
Chapter 3
Polynomial Rings

Locally nilpotent derivations are useful if rather elusive objects.
Though we do not have them at all on “majority” of rings, when
we have them, they are rather hard to find and it is even harder
to find all of them or to give any qualitative statements. We do
not know much even for polynomial rings.

Leonid Makar-Limanov, Introduction to [282]

This chapter investigates locally nilpotent derivations in the case B is a polynomial
ring in a finite number of variables over a field k of characteristic zero. Equivalently,
we are interested in the algebraic actions of Ga on An

k .

3.1 Variables, Automorphisms, and Gradings

If B D kŒn� for n � 0, then there exist x1; : : :; xn 2 B such that B D kŒx1; : : :; xn�.
Note that B cannot be generated over k by fewer than n elements Any such set
x D fx1; : : :; xng is called a system of variables or a coordinate system for B over
k. Any subset fx1; : : :; xig is called a partial system of variables for B .1 � i � n/.
A polynomial f 2 B is called a variable or coordinate function for B if and only if
f belongs to some system of variables for B.

The group Autk.B/ of algebraic k-automorphisms of B D kŒn� is called the
general affine group or affine Cremona group in dimension n, and is denoted
GAn.k/. This group may be viewed as an infinite-dimensional algebraic group over
k. See [239].
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74 3 Polynomial Rings

3.1.1 Linear Maps and Derivations

Let V be a vector space of finite dimension n over k. The symmetric algebra S.V/ is
isomorphic to B as a k-algebra and is N-graded: S.V/ D L

d�0 Sd.V/, where Sd.V/
is the vector space of n-forms of degree d in S.V/. In particular, S0.V/ D k and
S1.V/ D V . If B D kŒx1; : : :; xn�, then identifying V in S.V/ with the vector space
kx1 ˚ � � � ˚ kxn in B gives an isomorphism ˛ W S.V/ ! B.

A linear operator L W V ! V induces both a k-algebra endomorphism �L W
S.V/ ! S.V/ and a k-derivation DL W S.V/ ! S.V/. These, in turn, give ˛�L˛

�1 2
Endk.B/ and ˛DL˛

�1 2 Derk.B/. Any � 2 Endk.B/ arising in this way is a linear
endomorphism of B, and anyD 2 Derk.B/ arising in this way is a linear derivation
of B. Given D 2 Derk.B/, D is linearlizable if D is conjugate to a linear derivation
by some element of GAn.k/.

Note that both �L and DL are homogeneous functions of degree 0 relative to the
N-grading of S.V/. In addition, observe that, if I W V ! V is the identity, then
�I W B ! B is the identity, whereas DI is the Euler derivation: DI. f / D df for
f 2 Sd.V/. We also have:

Proposition 3.1 A linear derivation of B is locally finite. If D 2 Derk.B/ is a linear
derivation induced by the linear operator L W V ! V, then D is locally nilpotent if
and only if L is nilpotent.

Proof Suppose that D 2 Derk.B/ is linear, where D D ˇDLˇ
�1 for some

isomorphism ˇ W S.V/ ! B and some linear operator L on V . By Lemma 1.5,
DL is locally finite, and therefore D is locally finite. In addition, Corollary 1.11
implies that DL is locally nilpotent if and only if L is nilpotent. Therefore, D is
locally nilpotent if and only if L is nilpotent. ut

If L 2 GL.V/, then ˛�L˛
�1 2 GAn.k/, and this gives an algebraic embedding

GL.V/ ! GAn.k/. The image of GL.V/ is denoted by GLn.k/, the general linear
group of order n, and elements of GLn.k/ are called linear automorphisms of B.
Suppose that G � GL.V/ is an algebraic subgroup. An algebraic representation
� W G ! GAn.k/ is linearizable if and only if � factors through a representation
� W GL.V/ ! GAn.k/, i.e., � D ��, where � W G ! GL.V/ is the inclusion.

Example 3.2 Let G � GL2.k/ act on V D k2. Then G acts on the symmetric algebra
S.V/ D ˚d�0Sd.V/ D kŒ2� and this action restricts to each homogeneous summand
Vd D Sd.V/ D kdC1. If S.V/ D kŒx; y�, then Vd has basis xiyd�i, 0 � i � d, and is
called the G-module of binary forms of degree d.

3.1.2 Triangular and Tame Automorphisms

Given a coordinate system B D kŒx1; : : :; xn�, an automorphism F 2 GAn.k/ is given
by F D .F1; : : :;Fn/, where Fi D F.xi/ 2 B. The triangular automorphisms
or Jonquières automorphisms are those of the form F D .F1; : : :;Fn/, where
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Fi 2 kŒx1; : : :; xi�.1 The triangular automorphisms form a subgroup, denoted BAn.k/,
which is the generalization of the Borel subgroup in the theory of finite-dimensional
representations. Note that the subgroup BAn.k/ depends on the underlying coordi-
nate system.

The tame subgroup of GAn.k/ is the subgroup generated by GLn.k/ and BAn.k/.
Its elements are called tame automorphisms relative to the coordinate system x. It
is known that for n � 2, every element of GAn.k/ is tame (see Chap. 4), whereas
non-tame automorphisms exist in GA3.k/. See [382, 383].

As to gradings of polynomial rings, we are mainly interested in Zm-gradings for
some m � 1. In particular, suppose B D kŒx1; : : :; xn�. Given a homomorphism
˛ W Zn ! Zm for m � 1, define the function deg˛ on the set of monomials
by deg˛.x

e1
1 � � � xen

n / D ˛.e1; : : :; en/. This defines a Zm-grading B D L
i2Zm Bi.

For example, if ˛ W Zn ! Z is defined by ˛.e1; : : :; en/ D P
ei, then the

induced grading is called the standard Z-grading of B, relative to x. Likewise,
if ˛.e1; : : :; en/ D e1, then B is graded according to its usual degree relative to x1.

Remark 3.3 By considering the Jordan normal form of its defining matrix, we see
that any linear Ga-action on An is conjugate to a linear triangular Ga-action. In
addition, it is well-known that an action of a linear algebraic group G on An can be
extended to a linear action on some larger affine space AN . Therefore, any algebraic
Ga-action on An extends to a linear triangular Ga-action on some larger affine
space AN .

3.2 Derivations of Polynomial Rings

3.2.1 Definitions

Let B D kŒn�. Given D 2 Derk.B/, define the corank of D to be the maximum integer
i such that there exists a partial system of variables fx1; : : :; xig of B contained in
kerD. In other words, the corank of D is the maximal number of variables within
the same system annihilated by D. Denote the corank of D by corank.D/. The rank
of D is rank.D/ D n � corank.D/. By definition, the rank and corank are invariants
of D, in the sense that these values do not change after conjugation by an element
of GAn.k/. The rank and corank were first defined in [159].

1Ernest Jean Philippe Fauque de Jonquières (1820–1901) was a career officer in the French navy,
achieving the rank of vice-admiral in 1879. He learned advanced mathematics by reading works of
Poncelet, Chasles, and other geometers. In 1859, he introduced the planar transformations .x; y/ !�

x; a.x/yCb.x/
c.x/yCd.x/

�
, where ad � bc ¤ 0. These were later studied by Cremona.
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A k-derivation D of B is said to be rigid when the following condition holds: If
corank.D/ D i, and if fx1; : : :; xig and f y1; : : :; yig are partial systems of variables
of B contained in kerD, then kŒx1; : : :; xi� D kŒ y1; : : :; yi�. This definition is due to
Daigle [69].

We say that D 2 Derk.B/ is quasi-linear if and only if there exists a coordinate
system x D .x1; : : :; xn/ and matrix M 2 Mn.kerD/ such that Dx D xM, where
Dx D .Dx1; : : :;Dxn/. Note that D is locally nilpotent if and only if M is a nilpotent
matrix, since Dix D xMi. A family of quasi-linear locally nilpotent derivations is
discussed in Sect. 3.9.3.

D 2 Derk.B/ is a triangular derivation of B if and only if Dxi 2 kŒx1; : : :; xi�1�
for i D 2; : : :; n and Dx1 2 k. Note that triangularity depends on the choice of
coordinates on B. By a triangularizable derivation of B we mean any D 2 Derk.B/
which is triangular relative to some system of coordinates on B, i.e., conjugate to
a triangular derivation. As we will see, the triangular derivations form a large and
important class of locally nilpotent derivations of polynomial rings. Several of the
main examples and open questions discussed below involve triangular derivations.

For polynomial rings, other natural categories of derivations to study include the
following: Let D 2 Derk.B/ for B D kŒx1; : : :; xn� D kŒn�.

1. D is a monomial derivation if each image Dxi is a monomial in x1; : : :; xn.
2. D is an elementary derivation if, for some j with 1 � j � n, Dxi D 0 for
1 � i � j, and Dxi 2 kŒx1; : : :; xj� if j C 1 � i � n.

3. D is a nice derivation2 if D2xi D 0 for each i.

These definitions depend on the underlying coordinate system. Note that any nice
derivation is locally nilpotent, and that any elementary derivation is both triangular
and nice. We also have:

Proposition 3.4 ([243]) For the polynomial ring B D kŒx1; : : :; xn� D kŒn�, every
monomial derivation D 2 LND.B/ is triangular relative to some ordering of
x1; : : :; xn.

Proof We may assume, with no loss of generality, that:

degD.x1/ � degD.x2/ � � � � � degD.xn/

Given i, write Dxi D axe1
1 � � � xen

n ¤ 0 for a 2 k and ei � 0. If Dxi ¤ 0, then
degD.xi/� 1 D Pn

jD1 ej degD.xj/. Due to the ordering above, this is only possible if
ej D 0 for j � i. Therefore, Dxi 2 kŒx1; : : :; xi�1� for every i. ut
We will see that triangular monomial derivations provide us with important
examples.

2Van den Essen gives a more exclusive definition of a nice derivation. See [142], 7.3.12.
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3.2.2 Partial Derivatives

To each system of variables x D .x1; : : :; xn/ on the polynomial ring B D kŒx� we
associate a corresponding system of partial derivatives @xi relative to x, 1 � i � n.
In particular, @xi 2 Derk.B/ is defined by @xi.xj/ D ıij (Kronecker delta). Another
common notation for @xi is

@
@xi
. Given f 2 B, let fxi D @xi f .

