
Chapter 2
LCS Concepts

Abstract

This chapter aims to provide an appreciation for core concepts that separate LCSs
from other techniques. In particular, we provide insight into why they work, and how
they are conceptually unique. It is hoped that the reader will appreciate that LCSs
represent a machine learning concept, rather than a single technique. We consider
the answers to questions such as (1) Rules/classifiers - What are they? Plus, how
can they be represented and evaluated? (2) Why do we evolve a population of rules
rather than a single rule as a solution? (3) What is the importance of cooperation and
competition among classifiers? (4) How does an LCS interact with problems to find
and generalise useful patterns? (5) What problem properties should be considered
when deciding whether to apply an LCS? and (6) What are the general advantages
and disadvantages of LCSs? The functional cycle and how to begin implementing
an LCS are covered in the next chapter.

LCSs are a wondrous way to address interesting problems. LCSs are computer pro-
grams that attempt to build a piecewise model capturing patterns inherent in the
data they experience. The concept of LCSs started to form in the mid-1970s with
John Holland’s work on adaptation. The first implementation, ‘CS-1’ by Holland
and Reitman in 1978, was very different to to modern LCS algorithms. Note that
CS-1 stands for ‘Cognitive System One’, rather than Classifier System One, which
hints at the original purpose of LCSs.

LCSs are one of the earliest artificial cognitive systems drawing inspiration from
a number of fields; see Figure 2.1. The early work was ambitious and broad leading
to many paths being taken to develop the concept over the subsequent 40 years.
Coupled with the fact that replicating cognition is in itself a difficult problem this
led to the field being affectionately termed ‘a quagmire’ with a lack of widespread
adoption.

21

© The Author(s) 2017
R.J. Urbanowicz and W.N. Browne, Introduction to
Learning Classifier Systems, SpringerBriefs in Intelligent
Systems, DOI 10.1007/978-3-662-55007-6_2

22 2 LCS Concepts

“LCSs are a quagmire - a glorious, wondrous and inventing quagmire, but a quag-
mire nonetheless” D. Goldberg 1992.

Biology Computer Science Cognitive Science

Machine Learning

Evolutionary Biology Artificial Intelligence

Rule-Based Machine LearningGenetics-Based Machine Learning
Supervised

Learning

Reinforcement

Learning

Evolutionary Algorithm

Genetic Algorithm Learning Classifier System

Fig. 2.1 Major influences on the LCS concept. Other influences exist, such as unsupervised learn-
ing, that can be incorporated into LCSs

However, the field of LCSs is no longer a quagmire. Research on LCSs has clari-
fied understanding, produced algorithmic descriptions, determined ‘sweet spots’ for
parameters and delivered understandable ‘out of the box’ source code. This text-
book reveals the boardwalk across the swamp so you will be able to proficiently
implement and apply LCSs. The first sections of this chapter are organised to reflect
the concepts behind the term ‘learning classifier system’ itself.

2.1 Learning

Learning is valued by humans as it enhances our abilities to solve problems and
adapt to our environment. Much work has been conducted in research fields such
as education, psychology and neuroscience into how humans learn. With the advent
of computers, humans have been interested in how artificial ‘agents’ learn, either
learning to solve problems of value that humans find difficult to solve or for the
intellectual curiosity of how natural/artificial learning could be achieved: ‘Learning’
has a very useful definition for our purposes “Learning is constructing or modifying
representations of what is being experienced” Michalski et al., 1986.

The first step toward LCS learning is exposure to domain experience in the form
of data. This can be through recorded past experiences (termed offline learning) or
interactive with current events (termed online learning). Online learning includes

2.1 Learning 23

embedding (embodiment) in robotic systems that may directly act to manipulate
their environment. Offline learning often accesses data from a database. To illustrate
learning in LCSs this book will rely on offline learning examples (until Chapter 4).
Domain experience can also be ‘physical’ as in the embodiment of a robotic system
that may directly act to manipulate its environment or ‘virtual’ as in a software
program receiving data.

Learning is often guided by feedback to improve the reward returned through
environmental interaction. It can also be latent where only state-action-state patterns
are learned (i.e. if we are in state ‘X’ and take some action, how do we expect the
state to change?). Noise and dynamics within the data may impact learning ability,
but research shows that LCSs can tolerate relatively poor quality data and still learn.

At a minimum, in order for artificial learning to occur, it is necessary to have
data containing generalisable patterns, or ‘signal’. Consider the adage, ‘If garbage
in Then garbage out’ that governs machine intelligence’.

If there are no knowledge-based patterns in the data, Then LCSs will not learn.

2.1.1 Modeling with a Ruleset

In an LCS, the learned rules are grouped together in a set referred to as the popula-
tion. This rule population can be interpreted as a model for the data. This reliance on
multiple rules to encapsulate patterns in the domain differentiates LCS from other
standard versions of AI techniques (such as genetic algorithms, decision trees or
artificial neural networks) that build a single entity (e.g. solution, tree or network)
that describes the learned knowledge.

A rule population is not to be confused with an ensemble of models (e.g. random
forests) that integrates the knowledge of a group of single entity models. Rather,
each rule is ‘context dependent’, i.e. only relevant to a subset of the problem space.
A consequence of this is that no single LCS rule may constitute a complete model.

An LCS forms and improves its ruleset model through experience with the data.
During this learning phase it increases the worth of good rules, generates plausibly
better rules, and removes poor rules. Once learning is completed the performance
may be confirmed using unseen data. If learning is deemed successful, then the rules
can be used in two main ways.

• The population can be used to predict the class of newly encountered input.
• The rules can be analysed to understand the learned knowledge.

This book expands upon LCS learning in the remaining chapters.

