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Abstract. We present an algorithm for the approximate k-List problem
for the Euclidean distance that improves upon the Bai-Laarhoven-Stehlé
(BLS) algorithm from ANTS’16. The improvement stems from the obser-
vation that almost all the solutions to the approximate k-List problem
form a particular configuration in n-dimensional space. Due to special
properties of configurations, it is much easier to verify whether a k-tuple
forms a configuration rather than checking whether it gives a solution
to the k-List problem. Thus, phrasing the k-List problem as a problem
of finding such configurations immediately gives a better algorithm. Fur-
thermore, the search for configurations can be sped up using techniques
from Locality-Sensitive Hashing (LSH). Stated in terms of configuration-
search, our LSH-like algorithm offers a broader picture on previous LSH
algorithms.

For the Shortest Vector Problem, our configuration-search algorithm
results in an exponential improvement for memory-efficient sieving algo-
rithms. For k£ = 3, it allows us to bring down the complexity of the
BLS sieve algorithm on an n-dimensional lattice from 20-4812n+e(m) ¢4
20:3962n+0(n) with the same space requirement 20-'88771°(") Note that
our algorithm beats the Gauss Sieve algorithm with time resp. space
of 20-415n40(n) pegpy 90-208n40(n) " while being easy to implement. Using
LSH techniques, we can further reduce the time complexity down to
20-371Tn+0(n) while retaining a memory complexity of 20-1887n+o(n)

1 Introduction

The k-List problem is defined as follows: given k lists L1, . .., Ly of elements from a
set X, find k-tuples (z1,...,xx) € L1 X ... x Ly that satisfy some condition C. For
example, Wagner [19] considers X C {0,1}", and a tuple (z1, ..., zx) is a solution
ifxy & ...8x, = 0" In this form, the problem has found numerous applications
in cryptography [14] and learning theory [6].

For ¢5-norm conditions with X C R™ and k& = 2, the task of finding pairs
(z1,x2) € L1 X Lo, s.t. ||@1 + @3] < min{||x1||,|z2]|}, is at the heart of cer-
tain algorithms for the Shortest Vector Problem (SVP). Such algorithms, called
sieving algorithms [1,17], are asymptotically the fastest SVP solvers known so
far.
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Sieving algorithms look at pairs of lattice vectors that sum up to a short(er)
vector. Once enough such sums are found, repeat the search by combining these
shorter vectors into even shorter ones and so on. It is not difficult to see that in
order to find even one pair where the sum is shorter than both the summands,
we need an exponential number of lattice vectors, so the memory requirement is
exponential. In practice, due to the large memory-requirement, sieving algorithms
are outperformed by the asymptotically slower Kannan enumeration [10].

Naturally, the question arises whether one can reduce the constant in the expo-
nent of the memory complexity of sieving algorithms at the expense of running
time. An affirmative answer is obtained in the recently proposed k-list sieving by
Bai, Laarhoven, and Stehlé [4] (BLS, for short). For constant k, they present an
algorithm that, given input lists L1, .. ., Ly of elements from the n-sphere S™ with
radius 1, outputs k-tuples with the property || €1 + ... + @, || < 1. They provide
the running time and memory-complexities for k = 3, 4.

We improve and generalize upon the BLS k-list algorithm. Our results are
as follows:

1. We present an algorithm that on input Lq,...,L; C S™, outputs k-tuples

(z1,..., @), € L1 X ... x Ly, s.t. all pairs (z;,x;) in a tuple satisfy certain
inner product constraints. We call this problem the Configuration problem
(Definition 3).

2. We give a concentration result on the distribution of scalar products of
x1,...x; € S™ (Theorems1 and 2), which implies that finding vectors that
sum to a shorter vector can be reduced to the above Configuration problem.

3. By working out the properties of the aforementioned distribution, we
prove the conjectured formula (Eq.(3.2) from [4]) on the input list-sizes
(Theorem 3), s.t. we can expect a constant success probability for sieving. We
provide closed formulas for the running times for both algorithms: BLS and
our Algorithm 1 (Theorem 4). Algorithm 1 achieves an exponential speed-up
compared the BLS algorithm.

4. To further reduce the running time of our algorithm, we introduce the so-
called Configuration Extension Algorithm (Algorithm 2). It has an effect sim-
ilar to Locality-Sensitive Hashing as it shrinks the lists in a helpful way. This
is a natural generalization of LSH to our framework of configurations. We
briefly explain how to combine Algorithm 1 and the Configuration Extension
in Sect.7. A complete description can be found in the full version.

Roadmap. Section 2 gives basic notations and states the problem we consider in
this work. Section 3 introduces configurations — a novel tool that aids the analysis
in succeeding Sects. 4 and 5 where we present our algorithm for the k-List problem
and prove its running time. Our generalization of Locality Sensitive Hashing —
Configuration Extension — is described in Sect. 6 and its application to the k-list
problem in Sect. 7. We conclude with experimental results confirming our analysis
in Sect. 8. We defer some of the proofs and details on the Configuration Extension
Algorithm to the appendices as these are not necessary to understand the main
part.
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2 Preliminaries

Notations. We denote by S™ C R™*! the n-dimensional unit sphere. We use
soft-O notation to denote running times: T = O(2°") means that we suppress
subexponential factors. We use sub-indices O(.) in the O-notation to stress that
the asymptotic result holds for k fixed. For any set x1, ..., of vectors in some
R™, the Gram matriz C € R¥** is given by the set of pairwise scalar products.
It is a complete invariant of the ®1,...,x; up to simultaneous rotation and
reflection of all x;’s. For such matrices C € RF**¥ and I C {1,...,k}, we write
C[I] for the appropriate |I| x |I|-submatrix with rows and columns from I.

As we consider distances wrt. the fo-norm, the approximate k-List problem
we consider in this work is the following computational problem:

Definition 1 (Approximate k-List problem). Let 0 < t < Vk. Assume
we are given k lists Ly, ..., Li of equal exponential size, whose entries are iid.
uniformly chosen vectors from the n-sphere S™. The task is to output an 1 —
o(1)-fraction of all solutions, where solutions are k-tuples 1 € Ly, ...,z € Ly,
satisfying || + - - + @ |)* < 12

We consider the case where t, k are constant and the input lists are of size c™
for some constant ¢ > 1. We are interested in the asymptotic complexity for
n — oo. To simplify the exposition, we pretend that we can compute with real
numbers; all our algorithms work with sufficiently precise approximations (pos-
sibly losing an o(1)-fraction of solutions due to rounding). This does not affect
the asymptotics. Note that the problem becomes trivial for ¢ > v/k, since all but
an 1 — o(1)-fraction of k-tuples from Ly X --- x Ly, satisfy ||y + ...+ zx||> = k
(random x; € S™ are almost orthogonal with high probability, cf. Theorem 1).
In the case ¢t > vk, we need to ask that || + ...+ xx||> > £ to get a mean-
ingful problem. Then all our results apply to the case t > vk as well.

In our definition, we allow to drop a o(1)-fraction of solutions, which is fine
for the sieving applications. In fact, we will propose an algorithm that drops
an exponentially small fraction of solutions and our asymptotic improvement
compared to BLS crucially relies on dropping more solutions than BLS. For this
reason, we are only interested in the case where the expected number of solutions
is exponential.

