(S)) =Y. / (" (i1 + 10X (—1X2 + X; D Ei(X0) )ar.
i=1 70 k=i
Proof By the Taylor integral formula of order 2

$(Sn) = D (@W(S) —$(Si1))

i=1

n n 1
= Zw/(sk—l)xk + Z/ (L= (Sim1 + t X)) X7dt.
k=1 i=1 70
Now
k-1 k=1 .
WS = S W) WS = 3 [ S+ X Xidr,
i=1 i=1 70
Plugging this equality into the Taylor formula, we get that
n 1 n
W(S,) = z/ WS+ XD (XX Y X )dr 224)
i=1 70 k=i

Now, taking the mean of the above equality, noticing that, under assumption (a), the
random variables (1 — 1)y (S;_1 + tX,')Xi2 and " (S;_1 + tX;) X; X are integrable
with respect to the product measure A ® IP and applying Fubini’s theorem, we get
that

n 1 n
E@(S) = /0 E(w (S + X)) (—0X2 + X, > X0) ).
i=1 k=i

Theorem 2.3 then follows from this equality and the fact that
E(V/(Sio1 + X)X Xi) = E(W/(Sio1 + X)X/ Ei(Xy). W

We now derive a Hoeffding type inequality from Theorem 2.3 (cf. Theorem B.4,
Annex B, for Hoeffding’s inequality for bounded and independent random variables).
This inequality is an extension of the Azuma inequality (1967) for martingales to
dependent sequences.

Theorem 2.4 Let (X;);cz be a sequence of real-valued bounded random variables
and let (my, my, ..., m,) be an n-tuple of positive reals such that
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J

sup (||X?||oo+2||xi > E(xk)noo) <m; foranyi€[l,n],  (a)
jelinl k=i+1

with the convention ZZ:; +1 Bi(Xy) = 0. Then, for any nonnegative integer p,
n

B < 50 (Sm)” ®)

Consequently, for any positive x,
P(|S,| = x) < Veexp(—x*/Q@my +--- +2m,)). (©)

Proof Define the functions 1, by 1p(x) = 1 and ¢, (x) = x2P/(2p)! for p > 0. Set
M; = ||X; ||§o. We prove (b) by induction on p. At range 0, (b) holds true for any
sequence (X;);cz, since Sfl) = 1. If (b) holds at range p for any sequence (X;);cz,
then, applying Theorem 2.3 to 1 = 1,41 and noting that wg +1 = ¥p, we get that

n 1
2E)1(S)) < D /0 E(,(Sio1 + X)) (m; + (1 =20)Mpde. (2.25)
i=1

We now apply the induction hypothesis to the sequence (X));cz defined by X; = X;
forany 1 <! <i, X =tX;and X; =0for/ ¢ [1,i]. Forl <iandj < i,

J J
X) D> EX,) =X D Ei(Xn).
m=I+1 m=Il+1

Forl/ <iand j > i,

j i i—1

X) D> EX,) =X Y E(X,) + (1-0X, D E/(Xy).
m=I[+1 m=Il+1 m=I+1

Hence the sequence (X));cz satisfies assumption (a) with the new sequence (m});
defined by m) = m; for [ < i and m} = t>M;. Consequently, applying (b) to S/ =
X1 +---+ X, we get that

27 V(b (Sict +tXi) < (my + -+ +mi_y + *M;)P.

Now m; + (1 —2t)M; > m; — M; > 0. Hence
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-1
2p+1p!/0 E@p(Si—1 +tX;))(m; + (1 —2t)M;)dt
! 2
< / (my+-+mi_y +t"M;)P(m; + (1 — 2t)M;)dt
0

1
5/ (my+--+mj_1 +tm; +t(1 —t)M;)P (m; + (1 — 2t)M;)dt,
0

(2.26)
since tm; +t(1 — t)M; > t*M;. Now
1
(p+ 1)/ (mi+---+mi_y +tm; +t(1 = H)M)? (m; + (1 = 2t)M;)dt =
0
(my 4+ m)P* = (my+ -+ m_)PH (2.27)

whence

1
2P (p + 1)!/ E@,(Si—1 +1tX))(m; + (1 —26)M;)dt <
0
(my + - +m)P —(my + - +mi_ )P (2.28)

Finally, both (2.25) and (2.28) ensure that the induction hypothesis holds at range
p + 1 for the sequence (X;);cz. Hence (b) holds true by induction on p.