24 2 LCS Concepts

2.2 Classifier

Generically, the term ‘classifier’ can refer to any means to assign input data in-
stances to some ‘class’ among a given number of available classes. It is common
practice to know (or decide) the number of available classes prior to learning. For
instance in the multiplexer problem, only two classes, i.e. ‘0’ and ‘1’, are available.
The class of a given data instance can more generally be referred to as the depen-
dent variable, outcome, endpoint, phenotype or action. These terms may be used
interchangeably, but ‘action’ is most often used in the LCS literature. As with most
machine learning methods, LCS seeks to predict a single action, which will have
multiple class labels (e.g. the action might be ‘diagnosis’, and the class labels might
be ‘sick’ vs. ‘healthy’). If multiple actions need to be learned, then a single LCS
may be assigned to each task.

The term ‘classifier’ has a specific meaning in the LCS field, as we will see.
Unfortunately, having the term ‘classifier’ in the name of the field incorrectly sug-
gests that LCS algorithms are limited to classification tasks, i.e. tasks with a discrete
number of classes as the action of the model. While this book tends to focus on
classification problems, it is important to note that some LCSs have been adapted to
regression problems that have a continuous-valued action. One LCS-based defini-
tion of a ‘classifier’ offered by Stewart Wilson reflects how LCSs may be applied to
continuous-valued actions: “a computational structure that computes a function of
its input within a subspace selected by its conditions.” This will be explored more
fully later when we consider how inputs are mapped to outputs by an LCS.

2.2.1 Rules

Rules are the fundamental building blocks of an LCSmodel. Rules follow a standard
‘If ... Then ... ’ statement format that is essential to LCSs. This has similarities
to production rules in computer science, so the name ‘rule’ is used. The learned
patterns are represented in the form of ‘If this Then that’ rules. This could be thought
of as sets of antecedents and sets of consequents, but the flexibility of LCS means
that these are not always strictly sets. The pattern could link condition to action,
state to action, features to class or many other variations (explored in Chapter 4).
For convenience we will refer to a rule’s condition and action in this text, but other
variants may be substituted as applicable. Rules can thus be interpreted using the
following expression:

‘If condition(s) Then action’

Notice how rules are context dependent, meaning that the link to the action relies
on satisfaction of the condition. For each feature or encoded digit in the data, the
condition can either specify a value or apply a wild card symbol (covered in Section
2.2.3.1). Each possible value of a given feature can be referred to as an allele, taken
from the evolutionary-genetics-inspired roots of LCS. For convenience, it is typical

2.2 Classifier 25

to refer to the antecedents part of the rule simply as the ‘condition’, in the singular,
even if it includes more than one specified allele (generally one per feature).

The ‘If ... Then ... ’ form of LCS rules also leads them to be human readable
- termed ‘transparent’. The use of context dependent expressions, plus the trans-
parency again separates LCSs from other techniques, e.g. those that use networks of
trees to represent the model of the data. The purpose of an LCS is to produce rules
that encapsulate the patterns within the data in an interpretable manner.

2.2.1.1 Rule Worth

An ‘If ... Then ... ’ rule may be valid syntactically, but we need to verify its worth
(i.e. value) for it to be useful. A valid rule can quite easily encode meaningless rela-
tionships and information. Interestingly, the majority of syntactically valid rules are
likely to encapsulate incorrect knowledge - consider all the possible arrangements
of rules where the condition represents two numbers to sum together to produce the
answer as the action, e.g. ‘3,3 : 6’ is correct, but ‘3,3 : 5’ and ‘3,3 : 7’ are equally
valid despite being incorrect. Interaction with the domain (in this case reporting
‘correct’ and ‘incorrect’) enables experience to determine the worth of a rule.

Evolutionary algorithms that produce single model entities refer to the worth of a
model as its ‘fitness’, due to analogies with biological fitness. For the same reason,
LCS uses the term ‘fitness’ to refer to the worth of a rule, since most LCSs utilise
an evolutionary rule discovery mechanism. Assigning fitness at the rule, rather than
at the model level does lead to a few complications given that rule fitness generally
reflects the worth of the rule with respect to the problem subspace the rule’s condi-
tion applies to, rather than the problem space as a whole. Rule fitness is central to
the operation of an LCS. There are many ways it can be calculated (see Section 4.3),
each having advantages and disadvantages in a given problem domain (see Section
4.5). Instantaneous, filtered, or long-term fitness values may be employed.

A simple and effective fitness measure relevant to supervised learning is the num-
ber of correct data classifications (action of the rule being the same as the known
action from the data) divided by the total number of times the rule (condition) has
matched the input data; see Equation 2.1. This is also known as the long-term accu-
racy of the ith classifier.

Fitnessi = |Ci|/|Mi| (2.1)

Alternatively, ‘error’ informs us how often the classifier failed to model the data
correctly. This may be calculated as one minus accuracy; see Equation 2.2. Con-
sidering that fitness is not always pure accuracy, including the error statistic can be
useful as it indicates the negative consequences of invoking the rule. As will be seen
later, fitness can be relative to other rules, shared amongst rules, recency-weighted,
reward-based and so on, which may all be different to cumulative accuracy.

Errori = 1−|Ci|/|Mi| (2.2)

26 2 LCS Concepts

Fitness embodies the past success of the rule in modelling the data it covers,
indicates the quality of the knowledge held in the rule, and predicts the likelihood
of the class (action) arising from future similar state input examples. It can relate to
external (e.g. the prediction of feedback from the environment) and/or internal (e.g.
overall contribution of the rule to the system) effects.

2.2.1.2 Rules Versus Classifiers

A rule on its own is not much use as it does not tell us its confidence of correctly
mapping its condition to its action (e.g. fitness) or its usefulness to the whole set of
rules. With respect to LCSs, we refer to the combination of a rule with its statistics
as a ‘classifier’. Let’s examine some common rule statistics.

The most important statistic is fitness, which describes the worth of the rule. Rule
error may also be included as an alternative or complement to rule accuracy.

The prediction statistic, relevant to reinforcement learning LCS, predicts the
value of the reward returned (i.e. feedback) from any subsequent environmental in-
teraction. In XCS, the most popular LCS algorithm, fitness is based on the accuracy
of this reward prediction (see Section 4.3.3.1).

