
Chapter 2
Multivariate Volatility Models

M.R. Fengler, H. Herwartz and F.H.C. Raters

Abstract Multivariate volatility models are widely used in finance to capture both
volatility clustering and contemporaneous correlation of asset return vectors. Here,
we focus onmultivariate GARCHmodels. In this commonmodel class, it is assumed
that the covariance of the error distribution follows a time dependent process condi-
tional on information which is generated by the history of the process. To provide
a particular example, we consider a system of exchange rates of two currencies
measured against the US Dollar (USD), namely the Deutsche Mark (DEM) and the
British Pound Sterling (GBP). For this process, we compare the dynamic properties
of the bivariate model with univariate GARCH specifications where cross sectional
dependencies are ignored. Moreover, we illustrate the scope of the bivariate model
by ex-ante forecasts of bivariate exchange rate densities.

2.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed on spec-
ulative markets, motivated the introduction of autoregressive conditionally het-
eroskedastic (ARCH) processes by Engle (1982) and its popular generalizations
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by Bollerslev (1986) (Generalized ARCH, GARCH) and Nelson (1991) (exponen-
tial GARCH, EGARCH). Being univariate in nature, however, such models neglect
a further stylized fact of empirical price variations, namely contemporaneous cross
correlation e.g. over a set of assets, stock market indices, or exchange rates.

Cross section relationships are often implied by economic theory. Interest rate
parities, for instance, provide a close relation between domestic and foreign bond
rates. Assuming absence of arbitrage, the so-called triangular equation formalizes the
equality of an exchange rate between two currencies on the one hand and an implied
rate constructed via exchange rates measured towards a third currency. Furthermore,
stock prices of firms acting on the same market often show similar patterns in the
sequel of news that are important for the entire market (Hafner and Herwartz 1998).
Similarly, analyzing global volatility transmission Engle et al. (1990) and Hamao
et al.(1990) found evidence in favor of volatility spillovers between the world’s
major trading areas occurring in the sequel of floor trading hours. From this point
of view, when modeling time varying volatilities, a multivariate model appears to be
a natural framework to take cross sectional information into account. Moreover, the
covariance between financial assets is of essential importance in finance. Effectively,
many problems in financial practice like portfolio optimization, hedging strategies,
or Value-at-Risk evaluation require multivariate volatility measures (Bollerslev et al.
1988; Cecchetti et al. 1988).

2.1.1 Model Specifications

Let εt = (ε1t , ε2t , . . . , εNt )
� denote an N -dimensional error process, which is either

directly observed or estimated from a multivariate regression model. The process εt
follows a multivariate GARCH process if it has the representation

εt = �
1/2
t ξt , (2.1)

where �t is measurable with respect to information generated up to time t − 1,
denoted by the filtration Ft−1. By assumption, the N components of ξt follow a
multivariate Gaussian distribution with mean zero and a covariance matrix equal to
the identity matrix.

The conditional covariance matrix, �t = E[εtε�
t |Ft−1], has typical elements σi j

with σi i , i = 1, . . . , N , denoting conditional variances and off-diagonal elements
σi j , i, j = 1, . . . , N , i �= j , denoting conditional covariances. To make the specifi-
cation in (2.1) feasible, a parametric description relating �t to Ft−1 is necessary. In
a multivariate setting, however, dependencies of the second order moments in �t on
Ft−1 become easily computationally intractable for practical purposes.

Let vech(A) denote the half-vectorization operator stacking the elements of a
quadratic (N × N )-matrix A from the main diagonal downwards in a 1

2N (N + 1)
dimensional column vector. Within the so-called half-vec representation of the
GARCH(p, q) model �t is specified as follows:



2 Multivariate Volatility Models 27

vech(�t ) = c +
q∑

i=1

Ãivech(εt−iε
�
t−i ) +

p∑

i=1

G̃ivech(�t−i ). (2.2)

In (2.2), thematrices Ãi and G̃i each contain {N (N + 1)/2}2 elements. Deterministic
covariance components are collected in c, a column vector of dimension N (N +
1)/2. We consider in the following the case p = q = 1 since in applied work the
GARCH(1,1)model has turned out to be particularly useful to describe awide variety
of financial market data (Bollerslev et al., 1994).

On the one hand, the half-vec model in (2.2) allows for a very general dynamic
structure of the multivariate volatility process. On the other hand, this specification
suffers from high dimensionality of the relevant parameter space, which makes it
almost intractable for empirical work. In addition, it might be cumbersome in applied
work to restrict the admissible parameter space such that the impliedmatrices�t , t =
1, . . . , T , are positive definite. These issues motivated a considerable variety of
competing multivariate GARCH specifications.