Note that @xi is locally nilpotent for each i, since B D AŒxi� for A D
kŒx1; : : :;bxi; : : :; xn�, and @xi .A/ D 0. Note also that the meaning of @xi depends on the
entire system of variables to which xi belongs. For example, in the two-dimensional
case, kŒx; y� D kŒx; yCx�, and @x. yCx/ D 1 relative to .x; y/, whereas @x. yCx/ D 0

relative to .x; y C x/. In general, we will say D 2 LND.B/ is a partial derivative if
and only if there exists a system of coordinates . y1; : : :; yn/ on B relative to which
D D @y1 .

It is easy to see that, as a B-module, Derk.B/ is freely generated by f@x1 ; : : :; @xng,
and that this is a basis of commuting derivations. In particular, given D 2 Derk.B/:

D D
X

1�i�n

D.xi/@xi

To verify this expression for D, it suffices to check equality for each xi, and this is
obvious. Note that the rank of D is the minimal number of partial derivatives needed
to express D in this form. Thus, elements of Derk.B/ having rank one are precisely
those of the form f@x1 for f 2 B, relative to some system of coordinates .x1; : : :; xn/

for B.

Example 3.5 On the polynomial ring B D kŒx1; : : :; xn� D kŒn�, define the derivation:

D D
nX

iD1

@

@xi

If N D Qn�1
iD1 ii, then

WD.x
n�1
1 ; : : :; xn�1

n / D N � det

0

B
B
B
B
B
@

xn�1
1 � � � xn�1

n

xn�2
1 � � � xn�2

n
:::

:::

x1 � � � xn

1 � � � 1

1

C
C
C
C
C
A

D N �
Y

i>j

.xi � xj/ ;

i.e., the Vandermonde determinant of x1; : : :; xn may be realized as a Wronskian. ut
The partial derivatives @xi also extend (uniquely) to the field K D k.x1; : : :; xn/

by the quotient rule, although they are no longer locally nilpotent on all K:

Nil.@xi/ D k.x1; : : :;bxi; : : :; xn/Œxi� :
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In this case, we see that Derk.K/ is a vector space over K of dimension n, with basis
@x1 ; : : :; @xn . More generally:

Proposition 3.6 If L is a field of finite transcendence degree n over k, then Derk.L/
is a vector space over L of dimension n.

Proof Suppose k � k.x1; : : :; xn/ � L for algebraically independent xi, and set K D
k.x1; : : :; xn/. Suppose D 2 Derk.L/ and t 2 L are given, and let P 2 KŒT� D KŒ1�

be the minimal polynomial of t over k. Suppose P.T/ D P
i aiTi for ai 2 K. Then

0 D D.P.t// D P0.t/Dt C P
i D.ai/ti. Since P0.t/ ¤ 0, this implies

Dt D �.P0.t//�1
X

i

D.ai/t
i

meaning that D is completely determined by its values on K. Conversely, this same
formula shows that every D 2 Derk.K/ can be uniquely extended to L.

In particular, the partial derivatives @xi extend uniquely to L. If f 2 K and D 2
Derk.L/, then Df D @x1 fDx1 C � � � C @xn fDxn. We conclude that

Derk.L/ D spanLf@x1 ; : : :; @xn g :

If a1@x1C� � � an@xn D 0 for ai 2 L, then evaluation at xi shows that ai D 0. Therefore,
the partial derivatives are linearly independent over L, and the dimension of Derk.L/
equals n. ut
Proposition 3.7 (Multivariate Chain Rule) Suppose D 2 Derk.K/ for K D
k.x1; : : :; xn/, and f1; : : :; fm 2 K. Then for any g 2 k. y1; : : :; ym/ D k.m/:

D
�
g. f1; ; ; :fm/

� D @g

@y1
. f1; : : :; fm/ � Df1 C � � � C @g

@ym
. f1; : : :; fm/ � Dfm

Proof By the product rule, it suffices to assume g 2 kŒ y1; : : :; ym�. In addition,
by linearity, it will suffice to show the formula in the case g is a monomial:
g D ye1

1 � � � yem
m for e1; : : :; em 2 N.

From the product rule and the univariate chain rule, we have that:

@

@xj
. f e1
1 � � � f em

m / D
X

i

f e1
1 � � � bf ei

i � � � f em
m � @xj. f ei

i /

D
X

i

ei f e1
1 � � � f ei�1

i � � � f em
m � . fi/xj
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Since D D Dx1@x1 C � � � C Dxn@xn , we have:

D. f e1
1 � � � f em

m / D
X

j

@xj. f e1
1 � � � f em

m / � Dxj

D
X

j

X

i

. fi/xj � ei f e1
1 � � � f ei�1

i � � � f em
m � Dxj

D
X

i

X

j

. fi/xj � ei f e1
1 � � � f ei�1

i � � � f em
m � Dxj

D
X

i

ei f e1
1 � � � f ei�1

i � � � f em
m

X

j

. fi/xj � Dxj

D
X

i

ei f e1
1 � � � f ei�1

i � � � f em
m � Dfi

D
X

i

@g

@yi
. f e1
1 � � � f em

m / � Dfi

ut
The use of partial derivatives also allows us to describe homogeneous decompo-

sitions of derivations relative to G-gradings of B D kŒx1; : : :; xn� D kŒn�.

Proposition 3.8 (See Prop. 5.1.14 of [142]) Let G be an abelian group and B DL
g2G Bg a G-grading such that xi is G-homogeneous for 1 � i � n. Every nonzero

D 2 Derk.B/ admits a unique decomposition D D P
g2G Dg, where Dg 2 Derk.B/

is G-homogeneous of degree g and Dg D 0 for all but finitely many g 2 G.

Proof There exist f1; : : :; fn 2 B such that D D P
fi@xi . Since each xi is G-

homogeneous, each partial derivative @xi is a G-homogeneous derivation of B. Each
coefficient function fi admits a decomposition into G-homogeneous summands;
suppose fi D P

g2G. fi/g. Then each summand fi@xi can be decomposed as a finite
sum of G-homogeneous derivations, namely, fi@xi D P

g2G. fi/g@xi . Therefore,
D D P

i;g. fi/g@xi , and by gathering terms of the same degree, the desired result
follows. ut
Example 3.9 Let G D Z2 and define a G-grading on CŒx; y; z� D CŒ3� by declaring
that x; y; z are G-homogeneous with degG x D degG z D 0 and degG y D 1. Then
@x; @y; @z are G-homogeneous with degG @x D degG @z D 0 and degG @y D 1. Define
D 2 LND.CŒx; y; z�/ by:

D D .�3z2/@x C .3iz2/@y C 2.x � iy/@z

Then D D D0 C D1 for D0 D .�3z2/@x C 2.x � iy/@z and D1 D .3iz2/@y. Note that,
if f D x2 C y2 C z3, then degG f D 0 and Df D 0.
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The preceding example can be used to show that Proposition 3.8 does not
generalize to affine rings: Let B D CŒx; y; z�=. f / and let ı 2 LND.B/ be the quotient
derivation defined by D. In particular, ı ¤ 0. Since f is G-homogeneous, B inherits
a non-trivial G-grading. However, it is shown in [83], Prop. 6.5, that � D 0 for any
G-homogeneous� 2 LND.B/.

On the other hand, recall that when the group G is totally ordered and B is a
G-graded affine k-domain, then any nonzero D 2 LND.B/ induces a nonzero G-
homogeneous element of LND.B/; see Sect. 1.1.5.

3.2.3 Jacobian Derivations

Let B D kŒx1; : : :; xn� D kŒn�. The jacobian matrix of f1; : : :; fm 2 B is the m � n
matrix of partial derivatives:

J . f1; : : :; fm/ WD @. f1; : : :; fm/

@.x1; : : :; xn/
D �

. fi/xj

�

Note that the jacobian matrix depends on the underlying system of coordinates.
When m D n, the jacobian determinant of f1; : : :; fn 2 B is detJ . f1; : : :; fn/ 2 B.

Suppose kŒ y1; : : :; ym� D kŒm�, and let F W kŒ y1; : : :; ym� ! kŒx1; : : :; xn� be a k-
algebra homomorphism. Then the jacobian matrix of F is J .F/ D J . f1; : : :; fm/,
where fi D F. yi/, and the jacobian determinant of F is detJ .F/.3 In addition,
suppose A D .aij/ is a matrix with entries aij in kŒ y1; : : :; ym�. Then F.A/ denotes
the matrix

�
F.aij/

�
with entries in kŒx1; : : :; xm�.

Given k-algebra homomorphisms

kŒz1; : : :; zl�
G! kŒ y1; : : :; ym�

F! kŒx1; : : :; xn�

the chain rule for jacobian matrices is

J .F ı G/ D F.J .G// � J .F/

where .�/ on the right denotes matrix multiplication. This follows from the multi-
variate chain rule above. Note that if J .G/ is a square matrix, then we have:

detF .J .G// D F .detJ .G//

Observe that the standard properties of determinants imply that:

detJ is a k-derivation of B in each one of its arguments.

3Some authors use DF to denote the jacobian matrix of F, but we prefer to reserve D for derivations.
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In particular, suppose f1; : : :; fn�1 2 B are given, and set f D . f1; : : :; fn�1/. Then f
defines �f 2 Derk.B/ via:

�f.g/ WD detJ . f1; : : :; fn�1; g/ .g 2 B/

�f is called the jacobian derivation of B determined by f.
Observe that the definitions of jacobian matrices and jacobian derivations also

extend to the rational function field K D k.x1; : : :; xn/.
If F D . f1; : : :; fn/ is a system of variables for B, then:

detJ .F/ D det
@. f1; : : :; fn/

@.x1; : : :; xn/
D �f. fn/ 2 k�

This is easily seen from the chain rule: By definition, F admits a polynomial inverse
F�1, and I D FF�1 implies that

1 D det
�
F.J .F�1// � J .F/� D detF.J .F�1// detJ .F/

meaning detJ .F/ is a unit of B.
In the other direction lurks the famous Jacobian Conjecture, which can be

formulated in the language of derivations: Suppose f D . f1; : : :; fn�1/ for fi 2 B.