Another key statistic is numerosity, which represents the number of virtual copies
of each unique rule currently included in the population (see Section 3.8.1).

Other common statistics capturing rule properties include, but are not limited to

• Lifespan - often stored as the generation at which the classifier was first created.
• Reproduction - e.g. time since last rule discovery invocation.
• Experience - which simply collects how many times the rule’s condition has

matched the input data.
• Average set size - the average number of similar classifiers estimated by inter-

action with the environment.

Occasionally, statistics are kept in order to monitor the performance of the system
and for academic curiosity (rather than to influence learning directly). Such statis-
tics can include Number of offspring, Parentage (description of parents) and other
variations, which are only limited by the storage capability of the computer and the
time required to collect them.

2.2.1.3 Niche

The concept of a niche is central to LCSs, but is not a common term in other areas
of EC. A niche refers to a subgroup of instances, i.e. an area of the sample space
in a target problem, where the neighbouring instances share a common property. In
many data models a single cluster of instance states (i.e. niche) is linked to a single
class. There often arises the case where different clusters are linked to the same
class. LCSs cope with this difficulty as different single rules can be assigned to each
cluster. Multiple rules cooperating to model the niches in the data is an important

2.2 Classifier 27

(in fact, core) feature of LCSs. We can think of a niche as the group of instances
accurately covered by an optimal rule. Later in this chapter we will consider how
rule accuracy and generality relate to rule optimality. Also note that the definition
of a niche is fluid, dependent on the sample space and representation used.

2.2.2 Representation and Alphabet

The representation of the subspace that the condition of a classifier covers is central
to its ability to form accurate classifiers. The set of symbols, termed the alphabet,
used to encode the rules must be appropriate to the problem domain otherwise re-
sources will be wasted with unnecessary classifiers in non-compact populations or
even lack of performance as some subspaces will be incapable of being described.
Fortunately, a wide range of simple, rich or expressive alphabets have been created
that are known to well suit certain types of problem domain. For example, real-
valued alphabets can suit real-world knowledge discovery problems, while ternary
alphabets suit Boolean logic problem domains.

Over two decades ago a ternary alphabet was the most common LCS alpha-
bet, but this has long been superseded for the majority of real-world problems that
LCSs address. However, any domain where the message (environmental state) to be
matched to the classifier can be represented by zeros and ones {0,1}, e.g. on/off,
true/false, 0/1 and so forth, is suited to the ternary alphabet. The alphabet that is
referred to as ‘the ternary alphabet’ consists of {0,1,#}, where the # symbol repre-
sents ‘don’t care’, which generalises to either 0 or 1. In binary problems it happens
to be equivalent to a logical OR operator such that # matches either 0 OR 1 in the
environmental state. Note that in data with missing values that could be either 0 or
1, a # is often also considered a match.

It is important to realise that features, i.e. independent variables making up the
state of a given data instance, can be represented directly by an alphabet (i.e. one
dataset feature equals one evolvable digit in the condition), or can adopt an encoding
where one feature is encoded by multiple digits. For example, in trying to learn
the optimum time to open a convenience store it would be possible to adopt a six-
character binary encoding for the opening time, e.g. 000111 (7 a.m.), or 001000
(8 a.m.). However there can be problems with representations that apply encodings.
For instance, it is possible to produce syntactically valid rules that do not relate to the
domain. An example would be using this six-bit binary encoding for time; although
the string ‘111111’ in the condition is valid, it does not represent a state found in the
problem (i.e. there is no 64th hour of the day). Conversely, if the representation is
not flexible enough there may be states in the environment that cannot be described
by the conditions. For example, if a four-bit binary number is chosen to represent
the hours in a day only 16 possible hours can be encoded).

There is a link between how the rules are represented and how they are expressed,
i.e. how the encoding is realised in the environment. In the above examples, the en-
coding 000111 could be realised as 7 a.m. The encoding itself is termed the genotype

28 2 LCS Concepts

(again following the biological analogy). The expression of the encoding is termed
the phenotype. There are multiple ways that a phenotype may be encoded by a geno-
type, and multiple ways a single genotype may represent different phenotypes.

Sparseness is an important consideration in selecting a representation for a prob-
lem domain. A sparse problem is one where many of the valid states do not have
an associated instance (or class). In other words consider a valid rule that does not
match any instance in the data. Both the size of the dataset and the complexity of
the problem domain can influence sparseness. Fortunately, LCS algorithms employ
mechanisms such as ‘covering’ to avoid and in some cases prevent rules that match
nothing in the problem space from appearing in the rule population.

Also, the distance between similar genotypes (and their expressed phenotypes) in
a search space is an important consideration when deciding upon the representation
to use within an LCS. Again consider the convenience store opening time six-bit
encodings described above (i.e. 000111 and 001000). There is a big difference (four-
bits) between these condition states despite the values (i.e. 7 a.m. and 8 a.m.) being
very close (one hour) in the original data. The consequences and solutions (such as
using Gray encoding) are explored in more detail in Section 3.3.

2.2.3 Generalisation

If a single classifier mapped to a single state in the dataset, then the system could
work but not well. Each state would need its own classifier, essentially enumerating
the problem, which would require an enormous population for real-world problems.
Not only would this be time-consuming to execute, it would not discover any of the
underlying patterns or mappings in the problem. Thus, for efficiency, ease of human
readable rules and compactness of population, it is better to have multiple states
being addressed by a single classifier. The concept of generality is fundamental to
LCSs, i.e. the ability of a classifier to address more than one state in a single rule.

2.2.3.1 Don’t Care ‘#’ Operator

Generality in LCSs is achieved through the ‘don’t care’ operator, which is tradition-
ally given the symbol #. This symbol is also referred to as a ‘wild card’. It is used
in a condition of a classifier rule to symbolise that the LCS should not care about
the value of the corresponding feature in the environment, i.e. it effectively marks
redundant/irrelevant features in the particular case of the rule. Note: Alternative ac-
curate classifiers may consider this feature important in different problem instances
and the niches associated with those instances.

