Chapter 2

Multi-level Image Thresholding Based

on Hybrid Differential Evolution Algorithm.
Application on Medical Images

M. Ali, P. Siarry and M. Pant

2.1 Introduction

Image thresholding is definitely one of the most popular segmentation approaches for
extracting objects from the background, or for discriminating objects from objects
that have distinct gray-levels. It is typically simple and computationally efficient. It is
based on the assumption that the objects can be distinguished by their gray levels. The
optimal threshold is the one that can separate different objects from each other or from
the background to such an extent that a decision can be made without further process-
ing [8, 13]. The automatic fitting of this threshold is one of the main challenges of
image segmentation. Sezgin and Sankur [18] have presented a survey of a variety of
thresholding techniques. There are a lot of approaches classifying thresholding meth-
ods. Authors in [18] labeled the method according to the information they exploit,
such as histogram shape, space measurement clustering, entropy, object attributes,
spatial information and local gray-level surface. Another classification approach con-
sists in dividing these techniques into parametric and non-parametric techniques. The
parametric thresholding methods exploit the first-order statistical characterization of
the image to be segmented. Weszka et al. [16] proposed a parametric method where
the gray-level distribution of each class is assumed to be a Gaussian distribution. An
attempt to find an estimate of the parameters of the distribution that best fit the given
histogram data is made by using the least-squares estimation method. Typically, it
leads to a nonlinear optimization problem, its solution is computationally expen-
sive and time consuming. Over the years, many researchers have proposed several
algorithms to solve the objective function of Gaussian curve fitting for multi-level
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thresholding. For example, Snyder et al. [10] presented an alternative method for
fitting curves based on a heuristic method called tree annealing; Nakib et al. [11, 19]
proposed a fast scheme for optimal thresholding using a simulated annealing algo-
rithm; Zahara et al. [7] proposed a hybrid Nelder—-Mead Particle Swarm Optimization
(NM-PSO) method. More recently a hybrid method based on Expectation Maximiza-
tion (EM) and Particle Swarm Optimization (PSO+EM) is proposed in [14] and the
application of basic Differential Evolution (DE) for solving image segmentation
problem is shown in [6], and recently in [2]. Moreover, the application of the arti-
ficial bees algorithm can be found in [3]. All these metaheuristic based methods
are efficient in solving the multi-level thresholding problem and could provide better
effectiveness than the other traditional methods (local search and deterministic meth-
ods). However, curve fitting is usually time-consuming which indicates that improved
methods are needed to enhance the efficiency of existing methods while maintaining
quality effectiveness. Further, these methods also have many parameters that must
be well fitted. In the present study we have analyzed whether the thresholding tech-
niques can be further improved if we use a modified variant of DE. In the recent years
DE [15] [17] has gained much popularity in different kind of applications because
of its simplicity and robustness in comparison to other evolutionary algorithms [17].
DE has very few parameters to adjust, making it particularly easy to implement to a
diverse set of optimization problems [1, 5, 9]. This paper proposes the development
of a new optimal multilevel thresholding algorithm based on image histograms by
employing its improved version called Hybrid Differential Evolution (HDE). After
fitting the Gaussian curves using HDE, optimal threshold is calculated by minimiz-
ing the overall probability error between these Gaussian distributions. The paper is
outlined as follows. Section 2.2 introduces the procedure of Gaussian curve fitting.
In Sect. 2.3, the overall probability of error for finding optimal thresholds from fitted
Gaussian curves is described. Section 2.4, presents enhanced differential evolution
version. Section 2.5 provides the experimental results and discussions, while Sect. 2.6
concludes this research.