In order to prove (c), we will apply the Markov inequality to S,% P for some appro-
priate p. Set

A=x*/Qmy+---+2m,) and p =[A+(1/2)],

the square brackets designating the integer part. (c) holds trivially for A < 1/2. Hence
we may assume that A > 1/2. Then p > 0, and applying the Markov inequality to
S2”, we get that

P(|S,| = x) < (44)""(2p)!/p! (2.29)
If A belongs to [1/2,3/2], (2.29) yields

P(|S,| > x) < (2A)7" < Veexp(—A),

since2A > exp(A — 1/2)for Ain[1/2, 3/2]. Next,if A > 3/2,using the fact that the
sequence (27rn)~"/2(e/n)"n! is nonincreasing, we get that (2p)! < /2(4p/e)? p!,
whence

P(S,] = x) < V2 (eA) 7 p”.

Now, taking the logarithm of this inequality, we obtain

A +1ogP(|S,| > x) < logv/2 + f,(A),
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with f,(A) = (A — p) — plog(A/p). Here p > 2 and A belongsto[p — 1/2, p +
1/2[. Since f,(A) = (A — p)/A and f](A) = p/A?, the function f, is convex.
Consequently the maximum of f), is attainedat A = p — 1/2or A = p + 1/2. Since
fp reaches its minimum at point p and f, is decreasing, the maximum of f) is
attained for A = p — 1/2. Hence

log2 —1 2 log2 —1
A+10gP(S,| = ) = =5 + plog(5- ) = —2—— + 2log4/3),
2 2p—1 2

since p > 2. Thus we get that

16v2
P(|S,] = x) < NG

which completes the proof of Theorem2.4(c). W

exp(—A) < Veexp(—A),

We now apply Theorem 2.4 to uniformly mixing sequences, as defined below.

Definition 2.1 The uniform mixing coefficients of (X;);cz are defined by

wo =1 and ¢, = sup p(F, 0(Xk4,)) forany n > 0.
keZZ

The sequence (X;);cz is said to be uniformly mixing if ¢, converges to 0 as n tends
to 00.

Corollary 2.1 below provides a Hoeffding type inequality for uniformly mixing
sequences of bounded random variables.

Corollary 2.1 Let (X;);cz be a sequence of centered and real-valued bounded ran-
dom variables. Set 0, =1+ 4(p; + -+ + @u—1) and M; = ||Xi||§o. Then, for any
positive integer p,

2p)! /0,\P
E(S527) < g(—) (M + -+ M,)". (a)
p! \2
Next, for any positive x,
P(S,| = x) < Veexp( —x*/Q0, M+ +20,M,)). ®)

Proof Letus apply Theorem 2.4 to the sequence (X;);cz. Since the random variables
X are centered at expectation, by Theorem 1.4(b) and the Riesz—Fisher theorem,

IE: (Xi) lloo < 2¢k—i | Xk lloo-

Hence we may apply Theorem 2.4 with
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n
m;=M; +4 Z VM My or—i.
k=i+1
Summing on i, we have:

my+--+my, SZMi+4 Z v M My o
i1

1<i<k<n

SO Mi+2 D (Mi+ Mg <0, ) M.
i=1

i=1 1<i<k<n

Corollary 2.1 then follows from both Theorem 2.4 and the above upper bound.

2.5 New Moment Inequalities

In this section, we derive from Theorem 2.3 new moment inequalities for strongly
mixing sequences. These inequalities are similar to the Marcinkiewicz—Zygmund
type inequalities for independent random variables. Throughout the section, the
strong mixing coefficients are defined in the following way:

ap = 1/2 and o, = sup a(Fy, Xp4,) forany n > 0. (2.30)
keZZ

Our main result is as follows.

Theorem 2.5 Let p be any real in 11, 00[. Let (X;)icz be a strictly stationary
sequence of real-valued random variables with mean 0 and finite moment of order
2p. Set Q = Qx,. Then, with the notations of Sect. 2.4, for any positive n,

-1
E(15, ) < @np)” sup B([X0 3 Bo(x0)'). @
cthn i=0
Consequently,
1
E(|S,[*”) < (8np)” / [ () A n]” Q°F (u)du. (b)
0

Remark 2.2 Inequality (a) may be applied to some dynamical systems with hyper-
bolicity, as shown by Melbourne and Nicol (2008). Inequality (b) can be improved if
the strong mixing coefficients are defined by (2.1). We shall obtain Marcinkiewicz—
Zygmund type inequalities Marcinkiewicz—Zygmund type inequalities under a
weaker mixing condition in Chap. 6 (see Sect. 6.4 and (C.15) in Annex C).
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Proof We prove Theorem 2.5 by induction on n. Our induction hypothesis is the
following. For any integer k < n and any ¢ in [0, 1],

)

-1
(ISt + 1) < @p)Pte— 1+ 07 sup B(|Xo > Eo(X))
lel1.k] =

First, for any integer k < 4p,

[1Sk—1 + tXkll2p = (k = 1+ Dl Xoll2p = VApk —1+1) [ Xoll2p.