A don’t care symbol, or equivalent form, is utilised in most LCS alphabets used
to encode the environmental message into an applicable format. Its functionality is
most readily understood in binary problems, where the environmental state is repre-
sented by {0,1}. Binary problems are commonly addressed in an LCS by utilising

2.2 Classifier 29

the ternary alphabet {0, 1, #} here. # represents 0 or 1, i.e. all possible values of
the state. When a state is matched to each condition in a classifier, # successfully
matches 0 or 1 (cf. the OR operator in genetic programming).

In the ternary alphabet, a rule with one # matches two states, e.g. 11#1 : 1 matches
both the inputs 1111 and 1101. 2n states are matched for every n #s in the rule, e.g.
1001 : 0 matches one state and is completely specific, #### : 1 matches 24 states
and is completely general. At one point in LCS history, a measure of the specificity
of a rule was used to guide learning, but as the most appropriate number of #s in the
rule is typically unknown a priori, this genotypic measure has fallen out of favour.

When interpreting rules at the end of training, #s enable compaction of rules and
identification of important features that map state to action in a given problem.

2.2.3.2 Overgeneral Rules

It is not sufficient for a rule to match many instances of the problem if its recom-
mended action is occasionally incorrect (in clean problems) or often incorrect (in
noisy problems). Consider the case of reinforcement learning; while the obtained
reward for correct predictions will be high, the reward will be inconsistent as it will
occasionally effect an incorrect action, i.e. occasionally scoring no reward for the
incorrect action. This inconsistency is reflected in low accuracy of prediction, albeit
the average value of the prediction may be high. A rule is termed overgeneral when
it covers more search space than is consistent with its action (i.e. too many #s in
the rule). Note that when it comes to noisy problems (i.e. where we can not expect
rules to make 100% accurate predictions), it can be very difficult to distinguish an
overgeneral rule from an optimal rule that captures a noisy pattern. However, it is
important to understand that overgeneral and overspecific rules can emerge and play
a role in solving both clean and noisy problems.

2.2.3.3 Overspecific Rules

Alternatively, a rule can cover a specific area of the search space where broadening
the region of the search space still requires the same action, i.e. a specified condi-
tion value can be replaced by a # without error in prediction and loss of accuracy.
In binary domains, replacing a specific bit with # doubles the number of instances
a rule matches if the instances are evenly distributed across the sample space. Such
rules are termed overspecific. In clean problems, unlike overgeneral rules, overspe-
cific rules are 100% accurate. They are useful to the system as their recommenda-
tion can be trusted, but they waste resources and often fail to identify all redun-
dancy/irrelevancy in the domain. Given time, the rule discovery components will
identify the more general version. This will displace the overspecific rule through
the deletion process as the more general rule will be bred more often while each rule
will have the same chance of deletion. This increased breeding opportunity for more
general rules is an implicit generalisation pressure unique to LCSs, that encourages

30 2 LCS Concepts

parsimony (i.e. rule simplicity/generality). However, this can require many environ-
mental learning iterations, which has led to the subsumption heuristic method being
developed for LCSs to improve this process (see Section 3.11).

Noisy problem domains again complicate the identification of overspecific rules,
since we can’t expect either optimal rules or overspecific rules to be 100% accurate.

2.2.3.4 Maximally General, Accurate Rules

LCSs seek to ‘optimally’ form maximally general, accurate rules, i.e. not overgen-
eral or overspecific, while always being correct in their recommended action (again
assuming a clean problem). LCSs have many complementary mechanisms (heuris-
tics) to achieve this balance between wanting to cover as much of the domain as
possible with a rule, while still producing an accurate map of input to output.

2.3 System

‘Systems’ are bounded entities having inputs and outputs, with a means to compute
outputs from inputs. Feedback is a core concept. Interaction with the environment
through feedback of the utility of the hypothesised model is essential to guide an
LCS in generating its rules. Feedback may be either the best possible action to take
given a state (supervised learning), the utility of the action taken (reinforcement
learning) or the next state encountered (latent learning, Section 4.7.3).

Systems consist of many components, which is especially true in LCSs. Compo-
nents within a single LCS include methods to match (rules to input), select/predict
(an appropriate action), evaluate (determine worth) and discover (potentially better
rules). LCS research has produced many variations of each component. The specific
assembly of components defines the architecture for each unique LCS algorithm
(think algorithmic building blocks), where some are designed for a very specific
application, and others are more broadly implemented. This has increased the flex-
ibility and applicability of LCSs at the expense of increased complexity (and im-
penetrability to new researchers, which this book seeks to address). Consequently,
LCSs have been described as a concept rather than a single technique.

2.3.1 Interaction with Problems

In order to solve a problem, an LCS must interact with the problem domain. It must
search the space of possible rules in order to map areas of the domain to separate
classes. This ability to interact with the problem (e.g. the 6-bit multiplexer prob-
lem), or environment (e.g. Boolean), stems from the history of LCSs as an artificial
cognitive system rather than an optimisation technique.

2.3 System 31

It is worth differentiating between the sample space and search space of a prob-
lem. The sample space is the unique instances (messages) available from the prob-
lem domain, e.g. 26 for the 6-bit multiplexer problem. The search space is the unique
rules that can be created, which is linked to the sample space together with the cho-
sen alphabet of the LCS; e.g. 36 for the 6-bit multiplexer problem when using a
ternary alphabet (i.e. an alphabet with three symbols).