2.2 Gaussian Curve Fitting

A properly normalized multimodal histogram /(x) of an image I, where x €
[0, L — 1] represents the gray levels and, and L is the total number of gray levels,
can be fitted with the sum of d probability density functions (pdf’s) for finding the
optimal thresholds for use in image segmentation [10]. The case where the Gaussian
pdf’s are used is defined by:
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where P; is the amplitude of the Gaussian pdf, u; is the mean and al.z is the variance
respectively, of mode i and d is number of Gaussians used to approximate the original
histogram and corresponds to the number of the segmentation classes. A pdf model
must be fitted to the histogram data, typically by using the maximum likelihood
or mean-squared error approach, in order to locate the optimal threshold. Given
the histogram data i (j) (observed probability of gray level j), it can be defined as
follows:

g(j)
d

> g()
i=0

h(j) = 2.2)

where g(j) denotes the occurrence of gray-level j over a given image ranges
[0, L — 1]. Our goal is to find a set of parameters,®, that minimizes the fitting
error J, given by the following expression [11, 19]:

2 1@ —=p(©.x)]

Min J = s 2.3)

where i ranges over the bins in the measured histogram. Here, J is the objective
function to be minimized with respect to, a set of parameters defining the Gaussian
pdfs and the probabilities, is given by:

O = {P;, p;, oi} (2.4)

The standard process of setting the partial derivatives to zero results in a set of
non-linear coupled equations, the system usually being solved through numerical
techniques.

2.3 Overall Probability of Error

After fitting the multimodal histogram, the optimal threshold could be determined
by minimizing the overall probability of error, for two adjacent Gaussian pdfs, given
by

o]

T;
e(T)) = Pi/ pi(x)dx + Pi+1/ (2.5)

nfty T;

with respect to the threshold 7;, where p;(x) is the ith pdf [8]. Then the overall
probability to minimize is:

d—1
E(T) = e(T) (2.6)
i=l
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where T is the vector of thresholds: 0 < T} < T» < ... < Ty_1 < L — 1. In our case
L is equal to 256

To find the thresholds values for which this error is minimal requires differentiating
e(T;) with respect to Ti (using Leibniz’s rule) and equating the result to zero. It gives:

Pi x pi(T;) = Piy1 X pisa(T) 2.7)

This equation is solved for Ti to find the optimum threshold. Using Eq. 2.1 in the
general solution of Eq. 9.6 results in the following solution for the threshold 7;:

AT? + BT, +C =0 (2.8)

where:

2 2
A_G _ol+1

=2x (/Lz o0y — Mi+102)
C= I’LH-IU - Ml l-H + 40201+110g ( IH )

:+10'
Since a quadratic equation has two possible solutions, only one of them is a feasible
solution [6].

2.4 Hybrid Differential Evolution (HDE)

In this section we briefly describe HDE, an enhanced version of basic DE. HDE
uses the concepts of opposition based learning, random localization and has a one
population set structure. The working of HDE is as follows. Population initial-
ization: HDE starts with a population S = {X, X», ..., Xyp} of NP solutions:
X; = (x1,4,...,Xnp,;), where the index i denotes the i " solution of the population.
For this we randomly construct a population P; of N P solutions, using the following
rule:

Xi,j = Xmin,j T Sob(0, 1) x (xmax,j - xmin,j) (2.9)
where Xpin, ; and xpax, j are lower and upper bounds respectively, for j th component,
respectively. Sob(0, 1) is a number between 0 and 1 from a low discrepancy sequence
generated using Sobol’s method [4].

We construct another population P, of N P opposite solutions to the solutions in
population P; using the following rule:

Yi,j = Xmin,j T Xmax,j — Xi,j (2.10)

where x; ; is the component of solution X; of the population P;.
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Now the initial population S is constructed by taking the N P best solutions from
union of P; and P».

Mutation: The mutation operation of HDE applies the vector difference between
the existing population members for determining both the degree and direction of
perturbation applied to the individual subject of the mutation operation.

The mutation process at each generation begins by randomly selecting three solu-
tions X,1, X,2, X,3 from the population corresponding to target solution X;.

Unlike DE, HDE holds a tournament between the three solutions and the region
around the best point is explored. That is to say if X, is the point having the best
fitness function value then the region around it is searched with the hope of getting
a better solution. Assuming that X,;, = X,, the mutation equation is given as:

Vi=Xup+ F x (X;2—X;3) (2.11)

where r1,72,r3 € 1,..., NP are randomly selected such that r1 # r2 # r3 # i,
and F is the control parameter such that F € [0, 1].