Relation to the Approximate Shortest Vector Problem. The main incentive to
look at the approximate k-List problem (as in Definition 1) is its straightforward
application to the so-called sieving algorithms for the shortest vector problem
(SVP) on an n-dimensional lattice (see Sect. 7.2 for a more comprehensive dis-
cussion). The complexity of these sieving algorithms is completely determined
by the complexity of an approximate k-List solver called as main subroutine.
So one can instantiate a lattice sieving algorithm using an approximate k-List
solver (the ability to choose k allows a memory-efficient instantiations of such a
solver). This is observed and fully explained in [4]. For k£ = 3, the running time
for the SVP algorithm presented in [4] is 20-4812n+0(n) yequiring 20-1887n+o(n)
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memory. Running our Algorithm 1 instead as a k-List solver within the SVP
sieving, one obtains a running time of 20-3962n+(") with the same memory com-
plexity 20-1887n+0(n) - Ag explained in Sect. 7.2, we can reduce the running time
even further down to 20-37177+0(n) with no asymptotic increase in memory by
using a combination of Algorithm 1 and the LSH-like Configuration Extension
Algorithm. This combined algorithm is fully described in the full version of the
paper.

In the applications to sieving, we have ¢t = 1 and actually look for solutions
|£x1+£- - E£ax| <1 with arbitrary signs. This is clearly equivalent by consid-
ering the above problem separately for each of the 2¥ = O(1) choices of signs.
Further, the lists L1, ..., L can actually be equal. Our algorithm works for this
case as well. In these settings, some obvious optimizations are possible, but they
do not affect the asymptotics.

Our methods are also applicable to lists of different sizes, but we stick to the
case of equal list sizes to simplify the formulas for the running times.

3 Configurations

Whether a given k-tuple ¢, ...,z is a solution to the approximate k-List prob-
lem is invariant under simultaneous rotations/reflections of all «; and we want
to look at k-tuples up to such symmetry by what we call configurations of points.
As we are concerned with the £5-norm, a complete invariant of k-tuples up to
symmetry is given by the set of pairwise scalar products and we define configu-
rations for this norm:

Definition 2 (Configuration). The configuration C = Conf (i,...,xx) of k
points 1, ..., o, € S™ is defined as the Gram matriz C; j = (x;, x;).

Clearly, the configuration of the k-tuple x1,..., ) determines the length of the
sum [|3; @i :

D" @ill* =D (@i 2s) = k+2) (@i ). (1)

(2] i<j
We denote by

€ = {C € R¥* | C symmetric positive semi-definite, Cii=1Vi},
C<={Ce¥ Cij <t} C¥
<t { | Zi,j i,J > }

the spaces of all possible configurations resp. those which give a length of at
most t. The spaces ¢ and %<; are compact and convex. For fixed k, it is helpful
from an algorithmic point of view to think of ¥ as a finite set: for any € > 0, we
can cover ¢ by finitely many e-balls, so we can efficiently enumerate % .

In the context of the approximate k-List problem with target length t, a
k-tuple @1, ...,z is a solution iff Conf (z1,...,x;) € G<;. For that reason, we
call a configuration in <; good. An obvious way to solve the approximate k-List
problem is to enumerate over all good configurations and solve the following
k-List configuration problem:
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Definition 3 (Configuration problem). On input k exponentially-sized lists
Ly, ..., Ly of vectors from S™, a target configuration C' € € and some € > 0, the
task is to output all k-tuples &y € Lq,..., @, € Ly, such that |(x;, z;) — Cy;| < €
for alli,j. Such k-tuples are called solutions to the problem.

Remark 1. Due to (x;, x;) taking real values, it does not make sense to ask for
exact equality to C, but rather we introduce some € > 0. We shorthand write
C = C' for |C;; — C; ;| < e. Formally, our analysis will show that for fixed

€ > 0, we obtain running times and list sizes of the form (55(2(0‘”(5))") for some
unspecified continuous f with lim f(g) = 0. Letting ¢ — 0 sufficiently slowly, we
absorb f(g) into the O(.)-nota%ion and omit it.

As opposed to the approximate k-List problem, being a solution to the k-List
configuration problem is a locally checkable property [12]: it is a conjunction of
conditions involving only pairs ;, ;. It is this and the following observation
that we leverage to improve on the results of [4].

It turns out that the configurations attained by the solutions to the approxi-
mate k-List problem are concentrated around a single good configuration, which
is the good configuration with the highest amount of symmetry. So in fact, we
only need to solve the configuration problem for this particular good configura-
tion. The following theorem describes the distribution of configurations:

Theorem 1. Let xy,...,x; € S™ be independent, uniformly distributed on the
n-sphere, n > k. Then the configuration C = C(x, ..., xx) follows a distribution
g on € with density given by

fe = W, - det(C) =P ag = O, (det(C)%)d%,

_k(k—1) ntl k(k—1)

Hi:ol % = O (n 1 ) 18 a normalization constant
nFI=t
that only depends on n and k. Here, the reference measure d% is given by d€ =

dCiy---dC(—1)k (i.e. the Lebesgue measure in a natural parametrization,).

whereW,, , =

Proof. We derive this by an approximate normalization of the so-called Wishart
distribution [20]. Observe that we can sample C' < ue in the following way:

We sample z1,...,z; € R""! iid from spherical n + 1-dimensional Gaussians,
such that the direction of each x; is uniform over S™. Note that the lengths of
the x; are not normalized to 1. Then we set A, ; := (x;, ;). Finally, normalize

o Aig
to C; ;== v
The joint distribution of the A, ; is (by definition) given by the so-called
Wishart distribution. [20] Its density for n +1 > k — 1 is known to be
e~ 3T A det(A) T
PWishart = (ntDk  k(k—1)
2

k(k—1) k—1 ntl—i
T 4 Hi:O F(%)

A 2)
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where the reference density dA is given by dA =[], d4; ;. We refer to [8] for
a relatively simple computation of that density. Consider the change of variables
on RF(EH1/2 given by

D(A11, Ao, Ak Ar2, - A1 k)

A Ak k—
=(A11,A429,..., A L2 e bkl
( 1,1,412,2, s Lk ks \/A1'1A2’27 ) \/Ak_l,k—lAk,k)’

i.e. we map the A; ;’s to C; ;’s while keeping the A; ;’s to make the transformation
bijective almost everywhere. The Jacobian D@ of @ is a triangular matrix and
its determinant is easily seen to be

1
jdet (D) = ][ ——=-
i VA
Further, note that A = TCT, where T is a diagonal matrix with diagonal
VA1 \/Akk In particular, det(A) = det(C)-[]; Ai ;. Consequently, we can
transform the Wishart density into (AM, o Ak, Cioy ey C’k_17k)—coordinates
as

1 o
e 2 2 A det( ) H Az i
PWishart = ~(orDk  k(k—D)
272 B

H\/ zzk 1HdAlZHdC’Lj

k—1
[Tz (%) i<
The desired p¢ is obtained from pwishart by integrating out dA4; 1dAg o - - - dAg .