If �f has a slice s, then kŒ f1; : : :; fn�1; s� D B. Equivalently, if �f has a slice, then �f is
locally nilpotent and ker�f D kŒ f1; : : :; fn�1�.

See van den Essen [142], Chap. 2, for further details about the Jacobian
Conjecture.

Let B D L
i2Z Bi be the standard Z-grading relative to .x1; : : :; xn/. Given a

system of variables F D . f1; : : :; fn/ for B, write F D P
i2Z Fi, where Fi D

.. f1/i; : : :; . fn/i/. It is easy to check that detJ .F/ D detJ .F1/ 2 k�. It follows
that F1 is a linear system of variables for B. We have thus shown:

F 2 GAn.k/ ) F1 2 GLn.k/ (3.1)

Following are several lemmas about jacobian derivations, which will be used to
prove certain properties of locally nilpotent derivations of polynomial rings.

Lemma 3.10 Suppose K D k.x1; : : :; xn/ D k.n/. Given f1; : : :; fn�1 2 K, set f D
. f1; : : :; fn�1/ and consider�f 2 Derk.K/.

(a) �f D 0 if and only if f1; : : :; fn�1 are algebraically dependent.
(b) If �f ¤ 0, then ker�f is the algebraic closure of k. f1; : : :; fn�1/ in K.
(c) For any g 2 K, �f.g/ D 0 if and only if f1; : : :; fn�1; g are algebraically

dependent.

Proof (Following [276]) To prove part (a), suppose f1; : : :; fn�1 are algebraically
dependent. Let P.t/ be a polynomial with coefficients in the field k. f2; : : :; fn�1/ of
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minimal degree such that P. f1/ D 0. Then:

0 D �.P. f1/;f2;:::;fn�1/ D P0. f1/�. f1;f2;:::;fn�1/ D P0. f1/�f

By minimality of degree, P0. f1/ ¤ 0, so �f D 0.
Conversely, suppose f1; : : :; fn�1 are algebraically independent, and choose fn 2 K

transcendental over k. f1; : : :; fn�1/. Then for each i, xi is algebraic over k. f1; : : :; fn/,
and there exists Pi 2 kŒ y1; : : :; ynC1� D kŒnC1� such that Pi. f1; : : :; fn; xi/ D 0. Now
@Pi=@ynC1 ¤ 0, since otherwise Pi gives a relation of algebraic dependence for
f1; : : :; fn. We may assume the degree of Pi is minimal in ynC1, so that @Pi=@ynC1 is
nonzero when evaluated at . f1; : : :; fn; xi/.

By the chain rule, for each i and each j,

0 D @xj Pi. f1; : : :; fn; xi/ D
X

1�s�n

.Pi/s. fs/xj C .Pi/nC1.xi/xj

where .Pi/s denotes
@Pi
@ys
. f1; : : :; fn; xi/. In matrix form, this becomes

0 D

0

B
@

.Pi. f1; : : :; fn; xi//x1
:::

.Pi. f1; : : :; fn; xi//xn

1

C
A D M

0

B
@

.Pi/1
:::

.Pi/n

1

C
A C

0

B
B
B
B
B
B
@

0
:::

.Pi/nC1
:::

0

1

C
C
C
C
C
C
A

where M D J . f1; : : :; fn/. Let ei D .0; : : :; 1; : : :0/ 2 Kn be the standard basis
vectors .1 � i � n/. The image of M as a linear operator on Kn is spanned by
.P1/nC1e1; : : :; .Pn/nC1en, and since .Pi/nC1 ¤ 0 for each i, we conclude that M is
surjective. Therefore, detM D �f. fn/ ¤ 0. So part (a) is proved.

To prove (b), note first that, under the hypothesis �f ¤ 0, part (a) implies
f1; : : :; fn�1 are algebraically independent. This means that the transcendence degree
of k. f1; : : :; fn�1/ equals n � 1. Since k. f1; : : :; fn�1/ � ker�f, we have that ker�f

is the algebraic closure of k. f1; : : :; fn�1/ in K.
To prove (c), suppose first that f1; : : :; fn�1; g are algebraically independent. Then

f1; : : :; fn�1 are algebraically independent, and ker�f is an algebraic extension of
k. f1; : : :; fn�1/. Since g is transcendental over k. f1; : : :; fn�1/, it is also transcendental
over ker�f. Therefore,�f.g/ ¤ 0.

Conversely, suppose that f1; : : :; fn�1; g are algebraically dependent. If f1; : : :; fn�1
are algebraically independent, the same argument used above shows that g 2 ker�f.
And if f1; : : :; fn�1 are algebraically dependent, then �f is the zero derivation, by
part (a). ut
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Lemma 3.11 (Lemma 6 of [276]) Suppose K D k.x1; : : :; xn/ D k.n/ and
D 2 Derk.K/ has tr:degk.kerD/ D n � 1. Then for any set f D . f1; : : :; fn�1/ of
algebraically independent elements of kerD, there exists a 2 K such that D D a�f.

Proof First, kerD D ker�f, since each is equal to the algebraic closure of
k. f1; : : :; fn�1/ in K. Choose g 2 K so that Dg ¤ 0. Define a D Dg.�fg/�1. Then
D D a�f when restricted to the subfield k. f1; : : :; fn�1; g/. Since Dg ¤ 0, g is
transcendental over kerD, hence also over k. f1; : : :; fn�1/. Thus, K is an algebraic
extension of k. f1; : : :; fn�1; g/. By Proposition 1.14 we conclude that D D a�f on
all of K. ut
Lemma 3.12 (Lemma 7 of [276]) For n � 2, let K D k.x1; : : :; xn/ D k.n/.
Given f1; : : :; fn�1 2 K algebraically independent, set f D . f1; : : :; fn�1/. If g D
.g1; : : :; gn�1/ for gi 2 ker�f, then there exists a 2 ker�f such that �g D a�f.

Proof If�g D 0, we can take a D 0. So assume �g ¤ 0, meaning that g1; : : :; gn�1
are algebraically independent. In particular, gi 62 k for each i.

Since tr:deg:kker�f D n � 1, the elements f1; : : :; fn�1; g1 are algebraically
dependent. Let P 2 kŒT1; : : :;Tn� D kŒn� be such that P.f; g1/ D 0. The notation Pi

will denote the partial derivative @P=@Ti. Then we may assume that Pn.f; g1/ ¤ 0;
otherwise replace P by Pn. Likewise, by re-ordering the fi if necessary, we may
assume that P1.f; g1/ ¤ 0. It follows that:

0 D �.P.f;g1/;f2;:::;fn�1/

D
X

1�i�n�1
Pi.f; g1/�. fi;f2;:::;fn�1/ C Pn.f; g1/�.g1;f2;:::;fn�1/

D P1.f; g1/�. f1;f2;:::;fn�1/ C Pn.f; g1/�.g1;f2;:::;fn�1/

Thus,�.g1;f2;:::;fn�1/ D a�f for some nonzero a 2 ker�f.
If n D 2 we are done. Otherwise n � 3, and we may assume inductively that for

some i with 1 � i � n � 2 we have

�.g1;:::;gi;fiC1:::;fn�1/ D b�f

for some nonzero b 2 ker�f. Then g1; : : :; gi; fiC1: : :; fn�1 are algebraically
independent, since the derivation they define is nonzero. Choose Q 2 kŒT1; : : :;Tn�

with Q.g1; : : :; gi; fiC1; : : :; fn�1; giC1/ D 0, noting that Qn ¤ 0 (otherwise Q is a
dependence relation for g1; : : :; gi; fiC1; : : :; fn�1). By re-ordering the fi if necessary,
we may assume that QiC1.g1; : : :; gi; fiC1; : : :; fn�1; giC1/ ¤ 0. As above, we have

0 D �.g1;:::;gi;Q.�/;fiC2;:::;fn�1/

D QiC1.�/�.g1;:::;gi;fiC1;:::;fn�1/ C Qn.�/�.g1;:::;gi;giC1;fnC2;:::;fn�1/

D QiC1.�/ � b�f C Qn.�/�.g1;:::;gi;giC1;fnC2;:::;fn�1/
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where .�/ denotes the input .g1; : : :; gi; fiC1; : : :; fn�1; giC1/. Therefore,

�.g1;:::;giC1;fiC2:::;fn�1/ D c�f

for some nonzero c 2 ker�f. By induction, the proof is complete. ut
If K D k.x1; : : :; xn/ D k.n/ and D 2 Derk.K/, define the divergence of D by:

div.D/ D
X

i

@xi .Dxi/

Lemma 3.13 If �f is a jacobian derivation of k.n/, then div.�f/ D 0.

Proof Given xi, Proposition 2.60 implies that:

@xi

�
�f.xi/

� D
nX

jD1
�. f1;:::;. fj/xi ;:::;fn�1/.xi/

Therefore:

div.�f/ D
X

1�i;j�n

�. f1;:::;. fj/xi ;:::;fn�1/.xi/

Expanding these determinants, we see that

div.�f/ D
X

�2Sn

sign.�/. f1/y1 . f2/y2 � � � . fj/yjyn � � � . fn�1/yn�1

where � D . y1; : : :; yn/ is a permutation of .x1; : : :; xn/. Since . fj/yjyn D . fj/ynyj ,
terms corresponding to . y1; : : :; yj; : : :; yn/ and . y1; : : :; yn; : : :; yj/ cancel each other
out, their signs being opposite. Therefore, the entire sum is 0. ut

An additional fact about jacobian derivations is due to Daigle. It is based on the
following result; the reader is referred to the cited paper for its proof.