Prominent proposals reducing the dimensionality of (2.2) are the constant corre-
lation model (Bollerslev et al. 1988) and the diagonal model (Bollerslev et al. 1988).
Specifying diagonal elements of �t both of these approaches assume the absence of
cross equation dynamics, i.e. the only dynamics are

σi i,t = cii + aiε
2
i,t−1 + giσi i,t−1, i = 1, . . . , N . (2.3)

To determine off-diagonal elements of �t , Bollerslev (1990) proposes a constant
contemporaneous correlation,

σi j,t = ρi j
√

σi iσ j j , i, j = 1, . . . , N , (2.4)

whereas Bollerslev et al. (1988) introduce an ARMA-type dynamic structure as in
(2.3) for σi j,t as well, i.e.

σi j,t = ci j + ai jεi,t−1ε j,t−1 + gi jσi j,t−1, i, j = 1, . . . , N . (2.5)

For the bivariate case (N = 2) with p = q = 1, the constant correlation model con-
tains only 7 parameters compared to 21 parameters encountered in the full model
(2.2). The diagonal model is specified with 9 parameters. The price that both models
pay for parsimony is in ruling out cross equation dynamics as allowed in the general
half-vec model. Positive definiteness of �t is easily guaranteed for the constant cor-
relation model (|ρi j | < 1), whereas the diagonal model requires more complicated
restrictions to provide positive definite covariance matrices.

The so-called BEKKmodel (Baba et al. 1990) provides a richer dynamic structure
compared to both restricted processes mentioned before. Defining N × N matrices
Aik and Gik and an upper triangular matrix C0, the BEKK model reads in a general
version as follows (see Engle and Kroner 1995):
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�t = C�
0 C0 +

K∑

k=1

q∑

i=1

A�
ikεt−iε

�
t−i Aik +

K∑

k=1

p∑

i=1

G�
ik�t−iGik . (2.6)

If K = q = p = 1 and N = 2, themodel in (2.6) contains 11 parameters and implies
the following dynamic model for typical elements of �t :

σ11,t = c11 + a211ε
2
1,t−1 + 2a11a21ε1,t−1ε2,t−1 + a221ε

2
2,t−1

+ g211σ11,t−1 + 2g11g21σ21,t−1 + g221σ22,t−1,

σ21,t = c21 + a11a22ε
2
1,t−1 + (a21a12 + a11a22)ε1,t−1ε2,t−1 + a21a22ε

2
2,t−1

+ g11g22σ11,t−1 + (g21g12 + g11g22)σ12,t−1 + g21g22σ22,t−1,

σ22,t = c22 + a212ε
2
1,t−1 + 2a12a22ε1,t−1ε2,t−1 + a222ε

2
2,t−1

+ g212σ11,t−1 + 2g12g22σ21,t−1 + g222σ22,t−1.

Compared to the diagonalmodel, theBEKK–specification economizes on the number
of parameters by restricting the half-vec model within and across equations. Since
Aik and Gik are not required to be diagonal, the BEKK model is convenient to
allow for cross dynamics of conditional covariances. The parameter K governs to
which extent the general representation in (2.2) can be approximated by a BEKK-
type model. In the following we assume K = 1. Note that in the bivariate case with
K = p = q = 1 the BEKK model contains 11 parameters. If K = 1, the matrices
A11 and −A11 imply the same conditional covariances. Thus, for uniqueness of the
BEKK-representation a11 > 0 and g11 > 0 is assumed. Note that the right hand side
of (2.6) involves only quadratic terms and, hence, given convenient initial conditions,
�t is positive definite under the weak (sufficient) condition that at least one of the
matricesC0 orGik has full rank (Engle andKroner 1995). It is worthwhile tomention
that in a similar way the univariate GARCH volatility model can be augmented by
threshold specifications (Glosten et al. 1993), a generalization for asymmetric effects
in a BEKK-type model is discussed in Kroner and Ng (1998).

2.1.2 Estimation of the BEKK Model

As in the univariate case, the parameters of a multivariate GARCH model are
estimated by maximum likelihood (ML) optimizing numerically the Gaussian log-
likelihood function.