We can immediately see that p¢ takes the form pg = Wy, i det(C’)nT_kd% for
some constants W, . We compute W,, ; as

n—k
ZZAlll_[,A.? k—1
i 0
Wk = / / LDk BN prk—1 pnitly H VAii HdA”'
)i i

k
[lico T
1 / 7— k
_ —*Al 1 dA
= Ttk k(k—1) 1 ( 1,1 1,1
277 @ 1 Hz 0 n Z+1 Ay 1= 0
25 +o0 S g
_ 2 -3 1,1 L
—  _(ntDEk k(k—1) fo— 1 n 1—0—1 (/ e 2 QdAl}l)
U P T parmo
1 +OO n+1_1 —z k
= TRG—1 k=1 pin—itl ( _ T ¢ dx)
P T (=) Mo
n+l\k
_ I(*5)
k(k—1)

k—1 n—i :
Hi:() F(TH)

Finally, note that as a consequence of Stirling’s formula, we have Lntz) _

Tm) =
0. (n?) for any fixed z and n — co. From this, we get

W F(%ﬂ)k —0 R 1 B 0 k(k—1)
k= TRGD ko1 s - k( - 2) - k(” ! )
T4 Hi:o F( 2+1)
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The configurations C' that we care about the most have the highest amount
of symmetry. We call a configuration C balanced if C; ; = Cy j» for all i # j,
i # j'. To compute the determinant det(C) for such balanced configurations,
we have the following lemma:

Lemma 1.
laa...a
ala...a
LetC = |aal...a| cRkxk
aaa...1

Then det(C) = (1 — a)* (1 4 (k — 1)a).

Proof. We have C = (1 —a)- 1} +a-1-1% where 1 € R¥*! is an all-ones vector.
Sylvester’s Determinant Theorem [2] gives

det(C) = (1 — a)*det (1 + 121 1Y) = (1 — a)" det(1; +
=(1-a)"(1+ 12k =1-a)f "1+ (k—1a).

lga 1t ’ 1)

For fixed k and C, the probability density o (det(C’)%) of pe is exponential in
n. Since C' € € can only vary in a compact space, taking integrals will asymp-
totically pick the maximum value: in particular, we have for the probability that

a uniformly random k-tuple x1,..., ) is good:
/ W = @( max det(C)%) (3)
C good C good

We now compute this maximum.

Theorem 2. Let 0 < t < Vk be some target length and consider the subset
C<1 C € of good configurations for target length at most t. Then det(C) attains
its unique mazimum over €<+ at the balanced configuration Cpare, defined by

Cij= ,’222—:]]2 for all i # j with mazimal value

det(C)max = det(Cpare) = %

P

. o . . N 1 - (k_,'_l)k—l
In particular, for t = 1, this gives C; j = — and det(C)max = 75— -

Consequently, for any fized k and any fized € > 0, the probability that a randomly
chosen solution to the approximate k-List problem is e-close to Cpai converges
exponentially fast to 1 as n — oo.

Proof. It suffices to show that C' is balanced at the maximum, i.e. that all C; ;
with ¢ # j are equal. Then computing the actual values is straightforward from
(1) and Lemma 1. Assume k > 3, as there is nothing to show otherwise.
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For the proof, it is convenient to replace the conditions C; ; = 1 for all ¢ by the
(weaker) condition Tr (C') = k. Let €, denote the set of all symmetric, positive
semi-definite C' € R¥** with Tr (C') = k and 2. Cij < t2. We maximize det(C)
over ¢, and our proof will show that C; ; = 1 1s satisfied at the maximum.

Let C' € €~,. Since C is symmetric, positive semi-definite, there exists an
orthonormal basis v1, ..., v of eigenvectors with eigenvalues 0 < A\ < ... < Ap.

Clearly, >, Ai = Tr (C) = k and our objective det(C) is given by det(C) =
[; Ai. We can write >, ; C;; as 1'C1 for an all-ones vector 1. We will show
that if det(C') is maximal, then 1 is an eigenvector of C'. Since

t2 > 1'C1 > M\ ||1]]2 = kA, (4)
for the smallest eigenvalue \; of C', we have \; < % < 1. For fixed \{, maxi-

mizing det(C) = A - Hf:2 A; under Zf:2 Ai = k — A1 gives (via the Arithmetic
Mean-Geometric Mean Inequality)

kf)\1>k—1.

det(C) g)\l( —

The derivative of the right-hand side wrt. A is k(}c%i‘l) (k‘k__’\l1 )k_2 > 0, so we can

. . . . 2
bound it by plugging in the maximal A\ = %:

. (5)

det(C) < )\1(’“_ )‘1)'“_1 < t2 (’f— t;:)k—l s (k2 —t)k—l

k-1 “k\k-1 k\k2—k
The inequalities (5) are satisfied with equality iff Ao = ... = Ay and A\ = %
In this case, we can compute the value of Ay as Ay = % from Tr (C) = k.

The condition \; = % means that (4) is satisfied with equality, which implies
that 1 is an eigenvector with eigenvalue \;. So wlog. v = ﬁl. Since the v;’s

are orthonormal, we have 1 = ZZ v,; v}, where 1y is the k x k identity matrix.
Since we can write C' as C' = ), \;v;v}, we obtain

k
C= Z/\i'vi’l); = ()\1 — /\2)’01’Ut1 + )\QZ’U{UE = %11t + Ao - 1y,
7 =1

for det(C') maximal. From C = /\1;16’\211“1-)\2 -1}, we see that all diagonal entries

of C are equal to Ay + )‘1;>‘2 and the off-diagonal entries are all equal to %

So all C;; are equal with C;; = 1, because Tr (C) = k, and C is balanced.

For the case t > vk, and %< replaced by €>:, the statement can be proven
analogously. Note that we need to consider the largest eigenvalue rather than
the smallest in the proof. We remark that for ¢ = 1, the condition (x;, z;) =
Cij = f% for all ¢ #£ j is equivalent to saying that xi,...,x) are k points of
a regular k + 1-simplex whose center is the origin. The missing k& + 1*® point of
the simplex is — ), ;, i.e. the negative of the sum (see Fig. 1).

A corollary of our concentration result is the following formula for the
expected size of the output lists in the approximate k-List problem.
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XXy Xy

Fig. 1. A regular tetrahedron (3-simplex) represents a balanced configuration for k = 3.

Corollary 1. Let k,t be fixred. Then the expected number of solutions to the
approzimate k-List problem with input lists of length |L| is

E[#solutions] = (5(|L|k (% (1;:2__1;:)]%1) 3’) (6)

Proof. By Theorems1 and 2, the probability that any k-tuple is a solution is
given by O(det(Cgart)? ). The claim follows immediately.

In particular, this allows us to prove the following conjecture of [4]:

Theorem 3. Let k be fixed and t = 1. If in the approximate k-List problem, the
length |L| of each input list is equal to the expected length of the output list, then

~ (7ot %
m=o((5)").
Proof. This follows from simple algebraic manipulation of (6).

Our concentration result shows that it is enough to solve the configuration
problem for Cga¢.

Corollary 2. Let k,t be fixed. Then the approzimate k-List problem with target
length t can be solved in essentially the same time as the k-List configuration
problem with target configuration Cpaiy for any fized € > 0.

Proof. On input Ly, ..., Lk, solve the k-List configuration problem with target
configuration Cgay+. Restrict to those solutions whose sum has length at most ¢.
By Theorem 2, this will find all but an exponentially small fraction of solutions to
the approximate k-List problem. Since we only need to output a 1—o(1)-fraction
of the solutions, this solves the problem.