Proposition 3.14 (Cor. 3.10 of [70]) Let f1; : : :; fm 2 B D kŒx1; : : :; xn� D kŒn� be
given. Set A D kŒ f1; : : :; fm� and M D J . f1; : : :; fm/. Suppose I � B is the ideal
generated by the d � d minors of M, where d is the transcendence degree of A over
k. If A is factorially closed in B, then height.I/ > 1.

Corollary 3.15 (Cor. 2.4 of [70]) Suppose f1; : : :; fn�1 2 B D kŒx1; : : :; xn� D
kŒn� are algebraically independent, and set f D . f1; : : :; fn�1/. If kŒ f1; : : :; fn�1� is a
factorially closed subring of B, then �f is irreducible, and ker�f D kŒ f1; : : :; fn�1�.

Proof Since �f ¤ 0, we have that ker�f is equal to the algebraic closure of
kŒ f1; : : :; fn�1� in B. By hypothesis, kŒ f1; : : :; fn�1� is factorially closed, hence also
algebraically closed in B. Therefore ker�f D kŒ f1; : : :; fn�1�.
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Let I be the ideal generated by the image of �f, namely,

I D .�f.x1/; : : :; �f.xn// :

Since the images �f.xi/ are precisely the .n � 1/ � .n � 1/ minors of the jacobian
matrix J . f1; : : :; fn�1/, the foregoing proposition implies that height.I/ > 1.
Therefore, I is contained in no principal ideal other than B itself, and �f is
irreducible. ut
This, of course, has application to the locally nilpotent case, as we will see.
However, not all derivations meeting the conditions of this corollary are locally
nilpotent. For example, it was pointed out in Chap. 1 that kŒx2 � y3� is factorially
closed in kŒx; y� D kŒ2�, but is not the kernel of any locally nilpotent derivation of
kŒx; y�.

Another key fact about Jacobians is given by van den Essen.

Proposition 3.16 (1.2.9 of [142]) Let k be a field of characteristic zero and let F D
.F1; : : :;Fn/ for Fi 2 kŒx1; : : :; xn� D kŒn�. Then the rank of J .F/ equals tr:degkk.F/.
Here, the rank of the jacobianmatrix is defined to be the maximal order of a nonzero
minor of J .F/.
Remark 3.17 It was observed that the jacobian determinant of a system of variables
in a polynomial ring is always a unit of the base field. This fact gives a method
to construct locally nilpotent derivations of polynomial rings, as follows. Let B D
kŒx1; : : :; xn� D kŒn� for n � 2. Given i with 1 � i � n � 1, let K D k.x1; : : :; xi/, and
suppose fiC1; : : :; fn�1 2 B satisfy KŒxiC1; : : :; xn� D KŒ fiC1; : : :; fn�1; g� for some
g 2 B. Define D 2 Derk.B/ by

D D �.x1;:::;xi;fiC1;:::;fn�1/

and let E denote the extension of D to KŒxiC1; : : :; xn�. Since E. fj/ D 0 for each j and
E.g/ 2 K�, it follows that E is locally nilpotent. Therefore, D (being a restriction of
E) is also locally nilpotent.

Example 3.18 Let B D CŒx; y; z; u� D CŒ4�, and define:

p D yu C z2 ; v D xz C yp ; w D x2u � 2xzp � yp2

The Vénéreau polynomials are fn WD y C xnv, n � 1. The preceding remark can be
used to prove that fn is an x-variable of B when n � 3.

First, define a C.x/-derivation 	 of C.x/Œ y; z; u� by

	y D 0 ; 	z D x�1y ; 	u D �2x�1z



86 3 Polynomial Rings

noting that 	p D 0. Then:

y D exp. p	/. y/ ; v D exp. p	/.xz/ and w D exp. p	/.x2u/

It follows that, for all n � 1:

C.x/Œ y; z; u� D C.x/Œ y; v;w� D CŒ fn; v;w�

Next, assume n � 3, and define a derivation d of B by d D �.x;v;w/. Since
C.x/Œ y; v;w� D C.x/Œ y; z; u�, it follows from the preceding remark that d is locally
nilpotent. And since dx D dv D 0, we have that xn�3vd is also locally nilpotent. In
addition, it is easily checked that dy D x3. Therefore:

exp.xn�3vd/.x/ D x and exp.xn�3vd/. y/ D y C xn�3vd. y/ D y C xnv D fn

Set Pn D exp.xn�3vd/.z/ and Qn D exp.xn�3vd/.u/. Then CŒx; fn;Pn;Qn� D
CŒx; y; z; u�.

The Vénéreau polynomials are further explored in Sect. 10.3 below.

3.2.4 Homogenizing a Derivation

Suppose B D kŒx1; : : :; xn� D kŒn�, and D 2 Derk.B/ is given, D ¤ 0. Set A D kerD.
Write Dxi D fi.x1; : : :; xn/ for fi 2 B, and set d D maxi deg.Dxi/, where degrees
are taken relative to the standard Z-grading of B. The homogenization of D is the
derivation DH 2 Derk.BŒw�/ defined by

DH.w/ D 0 and DH.xi/ D wdfi.
x1
w ; : : :;

xn
w /

where w is an indeterminate over B. Note that DH is homogeneous of degree d � 1,
relative to the standard grading of BŒw�, and DH mod .w � 1/ D D as derivations of
B. In addition, if D is (standard) homogeneous to begin with, then DH.xi/ D Dxi for
every i.

In order to give further properties of DH relative to D, we first extend D to the
derivationD 2 Derk.BŒw;w�1�/ defined by Db D Db for b 2 B, and Dw D 0. Note
that kerD D AŒw;w�1�, and that if D 2 LND.B/, then D 2 LND.BŒw;w�1�/.

Next, define ˛ 2 Autk.BŒw;w�1�/ by ˛.xi/ D xi
w and ˛.w/ D w, noting that

˛D˛�1 2 Derk.BŒw;w�1�/. In particular:

˛D˛�1.xi/ D ˛D.wxi/ D w˛.Dxi/ D wfi.
x1
w ; : : :;

xn
w /
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Therefore, wd�1 � ˛D˛�1.xi/ D DH.xi/, that is, DH equals the restriction of
wd�1˛D˛�1 to BŒw�. From this we conclude that DH has the following properties.

1. DH is homogeneous of degree d � 1 in the standard Z-grading of BŒw�.
2. ker .DH/ D ker .˛D˛�1/\ BŒw� D ˛.AŒw;w�1�/ \ BŒw�
3. If p W BŒw� ! B is evaluation at w D 1, then p.kerDH/ D kerD.
4. If D is irreducible, then DH is irreducible.
5. If D 2 LND.B/, then DH 2 LNDw.BŒw�/.

Since DH 	 D modulo .w � 1/, the assignment D 7! DH is an injective function
from LND.B/ into the subset of standard homogeneous elements of LNDw.BŒw�/.
This is not, however, a bijective correspondence, since DH will never be of the form
wE for E 2 LNDw.BŒw�/.

Homogenizations are used in Chap. 8 to calculate kernel elements of D, where
property (3) above is especially important.

3.2.5 Other Base Rings

Observe that many of the definitions given for kŒn� naturally generalize to the rings
AŒn� for non-fields A. In this case, we simply include the modifier over A. For
example, if B D AŒx1; : : :; xn�, we refer to variables of B over A as those f 2 B such
that B D AŒ f �Œn�1�. Likewise, partial derivatives over A, jacobian derivations
over A, linear derivations over A, and triangular derivations over A are defined
as elements of DerA.B/ in the obvious way.

For example, let A be a commutative k-domain and AŒx1; : : :; xn� D AŒn�. Given
D 2 DerA.AŒx1; : : :; xn�/, the divergence of D over A is defined by

divA.D/ D
nX

iD1
@xi.Dxi/

where @xi.A/ D 0 and @xi .xj/ D ıij for each i; j. Nowicki [333] defines D to be
special if divA.D/ D 0. When D is locally nilpotent, we have:

Proposition 3.19 ([142], Prop. 1.3.51; [22], Prop. 2.8) divA.D/ D 0 for every D 2
LNDA.AŒx1; : : :; xn�/.

3.3 Locally Nilpotent Derivations of Polynomial Rings

One fundamental fact about locally nilpotent derivations of polynomial rings is the
following, which is due to Makar-Limanov (Lemma 8 of [276]).
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Theorem 3.20 (Makar-Limanov Theorem) Let D 2 LND.B/ be irreducible,
where B D kŒn�. Let f1; : : :; fn�1 be algebraically independent elements of kerD, and
set f D . f1; : : :; fn�1/. Then there exists a 2 kerD such that �f D aD. In particular,
�f 2 LND.B/.
In case n � 3, even stronger properties hold; see Theorem 5.9 below.

The proof below follows that of Makar-Limanov, using the lemmas proved earlier
concerning jacobian derivations.

Proof Let S be the set of nonzero elements of A D kerD, and let K be the field S�1A.
Then D extends to a locally nilpotent derivation S�1D of S�1B. By Principle 13, we
have that K D ker .S�1D/, and S�1B D KŒr� D KŒ1� for some local slice r of D.
Therefore .S�1B/� D K�.

Extend D to a derivation D0 on all frac.B/ via the quotient rule. (Note: D0 is not
locally nilpotent.) From Corollary 1.29, we have that kerD0 D K.

By Lemma 3.11, there exists 
 2 frac.B/ such that D0 D 
�f. Note that �f

restricts to a derivation of B.
Suppose 
 D b=a for a; b 2 B with gcd.a; b/ D 1. Write �f D cı for c 2 B

and irreducible ı 2 Derk.B/. Then aD D bcı, and by Proposition 2.3 we have that
.a/ D .bc/. Since gcd.a; b/ D 1, this means b 2 B�, so we may just as well assume
b D 1. Therefore,�f D aD. The key fact to prove is that a 2 kerD.

Let g1; : : :; gn 2 S�1B be given, and consider the jacobian determinant
detJ .g1; : : :; gn/ 2 frac.B/. We claim that detJ .g1; : : :; gn/ is contained in the
principal ideal aS�1B of S�1B.