With f denoting the multivariate normal density, the contribution of a single
observation, lt , to the log-likelihood of a sample is given as:

lt = ln{ f (εt |Ft−1)}
= −N

2
ln(2π) − 1

2
ln(|�t |) − 1

2
ε�
t �−1

t εt .
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Maximizing the log-likelihood, l = ∑T
t=1 lt , requires nonlinear maximization meth-

ods. Involving only first order derivatives, the BHHH algorithm introduced byBerndt
et al. (1974) is easily implemented and particularly useful for the estimation of mul-
tivariate GARCH processes.

If the actual error distribution differs from the multivariate normal, maximizing
the Gaussian log-likelihood has become popular as Quasi ML (QML) estimation.
In the multivariate framework, results for the asymptotic properties of the (Q)ML-
estimator have been derived by Jeantheau (1998) who proves the QML-estimator to
be consistent under the main assumption that the considered multivariate process is
strictly stationary and ergodic. Further assuming finiteness of moments of εt up to
order eight, Comte and Lieberman (2003) derive asymptotic normality of the QML-
estimator. The asymptotic distribution of the rescaled QML-estimator is analogous
to the univariate case and discussed in Bollerslev and Wooldridge (1992).

2.2 An Empirical Illustration

2.2.1 Data Description

We analyze daily quotes of two European currencies measured against the USD,
namely the DEM and the GBP. The sample period is December 31, 1979 to April
1, 1994, covering T = 3720 observations. Note that a subperiod of our sample has
already been investigated by Bollerslev and Engle (1993) discussing common fea-
tures of volatility processes.

Let the bivariate vector Rt denote the exchange rates (DEM/USD and GBP/USD)
at time t . Before inspecting the sample statistics ( XFGmvol01.R), we take the first
differences of the log exchange rates, εt = ln(Rt ) − ln(Rt−1). These log-differences
are shown in Fig. 2.1. Evidently, the empirical means of both processes are very
close to zero (−4.72e-06 and 1.10e-04, respectively). Also minimum, maximum
and standard errors are of similar size. As is apparent from Fig. 2.1, variations of
exchange rate log-differences exhibit an autoregressive pattern: Large log-differences
of foreign exchange rates are followed by large log-differences of either sign. This
is most obvious in periods of excessive log-differences. Note that these volatility
clusters tend to coincide in both series. It is precisely this observation that justifies a
multivariate GARCH specification.

2.2.2 Estimating Bivariate GARCH

A fast algorithm is used to estimate the BEKK representation of a bivariate GARCH
(1,1) model: QML-estimation is implemented by means of the BHHH-algorithm
which minimizes the negative Gaussian log-likelihood function. The algorithm

https://github.com/QuantLet/XFG3/tree/master/XFGmvol01
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Fig. 2.1 Foreign exchange rate data: log-differences. XFGmvol01

employs analytical first order derivatives of the log-likelihood function
Lütkepohl (1996) with respect to the 11-dimensional vector of parameters contain-
ing the elements of C0, A11 and G11 as given in (2.6). Alternatively, the R package
mgarchBEKK Schmidbauer et al. (2016) might be considered when estimating this
model inR. Section2.3 contains further references for implementations of the BEKK
model in widely used numerical programming environments.

The estimation output contains the stacked elements of the parameter matrices
C0, A11 and G11 in (2.6) after numerical optimization of the Gaussian log-likelihood
function. Being an iterative procedure, the algorithm requires to determine suitable
initial parameters. For the diagonal elements of the matrices A11 and G11 values
around 0.3 and 0.9 appear reasonable, since in univariate GARCH(1,1) models para-
meter estimates for a1 and g1 in (2.3) often take values around 0.32 = 0.09 and
0.81 = 0.92. There is no clear guidance how to determine initial values for off diag-
onal elements of A11 or G11. Therefore, it might be reasonable to try alternative
initializations of these parameters. Given an initialization of A11 and G11, the start-
ing values for the elements in C0 are determined by the algorithm assuming the
unconditional covariance of εt to exist (Engle and Kroner 1995).

https://github.com/QuantLet/XFG3/blob/master/XFGmvol01
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Given our example under investigation, the bivariate GARCH estimation yields
a vector of coefficient estimates,

θ̂ = (.00115, .00031, .00076, .2819, −.0572, −.0504, .2934, .9389, .0251, .0275, .9391),

and a corresponding log-likelihood value l̂ = 28599 at the optimum. The first three
estimates are the parameters of the upper triangular matrix C0, the following four
belong to the ARCH (A11) and the last four to the GARCH parameters (G11), i.e. for
our model,

Fig. 2.2 Estimated variance and covariance processes, 105�̂t . XFGmvol02

https://github.com/mangrou/XFG3-Temp/blob/master/XFGmvol02
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Fig. 2.3 Simulated variance and covariance processes, both bivariate (blue) and univariate case
(green), 105�̂t . XFGmvol03

�t = C�
0 C0 + A�

11εt−1ε
�
t−1A11 + G�

11�t−1G11, (2.7)

stated again for convenience, we find the matrices C0, A11, G11 to be:

C0 = 10−3

(
1.15 .31
0 .76

)
, A11 =

(
.282 −.050

−.057 .293

)
, G11 =

(
.939 .028
.025 .939

)
.