4 Algorithm

In this section we present our algorithm for the Configuration problem
(Definition 3). On input it receives k lists Ly, ..., Ly, a target configuration C in
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the form of a Gram matrix C; ; = (z;, ;) € R*** and a small ¢ > 0. The algo-
rithm proceeds as follows: it picks an ; € L; and filters all the remaining lists with
respect to the values (&1, x;) forall2 < i < k. More precisely, x; € L; ‘survives’ the
filter if |{z1, z;) — C1,;| < . We put such an x; into Lgl) (the superscript indicates
how many filters were applied to the original list L;). On this step, all the k-tuples
of the form (x1, z2,...,zk) € {&1} ¥ Lél) XX L,(Cl) with a fixed first component
x partially match the target configuration: all scalar products involving x; are as
desired. In addition, the lists LZ(-l) become much shorter than the original ones.
Next, we choose an x5 € L(Ql) and create smaller lists L§2) from Ll(.l) by
filtering out all the z; € LEU that do not satisfy [(zo,x;) — Ca,| < € for all
3 < i < k. A tuple of the form (z1, 2, Z3,...,Tk) € {ZB]_}X{%Q}XL;Q) X.. .xLEf)
satisfies the target configuration C;; for i = 1,2. We proceed with this list-
filtering strategy until we have fixed all x; for 1 < ¢ < k. We output all such
k-tuples. Note that our algorithm becomes the trivial brute-force algorithm once
we are down to 2 lists to be processed. As soon as we have fixed xq,..., @ _o

and created Lgc__f),Lff_m, our algorithm iterates over Lgf__f) and checks the

scalar product with every element from L,(Ckfm.

Our algorithm is detailed in Algorithm 1 and illustrated in Fig. 2a.

Algorithm 1. k-List for the Configuration Problem

Input: Ly, ..., Ly — lists of vectors from S™. C;; = (z;,x;) € R*** — Gram matrix.
€>0.

Output: Loyt — list of k-tuples ®1 € L1,...,z, € Lg, s.t. [(zs, z;) — Cij| < ¢, for all
i

1: Lout — {}

2: for all =, € L, do

3: for all j =2...k do

4: L;-l) — FILTER(.’IZl,Lj,CLj,&)

5: for all x5 € Lél) do

6: for all j =3...k do

7 L;Q) — FILTER(Q?Q,L;-I),CQ,]',€)
8: .

9: for all z;, € L") do

10: Louwt — Louws U {(x1,...Tk)}

11: return Lout

: function FILTER(z, L, c, )
L' —{}
for all '’ € L do
if [{z,z') —c| < ¢ then
L' —L u{z'}

return L’
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'd N\ 'd N\ 'O 4 N\
Ly Lo L3 cee Ly, L Lo L3 ce Ly
A\ i J A\ i J A\ J A\ J
Filrer>—CEile m$—>
1 1
AN B DTON IR WA LY

0 CEilter> CEilterD ,
T Filter
L2

2 2

(a) Pictorial representation of Alg. 1. (b) The k-List algorithm given in [4]. The
At level i, a filter receives as input x; main difference is that a filter receives as
and a vector x; from L§.7“_1> (for the in- inputs «; and a vector x; € Lj, as opposed

put lists, L = L(®). a; passes through to x; € L;’_l). Technically, in [4], @; sur-
the filter if |(z; , ;) — Ci ;] < €, in vives the filter if [{(x; @1 4+... +®i—1)| > ¢
which case it is added to L;i). The con- for some predefined ¢;. Due to our concen-
tration results, this description is equiva-
lent to the one given in [4] in the sense
that the returned solutions are (up to a sub-
exponential fraction) the same.

figuration C' is a global parameter.

Fig. 2. k-List algorithms for the configuration problem. Left: Our Algorithm 1. Right:
k-tuple sieve algorithm of [4].

5 Analysis

In this section we analyze the complexity of Algorithm 1 for the Configuration
problem. First, we should mention that the memory complexity is completely
determined by the input list-sizes |L;| (remember that we restrict to constant k)
and it does not change the asymptotics when we apply & filters. In practice, all
intermediate lists LZ(»J ) can be implemented by storing pointers to the elements
of the original lists.

In the following, we compute the expected sizes of filtered lists LZ(] ) and
establish the expected running time of Algorithm 1. Since our algorithm has
an exponential running time of 2°" for some ¢ = O(1), we are interested in
determining ¢ (which depends on k) and we ignore polynomial factors, e.g. we
do not take into account time spent for computing inner products.

Theorem 4. Let k be fixed. Algorithm 1 given as input k lists Ly,..., L C S™
of the same size |L|, a target balanced configuration Cpay € R¥*F a target length
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0 <t <k, and ¢ > 0, outputs the list Loy; of solutions to the Configuration
problem. The expected running time of Algorithm 1 is

(k? —t2) ((k2 —k+(i—1)(* - k))Q)%

T:O<|L|. max |L|"- R ()& k)

1<i<k—1 (k2 — k)il

). @
In particular, for t =1 and | Loy = |L| it holds that

A kT (k- 1)2\3
T_O<<k+1'1§r?§a§(—1kk ) k—z‘+2> ’ (8)

Remark 2. In the proof below we also show that the expected running time of
the k-List algorithm presented in [4] is (see also Fig.3 for a comparison) for
t=1,|Lout| = |L|

TBLszﬁ(((,ﬁt)Q-KIglggl(’f’*-(k—¢+1)))g). (9)

Corollary 3. For k =3, t =1, and |L| = |Lou| (the most interesting setting
for SVP), Algorithm 1 has running time

T = 20.3962n+o(n)’ (10)
requiring |L| = 2018877 +0(") memory.
0.8+ X .
0.74 X * . ¢
log(T) x . *
n X *
0.6 X .
0.54
0.4+ T T T
2 4 6 8 10 12 14 16 18 20
k

Fig. 3. Running exponents scaled by 1/n for the target length ¢ = 1. For k = 2, both
algorithms are the Nguyen-Vidick sieve [18] with log(7)/n = 0.415 (naive brute-force
over two lists). For k = 3, Algorithm 1 achieves log(7")/n = 0.3962.
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Proof (Proof of Theorem 4). The correctness of the algorithm is straightforward:
let us associate the lists L(*) with a level i where 4 indicates the number of filtering
steps applied to L (we identify the input lists with the 0" level: L; = LEO)). So for

executing the filtering for the i** time, we choose an z; € Lgi_l) that satisfies the
condition [{(x;, z;—1) — C; ;—1| < & (for a fixed ;_1) and append to a previously
obtained (i — 1)-tuple (1,...,2;_1). Thus on the last level, we put into Loyt &
k-tuple (x1,..., ) that is a solution to the Configuration problem.

Let us first estimate the size of the list Lgi_l) output by the filtering process
applied to the list Lgi_2) for ¢ > 1 (i.e. the left-most lists on Fig. 2a). Recall that
all elements x; € L satisfy |(x;,z;) —Ci ;| <¢e, 1 <j <i—1. Then the

1
total number of i-tuples (x1, za,...,x;) € L1 X Lél) X ... X ngfl) considered
by the algorithm is determined by the probability that in a random ¢-tuple, all
pairs (z;,z;/),1 < j,j" < i satisfy the inner product constraints given by C; ;.
This probability is given by Theorem 1 and since the input lists are of the same
size |L|, we have!