This variation gradually transforms itself into a search intensification feature for
rapid convergence once the points in S form a cluster around the global minima.
The Crossover: crossover operator of HDE is same as of DE. According to it, once
the perturbed individual V; = (v; ;, ... v, ;) is generated, it is subjected to a crossover

operation with the target individual X; = (x4, ..., x,;), that finally generates the
trial solution, U; = (ul,1i, ..., un,i), as follows:
vij if rand; < C,or j =k
Ui = ’ . 2.12
& x;,j Otherwise 2.12)
where, j = 1,...,n and k1, ..., n is a random parameters index, chosen once for

each i. The crossover rate, C, € [0, 1], is set by the user.

Selection: The selection operator used in HDE is same as that of the classical
DE, but the method of updating the solutions differs from that of it. After generation
of new solution a selection operation is performed between it and its corresponding
target solution by the following equation:

U it f(U) < f(Xp)

X; Otherwise (2.13)

X =

If new solution is better than target solution then it replaces target solution in
current population. This is in contrast to basic DE, where, the better one of the two
is added to an auxiliary population. In DE, two populations (current and auxiliary)
are considered simultaneously in all the iterations that result in the consumption of
extra memory and CPU time. On the other hand in HDE, only one population is
maintained and the individuals are updated when a better solution is found. Also, the
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newly found better solution that enters the population instantly becomes a variable
to take part in the creation of new solution.

2.5 Experimental Results

In this section, we evaluate the performance of the algorithm while implementing
Gaussian curve fitting for multi-level thresholding. The test images Sailboat is of
size 512 x 512, Cameraman and Lena, are of size pixels with 8 bit gray-levels, taken
under natural lighting without the support of any special light source. Test images
and their respective normalized histograms are given in Fig.2.1. The algorithm is
implemented on a 2.4 GHz Intel Core i5 Macbook pro with 4GB RAM using Matlab
R2013a. The stopping criterion we used for the algorithm is the maximum number
of iteration. HDE has only 4 parameters that must be well fitted. We have done
preliminary testing for the purpose of getting suitable values of these parameters
and the fine tuned results are listed in Table2.1. The parameters P;, u; and X; are
randomly initialized along with some restrictions to each parameter (for example P;
must be between 0 and 1, x; must be between 0 and 255).

The experimental results are listed in Table 2.2. This shows the number of classes,
parameters of Gaussian curves, the threshold values and the CPU time achieved by
the proposed method. The CPU times recorded do not include computation times
of the threshold values. Figures 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 show the results of
individual Gaussian curves, fitting to a sum of Gaussian curves to the histograms of
the images of Fig.2.1, and their corresponding segmented images, respectively.

We have conducted two experiments with every image. Experiments on images
Cameraman and Sailboat are performed taking three and four classes while in the
case of Lena it is three and five. The layout in Figs. 2.2b, 2.3b, 2.4b, 2.5b, 2.6b and
2.7b suggests an easy combination of the Gaussian functions which approaches to
shape of the histogram of the original image. Figures2.2¢c, 2.3c, 2.4c, 2.5¢c, 2.6¢c
and 2.7c show the segmented image, in these cases thresholds values are calculated
according to (2.7). It is evident that the resulting function approaches the original
histogram in all the cases.

In the above experiment, the number of iterations, which is used as stopping crite-
rion, was fixed and corresponding results are noted. However, in order to compare the
convergence time of HDE algorithm with basic DE, we have computed the number
of function evaluations (NFEs) and the corresponding CPU time for both the algo-
rithms. The run of each algorithm was stopped when the fitting error J of the best
solution reached €. i.e. min f < ¢ = 1071, where ¢ is a threshold value which fixes
the accuracy of the measurement. Therefore, the stopping criterion is modified; it is
based on the value of the fitting and not on the number of iterations. Table 2.3 gives
the NFEs and the CPU time taken by each algorithm to meet the stopping criteria.
From this Table we can clearly see the competitive performance of HDE.
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Fig. 2.1 Test images and their normalized histograms. a Sailboat, b Cameraman, ¢ Lena, d his-
togram of Sailboat image, e histogram of Cameraman image and f histogram of Lena image
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Table 2.1 Parameters of HDE. nc = 3 — D, where D is the number of segmentation classes (to be
fixed by the user)