An individual solution within a domain can be thought of as a set of state-action
rules that encapsulate the underlying properties of the problem. The task of an LCS
is to autonomously identify condition-action rules to describe a problem, which is
analogous to a map which shows where actions sit on conditions. LCSs can make
no mathematical assumptions about the relationships between conditions and ac-
tions, so discontinuous, non-differentiable and otherwise stochastic domains can be
described. LCSs are commonly set up with a separation between conditions and ac-
tions, but they can also form a direct link where conditions are used to calculate the
actions (a computed model or function); see Section 4.8. Thus, although this book
will refer to conditions mapping to actions, this is not always the case.

Tasks within the problem domain may be described as classification, modelling
(including regression), optimisation (this can be framed as classification of solutions
that return the highest value) and many other descriptions.

2.3.1.1 Environment Properties

An environment is the ‘out there’ world that may be sensed by an agent and effected
upon. It is the source of data and the ‘home’ of the problem at hand. Considering
the definition of an agent as observing an environment (sense), affecting the envi-
ronment (act) and purposeful (goal directed), then an LCS may be considered as an
agent. The environment has a defined boundary, which is often an intangible con-
struct rather than physical input-output electronics, that inputs and outputs cross to
enter and leave the agent.

Often an agent is constrained to domains within the environment due to its sen-
sors, such as interacting with Boolean states only. Early LCSs’ domains required
that the input data could be encoded with 0s and 1s only. This resulted in a lack
of precision in many domains and so real-valued encodings were created/adopted.
Modern LCSs can utilise a wide variety of representations so can interact with many
different types of domain.

2.3.1.2 Learning, Adaptive, and Cognitive Systems

It aids insight to consider the broad conceptual differences between learning sys-
tems, adaptive systems, and cognitive systems. A simple, albeit not rigorous, expla-
nation follows: A basic system can have many predefined rules where the structure
of each rule remains constant over time (a condition to action rule population), with
only the worth being changed based on experience (similar to adjusting only the

32 2 LCS Concepts

weights on a fixed-topology artificial neural network). This is a learning system as
it changes due to interaction with the environment during the life of the classifier,
but it does not modify its representation of the environment (i.e. no rule discovery or
deletion). The so-called ‘sense-plan-act’ robotics cycle can fit the model of a learn-
ing system provided all patterns are already known about the world. This does not
work when novel states are sensed or insufficient rules exist to plan correctly.

An adaptive system is one that changes (evolves in this case) its functionality
(e.g. mapping between inputs and outputs) in order to better inhabit its environment.
Adaptation occurs in LCSs when new rules are created in response to environmental
needs - environmental inputs (e.g. no currently matching classifiers exist), feedback
from the environment (e.g. sub-100% performance occurs) or chance/serendipity.

A cognitive system extends the sense-plan-act cycle to a ‘perceive-represent-
reason-learn-act’ cycle. Perception receives the raw sensor values, i.e. features of
the domain, and focuses only on important features of the state of the environment.
Representation encodes the features such that they can be manipulated by the sys-
tem (e.g. corresponding to the condition of an LCS). Reasoning is important as it is
not always straightforward how to map an input to an output (see Chapter 3). Fur-
thermore, artificial systems may reason about which maps might be manipulated to
form potentially better maps, hence modifying the mapping of the environment (see
Section 3.9). The ability to change the structure of the knowledge is a distinguish-
ing property between artificial intelligence techniques. Learning the worth of rules
(see Section 3.6) and adapting to the environment through new rules (see Section
3.10) are both core to LCSs’ performance. Finally, Act, to effect the output of the
cognitive process in the environment is important, although often trivial, in common
applications, e.g. reporting the class in data mining applications.

Hence, although the main task of an LCS is to learn to classify data in a domain,
it is useful to acknowledge their cognitive abilities/roots as this assists in improv-
ing their core functionality. LCSs as cognitive systems, together with comments
on philosophical discussions of whether an artificial system can be intelligent, are
beyond the scope of this book.

Prior to leaving the cognitive heritage, there are a couple of ideas that assist in
improving LCSs’ performance in certain problem domains, i.e. cheap computation
and embodied agent. First, ‘cheap’ means low-cost to the system resources, rather
than low monetary value. This directs that any LCS should be matched to its envi-
ronment in such a way that simple solutions result, e.g. the use of an appropriate
representation scheme and selection methods to suit the task.

Second, it is noted that the goal-directed behaviour of an agent is often a single
goal provided by the user, but multi-objective and goal-switching LCSs exist. This
is especially true in robotic and network applications where the embodied (situated)
agent is more concrete than other applications, say data mining domains. The inter-
action with the environment is crucial to the success of LCSs, as if they are not well
suited then they may fail to function as expected.

2.3 System 33

2.3.1.3 Evaluating Rules

A single rule encapsulates a single If:Then pattern, but there are typically multiple
patterns in a problem. Thus, LCSs have multiple rules in a population that cooperate
to describe the problem. In order for the rules’ fitness to be evaluated, the LCS must
interact with the environment (see Figure 2.2). In certain domains the environment
returns the known (best, current, optimum, ...) action that the system could have
selected from the environment, e.g. turn +65 degrees. This mechanism is termed
supervised learning (SL) when the environment supplies its state and known best
action, e.g. medical risk factors and clinical diagnosis. Many practical applications,
such as data mining, commonly use SL.

EnvironmentLearning Classifier System

Predicted Action/Class

Message/State

Action/Class (or Reward)

Fig. 2.2 Environmental interaction with an LCS. Note that the environmental state is often referred
to as the environmental message when processed in an LCS. LCSs usually return one action to the
environment at a time

Differently, this mechanism would be termed reinforcement learningwhen only
the utility of the action is provided by the environment rather than the optimal
ground truth, e.g. increase in light intensity for a photophilic robot. There is no
explicit punishment in LCS reinforcement learning, as lack of reward is considered
a sufficient signal of lack of worth of a given rule in such a situation. Originally,
all LCSs used reinforcement learning as it was assumed that a ‘teacher’ that knew
the correct and/or incorrect actions was unavailable. Nowadays, as LCSs are being
applied to many real-world problems with known training data, the SL approach is
gaining precedence.