Ly - |ZSD) - LYY = L) - det(CL .. 4]) (11)

where det(C/[1...4]) denotes the i-th principal minor of C. Using (11) for two
consecutive values of ¢ and dividing, we obtain

det(C’[l...i—!—l])%. (12)

(@ | _
[Lital = L] (m

Note that these expected list sizes can be smaller than 1. This should be thought
of as the inverse probability that the list is not empty. Since we target a bal-
anced configuration Cga ¢, the entries of the input Gram matrix are specified

by Theorem 2 and, hence, we compute the determinants in the above quotient
k

by applying Lemma 1 for a = ,tczji. Again, from the shape of the Gram matrix

CBal,+ and the equal-sized input lists, it follows that the filtered list on each level

are of the same size: |L§21\ = |L£22| =...= |L§€Z)\. Therefore, for all filtering

levels 0 <j<k—landforall j+1<i<k,

; k? —t2 K —k+jit*—k 3
’Lz('j)|:|L|'<k J( ) )

2k R2—k+(-1)(2—k) (13)

Now let us discuss the running time. Clearly, the running time of Algorithm 1 is
(up to subexponential factors in n)

0 0 1 1 2 k—2 k—1
T = L) (1L + 1L (1L + L] o (1L + 1285 ))) 0.

! Throughout this proof, the equations that involve list-sizes |L| and running time T
are assumed to have O(-) on the right-hand side. We omit it for clarity.
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Multiplying out and observing that |L,(€k_2)| > \L,(f_l)|, so we may ignore the
very last term, we deduce that the total running time is (up to subexponential
factors) given by

i—1
= |L| - (=1 () 14
T=|L|- max | 'E'L ] (14)

where |LU)| is the size of any filtered list on level j (so we omit the subscripts).
Consider the value i, of i where the maximum is attained in the above formula.

The meaning of iy.x i that the total cost over all loops to create the lists
1 (imax) (

J J
small enough such that iterating over them (i.e. creation of L(»““a"ﬂ)) does not
contribute asymptotically. Plugging in Egs. (11) and (12) into (14), we obtain

o (detC[1...4])% \%
£ (detC[l...(i—l)]) '

is dominating the running time. At this level, the lists L imax) hecome

T=|L|- max
1<i<k—1

(15)
Using Lemma 1, we obtain the desired expression for the running time.

For the case t = 1 and |Loyt| = |L|, the result of Theorem 3 on the size of
the input lists |L| yields a compact formula for the filtered lists:

D _ (1 k=3 \2

Plugging this into either (14) or (15), the running time stated in (8) easily
follows.

It remains to show the complexity of the BLS algorithm [4], claimed in
Remark 2. We do not give a complete description of the algorithm but illustrate
it in Fig. 2b. We change the presentation of the algorithm to our configuration
setting: in the original description, a vector x; survives the filter if it satisfies
[z, &1+ ...+ x;1)| > ¢; for a predefined ¢; (a sequence (cy,...,cp_1) € RF71
is given as input to the BLS algorithm). Our concentration result (Theorem 1)
also applies here and the condition |[(x;, 1 + ...+ ®;_1)| > ¢; is equivalent to a
pairwise constraint on the (z;, ;) up to losing an exponentially small fraction
of solutions. The optimal sequence of ¢;’s corresponds to the balanced configu-
ration Cga), derived in Theorem 2. Indeed, Table 1 in [4] corresponds exactly to
Cgalt for t = 1. So we may rephrase their filtering where instead of shrinking
the list L; by taking inner products with the sum x; + ... + x;_1, we filter L;
gradually by considering (x;, z;) for 1 <j <i—1.

It follows that the filtered lists L(”) on level i are of the same size (in lead-
ing order) for both our and BLS algorithms. In particular, Eq. (12) holds for
the expected list-sizes of the BLS algorithm. The crucial difference lies in the

construction of these lists. To construct the list Lgi_l) in BLS, the filtering
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procedure is applied not to LEH), but to a (larger) input-list L;. Hence, the
running time is (cf. (14)), ignoring subexponential factors

1 2 k—1
Tors = |L1| - (|Lo| + L8] - (1La| + L] - (.- (1Li + 1L8VD)) )

i—1
=L max -[]IL9].
1<i<k—1 o

The result follows after substituting (16) into the above product.

6 Configuration Extension

For £ = 2, the asymptotically best algorithm with running time 7" = (%)5
for t = 1 is due to [5], using techniques from Locally Sensitive Hashing. We
generalize this to what we call Configuration Extension. To explain the LSH
technique, consider the (equivalent) approximate 2-List problem with ¢ = 1,
where we want to bound the norm of the difference ||z; — z2]|* < 1 rather
than the sum, i.e. we want to find points that are close. The basic idea is to
choose a family of hash functions ¢, such that for h € 5, the probability
that h(x1) = h(xzs) is large if ©; and xs are close, and small if they are far
apart. Using such an h € 4, we can bucket our lists according to h and then
only look for pairs xi,xs that collide under h. Repeat with several h € 57
as appropriate to find all/most solutions. We may view such an h € 5 as a
collection of preimages Dy . = h™'(z) and the algorithm first determines which
elements x1, 2 are in some given Dy, , (filtering the list using D}, ,) and then
searches for solutions only among those. Note that, conceptually, we only really
need the Dp, . and not the functions h. Indeed, there is actually no need for the
Dy, . to be a partition of S™ for given h, and h need not even exist. Rather, we
may have an arbitrary collection of sets D), with r belonging to some index set.
The existence of functions h would help in efficiency when filtering. However, [5]
(and also [16], stated for the ¢1-norm) give a technique to efficiently construct
and apply filters D(") without such an k in an amortized way.

The natural choice for D) is to choose all points with distance at most d for
some d > 0 from some reference point v(") (that is typically not from any L;). This
way, a random pair @1, £, € D) has a higher chance to be close to each other
than uniformly random points 1, zo € S™. Notationally, let us call (a description
of) D™ together with the filtered lists an instance, where 1 < r < R and R is the
number of instances.

In our situation, we look for small sums rather than small differences. The
above translates to asking that x; is close to (") and that x5 is far apart from
v(") (or, equivalently, that x5 is close to —v(")). In general, one may (for k > 2)
consider not just a single v but rather several related vgr), ceey vﬁ,?. So an
instance consists of m points ’UY), ey v%) and shrunk lists L;(T) where L;(T) c L;
is obtained by taking those z; € L; that have some prescribed distances d; ;
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to vE-T). Note that the d; ; may depend on i and so need not treat the lists
symmetrically. As a consequence, it does no longer make sense to think of this
technique in terms of hash collisions in our setting.

We organize all the distances between v’s and x’s that occur into a single
matrix C (i.e. a configuration) that governs the distances between v’s and ’s:
the (v, v )-entries of C describe the relation between the v’s and the (x;, v;)-
entries of C' describe the d; ;. The (x;, x; )-entries come from the approximate
and L;(T)’s, the (x;, x;)-entries are needed to choose the number R of instances.

For our applications to sieving, the elements from the input list L; may
possibly be not uniform from all of S™ due to previous processing of the lists.
Rather, the elements x; from L; have some prescribed distance d; ; to (known)
v;’s: e.g. in Algorithm 1, we fix £; € L; that we use to filter the remaining
k —1 lists; we model this by taking «; as one of the v;’s (and reducing k by 1).
Another possibility is that we use configuration extension on lists that are the
output of a previous application of configuration extension.