Since S�1B D KŒr�, each gi can be written as a finite sum gi D P
aijrj for

aij 2 K and j � 0. Therefore, detJ .g1; : : :; gn/ is a sum of functions of the form
detJ .a1re1 ; : : :; anren/ for ai 2 K and ei � 0. By the product rule, for each i we also
have:

detJ .a1re1 ; : : :; anren/ D
ai detJ .a1re1 ; : : :; rei ; : : :; anren/C rei detJ .a1re1 ; : : :; ai; : : :; anren/

So detJ .g1; : : :; gn/ may be expressed as a sum of functions of the form
q detJ .b1; : : :; bn/, where q 2 S�1B, and either bi 2 K or bi D rei for ei � 1.
If every bi 2 K, then b1; : : :; bn are linearly dependent, and this term will be zero.
Likewise, if bi D rei and bj D rej for i ¤ j, then b1; : : :; bn are linearly dependent,
and this term is zero. Therefore, by re-ordering the bi if necessary, any nonzero
summand q detJ .b1; : : :; bn/ is of the form q detJ .a1; : : :; an�1; re/ D q�a.re/,
where q 2 S�1B, ai 2 K, a D .a1; : : :; an�1/, and e � 1. By Lemma 3.12, there exists
h 2 ker�f D K such that �a D h�f for some h 2 K. In particular, �a restricts to
S�1B. Since �f. y/ 2 aB for all y 2 B, it follows that q�a.re/ 2 ahS�1B D aS�1B
(since h is a unit). Since detJ .g1; : : :; gn/ is a sum of such functions, we conclude
that detJ .g1; : : :; gn/ 2 aS�1B for any g1; : : :; gn 2 S�1B, as claimed.

In particular, if B D kŒx1; : : :; xn�, then 1 D detJ .x1; : : :; xn/ 2 aS�1B, implying
that a 2 .S�1B/� D K�. But this means a 2 B \ K D kerD. ut

Makar-Limanov generalized this result in [282] to give a description of the
locally nilpotent derivations of any commutative affine C-domain. He writes that
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his goal is “to give a standard form for an lnd on the affine domains. This form
is somewhat analogous to a matrix representation of a linear operator” (p. 2). The
theorem he proves is the following.

Theorem 3.21 (Generalized Makar-Limanov Theorem) Let I be a prime ideal
of B D CŒn�, and let R be the factor ring B=I, with standard projection � W B ! R.
Given D 2 LND.R/, there exist elements f1; : : :; fn�1 2 B and nonzero elements
a; b 2 RD such that, for every g 2 B:

aD.�.g// D b�.detJ . f1; : : :; fn�1; g//

Another way to express the conclusion of this theorem is that aD D b�f=I, where
f D . f1; : : :; fn�1/. The reader is referred to Makar-Limanov’s paper for the general
proof.

The Makar-Limanov Theorem implies the following.

Corollary 3.22 (Prop. 1.3.51 of [142]) If B D kŒn� and D 2 LND.B/, then
div.D/ D 0.

Proof Choose algebraically independent f1; : : :; fn�1 2 kerD. There exists an
irreducible ı 2 LND.B/ and c 2 kerD such that D D cı. According to the theorem
above, there also exists a 2 kerD such that aı D �f. Therefore, D D .c=a/�f, so
by the product rule, together with Lemma 3.13, we have:

div.D/ D .c=a/div.�f/C
X

i

@xi.c=a/�f.xi/ D 0C�f.c=a/ D 0

ut
The next two results are due to Daigle.

Lemma 3.23 (Prop. 1.2 of [70]) Let B be a commutative k-domain and A a
subalgebra such that B has transcendence degree 1 over A. If D;E 2 DerA.B/,
then there exist a; b 2 B for which aD D bE.

Proof Let K D frac.A/ and L D frac.B/. By Proposition 3.6, the dimension of
DerK.L/ as a vector space over L is equal to one. Therefore, if S is the set of nonzero
elements of B, then S�1D and S�1E are linearly dependent over K, and consequently
aD D bE for some a; b 2 B. ut
Proposition 3.24 (Cor. 2.5 of [70]) Suppose B D kŒn�, and D 2 LND.B/ has
kerD Š kŒn�1�. If kerD D kŒ f1; : : :; fn�1� and f D . f1; ::; fn�1/, then�f is irreducible
and locally nilpotent, and D D a�f for some a 2 kerD.

Proof Let A D kerD. Since A is factorially closed, the fact that �f is irreducible
follows from Corollary 3.15 above. By Lemma 3.23, there exist a; b 2 B such that
bD D a�f, since D and �f have the same kernel. We may assume gcd.a; b/ D 1.
Then �fB � bB, implying that b is a unit. So we may assume b D 1. The fact that
�f is locally nilpotent and a 2 A now follows from Principle 7. ut
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In the other direction, we would like to knowwhether, if f D . f1; : : :; fn�1/ for fi 2
B, the condition that�f is irreducible and locally nilpotent always implies ker�f D
kŒ f1; : : :; fn�1�. But this is a hard question. For example, the truth of this property for
n D 3 would imply the truth of the two-dimensional Jacobian Conjecture!

To see this, we refer to Miyanishi’s Theorem in Chap. 5, which asserts that
the kernel of any nonzero locally nilpotent derivation of kŒ3� is isomorphic to kŒ2�.
Suppose A D kŒ f ; g� is the kernel of a locally nilpotent derivation of kŒ3�. Let
u; v 2 kŒ f ; g� have the property that det @.u;v/

@. f ;g/ is a nonzero constant. We have

�.u;v/ D det
@.u; v/

@. f ; g/
�. f ;g/

which we know to be irreducible and locally nilpotent. If the above property were
true, it would follow that A D ker�.u;v/ D kŒu; v�.

Proposition 3.25 (Lemma 3 of [159]) Suppose B D kŒn� and D 2 Derk.B/ is
linear relative to the coordinate system .x1; : : :; xn/ on B. Let V be the vector space
V D kx1 ˚ � � � ˚ kxn. Then rank.D/ equals the rank of D as a linear operator on V.

Proof Suppose that corank.D/ D m, and let 
 denote the nullity of D as a
linear operator on V . Let F D . f1; : : :; fn/ be a system of variables on B for
which f1; : : :; fm 2 kerD. Suppose that the standard N-grading of B is given by
B D ˚j2NBj and let fi D P

j2N. fi/j. Since Df1 D � � � D Dfm D 0, we also have
D. f1/1 D � � � D D. fm/1 D 0. By (3.1), . f1/1; : : :; . fm/1 are linearly independent. It
follows that 
 � m.

Conversely, let v1; : : :; v
 2 V be linearly independent vectors annihilated by D.
Since .v1; : : :; v
/ is a partial system of variables on B, it follows that 
 � m. ut

In his thesis, Wang [414] (Lemma 2.3.5) gives the equivalent statement: With the
notation and hypotheses of the proposition above:

dimk.V \ kerD/ D corank.D/

3.4 Slices in Polynomial Rings

The general topic of slices for locally nilpotent derivations is covered in Chap. 10.
For polynomial rings, we have the following basic result.

Proposition 3.26 Suppose B D kŒn� and D 2 LND.B/ has Ds D 1 for s 2 B.

(a) s is a variable of BŒw� D kŒnC1�.
(b) If B=sB D kŒn�1�, then D is a partial derivative.

Proof Let A D kerD � B. By the Slice Theorem, B D AŒs� and �s.B/ D A,
where �s is the Dixmier map defined by s. Let BŒw� D BŒ1� and extend D to D� 2
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LND.BŒw�/ by setting D�w D 0. Then kerD� D AŒw�. Since w is transcendental
over A, we have AŒw� Š AŒs� D B D kŒn�. So there exist g1; : : :; gn 2 BŒw� such that
AŒw� D kŒg1; : : :; gn�. Therefore,

BŒw� D AŒs�Œw� D AŒw�Œs� D kŒg1; : : :; gn; s� D kŒnC1�

and s is a variable of BŒw�.
In addition, we have that A Š B=sB by the Slice Theorem. Thus, if B=sB D

kŒn�1�, then B D AŒs� implies that s is a variable of B. ut
Note that the condition of part (b) holds if s is a variable. Part (a) appears as part of
the proof of Thm. 1.2 in [283]. But it clearly deserves to be highlighted. A crucial
question is:

If s 2 B is a variable of BŒw�, does it follow that follow that s is a variable of B?

A negative answer to this question would imply a negative solution to either
the Embedding Problem or Cancellation Problem. A potential example of such
phenomena is provided by the Vénéreau polynomial f1 2 CŒ4�: This is known to
be a variable of CŒ5�, but it is an open question whether it is a variable of CŒ4�. See
Chap. 10 for details.

In summary, suppose D 2 LND.kŒn�/ has a slice s. Then:

1. kerD is n-generated.
2. The trivial extension D� of D to kŒnC1� has kerD� is n-generated.
3. If s is a variable of kŒn�, then kerD is .n � 1/-generated.

The following result concerns systems of local slices in a ring; ıij denotes the
Kronecker delta.

Proposition 3.27 B is a commutative k-domain. Suppose that there exist
D1; : : :;Dn 2 LND.B/ and s1; : : :; sn 2 B such that, for 1 � i � n:

1. ŒDi;Dj� D 0

2. Disj D ıij

Then B D AŒs1; : : :; sn� D AŒn�, where A D T
1�i�n kerDi.

Proof We proceed by induction on n. The case n D 1 follows from the Slice
Theorem. Assume that n � 2 and that B D CŒs1; : : :; sn�1� D CŒn�1�, where
C D T

1�i�n�1 kerDi. Note that sn 2 C. In addition, since ŒDi;Dn� D 0 for
1 � i � n, it follows that Dn restricts to C. Since Dnsn D 1, the Slice Theorem
implies C D AŒsn� D AŒ1�. Therefore, B D AŒs1; : : :; sn� D AŒn�. ut

As an application, we have the following.