2.3.2 Cooperation of Classifiers

LCSs are considered a population-based technique in that they have a population of
classifiers that describe the patterns in the data.

A single rule in an LCS models a distinct part of the data (i.e. a niche). If there
was only one distinct part of the domain, then only one rule would be needed, e.g. a
six-dimensional binary domain B6 could be completely covered by ######:Action.
However, the vast majority of domains of interest have multiple parts that require

34 2 LCS Concepts

modelling with different rules. Thus LCSs must learn a set of rules if there are
multiple distinct parts of the domain.

The rules within a population cooperate to map the domain (see Figure 2.3).
Here a six-bit problem map is visualised by the two bits on the y-axis and four bits
on the x-axis. The labels on the axes represent the conditions, while the numbers
in the corresponding grid cells represent the actions {0, 1}. In this case, the map
represents the 6-bit MUX problem with the two address-bits on the y-axis reading
left to right and the foud data bits on the x-axis reading top to bottom. Considering
the bottom row, indexed by 00, it can be observed that the first eight elements of
the row (in blue) represent a niche, where all instances specify the action 0, such
that the ‘optimal’, maximally general and accurate classifier, 000### : 0 covers this
niche.

Address

Bits

11

10

01

00

Register Bits

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

Fig. 2.3 Cooperative rules for the 6-bit multiplexer problem. Each region (same shade) represents
a classifier (rule) with associated class (0 or 1) that optimally covers a niche within the domain,
e.g. 000### : 0 is the rule for a niche on the bottom row. There are eight rules in this population,
which are accurate and maximally general

2.3.3 Competition Between Classifiers

Ideally, there would only be one unique and correct rule for each niche of data that
is linked to a specific action. Thus the population would contain the same number
of rules as the domain contains distinct niches of data. However, in the majority of
domains prior knowledge does not exist, so each rule must be learned. Instead of a
single estimate of each unique rule, LCSs allow multiple, slightly different rules for
each part of the sample space (i.e. overlapping rules). That is, multiple hypotheses
are available in an attempt to find the optimum rule for each niche. This is one reason
why we might consider LCSs to be implicit ensemble learners.

Therefore, the rules within a niche compete to be able to map that portion of
the domain. Each rule ‘covers’, i.e. describes, its part of the search space. Multiple

2.4 Problem Properties 35

rules can cover the same instance or cluster of instances, so they must compete to
determine which best describes that data.

Implicit in the concept of overlapping rules competing with each other is that
each rule should cover more than one data instance - preferably all data instances
in the cluster. In the rare instance where there is only one data instance in a cluster,
then a single, specific rule may be appropriate.

Competition within a niche can occur between overlapping rules that may be
overgeneral, overspecific, optimal, or simply poor.

2.4 Problem Properties

Before implementing an LCS, it is worth considering how well we know the prob-
lem. If we know the map of conditions to actions (or models that generate the
input-output pairs) then the problem is solved. It may still be of interest in terms
of studying how the appropriate rules can be created by the technique, or discov-
ering generalisations of the patterns. Such known problems are described as ‘toy’
problems, in contrast to real-world problems where the patterns, relations, noise and
so forth are not known a priori (e.g. the n-bit multiplexer)

If it is possible to enumerate all the inputs to discover the outputs in a tolerable
time limit, e.g. the problem is linearly separable, then there is no need for advanced
techniques like LCS. This is dependent both on the cost of producing the output and
the time it takes to produce all combinations. Similarly, if the problem is mathemat-
ically describable and tractable with existing algorithms, then there is little need for
artificial-intelligence-based techniques, including LCSs, unless a different format
of a solution is sought, or existing solution interpretability is insufficient. However,
most interesting toy and real-world problems have features that are redundant, irrel-
evant, epistatic, heterogeneous, discontinuous, poorly correlated and so on.

2.4.1 Problem Complexity

A problem of interest is called ‘complex’ if simplification renders the solution use-
less, and non-easily decomposable if the problem cannot be simply broken into
subproblems where each is solved and then easily recombined to produce the global
solution. LCSs are well suited to autonomously decomposing complex problems
since they rely on multiple rules. Autonomous decomposition is often more suc-
cessful as humans may not know how to break up the problem appropriately, have
bias, or may not be accurate at defining the boundaries between niches.

We assume that the search for the optimum solution (best set of rules) is not
blind, i.e. feedback exists prior to the optimum solution being evolved. That is, part
solutions and partly correct rules have a measurable and meaningful worth, which
the system can translate into the individual fitness of rules. Further, this feedback

36 2 LCS Concepts

value and the sensed state are not so corrupted by noise to be meaningless. Similarly,
both the problem and feedback have low time variance (see Section 4.7).

Other problem characteristics can render the problem easier or more difficult
for any machine learner. Important characteristics that have been investigated in
the context of LCSs include the size of the search space, modality (i.e. number of
classes and number of niches within a class), smoothness (continuity of genotypic to
phenotypic mapping), separation of classes (overlap of niches, boundaries between
classes), Hamming distance between consecutive rules, robustness of the solution,
separation (features, niches), noise and linear separability of classes (or not). Below
we elaborate on complexities resulting from the size of the search space, redundant
and irrelevant features, and two important complicating data phenomena that LCSs
are particularly well suited to addressing.

2.4.1.1 Size of Search Space

The LCS search space is the number (set) of all possible solutions in terms of the
number of condition-action pairs that the rules can encode. The size of the search
space can be influenced both by the available number of data instances (assuming
LCS rule discovery mechanisms only allow rules that match at least one training
instance to emerge) by the number of features observed in the environment and
how features are encoded. For example, consider how, based on encoding, the string
‘100110’ could represent one feature encoded as a six-bit number, two features with
a three-bit encoding or six features each with Boolean states. Encoding can extend
the length of the condition and thus can increase the size of the search space.