In general, we consider “old” points v; and wish to create “new” points vy,
so we have actually three different types of rows/columns in C, corresponding
to the list elements, old and new points.

k-List problem we want to solve. While not relevant for constructing actual v

Definition 4 (Configuration Extension). Consider a configuration matriz
C. We consider C' as being indexed by disjoint sets Ijists, Loid, Inew- Here, [ Tjises| =
k corresponds to the input lists, |Ioa| = Mo corresponds to the “old” points,
[Lnew| = Mpew corresponds to the “new” points. We denote appropriate square
submatrices by Cllysis] ete. By configuration extension, we mean an algorithm
ConfExt that takes as input k exponentially large lists L; C S™ for i € Ijss,
Moid “old” points v; € S™, j € 1,14 and the matriz C. Assume that each input
list separately satisfies the given configuration constraints wrt. the old points:
Conf (;, (v))jer,,) = Cli, Iod) fori € Iygs, @ € L;.

It outputs R instances, where each instance consists of Mpey points v, £ €
Inew and shrunk lists L), C L;, where Conf ((v;)jer,u, (Ve)ecr,.,) = Cllotds Inew]
and each x, € L satisfies

Conf (2], (v)) jer,: (Ve)eer,) = Cli, Lotd, Inew)-

The instances are output one-by-one in a streaming fashion. This is important,
since the total size of the output usually exceeds the amount of available memory.

The naive way to implement configuration extension is as follows: indepen-
dently for each instance, sample uniform wv,’s conditioned on the given con-
straints and then make a single pass over each input list L; to construct Lj. This
would require O(max; |L;| - R) time. However, using the block coding/stripe
techniques of [5,16], one can do much better. The central observation is that if
we subdivide the coordinates into blocks, then a configuration constraint on all
coordinates is (up to losing a subexponential fraction of solutions) equivalent to
independent configuration constraints on each block. The basic idea is then to
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construct the v,’s in a block-wise fashion such that an exponential number of
instances have the same wvy’s on a block of coordinates. We can then amortize
the construction of the L’s among such instances, since we can first construct
some intermediate L} C L; that is compatible with the v,’s on the shared block
of coordinates. To actually construct L} C LY, we only need to pass over L
rather than L;. Of course, this foregos independence of the v,’s across different
instances, but one can show that they are still independent enough to ensure
that we will find most solutions if the number of instances is large enough.

Adapting these techniques of [5,16] to our framework is straightforward, but
extremely technical. We work out the details in the full version of the paper.

A rough summary of the properties of our Configuration Extension Algorithm
ConfExt (see the full version for a proof) is given by the following:

Theorem 5. Use notation as in Definition 4. Assume that C,k,my1q, Mpew do
not depend on n. Then our algorithm ConfExt, given as input C,k, Mo, Mpew,
old points v; and exponentially large lists L1, ..., Ly of points from S™, outputs

(17)

— 0 det(ClLotd; Inew)) - det(ClLsts, Lota]) 2
R=0
det(c[llistsa Loia, Inew]) . det(C[Iold])

instances, where each output instance consists of Myey points v and sublists
L, C L;. In each such output instance, the new points (vg)ecy,,, are chosen uni-
formly conditioned on the constraints (but not independent across instances).
Consider solution k-tuples, i.e. x; € L; with Conf ((2;)ic1,.,.) ~ Cllists). With
overwhelming probability, for every solution k-tuple (x;)icr,.,., there exists at
least one instance such that all x; € L) for this instance, so we retain all solu-
tions. Assume further that the elements from the input lists L;, © € I} are did
uniformly distributed conditioned on the configuration Conf (x;, (v;)jer,,) for
x; € L;, which is assumed to be compatible with C. Then the expected size of the

output lists per instance is given by

o ~ det(C[Z,L) 7Inew]) ° det(c[lo ]) "/
E[|L;|] = | Li| - O((det(C[Iolde-l’new]) -det(C’[i,IOZ])) )

Assume that all these expected output list sizes are exponentially increasing in
n (rather than decreasing). Then the running time of the algorithm is given by

O(R-max; E[|LL|]) (essentially the size of the output) and the memory complexity

is given by O(max; |L;|) (essentially the size of the input).

7 Improved k-List Algorithm with Configuration
Extension

Now we explain how to use the Configuration Extension Algorithm within the
k-List Algorithm 1 to speed-up the search for configurations. In fact, there is a
whole family of algorithms obtained by combining Filter from Algorithm 1 and
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the configuration extension algorithm ConfExt. The combined algorithm is given
in Algorithm 2.

Recall that Algorithm 1 takes as inputs k lists Ly, ..., L of equal size and
processes the lists in several levels (cf. Fig. 2a). The lists Ly) for j > i at the i*®
level (where the input lists correspond to the 0" level) are obtained by brute-

forcing over x; € Lgi_l) and running Filter on L;i_l) and x;.

We can use ConfExt in the following way: before using Filter on L;i_l), we

run ConfExt to create R instances with smaller sublists L;-(Fl) C Lg.i*l). We

then apply Filter to each of these L;(i_l) rather than to L§i_1). The advantage

is that for a given instance, the L' are dependent (over the choice of j), so

we expect a higher chance to find solutions.

In principle, one can use ConfExt on any level, i.e. we alternate between using
ConfExt and Filter. Note that the x;’s that we brute-force over in order to apply
Filter become “old” v;’s in the context of the following applications of ConfExt.

It turns out that among the variety of potential combinations of Filter and
ConfExt, some are more promising than others. From the analysis of Algorithm 1,
we know that the running time is dominated by the cost of filtering (appropri-
ately multiplied by the number of times we need to filter) to create lists at some
level imax. The value of iyax can be deduced from Eq. (14), where the individual
contribution |L|- LG~V H;;ll |LU)| in that formula exactly corresponds to the
total cost of creating all lists at the i-th level.

It makes sense to use ConfExt to reduce the cost of filtering at this critical

level. This means that we use ConfExt on the lists L;Z“‘a"_l), 7 > imax — 1. Let
us choose Mmpew = 1 new point vy. The lists Lglm‘“‘_l) are already reduced by
enforcing configuration constraints with 1 € Li,..., 2, -1 € L;, . —1 from
previous applications of Filter. This means that the x4, ..., x;_, 1 take the role
of “old” w;’s in ConfExt. The configuration C*** € RF+Dx(*+1) for ConfExt is
obtained as follows: The C®*![[};4s, [o1a]-part is given by the target configura-
tion. The rest (which means the last row/column corresponding to the single
“new” point) can be chosen freely and is subject to optimization. Note that the
optimization problem does not depend on n.

This approach is taken in Algorithm 2. Note that for levels below iy, it does
not matter whether we continue to use our Filter approach or just brute-force: if
imax = Kk, there are no levels below. If ¢,,. < k, the lists are small from this level
downward and brute-force becomes cheap enough not to affect the asymptotics.

Let us focus on the case where the input list sizes are the same as the output
list sizes, which is the relevant case for applications to Shortest Vector sieving.
It turns out (numerically) that in this case, the approach taken by Algorithm 2 is
optimal for most values of k. The reason is as follows: Let T be the contribution
to the running time of Algorithm 1 from level iy,.y, which is asymptotically the
same as the total running time. The second-largest contribution, denoted T’
comes from level iy, — 1. The improvement in running time from using ConfExt
to reduce T decreases with k and is typically not enough to push it below 7.