Parameter Value
Population size N P 10 x N
Scaling factor F 0.25
Crossover rate C, 0.20
Maximum iteration 200

Table 2.2 Comparison of HDE with basic DE in terms of CPU time and NFE

Images No. of Classes | DE HDE
Time NFE Time NFE
Silboat 3 5.9143 17280 5.8968 10110
4 9.6739 23280 9.2041 1630
Camera man |3 5.8034 16740 5.7876 10320
4 9.0024 22920 8.8609 16090
3 5.9675 17010 5.8968 11270
Lena 5 12.934 27750 12.8077 18300
5
(a) (b)
b 3 b 0.015
0.01 0.01
0.005 0.005
0 0
0 50 100 150 200 250 0 50 100 150 200 250

Fig. 2.2 Results of Sailboat image with three classes: a segmented image, b Gaussian function of
each class and ¢ original histogram and corresponding Gaussian approximation

(b) (c)

0.015

0.01 0.01

0.005 0.005

Fig. 2.3 Results of Sailboat image with four classes: a segmented image, b Gaussian function of
each class and ¢ original histogram and corresponding Gaussian approximation
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Fig. 2.4 Results of Cameraman image with three classes: a segmented image, b Gaussian function
of each class and ¢ original histogram and corresponding Gaussian approximation

(a) (b) (c)
0.03 0.03
Image histogram

Gaussian approximation
0.025 0.025
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0.01 0.01
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0 0

Fig. 2.5 Results of Cameraman image with four classes: a segmented image, b Gaussian function
of each class and ¢ original histogram and corresponding Gaussian approximation
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0 0
0 50 100 150 200 250 0 50 100 150 200 250

Fig. 2.6 Results of Lena image with three classes: a segmented image, b Gaussian function of
each class and c¢ original histogram and corresponding Gaussian approximation

To further quantitatively judge the quality of the algorithm with several other
thresholding-based segmentation algorithms [12], the uniformity measure is utilized
which has also been extensively used in the literature. This uniformity measure is
given by:

S X jen, (fi = mj)?

(2.14)
N x (fmax - fmin)

U=1-2xmc—-1)x
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(a) (b)

Fig. 2.7 Segmentation of brain MRI of the ventricles. a Original slice, b Segmented slide into 3
classes, t = (134; 187)

where, nc denotes number of classes, R; denotes the j segmented region, f; indi-
cates the gray level of the pixel i, m; mean gray level of pixels in j h region, N
denotes the total number of thresholds in the given image, f,,, gives the maximum
gray level of pixels in the given image and f,;, gives minimum gray level of pixels
in the given image.

The value of the uniformity measure, U, should be a positive fraction i.e. it should
lie between 0 and 1. A higher value of U indicates that there is better uniformity in the
thresholded image, depicting better quality of thresholding and vice versa. It can be
also seen from Table 2.4 that the proposed HDE algorithm could achieve significantly
better segmentation results as demonstrated by its higher values of U in each case,
compared to other methods

In order to analyze the obtained results from statistical point of view, we do a
Wilcoxon test. Then, the p-value obtained from the results of Table2.4 is equal to
0.0152 that indicates a significant different between the original DE and the enhanced
DE.