With regard to representation, there is often a trade-off between a simple alphabet
that makes searching the sample space complex and a complex alphabet that makes
searching the sample space simple. The larger the size of the search space, the longer
it actually takes an LCS to explore the alternatives, where this often does not scale
linearly. Furthermore, the number of classifiers needed to cover the domain is likely
to increase. When this happens the curse of dimensionality becomes more of an
issue, where an exponentially larger number of instances are required to identify
complex, high-dimensional niches.

2.4.1.2 Redundancy and Irrelevance

Redundant features are not needed to model the problem as other features repre-
sent a better model, e.g. they give a better prediction or are more compact. While
redundant features still map inputs to outputs, they are not essential to the problem.
For example, when predicting height-to-weight ratio, the feature ‘height in feet and
inches’ is equally important and would still map to the underlying pattern, but is
still considered redundant provided that the feature ‘height in centimetres’ exists.

Irrelevant features are those that do not map to the underlying patterns in the
problem. They can be removed from the environmental data without decreasing the

2.4 Problem Properties 37

performance of the system as part of feature selection. Removing irrelevant features
often improves a classifier’s performance as the irrelevant features act as noise by
creating many false patterns by chance, i.e. patterns that fit the training data but do
not encapsulate true generalisable patterns in the problem applicable to unseen ‘test’
data. However, irrelevant features often can not be removed ahead of time, which
can confound machine learning. LCSs have been shown to be effective in the face
of redundant and irrelevant features, however improved performance and learning
efficiency is always expected in their absence.

2.4.1.3 Epistasis

A big selling point of LCSs is the ability to handle the interaction of different fea-
tures within a problem. Epistasis is a biological term that has been adapted into
AI classification to describe the phenomenon where the value of one feature af-
fects the importance of another feature, e.g. height and weight in predicting obesity.
The variables are no longer independent, which breaks assumptions made in certain
techniques, e.g. naı̈ve Bayes classifiers. This affects their performance to a degree
dependent on the level of epistasis. LCSs cope with epistasis well as they produce a
map that is not based on such independence assumptions.

2.4.1.4 Heterogeneity

Another unique selling point of LCS is the ability to have different conditions
mapped to the same action, e.g. different patterns that cause the same effect. This
acknowledges that separate niches can map to one action. Thus, LCSs divide up the
search space into multiple rules, rather than having to discover one representation
per action, which is often a hard task due to the unrelated features needing to be
combined. In contrast with the standard machine learning paradigm that seeks a sin-
gle best model under the assumption of a homogeneous pattern of association, LCSs
are uniquely well suited to modelling heterogeneous problem domains.

2.4.2 Applications Overview

The original intention of LCSs was to explore natural systems through evolving
artificial systems, but the subsequent research in the field has focused on solving in-
teresting problems. The field of LCSs has also been subsumed into the wider field of
Evolutionary Computation. LCSs are now either tasked with doing valuable prob-
lem solving in industry/business or with exploring what problems can be solved
academically. Therefore, the majority of this book will focus on how to use LCSs to
solve interesting problems.

38 2 LCS Concepts

So what type of problems can LCSs learn? Fortunately, if a problem can be de-
scribed in ‘input-output’ pairs, then LCSs can be applied. Consider optimising a
function within known input bounds; we are interested in determining the parame-
ter values that correspond to the class of the function’s optimal value. Scheduling,
game playing, control and so forth can all be addressed by LCSs in this manner.

More generally, as we have seen, LCSs are commonly applied to both super-
vised and reinforcement learning tasks, including classification, data mining, re-
gression, function approximation, behaviour modelling, adaptive control and more.
Such problems can be single- or multi-step problems where the action relies only
on the current state, or potentially on previous states from the environment, respec-
tively. With regard to classification, LCS can handle binary classes or multi-class
problems as well as class imbalance. Additionally, LCS can function despite noisy
data, redundant or irrelevant features, feature type (discrete, continuous or mixed),
or the presence of missing data (i.e. missing feature values in training instances).

The adaptability of LCSs has been perceived as both a strength and a weakness
- a ‘jack of all trades, but master of none’ has been a label. However, domains
in which LCSs appear to outperform all other approaches have begun to emerge,
including domains with complex heterogeneous patterns of association. Perhaps a
better analogy for LCSs would be a ‘Swiss Army knife’. There are certainly many
tasks where LCSs may be better than alternatives, but we do not claim that LCSs
are better than all other tools for all tasks.

LCSs seek to produce a solution containing accurate and maximally general rules
forming a compact ruleset. There is cooperation between rules to map inputs to
outputs, but there is also competition between rules to optimise each niche within
a search space. This creates many interacting pressures with LCSs having built-in
heuristics to guide this process. These heuristics seek an effective balance between
overgeneralisation and overfitting, direct the population to good/promising areas of
search, compensate for missing data and adjust for unbalanced data. These LCS
heuristics are explored fully in the next chapter.

Finally, it is worth considering what are the characteristics of problems worth
targeting with LCSs, given they are not the most efficient method for simple prob-
lem domains. LCSs work well when there are perpetually novel events, i.e. when
the required action changes due to the frequent change in environmental state. This
can be accompanied by noise and/or irrelevant/redundant data as LCSs have the
ability to generalise to form an underlying predictive model. The domain can have
continual, including real-time, requirements for actions - noting that learned rules
are effected in real time. There is no need for explicit or exactly defined goals as
LCSs can function under either reinforcement or supervised learning schemes. Pay-
off (reinforcement from the environment) can be immediate, but also delayed where
reinforcement is only obtainable through long sequences of actions. Sparseness in
the search space (or payoff) is also accommodated. Applied domain characteristics
often include

• Multimodality
• Multiple classes
• High dimensionality (high number of features)

2.5 Advantages 39

• Epistasis
• Heterogeneity (environmental features of different types)

How all of these abilities of LCSs are achieved is explored in the next chapter.