34 G. Herold and E. Kirshanova

Consequently, using ConfExt between other levels will not help. We also observed
that choosing myew = 1 was usually optimal for k& up to 10. Exceptions to these
observations occur when T and T” are very close (this happens, e.g. for k = 6)
or when k is small and the benefit from using ConfExt is large (i.e. k = 3).

Since the case k = 3 is particularly interesting for the Shortest Vector sieving
(see Sect. 7.2), we present the 3-List algorithm separately in Sect. 7.1.

Algorithm 2. k-List with Configuration Extension

Input: Lq,..., Ly — input lists. C € RFXK _ target configuration. € > 0 — measure of closeness.
Output: Loy — list of k-tuples 1 € L1,...,zr € Ly, s.t. [(x;, z;) — Ci;| < ¢, for all 7, 5.

1: imax, C°®* = PREPROCESS(k, C; ; € RF*F)

2 Lowt «— {}

3: for all z, € L, do

4: L;l) — Firer(zy, Lj, C1,j,¢€) >j=2,...,k
5: for all @;,,,, 1 € L{"™> "% do

6: L{max =Y PIER (2,00 15 L2, Cipray 1,55 €) D J = imaxs s k
7 Iota < {1,. .., %max — 1}, Diists < {fmaxs -+, k}, Inew — {k+ 1}.

8: Mold “— tmax — 1, k' — k 4+ 1 — imax, Mnew — 1.

9: vj « x; for j € Ioa.

10: Call ConfExt(n, k', mo1d, Mnew, C¢*F, Lg:;‘;":‘fl), ey L;jmax71>, (v )jGIold ,€)

11: for all output instances w, L;E:;‘::"_l), A L;Umax_l) do > Output is streamed
12: for all z;, .. € L;Umax*l) do

13: Lgima") —FILTER(Z 4, 5 » L;(ima"_l) s Climax,js €) > J=ftmax +1...k
14: Brute-force over L;i"‘a") to obtain ;. +1,...,Z,r compatible with C

15: Lout < Lout U {(z1,...,2k)}

16: return Loy

1: procedure PrePROCESS(k, C € RFX*)

2 Determine imax using Eq. (14)

3 Set C*®*[{1,...,k}] « C.

4: Determine optimal Cf)“;’ct+1 = C)::jrtl,i by numerical optimization.
5 return ipay, C¢*t € R x(k+1)

1

: function FILTER(z, L, ¢, €): See Algorithm 1

7.1 Improved 3-List Algorithm

The case k = 3 stands out from the above discussion as one can achieve a faster
algorithm running the Configuration Extension Algorithm on two points v1, vs.
This case is also interesting in applications to lattice sieving, so we detail on it
below.

From Eq. (14) we have iy, = 2, or more precisely, the running time of the
3-List algorithm (without Configuration Extension) is T' = |Ly] - |L;1)| : \Lg1)|.
So we start shrinking the lists right from the beginning which corresponds to
mola = 0. For the balance configuration as the target, we have C[liss] = —1/3 on
the off-diagonals. With the help of an optimization solver, we obtain the optimal
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values for (x;, v;) for i = {1,2,3} and j = {1,2}, and for (v, vs) (there are 7
values to optimize for), so the input to the Configuration Extension Algorithm
is determined. The target configuration is of the form

1 —1/3 —1/3 047 —0.15
~-1/3 1 —1/3 —0.17 0.26
c=|-1/3-1/3 1 —0.19-0.14 (18)
047 —0.17-0.19 1 —0.26
—0.15 0.26 —0.14 —0.26 1

and the number of instances is given by R = O(1.4038") according to (17). The
algorithm runs in a streamed fashion: the lists L}, L, L% in line 2 of Algorithm 3
are obtained instance by instance and, hence, lines 3 to 9 are repeated R times.

Algorithm 3. 3-List with Configuration Extension

Input: L1, Lo, Ly — input lists of vectors from S, |L| = 20-1887n+o(n)

C € R®*5 as in Eq. (18), p = 1.4038, ¢ > 0
Output: Louwt C L1 X Lo X L3, s.t. |<a:i,:rj> — C“| <e, for all 1 < 1,5 < 3.

1: Lo — {}

2: LY, L5, Ly «— ConfExt(k = 3,m0d = 0,Mnew = 2,C € R*5 ¢ Ly, Lo, L3,
(n1y...,m¢))

3 for all z; € L} do

4: LY — FireRr(zy, Ly, —1/3,¢)

5: Lél) «— FILTER (21, LY, —1/3,€)

6 for all z, € LY do

7 for all z3 € Lgl) do

8 if [{(x2,z3) +1/3| < e then

9: Low «— (1, T2, T3)

10: return Ly

1: function FILTER(z, L, c,¢): See Algorithm 1

From Theorem 3, it follows that if the input lists satisfy |L| = 20-1887n4o(n),
then we expect | Lous| = |L|. Also from Eq. (8), it follows that the 3-List Algorithm 1
(i.e. without combining with the Configuration Extension Algorithm) has running
time of 20-3962n+0(n) The above Algorithm 3 brings it down to 20-3717n+0(n)

7.2 Application to the Shortest Vector Problem

In this section we briefly discuss how certain shortest vector algorithms can
benefit from our improvement for the approximate k-List problem. We start by
stating the approximate shortest vector problem.

On input, we are given a full-rank lattice £(B) described by a matrix
B € R™*™ (with polynomially-sized entries) whose columns correspond to basis
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vectors, and some constant ¢ > 1. The task is to output a nonzero lattice vector
x € L(B), s.t. ||z|| < cAi(B) where A;(B) denotes the length of the short-
est nonzero vector in £(B). z is a solution to the approximate shortest vector
problem.

The AKS sieving algorithm (introduced by Ajtai, Kumar, and Sivakumar
in [1]) is currently the best (heuristic) algorithm for the approximate shortest
vector problem: for an n-dimensional lattice, the running time and memory are
of order 2". Sieving algorithms have two flavours: the Nguyen-Vidick sieve [18]
and the Gauss sieve [17]. Both make polynomial in n number of calls to the
approximate 2-List solver. Without LSH-techniques, the running time both the
Nguyen-Vidick and the Gauss sieve is the running time of the approximate 2-List
algorithm: 20-4157+0(n) ith 20-208n+0(n) memory. Using our 3-List Algorithm 1
instead, the running time can be reduced to 2°0-3962n+(") (with only 20-1887n+o(n)
memory) introducing essentially no polynomial overhead. Using Algorithm 3, we
achieve even better asymptotics: 20-37177+0(n) byt it might be too involved for
practical speed-ups due very large polynomial overhead for too little exponential
gain in realistic dimensions.

Now we describe the Nguyen-Vidick sieve that uses a k-List solver as a main
subroutine (see [4] for a more formal description). We start by sampling lattice-
vectors & € L£(B) N B, (29 -\ (B)), where B, (R) denotes an n-dimensional
ball of radius R. This can be done using, for example, Klein’s nearest plane
procedure [11]. In the k-List Nguyen-Vidick for & > 2, we sample many such
lattice-vectors, put them in a list L, and search for k-tuples xq,...,x; € L X
..xLst. ||@g1+. . .+zg] < v-maxi<;<k z; for some v < 1. The sum @1 +. . .+xy
is put into Loys. The size of L is chosen in a way to guarantee that |L| & | Loyt
The search for short k-tuples is repeated over the list Loy. Note that since
with each new iteration we obtain vectors that are shorter by a constant factor
7, starting with 29" approximation to the shortest vector (this property is
guaranteed by Klein’s sampling algorithm applied to an LLL-reduced basis), we
need only linear in n iterations to find the desired x € L(B).