Corollary 3.28 Let A D kŒx1; : : :; xn� D kŒn�, and let Nk be the algebraic closure of
k. If y1; : : :; yn 2 A are such that NkŒx1; : : :; xn� D NkŒ y1; : : :; yn�, then kŒx1; : : :; xn� D
kŒ y1; : : :; yn�.
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Proof Since A D kŒx1; : : :; xn�, we have:

NA WD Nk ˝k A D NkŒx1; : : :; xn� D NkŒ y1; : : :; yn� D NkŒn�

Define the jacobian derivations D1; : : :;Dn of NA by:

Dif D @. y1; : : :; Oyi; : : :; yn; f /

@.x1; : : :; xn/
. f 2 NA/

Note that Di restricts to A. If ci D Diyi, then ci 2 Nk� \ A for each i; see Sect. 3.2.3.
Since k is algebraically closed in A, we have Nk� \ A D k�, so ci 2 k�. In addition,
D.c�1

i yi/ D 1 and Diyj D 0 for i ¤ j, and ŒDi;Dj� D 0 for every i; j. Since
each c�1

i yi belongs to A, Proposition 3.27 implies that A D kŒc�1
1 y1; : : :; c�1

n yn� D
kŒ y1; : : :; yn�. ut

3.5 Triangular Derivations and Automorphisms

Fix a coordinate system B D kŒx1; : : :; xn�. Define subgroups Hi;Ki � BAn.k/, i D
1; : : :; n, by:

Hi D fh 2 BAn.k/jh.xj/ D xj; 1 � j � n � ig
Ki D fg 2 BAn.k/jg.xj/ D xj; i C 1 � j � ng D BAi.k/

Then for each i, Ki acts on Hi by conjugation, and BAn.k/ D Hi Ì Kn�i.

Proposition 3.29 Suppose B D kŒn� and D 2 Derk.B/ is triangular in some
coordinate system. Then D 2 LND.B/. In addition, if n � 2, then rank.D/ � n � 1.

Proof We argue by induction on n for n � 1, the case n D 1 being obvious.
For n � 2, note that since D is triangular, D restricts to a triangular derivation
of kŒx1; : : :; xn�1�. By induction, D is locally nilpotent on this subring. In particular,
Dxn 2 kŒx1; : : :; xn�1� � Nil.D/, which implies xn 2 Nil.D/. Therefore, D is locally
nilpotent on all B.

Now suppose n � 2. If Dx1 D 0 we are done, so assume Dx1 D c 2 k�. Choose
f 2 kŒx1� so that Dx2 D f 0.x1/. Then D.cx2 � f .x1// D 0, and cx2 � f .x1/ is a
triangular variable of B. ut

We next describe the factorization of triangular automorphisms into unipotent
and semi-simple factors. (See [123] for a related result.)

Proposition 3.30 Every triangular automorphism of kŒn� is of the form expT ı L,
where L is a diagonal matrix and T is a triangular derivation.

Proof If F 2 BAn.k/, then F ı L is unipotent triangular for some diagonal matrix L.
So it suffices to assume F is unipotent, i.e., of the form

F D .x1; x2 C f2.x1/; x3 C f3.x1; x2/; : : :; xn C fn.x1; : : :; xn�1//
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for polynomials fi. We show by induction on n that the map F � I D .0; f2; : : :; fn/
is locally nilpotent, the case n D 1 being obvious. (Observe that .F � I/.c/ D 0 for
c 2 k.)

Let A D kŒx1; : : :; xn�1�, and suppose by induction that F � I restricts to a
locally nilpotent map on A. Then it suffices to show that F � I is nilpotent at every
polynomial of the form axt

n .a 2 A/. One easily obtains the formula:

.F � I/m.axt
n/ D .F � I/m.a/xt

n C .lower xn terms/

By induction, .F � I/m.a/ D 0 for m 
 0. Since the xn-degree is thus lowered, we
eventually obtain .F � I/M.axt

n/ D 0 for M 
 0. It follows that F � I is locally
nilpotent on all B. Thus, Proposition 2.57 implies F D expD for D D log.I C .F �
I// 2 LND.B/. ut
Observe that, for triangular derivations D1;D2 of B D kŒn�, D1 C D2 is again
triangular, hence locally nilpotent. In general, however, the triangular derivations
D1 and D2 do not commute, and expD1 expD2 ¤ exp.D1 C D2/. Nonetheless, the
product on the left is an exponential automorphism.

Corollary 3.31 If D1 and D2 are triangular k-derivations of B D kŒn�, then there
exists a triangular k-derivation E of B such that:

expD1 expD2 D expE

Proof Since expD1 expD2 is triangular, it equals expE ı L for triangular E and
diagonal L; see Proposition 3.30. It is clear that in this case L D I (identity). ut
See also the proof of Cor. 3 in [123].

The main theorem of this section is the following.

Theorem 3.32 If F 2 BAn.k/ has finite order, then there exists L 2 GLn.k/ and a
triangular D 2 LND.B/ such that F D exp.�D/L expD.
The linearizability of finite-order triangular automorphisms was first proved by Iva-
nenko in [219]. The proof presented belowmakes use of exponential automorphisms
to give a shorter demonstration. Whether a general element of finite order in GAn.k/
can be linearized remains an open problem.

The proof of the theorem is based on the following more general fact.

Proposition 3.33 Let R be a UFD containing k, let D 2 LND.R/, and let � 2
Autk.R/ have finite order m � 2. Set A D kerD and � D expD ı �. Suppose the
following properties hold.

1. �.a/ 2 A for all a 2 A.
2. �.a/ D a for all a 2 A�.
3. � has finite order m

Then there exists E 2 LND.R/ such that kerE D A and � D exp.�E/� expE.

Proof Write D D f� for irreducible � 2 LND.R/ and f 2 A. Since ker� D
ker .��1��/ D A by hypothesis (1), we conclude from Principle 12, together with
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the fact that R is a UFD and � is irreducible, that ��1�� D c� for some c 2 A�.
By hypothesis, �.c/ D c, and thus ��i��i D ci� for each i 2 Z. It follows that for
each i 2 Z, ��iD�i D �m�i. f /ci�. In particular, D D ��mD�m D cmD, so cm D 1.

Set E D g� for undetermined g 2 A. Then:

exp.�E/� exp.E/ D .expD/� , exp.�E/ exp.�E��1/ D expD

, exp..�.g/c�1 � g/�/ D exp. f�/

So we need to solve for g 2 A which satisfies the equation f D c�1�.g/�g. We find
a solution g 2 spankŒc�f f ; �. f /; �2. f /; : : :; �m�1. f /g � A. (Note that kŒc� is a field.)

First, if �i WD ��i.expD/�i, then:

1 D �m D .expD ı �/m D �m�m�1 � � ��2�1
Since �i D exp.�m�i. f /ci�/, it follows that

exp.h�/ D 1 for h D
mX

iD1
�m�i. f /ci

Therefore, h D 0, and we may eliminate �m�1. f / from the spanning set above.
Next, for undetermined coefficients ai 2 kŒc�, consider g D a1f Ca2�. f /C� � �C

am�1�m�2. f /. Then c�1�.g/� g equals:

�a1f C .c�1a1 � a2/�. f /C � � � C .c�1am�2 � am�1/�m�2. f /C c�1am�1�m�1. f /

Since h D 0, we have that c�1am�1�m�1. f / equals:

�c�2am�1f � c�3am�1�. f / � � � � � c�.m�1/am�1�m�3. f /� am�1�m�2. f /

Combining these gives that c�1�.g/� g equals:

.�a1 � c�2am�1/f C .c�1a1 � a2 � c�3am�1/�. f /C � � �
� � � C .c�1am�3 � am�2 � c�.m�1/am�1�m�3. f /C .c�1am�2 � 2am�1/�m�2. f /

So we need to solve for ai such that M.a1; a2; : : :; am�1/T D .1; 0; : : :; 0/T for:

M D

0

B
B
B
B
B
B
B
B
@

�1 0 0 � � � 0 �c�2
c�1 �1 0 � � � 0 �c�3
0 c�1 �1 � � � 0 �c�4
:::

:::
:::
: : :

:::
:::

0 0 0 � � � 1 �cm�1
0 0 0 � � � c�1 �2

1

C
C
C
C
C
C
C
C
A

.m�1/�.m�1/
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It is easily checked that jMj ¤ 0. For example, replace row 2 by c�1.row 1/ C
.row 2/; then replace row 3 by c�1.row 2/ C .row 3/; and so on. Eventually, we
obtain the non-singular upper-triangular matrix:

N D

0

B
B
B
B
B
@

�1 0 0 � � � �c�2
0 �1 0 � � � �2c�3
0 0 �1 � � � �3c�4
:::

:::
:::
: : :

:::

0 0 0 � � � �m

1

C
C
C
C
C
A

Therefore, we can solve for g, and thereby conjugate � to �. ut
Proof of Theorem 3.32 Let m be the order of F. We have that BAn.k/ D H1 Ì Kn�1,
so we can write F D hg for g 2 Kn�1 and h 2 H1. Then 1 D Fm D .gh/m D gmh0 for
some h0 2 H1, which implies gm D h0 D 1. By induction, there exists a triangular
derivation D with Dxn D 0 and Qg WD exp.�D/g expD 2 GLn.k/ \ Kn�1. Thus,
exp.�D/F expD D QhQg for Qh WD exp.�D/h expD 2 H1. So it suffices to assume
from the outset that F D hg for linear g 2 Kn�1 and h 2 H1.

If h D .x1; : : :; xn�1; axn C f .x1; : : :; xn�1//, then:

h D exp

�

f
@

@xn

�

ı .x1; : : :; xn�1; axn/

Thus, F D exp. f @
@xn
/L, where L D .x1; : : :; xn�1; axn/g 2 GLn.k/. Note that

L restricts to ker . @
@xn
/ D kŒx1; : : :; xn�1�. By Proposition 3.33, the theorem now

follows. ut

3.6 Group Actions on A
n

3.6.1 Terminology

Given f 2 B D kŒn�, the variety inAn defined by f will be denoted by V. f /. Likewise,
if I � B is an ideal, the variety defined by I is V.I/.