2.5 Advantages

The uniqueness of LCSs stems from their rule-based approach that has the ability
to divide up the problem into more easily solvable niches than in single-solution
learning. This is achieved through combining the global search of Evolutionary
Computation (EC) with the local optimisation of Machine Learning (ML) in a flex-
ible framework. EC discovers new structure to the solution, while ML tunes the
associated statistics and hence interaction of rules in the solution. There are many
advantages to this unique core algorithmic architecture.

The output of an LCS is a set of human interpretable rules that represent a dis-
tributed and generalised probabilistic prediction model. Distributed in the sense
that the learning resources of rules are allocated to the identified niches, which are
distributed in the search space, as required. Generalised as a single rule covers more
than one decision point (problem instance) in the niche that the rule matches. Prob-
abilistic means not in the strict Bayesian sense, but rather in the way predicted ac-
tions (the model’s output) are determined by the collective voting of matching rules
(relevant to the input). Comparing votes for each action offers an estimate of the
probability or confidence that each possible predicted action is correct.

One of the major advantages of LCSs is their applicability to all sorts of prob-
lems. The previous section reviews many of the general applications and problem
characteristics/challenges to which LCSs are suited. Below we review other key
advantages of LCS algorithms.

Practically, LCSs have many strengths as an EC/ML technique, particularly as
rule-based machine learners. One of their major advantages is that they are flexible
and adaptable in nature, allowing application to many domains with multiple types
of feedback on solution progress available. The previous section reviews many of
the general applications and problem characteristics/challenges to which LCSs are
suited. Below we review other key advantages of LCS algorithms.

LCSs avoid having to make assumptions about the underlying patterns in the
environment, such as linearity of input/output relationships or other mathematical
requirements. They suit problems that are composed of subproblems due to their
niche-based learning core. Importantly, LCSs will still form a simple solution (a
single rule) if that is most appropriate for the problem.

The ‘If ... Then ... ’ format of rules enables them to be human interpretable, which
for many true-valued alphabets is directly readable. Thus, experts in a given prob-
lem domain can directly verify the learned knowledge. A personal anecdote is that
when utilising LCSs for knowledge discovery in a steel strip mill, the rules high-
lighted a centring effect of crowned work rolls, which experienced mill operators
acknowledged was present but not well known.

40 2 LCS Concepts

With regard to data mining, LCS can be applied as a prediction machine, pre-
dicting output from novel input based on past experience. Towards this end, we can
split the data into training/test phases, and apply cross-validation, so that indepen-
dent, unseen datasets are available to evaluate the generality of the solution. LCSs
are also used for knowledge discovery in data as they can identify interesting fea-
ture relationships and identify redundant/irrelevant features as a feature selection
approach.

LCSs are adaptive, meaning that the rule base can acclimate to a changing envi-
ronment in the case of online learning. They are implicitly ensemble learners, since
predictions rely on the vote of a set of ‘relevant’ matching rules that can suggest
different action values. They are also implicitly multi-objective given that a sys-
tem with an accuracy-based fitness will evolve towards the most general as well as
accurate rules thanks to the implicit generalisation pressure unique to LCSs.

2.6 Disadvantages

LCSs are not immune to disadvantages, and it is important to be familiar with those
that are currently recognised. One issue is the computational expense, as evolution
takes time. However, LCSs are much faster than enumeration (often impractically
slow) due to the stochastic-based evolutionary search. Evolutionary search is slow
compared to techniques that descend quickly to a single local (hopefully global)
optimum solution, so LCSs will not win any speed races against such techniques
when both can solve simple problems, but they may prove more effective in complex
problems due to the broader search of EC. Importantly, the evolved solution (ruleset)
operates as fast at making decisions/predictions as other solutions, which for the vast
majority of problems is real-time. Furthermore, the rulebase can be continuously
improved offline as the problem changes, while a snapshot of the rules can run in
real time online.

Despite LCSs having both implicit and explicit generalisation pressures, they can
still overfit training data like any other machine learning approach. Also while rules
lend themselves to being human readable, there is an added challenge to interpreting
a set or population of rules as a model, rather than a single model entity.

Additionally, like many other advanced machine learning approaches, LCSs have
a number of run parameters to consider/optimise. Typically, most parameters can be
left to the ‘sweet spot’ defaults described later in this book, however at least two
critical run parameters can be difficult to optimise for a particular problem domain
(i.e. the maximum rule population size and the number of learning iterations). Fur-
thermore, LCSs are less well known even within machine learning research commu-
nities (however we hope this book helps to change that), there is limited software
availability (which is why we have made educational LCS code available along with
this book) and there is a relatively small body of theoretical work behind LCS algo-
rithms, likely due to their relative algorithmic complexity as well as their stochastic
nature.

http://www.springer.com/978-3-662-55006-9

	2
LCS Concepts
	Abstract
	2.1 Learning
	2.1.1 Modeling with a Ruleset

	2.2 Classifier
	2.2.1 Rules
	2.2.1.1 Rule Worth
	2.2.1.2 Rules Versus Classifiers
	2.2.1.3 Niche

	2.2.2 Representation and Alphabet
	2.2.3 Generalisation
	2.2.3.1 Don’t Care ‘#’ Operator
	2.2.3.2 Overgeneral Rules
	2.2.3.3 Overspecific Rules
	2.2.3.4 Maximally General, Accurate Rules

	2.3 System
	2.3.1 Interaction with Problems
	2.3.1.1 Environment Properties
	2.3.1.2 Learning, Adaptive, and Cognitive Systems
	2.3.1.3 Evaluating Rules

	2.3.2 Cooperation of Classifiers
	2.3.3 Competition Between Classifiers

	2.4 Problem Properties
	2.4.1 Problem Complexity
	2.4.1.1 Size of Search Space
	2.4.1.2 Redundancy and Irrelevance
	2.4.1.3 Epistasis
	2.4.1.4 Heterogeneity

	2.4.2 Applications Overview

	2.5 Advantages
	2.6 Disadvantages