Naturally, we would like to apply our approximate k-List algorithm to k
copies of the list L to implement the search for short sums. Indeed, we can do so
by making a commonly used assumption: we assume the lattice-vectors we put
into the lists lie uniformly on a spherical shell (on a very thin shell, essentially
a sphere). The heuristic here is that it does not affect the behaviour of the
algorithm. Intuitively, the discreteness of a lattice should not be “visible” to the
algorithm (at least not until we find the approximate shortest vector).

We conclude by noting that our improved k-List Algorithm can as well be
used within the Gauss sieve, which is known to perform faster in practice than
the Nguyen-Vidick sieve. An iteration of the original 2-Gauss sieve as described
in [17], searches for pairs (p, v), s.t. |p+v| < max{|[p|, [[v]}, where p € L(B)
is fired, v € L C L(B), and p # v. Once such a pair is found and ||p|| > ||v]|, we
set p’ < p+ v and proceed with the search over (p’, v), otherwise if ||p|| < ||v|l,
we delete v € L and store the sum p + v as p-input point for the next iteration.
Once no pair is found, we add p’ to L. On the next iteration, the search is
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repeated with another p which is obtained either by reducing some deleted
v € L before, or by sampling from £(B). The idea is to keep only those vectors
in L that cannot form a pair with a shorter sum. Bai, Laarhoven, and Stehlé
in [4], generalize it to k-Gauss sieve by keeping only those vectors in L that do
not form a shorter k-sum. In the language of configuration search, we look for
configurations (p, v1,...,v5—1) € {p} x L x...x L where the first point is fixed,
so we apply our Algorithm 1 on k — 1 (identical) lists.

Unfortunately, applying LSH/configuration extension-techniques for the
Gauss Sieve is much more involved than for the Nguyen-Vidick Sieve. For k = 2,
[13] applies LSH techniques, but this requires an exponential increase in mem-
ory (which runs counter to our goal). We do not know whether these techniques
extend to our setting. At any rate, since the gain from LSH/Configuration
Extension techniques decreases with &k (with the biggest jump from k = 2
to k = 3), while the overhead increases, gaining a practical speed-up from
LSH/Configuration Extension within the Gauss sieve for k& > 3 seems unre-
alistic.

Open Questions. We present all our algorithms for a fized k, and in the analysis,
we suppress all the prefactors (in running time and list-sizes) for fixed k in
the O(.) notation. Taking a closer look at how these factors depend on k, we
notice (see, for example, the expression for W, , in Theorem 1) that exponents
of the polynomial prefactors depend on k. It prevents us from discussing the
case k — oo, which is an interesting question especially in light of SVP. Another
similar question is the optimal choice of € and how it affects the pre-factors.

8 Experimental Results

We implement the 3-Gauss sieve algorithm in collaboration with S. Bai [3].
The implementation is based on the program developed by Bai, Laarhoven, and
Stehlé in [4], making the approaches comparable.

Lattice bases are generated by the SVP challenge generator [7]. It produces
a lattice generated by the columns of the matrix

where p is a large prime, and x; < p for all i. Lattices of this type are random
in the sense of Goldstein and Mayer [9].

For all the dimensions except 80, the bases are preprocessed with BKZ reduc-
tion of block-size 20. For n = 80, the block-size is 30. For our input lattices, we
do not know their minimum A;. The algorithm terminates when it finds many
linearly dependent triples (v1, va,v3). We set a counter for such an event and
terminate the algorithm once this counter goes over a pre-defined threshold.
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Table 1. Experimental results for k-tuple Gauss sieve. The running times 7" are given
in seconds, |L| is the maximal size of the list L. € is the approximation parameter for
the subroutine Filter of Algorithm 1. The best running-time per dimension is type-set

bold.
n | 2-sieve BLS 3-sieve Algorithm 1 for k = 3
e =0.0 e = 0.015 e =0.3 e=0.4

T, |L| T, |L| T, |L| T, |L| T, |L| T, |L|
60 | 1.38e3, 13257 | 1.02e4, 4936 | 1.32e3, 7763 | 1.26e3, 7386 | 1.26e3, 6751 1.08e3, 6296
62 | 2.88e3, 19193 | 1.62e4, 6239 | 2.8e3, 10356 | 3.1e3, 9386 1.8e3, 8583 2.2e3, 8436
64 | 8.64e3, 24178 | 5.5e4, 8369 5.7e3, 13573 | 3.6e3, 12369 | 3.36e3, 11142 | 4.0e4, 10934
66 | 1.75e4, 31707 | 9.66e4, 10853 | 1.5e4, 17810 | 1.38e4, 16039 | 9.1e3, 14822 | 1.2e4, 14428
68 | 3.95e4, 43160 | 2.3e5, 14270 | 2.34e4, 24135 | 2.0e4, 21327 | 1.68e4, 19640 | 1.86e4, 18355
70 | 6.4e4, 58083 6.2e5, 19484 | 6.21e4, 32168 | 3.48e5, 26954 | 3.3e4, 25307 | 3.42e4, 24420
72 | 2.67e5, 77984 | 1.2e6, 25034 | 7.6e4, 40671 | 7.2e4, 37091 | 6.16e4, 34063 | 6.35e4, 34032
74 | 3.45e5, 106654 | — 2.28eb, 54198 | 2.08e5, 47951 | 2.02e5, 43661 | 2.03e5, 40882
76 | 4.67e5, 142397 | — 3.58e5, 71431 | 2.92e5, 64620 | 2.42e5, 56587 | 2.53e5, 54848
78 | 9.3e5, 188905 | — - - 4.6e5, 74610 | 4.8e5, 70494
80 | — - - - 9.47e5, 98169 | 9.9¢5, 98094

The intuition behind this idea is straightforward: at some point the list L will
contain very short basis-vectors and the remaining list-vectors will be their lin-
ear combinations. Trying to reduced the latter will ultimately produce the zero-
vector. The same termination condition was already used in [15], where the
authors experimentally determine a threshold of such “zero-sum” triples.

Up to n = 64, the experiments are repeated 5 times (i.e. on 5 random lattices),
for the dimensions less than 80, 3 times. For the running times and the list-sizes
presented in the table below, the average is taken. For n = 80, the experiment
was performed once.

Our tests confirm a noticeable speed-up of the 3-Gauss sieve when our Config-
uration Search Algorithm 1 is used. Moreover, as the analysis suggests (see Fig. 3),
our algorithm outperforms the naive 2-Gauss sieve while using much less memory.
The results can be found in Table 1.

Another interesting aspect of the algorithm is the list-sizes when compared
with BLS. Despite the fact that, asymptotically, the size of the list |L| is the
same for our and for the BLS algorithms, in practice our algorithm requires a
longer list (cf. the right numbers in each column). This is due to the fact that
we filter out a larger fraction of solutions. Also notice that increasing € — the
approximation to the target configuration, we achieve an additional speed-up.
This becomes obvious once we look at the Filter procedure: allowing for a smaller
inner-product throws away less vectors, which in turn results in a shorter list L.
For the range of dimensions we consider, we experimentally found ¢ = 0.3 to be
a good choice.
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