The group of algebraic automorphisms ofAn is anti-isomorphic to GAn.k/, in the
sense that .F1 ı F2/� D F�

2 ı F�
1 in GAn.k/ when F1 and F2 are automorphisms of

An. Thus, we identify these two groups with one another.
If an algebraic k-group G acts algebraically on affine space X D An, we also

define the rank of the G-action exactly as rank was defined for a derivation, i.e., the
least integer r � 0 for which there exists a coordinate system .x1; : : :; xn/ on kŒX�
such that kŒxrC1; : : :; xn� � kŒX�G.
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The G-action on X D An is a linear action if and only if G acts by linear
automorphisms. The action is a triangular action if and only if G acts by triangular
automorphisms. And the action is a tame action if and only if G acts by tame
automorphisms. Similarly, the action is linearizable if it is conjugate to a linear
action, and triangularizable if it is conjugate to a triangular action.

The case in which the ring of invariants is a polynomial ring over k is important.
For example, if H is a normal subgroup of G, and if kŒX�H D kŒm� for some m,
then G=H acts on the affine space Am defined by kŒX�H , and this action can be quite
interesting. This is the idea behind the main examples of Chaps. 7 and 10 below.

Following are some particulars when the group Ga acts on affine space. Let a
Ga-action on An be given by

� W Ga � A
n ! A

n where �.t; x/ D .F1.t; x/; : : :;Fn.t; x//

for functions Fi, and x D .x1; : : :; xn/ for coordinate functions xi on An.

• � is algebraic if and only if Fi 2 kŒt; x1; : : :; xn� Š kŒnC1� for each i.
• � is linear if and only if each Fi is a linear polynomial in x1; : : :; xn over kŒt�.
• � is triangular if and only if Fi 2 kŒt; x1; : : :; xi� for each i.
• � is quasi-algebraic if and only if Fi.t0; x/ 2 kŒx1; : : :; xn� for each t0 2 k and

each i. (See [387].)
• If k D C, then � is holomorphic if and only if each Fi is a holomorphic function

on CnC1.

Note that exp.tD/ is a linear algebraic Ga-action if and only if D is a linear locally
nilpotent derivation (i.e., given by a nilpotent matrix), and exp.tD/ is a triangular
Ga-action if and only if D is a triangular derivation. In [398], Suzuki classified
the quasi-algebraic and holomorphic CC-actions on C2, and the holomorphic
C�-actions on C2.

3.6.2 Translations

The simplest algebraic Ga-action on X D An is a translation, meaning that for
some system of coordinates .x1; : : :; xn/, the action is given by

t � .x1; : : :; xn/ D .x1 C t; x2; : : :; xn/ D exp.t@x1 / :

Clearly, a translation is fixed-point free, and admits a geometric quotient: X=Ga D
X==Ga Š An�1.

In case n D 1, the locally nilpotent derivations of kŒx� are those of the form c d
dx

for some c 2 k (Principle 8). So translations are the only algebraic Ga-actions on
the affine line: t � x D x C tc.
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3.6.3 Planar Actions

The simplest linear Ga-action on the plane comes from the standard representation
of Ga on V D A2 via matrices:

�
1 0

t 1

�

.t 2 k/

The algebraic quotient V==Ga is a line A1. If � W V ! V==Ga is the quotient map,
then the fiber ��1.�/ over any � 2 V==Ga is the line x D �, which is a single orbit
if � ¤ 0, and a line of fixed points if � D 0. In this case, the geometric quotient
V=Ga does not exist.

More generally, a triangular action on A2 is defined by

t � .x; y/ D .x; y C tf .x// D exp.tD/

for any f .x/ 2 kŒx�, where D D f .x/@y. In case k D C, define a planar Ga-action by
the orthogonal matrices

�
cos t � sin t
sin t cos t

�

.t 2 C/ :

This is not an algebraic action, although it is quasi-algebraic, locally finite, and
holomorphic. It is the exponential of the locally finite derivation x@y �y@x onCŒx; y�.

3.6.4 Theorem of Deveney and Finston

Deveney and Finston showed the following fundamental property of invariant rings
for Ga-actions on affine spaces.

Theorem 3.34 ([101]) Over the ground field C, the quotient field of the ring of
invariants of an algebraic action of Ga on A

n .n � 1/ is ruled. Equivalently, if
D 2 LND.CŒn�/ and A D kerD, then frac.A/ is a ruled field.

Suppose that D 2 LND.CŒn�/ is given, where 1 � n � 4 and D ¤ 0. Then kerD
is a polynomial ring: The case n D 1 is true because kerD is an algebraically closed
subring of C; the case n D 2 follows from results in Chap. 4; and the case n D 3 is
the content of Miyanishi’s Theorem in Chap. 5.

When n D 4, there are kernels which are not polynomial rings; see Sect. 3.8
below for examples. However, these kernels are rational over C. To see this, let
A D kerD and let s 2 B be a local slice. By the Deveney and Finston result,
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frac.A/ D L.1/ for a subfield L � A. Since BDs D AŒ1�Ds we have:

�
C
.2/

�.2/ D frac.CŒ4�/ D .frac.A//.1/ D �
L.1/

�.1/ D L.2/

We can now invoke the cancellation theorem for fields to conclude that L Š C.2/,
and therefore frac.A/ D C.3/.

In this way, Deveney and Finston obtain the following corollary.

Corollary 3.35 Over the ground field C, the quotient field of the ring of invariants
of an algebraic action of Ga on A4 is rational. Equivalently, if D 2 LND.CŒ4�/ is
nonzero and A D kerD, then frac.A/ ŠC C.3/.

3.6.5 Proper and Locally Trivial Ga-Actions

Proper Ga-actions on complex affine varieties were studied in the 1976 paper
of Fauntleroy and Magid [151], with particular attention to surfaces. This paper,
together with the examples of Winkelman given in [421], motivated a series of
papers on the subject dating from 1994 by Deveney and Finston [103–110] and by
Deveney, Finston and Gehrke [111]. These papers study proper and locally trivial
Ga-actions on Cn.

Suppose that B D CŒn� and D 2 LND.B/, let A D kerD and let

� W Ga � C
n ! C

n

denote the Ga-action on Cn associated to D. In addition, let BŒt� D BŒ1� and extend
D to BŒt� by Dt D 0. The following result is from [111], Thm. 2.3.

Theorem 3.36 (Properness Criterion) � is proper if and only if:

BŒexp.tD/B� D BŒt�

Moreover, a proper Ga-action on Cn is fixed-point free and its topological orbit
space is Hausdorff.
The same paper also characterizes the locally trivial actions, as follows (see [111],
Thm. 2.5, Thm. 2.8).

Theorem 3.37 (Local Triviality Criterion) The following conditions are equiva-
lent.

1. � is locally trivial.
2. � is proper and B is a flat extension of A.
3. pl.D/ � B D B
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In [103], Deveney and Finston asked if the ring of invariants for a locally trivial
Ga-action on Cn is finitely generated. In [110], they gave an affirmative answer to
this question.

Theorem 3.38 ([110], Thm. 2.1) Let X be a factorial affine variety over C. For any
locally trivial Ga-action on X, the invariant ring CŒX�Ga is finitely generated as a
C-algebra.

Any fixed-point free Ga-action on C2 or C3 is a translation, due to Rentschler
and Kaliman, respectively (see Chaps. 4 and 5). In higher dimensions this is no
longer the case. The examples in Sect. 3.8 below show that there are fixed-point
free Ga-actions on C4 which are not proper; proper Ga-actions on C5 which are
not locally trivial; and locally trivial Ga-actions on C5 which are not globally
trivial. Each of these examples is triangular. In [221], Question 2, Jorgenson asked:
Is there a triangular Ga-action on C4 that is locally trivial but not equivariantly
trivial? Recently, Dubouloz, Finston and Jaradat showed the following, which gives
a negative answer to this question.

Theorem 3.39 ([130]) A proper triangular Ga-action on C
4 is a translation.

It is an open question whether every proper Ga-action on C4 is a translation.

3.7 Ga-Actions Relative to Other Group Actions

A special property belonging to a Ga-action is, in many cases, equivalent to the
condition that that the action can be embedded in a larger algebraic group action.
For example, homogeneity for Z-gradings equates to an action ofGa ÌGm. Another
important condition to consider is symmetry. The symmetric group Sn acts naturally
on the polynomial ring kŒx1; : : :; xn� by permutation of the variables xi.

In the first case, suppose D 2 LND.B/ is homogeneous of degree d relative to
some Z-grading of B, where B is any affine k-domain. This is equivalent to giving
an algebraic action of the group Ga Ì Gm on X D Spec.B/, where the action of
Gm on Ga D Spec.kŒx�/ is given by t � x D tdx. This is further equivalent to giving
D 2 LND.B/ and an action Gm ! Autk.B/, t ! �t, such that ��1

t D�t D tdD for
all t. The homogeneous polynomials f 2 Bi are the semi-invariants f 2 B for which
t � f D tif .t 2 Gm/.

Proposition 3.40 Under the hypotheses above, if s 2 Gm has finite order m not
dividing d, then expD ı �s is conjugate to �s. In particular,

.expD ı �s/
m D 1 :

Proof

exp
�

sd

1�sd D
�
.expD/�s exp

�
� sd

1�sd D
�

D �s

ut
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In particular, this result shows that any action of a finite cyclic group on kŒn� of
the form given in the proposition can be embedded in a Gm-action.

The second result of this section is about kernels of homogeneous derivations.

Proposition 3.41 Suppose D 2 LND.B/, D ¤ 0, is homogeneous relative to some
N-grading ˚i2NBi of B D kŒn�. If kerD is a polynomial ring and B0 \ kerD D k,
then kerD D kŒg1; : : :; gn�1� for homogeneous gi.
This is immediately implied by the following more general fact about positive Z-
gradings, which is due to Daigle.

Proposition 3.42 (Lemma 7.6 of [68]) Let A D kŒr� for r � 1 and let A D L
i2Z Ai

be a positive Z-grading. If A D kŒ f1; : : :; fm� for homogeneous fi 2 A, then there is a
subset fg1; : : :; grg of f f1; : : :; fmg with A D kŒg1; : : :; gr�.