Hence the induction hypothesis holds for k < [4p].
Now let n > 4p. If the induction hypothesis holds at range n — 1, then, applying
Theorem 2.3 with ¢/(x) = |x|?”, and setting

-1
ha(t) = E(S, -1 +1X,[*") and T, = sup [|Xo D Eo(X))l,,

le[1,n] P

we obtain that

=
-~
|
N
IA

1 n
/ E(1Si1 + X 772X, > i (X)) )ds
0

i=1 k=i

t
+/ E(|S,_1 + sX,|*’ 72 X2)ds.
0

We now apply Holder’s inequality with exponents p/(p — 1) and p:
IE(|S,»_1 + X P2 X; ZE-(X@) < (hi(s)"VPIX D B (X -
k=i k=i
From the stationarity of (X;);cz,

n—1

1 t
ha(t) < 4p"T0 (3 / (hi(s) /7 ds + / (ha ()07 ds).
i=170 0

Now if the induction hypothesis holds at range n — 1, then
1 1
[ hitsn s < apryrt [ 1asrtas
0 0
< (@) pr G = = D).

Set g,(s) = (4p(n — 1+ s)[',)?. The above inequalities ensure that
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hu (1) < g, (0) ~|—4p2F,1/ (h, ()P~ VP ds.
0

Now, let
t
Hy(t) = / (in(s) PP s,
0

The above differential inequality may be written as
H, (5)(ga(0) +4p’ T Hy ()" /7 < 1.
Integrating this differential inequality between O and ¢ yields
()P = (ga (07 < 4prT,

which implies that z, < g,. Hence (a) holds true.
To prove (b), it is enough to prove that

T, < ' An)Q?l,.

Letg = p/(p — 1). Clearly

n—1

Ty < 1 D 1Eo(X0)| Xoll -
i=0

Hence, by the Riesz—Fisher theorem, there exists a random variable Y in L9 (Fg)
such that ||Y|l, = 1 and

n—1 n—1
L, <EY D 1XEo(X)]) < D 1Y XoEo(X))])1-
i=0 i=0

Hence, by (1.11c),

n—1 Q;
=23 [ 0n oy Wi,
i=0 /0
Finally, by Lemma2.1(b)

1
r,<2 / Oy Wl ) AnlQ*w)du,
0

which implies (b) via Holder’s inequality on [0, 1] applied to the functions Qy and
[a ' An]@>. N
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To conclude this section, we give a pseudo exponential inequality for geometri-
cally strongly mixing sequences. Our result is similar to the results of Theorem 6 in
Doukhan et al. (1984).

Corollary 2.2 Let (X;);cz be a sequence of centered real-valued random variables
each bounded a.s. by 1, and (o) ,>0 be defined by (2.30). Suppose that, for some
a < 1,limsup, a,l/ " < a. Then there exists some positive xo such that, for any x > xg
and any positive integer n,

]P(lS,,l > x/n log(l/a)) <o,
Proof 1t is easy to check that

limsup p~'ja™' Q%||, < (—eloga)™".
p—> 00

Hence there exists some py > 1 such that, for any p > po,

18,113, < 4np*(—eloga)™".

By the Markov inequality applied to S,f” , we infer that

P (15, = xv/log(1/a) ) < e (—2)”.

xloga

Set p = —(x/2)loga. Then the above inequality yields Corollary2.2 if p > p,
which holds true as soon as x > —(2pg/loga). W

Exercises

(1) Let (X;);cz be a sequence of centered real-valued random variables with finite
fourth moments, and let (a,;),>0 be defined by (2.1).
(a) Leti < j <k < be natural integers. Prove that

1
[E(X; X; Xk X)| < 2/ Wyco;  Wycn,, Qi(w) Qj(u) O (w) Qr(w)du. (1)
0
(b) Prove that

ES) <12 D [BOGX; X XD+ 1),

I<i<j<k=<l=n
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(c) Prove that

n n 1
E(Sy) <24> > / [a™" () A n]* Q3 () QF (w)du. )
0

j=1 k=1

(d) Suppose now that || Xy|l.c < 1 for any k in [1, n]. Derive from the above
inequalities that

n—1
E(SH < 24n? Z(Zm + Dayy. (3)

m=0

Compare (3) with (2.13) and (2.11).

(2) Let (Sy)n>0 be a martingale sequence in L? for some p > 2and X,, = S, — S,_1.
Either use Inequality (2.3) in Pinelis (1994) or adapt the proof of Theorem 2.5 to prove
the inequality (4) below, given in Rio (2009):

k=1
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