2.6 MRI Slices Segmentation

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology
to image the anatomy and the physiological processes of the body in both health and
disease. MRI devices or scanners are based on strong magnetic fields, radio waves,
and field gradients to form images of the body.
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Table 2.3 Results obtained by HDE for images given in Fig.2.1

33

Image

Size(in
number of
pixels)

Number of
classes

Parameters of
Gaussian
approximations

Time (s)

Threshold

Sailboat

512x 512

P(0.0102, 0.0078,
0.0065)

5.8968

117,205

1L(53, 182, 221)

0(21.8457, 24.9995,
7.0544)

P(0.0090, 0.0035,
0.0071, 0.0062)

9.2041

95,121,205

1L(49,87,183,221)

0(16.4485, 44.4340,
26.5073, 6.6560)

Camerman

256 x 256

P(0.0235, 0.0061,
0.0114)

5.7876

33,130

(13, 137, 169)

0(4.3845,39.2224,
15.4275)

P(0.0231, 0.0014,
0.0061, 0.0118)

8.8609

30,52,131

(13, 39, 136, 169)

0(3.9712,29.6954,
37.0420, 15.5644)

Lena

256 x 256

P(0.0079, 0.0081,
0.0029)

5.8968

53,170

1L(24, 104, 194)

0(10.7663, 49.9796,
17.4342)

P(0.0084, 0.0070,
0.0066, 0.0074,
0.0032)

12.8077

46, 80,
114,176

(25, 63, 94, 131,
191)

0(12.1269, 15.6615,
16.0053, 23.8994,
22.1594)

Since its early development in the 1970s and 1980s, MRI has proven to be a highly
versatile imaging technique. While MRI is most prominently used in diagnostic
medicine and biomedical research, it can also be used to form images of non-living
objects. MRIs are able to produce a variety of chemical and physical data, in addition

to detailed spatial images.

MRI is widely used in hospitals and clinics for medical diagnosis, staging of
disease and follow-up without exposing the body to ionizing radiation. For our work,
the data were from the CHU Henri Mondor, Créteil (France).
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Table 2.4 Comparison of HDE with basic PSO and GA

Image No. of Threshold Uniformity measure
classes
PSO GA EDE PSO GA EDE
Sailboat |3 96,201 89,210 117,205 |0.9632 0.9535 0.9697
4 90, 115, |88,115, [95,121, |0.9664 0.9681 0.9694
208 205 205
Camera |3 30, 135 30, 142 33,130 0.9752 0.9744 0.9764
man
4 28, 48, 28, 50, 30, 52, 0.9735 0.9732 0.9736
145 145 131
Lena 3 61, 166 53,178 53,170 0.9597 0.9490 0.9533
46,84, 46,77, 46, 80, 0.9774 0.9758 0.9807
119,186 | 115,186 |114,176

MRI has a wide range of applications in medical diagnosis and over 25000
scanners are estimated to be in use worldwide. MRI affects diagnosis and treatment
in many specialties although the effect on improved health outcomes is uncertain.
Since MRI does not use any ionizing radiation, its use is generally favored in pref-
erence to CT when either modality could yield the same information. For all these
reasons developing tools for analysis these data is very important.

To illustrate the performance of our segmentation algorithm for the analysis of
CT-Scanimages. Two examples are presented in Figs. 2.7 and 2.8. In the firstexample,
the region of interest was the ventricles and the goal was to extract the segment the

(b)

Fig. 2.8 Illustration of the Segmentation of a retinal angiography image where the goal is to extract
drusens. a Original pathologic Image, b Original histogram and its approximation, ¢ Segmentation
on 2 classes, t = 150



2 Multi-level Image Thresholding Based on Hybrid ... 35

ventricular system represented by high intensity voxels. In this case, the presented
results consists in a segmentation on 3 classes to have more accuracy.
The second example presented here

2.7 Conclusions

In this paper, a modified DE algorithm namely HDE, is used for image segmenta-
tion. The objects and background components within the image are assumed to fit
into Gaussian distributions exhibiting non-equal means and standard deviations. The
histogram can thus be approximated by a mix of Gaussian probability functions. The
algorithm HDE is used to estimate the parameters for the mixing density function
as it seeks to get a minimum error between the density function and the original
histogram. Experimental results show that HDE produces satisfactory results, indi-
cating that it can be used for image segmentation in multi-thresholding due to its
computational efficiency. Additionally, HDE appears to be effective due to its qual-
ity performance. The proposed work can easily be extended in several directions.
In the future we intend to perform a formal comparison with other state-of-the-art
image segmentation techniques and also we will take a wider range of test images.
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