(2.8)

https://github.com/QuantLet/XFG3/blob/master/XFGmvol03
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2.2.3 Estimating the (co)variance Processes

The (co)variance is obtained by sequentially calculating the difference equation
(2.7) where we use the estimator for the unconditional covariance matrix as ini-
tial value (�0 = E�E

T ). Here, the T × 2 matrix E contains log-differences of our
foreign exchange rate data.

We display the estimated variance and covariance processes in Fig. 2.2. The quant-
let XFGmvol02.R ss contains the code. The two upper panels of Fig. 2.2 show
the variances of the DEM/USD and GBP/USD log-differences respectively, whereas
in the lower panel we see the covariance process. Except for a very short period in
the beginning of our sample, the covariance is positive and of non-negligible size
throughout. This is evidence for cross sectional dependencies in currency markets
which we mentioned earlier to motivate multivariate GARCH models.

Instead of estimating the realized path of variances as shown above, we could
also use the estimated parameters to simulate volatility paths ( XFGmvol03.R).
For this, at each point in time an observation εt is drawn from a multivariate normal
distribution with variance �t . Given these observations, �t is updated according to
(2.7). Then, a new residual is drawn with covariance �t+1. We apply this procedure
for T = 3000. The results, displayed in the three panels of Fig. 2.3, show a similar
pattern as the original process given in Fig. 2.2. For the upper two panels, we generate
two variance processes from the same set of simulated residuals ξt . In this case,
however, we set off-diagonal parameters in C�

0 C0, A11 and G11 to zero to illustrate
how the unrestricted BEKK model incorporates cross equation dynamics. As can
be seen, both approaches are convenient to capture volatility clustering. Depending
on the particular state of the system, spillover effects operating through conditional
covariances, however, have a considerable impact on the magnitude of conditional
volatility.

2.3 Forecasting Exchange Rate Densities

The preceding section illustrated how the GARCH model may be employed effec-
tively to describe empirical price variations of foreign exchange rates. For practi-
cal purposes, as for instance scenario analysis, Value-at-Risk estimation (Chap.1),
option pricing (see the corresponding chapter), one is often interested in the future
joint density of a set of asset prices. Continuing the comparison of the univariate and
bivariate approach tomodel volatility dynamics of exchange rates, it is thus natural to
investigate the properties of these specifications in terms of forecasting performance.

We implement an iterative forecasting scheme along the following lines: Given the
estimated univariate and bivariate volatility models and the corresponding informa-
tion setsFt−1, t = 1, . . . , T − 5 (Fig. 2.2), we employ the identified data generating
processes to simulate one-week-ahead forecasts of both exchange rates. To get a reli-
able estimate of the future density, we set the number of simulations to 5000 for each

https://github.com/QuantLet/XFG3/tree/master/XFGmvol02
https://github.com/QuantLet/XFG3/tree/master/XFGmvol03
http://dx.doi.org/10.1007/978-3-662-54486-0_1
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initial scenario. This procedure yields two bivariate samples of future exchange rates,
one simulated under bivariate, the other one simulated under univariate GARCH
assumptions.

A review of evaluating competing density forecasts is offered by Tay and Wallis
(2000). Adopting a Bayesian perspective the common approach is to compare the
expected loss of actions evaluated under alternative density forecasts. In our pure time
series framework, however, a particular action is hardly available for forecast density
comparisons. Alternatively, one could concentrate on statistics directly derived from
the simulated densities, such as first and second order moments or even quantiles.
Due to the multivariate nature of the time series under consideration, it is a nontrivial
issue to rank alternative density forecasts in terms of these statistics. Therefore,
we regard a particular volatility model to be superior to another if it provides a
higher simulated density estimate of the actual bivariate future exchange rate. This
is accomplished by evaluating both densities at the actually realized exchange rate
obtained from a bivariate kernel estimation. Since the latter comparison might suffer
from different unconditional variances under univariate and multivariate volatility,
the two simulated densities were rescaled to have identical variance. Performing
the latter forecasting exercises iteratively over 3714 time points, we can test if the
bivariate volatility model outperforms the univariate one.

To formalize the latter ideas, we define a success ratio SRJ as

SRJ = 1

|J |
∑

t∈J

1{ f̂biv(Rt+5) > f̂uni (Rt+5)}, (2.9)

where J denotes a time window containing |J | observations and 1 an indicator func-
tion. f̂biv(Rt+5) and f̂uni (Rt+5) are the estimated densities of future exchange rates
which are simulated by the bivariate and univariate GARCH processes, respectively,
and which are evaluated at the actual exchange rate levels Rt+5. The simulations are
performed in XFGmvol04.

Our results show that the bivariate model indeed outperforms the univariate one
when both likelihoods are compared under the actual realizations of the exchange
rate process. In 82.3% of all cases across the sample period, SRJ = 0.823, J =
{t : t = 1, ..., T − 5}, the bivariate model provides a better forecast. This is highly
significant. In Table2.1, we show that the overall superiority of the bivariate volatility

Table 2.1 Time varying
frequencies of the bivariate
GARCH model
outperforming the univariate
one in terms of
one-week-ahead forecasts
(success ratio)

Time window J Success ratio SRJ

1980 1981 0.762

1982 1983 0.786

1984 1985 0.868

1986 1987 0.780

1988 1989 0.872

1990 1991 0.835

1992 04/1994 0.854

https://github.com/QuantLet/XFG3/blob/master/XFGmvol04
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Fig. 2.4 Estimated covariance process from the bivariateGARCHmodel (104σ̂12,blue) and success
ratio over overlapping time intervals with window length 80 days (red). XFGmvol04

approach is confirmed when considering subsamples of two-years length. A-priori,
one may expect the bivariate model to outperform the univariate one the larger (in
absolute value) the covariance between both log-difference processes is. To verify
this argument, we display in Fig. 2.4 the empirical covariance estimates from Fig. 2.2
jointly with the success ratio evaluated over overlapping time intervals of length
|J | = 80.

As is apparent from Fig. 2.4, there is a close co-movement between the success
ratio and the general trend of the covariance process, which confirms our expecta-
tions: the forecasting power of the bivariate GARCH model is particularly strong in
periods where the DEM/USD and GBP/USD exchange rate log-differences exhibit
a high covariance. For completeness, it is worthwhile to mention that similar results
are obtained if the window width is varied over reasonable choices of |J | ranging
from 40 to 150.

With respect to financial practice and researchwe take our results as strong support
for a multivariate approach towards asset price modeling. Whenever contemporane-
ous correlation across markets matters, the system approach offers essential advan-
tages. To name a few areas of interest, multivariate volatility models are supposed to
yield useful insights for risk management, scenario analysis and option pricing.

https://github.com/QuantLet/XFG3/blob/master/XFGmvol04
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Appendix: Software Packages

This section gives a brief overview of BEKKmodel implementations for the numer-
ical programming languages and environments R, MATLAB and Stata. Built-in
functions and external packages for estimating univariate and further multivariate
volatility models are briefly reviewed in Chap. 1 Appendix.

There exist two publicly available R packages which attempt to implement the
BEKK approach. Both implementations are in early stages and, therefore, com-
puted results need to be critically reviewed by the user. The package mgarchBEKK
Schmidbauer et al. (2016) might be used for simulating, estimating and predicting
BEKKmodels. The estimation of simulated data returns plausible results. In contrast,
the package MTS by Tsay (2015) contains a single function BEKK11 for estimating
two- or three-dimensional BEKK(1,1) models only.

MATLAB offers methods to assess univariate GARCH-type models by means
of its Econometrics Toolbox. However, there is no official MATLAB Toolbox that
implements the BEKKmodel. As described in Chap. 1 Appendix, the MFE Toolbox
tries to fill the gap of assessing of multivariate volatility models inMATLAB. It is the
direct successor to the UCSD Toolbox by Kevin Sheppard which is not being further
developed. The codebase might help getting insights into the technical details of
the BEKK approach. Because the toolbox is still under development, an optimized,
error-free use can not be guaranteed.

Currently, Stata supports only the analysis of univariate volatility models, diag-
onal half-vec models, which are restricted versions of the half-vec model in (2.2),
and conditional correlation models. It seems that there exists no publicly available
extension to estimate a BEKKmodel. As an alternative, users might employ the tools
of the independent software package JMulTi,1 which is closely related to Lütkepohl
and Krätzig (2004), for BEKK model estimation and investigation in combination
with Stata.
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