Proof By Corollary 3.28, it suffices to assume that the field k is algebraically closed.
Let M D L

i>0 Ai. Then M is an ideal, and since A0 D k, it is a maximal ideal of
A. Since A is a polynomial ring, there exist X1; : : :;Xr 2 A so that A D kŒX1; : : :;Xr�

and M D .X1; : : :;Xr/. We may assume, without loss of generality, that fi 2 M for
1 � i � m.

Consider a subset fg1; : : :; gsg of f f1; : : :; fmg satisfying A D kŒg1; : : :; gs� and
minimal with respect to this property; in particular, deg gi > 0 for all i. Let R D
kŒT1; : : :;Ts� D kŒs� with positive Z-grading R D L

i2Z Ri determined by degTi D
deg gi. Then the surjective k-homomorphism e W R ! A, e.'/ D '.g1; : : :; gs/, is
homogeneous of degree zero, and ker e is a homogeneous ideal.

If m D .T1; : : :;Ts/, then e.m/ � M and e.m2/ � M2. We thus have a well-
defined mapping of k-vector spaces Ne W R=m2 ! A=M2, where f1; NT1; : : :; NTsg is a
basis of R=m2 and f1; NX1; : : :; NXrg is a basis of A=M2.

Given F 2 ker e, write F D P
Fi for Fi 2 Ri. Since ker e is a homogeneous

ideal, Fi 2 ker e for all i. In particular, F0 2 ker e. Since R0 D k by hypothesis, we
see that F0 2 k. But e is a k-map, so F0 D 0. It follows that ker e � m.

If F 62 m2, then Fi 62 m2 for some i � 1. Therefore, there exist c1; : : :; cr 2 k
not all 0 such that Fi 	 c1T1 C � � � C crTr.modm2/. By degree considerations,
it follows that, if cj ¤ 0 and Fi D c1T1 C � � � C crTr C G for G 2 m2, then
G 2 kŒT1; : : :;Tj�1;TjC1; : : :;Tr�. Therefore:

Fi � cjTj 2 kŒT1; : : :;Tj�1;TjC1; : : :;Ts�

But then

'.Fi � cjTj/ D �cjgj 2 kŒg1; : : :; gj�1; gjC1; : : :; gs�

contradicting the minimality of fg1; : : :; gsg.
Therefore, ker e � m2. Consequently, there is a well-defined surjection A D

R=ker e ! R=m2, which implies that, if Pi 2 R is such that e.Pi/ D Xi, 1 � i � r,
then R=m2 has basis f1; NP1; : : :; NPrg. It follows that r D s. ut
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Corollary 3.43 If B D kŒn� and if Gm acts algebraically on An in such a way that
BGm D k, then the action is linearizable. Equivalently, for any positive Z-grading of
B there exists a system of homogeneous variables for B.

Proof The action induces a Z-grading of B for which elements of Bi are semi-
invariants of weight i. In particular, B0 D BGm . If f 2 Bi and g 2 Bj for i < 0

and j > 0, then f jg�i 2 B0, a contradiction. Therefore, we can assume any non-
constant semi-invariant has strictly positive weight. So the grading on B induced by
the Gm-action is an N-grading: B D ˚i2NBi.

Suppose B D kŒx1; : : :; xn�. Given i .1 � i � n/, we can write xi D P
j2N fij,

where fij 2 Bj. So B is generated as a k-algebra by finitely many homogeneous
polynomials fij. By the preceding result, there exist homogeneous g1; : : :; gn 2 B
such that B D kŒg1; : : :; gn�, i.e., .g1; : : :; gn/ is a system of semi-invariant variables
for B. ut

Next, let B D kŒn� and consider the standard action of the symmetric group Sn on
B relative to coordinates .x1; : : :; xn/. Define D 2 Derk.B/ to be fully symmetric if
and only if D� D �D for each � 2 Sn. To give D 2 LND.B/ fully symmetric is
equivalent to giving an algebraic action of Ga � Sn on B or on An.

Example 3.44 E D Pn
iD1 @xi is fully symmetric and locally nilpotent, and kerE D

kŒx1�x2; x2�x3; : : :; xn�1�xn�. Note that E is a partial derivative. If f 2 kerE \BSn ,
then fE is also fully symmetric and locally nilpotent.

Proposition 3.45 Let Z2 act on B D kŒx1; : : :; xn� by transposing x1 and x2, and
fixing x3; : : :; xn. If D 2 LND.B/ commutes with this Z2-action, then D.x1�x2/ D 0.

Proof Let 
 2 Z2 transpose x1 and x2, fixing x3; : : :; xn, and let Dx1 D F.x1; x2/ for
F 2 kŒx3; : : :; xn�

Œ2�. Then Dx2 D D.
x1/ D 
Dx1 D F.x2; x1/. This implies:

D.x1 � x2/ D F.x1; x2/ � F.x2; x1/ 2 .x1 � x2/B

By Corollary 1.23, we conclude that D.x1 � x2/ D 0. ut
Now supposeD is a fully symmetric locally nilpotent derivation. ThenD.xi�xj/ D 0

for all i; j, so kŒx1�x2; x2�x3; : : :; xn�1�xn� � kerD. Consequently, the derivations
fE above are the only fully symmetric locally nilpotent derivations.

Corollary 3.46 If D 2 LND.B/ is fully symmetric and D ¤ 0, then rank.D/ D 1.

Remark 3.47 The conclusion of Proposition 3.42 may fail to hold for more
general polynomial algebras. For instance, we saw in Example 1.27 that if U D
RŒx1; x2�=.x21 C x22�1/ and B D UŒ y1; y2�=.x1y1C x2y2/, then B D UŒs� D UŒ1�. But
we also have B D UŒx1s; x2s�, a homogeneous system of generators when deg xi D 0

and deg yi D 1 for each i, whereas B ¤ UŒxis� for i D 1; 2.
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3.8 Some Important Early Examples

This section illustrates the fact that the triangular derivations of polynomial rings
already provide a rich source of examples.

In 1972, Nagata [325] published an example of a polynomial automorphism of
A
3 which, he conjectured, is not tame. Later, Bass embedded Nagata’s automor-

phism as an element of a one-parameter subgroup of polynomial automophisms
of A3, gotten by exponentiating a certain non-linear locally nilpotent derivation
of kŒx; y; z�. It was known at the time that every unipotent group of polynomial
automorphisms of the plane is triangular in some coordinate system (see Chap. 4).
In sharp contrast to the situation for the plane, Bass showed that the subgroup
he constructed could not be conjugated to the triangular subgroup. Then Popov
generalized Bass’s construction to produce non-triangularizable Ga-actions on A

n

for every n � 3. These discoveries initiated the exploration of a new world of
algebraic representationsGa ,! GAn.k/.

Note that for some of the examples below, we exhibit, without explanation, the
kernel of the derivation under consideration. Methods for calculating these kernels
are discussed in Chap. 8 below.

3.8.1 Bass’s Example ([12], 1984)

The example of Bass begins with the linear derivation of kŒx; y; z� given by � D
x@y C 2y@z. Then ker� D kŒx;F�, where F D xz � y2. Note that D WD F� is also a
locally nilpotent derivation of kŒx; y; z�, and the correspondingGa-action on A3 is:

˛t WD exp.tD/ D .x; y C txF; z C 2tyF C t2xF2/

Nagata’s automorphism is ˛1. The fixed point set of this action is the cone F D 0,
which has an isolated singularity at the origin. On the other hand, Bass observed that
any triangular automorphism .x; y C f .x/; z C g.x; y// has a cylindrical fixed point
set, i.e., defined by f .x/ D g.x; y/ D 0, which (if non-empty) has the form C � A1

for some variety C. In general, an affine variety X is called a cylindrical variety
if X D Y � A1 for some affine variety Y. Since a cylindrical variety can have no
isolated singularities, it follows that ˛t cannot be conjugated into BA3.k/ relative to
the coordinate system .x; y; z/.

3.8.2 Popov’s Examples ([344], 1987)

Generalizing Bass’s approach, Popov pointed out that the fixed-point set of any
triangularGa-action onAn is a cylindrical variety, whereas the hypersurface defined
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by a non-degenerate quadratic form is not a cylindrical variety. So to produce non-
triangularizable examples in higher dimensions, it suffices to find D 2 LND.kŒn�/
such that kerD contains a non-degenerate quadratic form h; then exp.thD/ is a non-
triangularizableGa-action. In even dimensions, let B D kŒx1; : : :; xn; y1; : : :; yn�, and
define D by:

Dx1 D 0; Dx2 D x1; Dx3 D x2; : : : ;Dxn D xn�1
Dy1 D y2; Dy2 D y3; : : : ;Dyn�1 D yn; Dyn D 0

Then D is a triangular (linear) derivation, and Dh D 0 for the non-degenerate
quadratic form h D Pn

iD1.�1/iC1xiyi. For odd dimensions at least 5, start with
D above, and extend D to kŒx1; : : :; xn; y1; : : :; yn; z� by Dz D 0. Then h C z2 is a
non-degenerate quadratic form annihilated by D.

3.8.3 Smith’s Example ([386], 1989)

At the conclusion of his paper, Bass asked whether the Ga-action he gave on A3 is
stably tame, i.e., whether the action becomes tame when extended trivially to A4.
M. Smith gave a positive answer to this question by first showing the following.

Lemma 3.48 (Smith’s Formula) Let D 2 LND.B/ for B D kŒn� and let f 2 kerD
be given. Extend D to BŒw� by Dw D 0, and define 
 2 GAnC1.k/ by 
 D exp. f@w/.
Then:

exp. fD/ D 
�1 exp.�wD/
 exp.wD/

Proof Since 
 fixes B, 
D D D
 , so 
�1.�wD/
 D 
�1.�w/D D . f � w/D.
Applying the exponential now gives:

exp. fD/ exp.�wD/ D exp.. f � w/D/

D exp
�

�1.�wD/


�

D 
�1 exp.�wD/


ut
Applying this lemma with f D tF and D D � from Bass’s example yields the
following tame factorization for the example of Bass-Nagata. For t 2 Ga:

exp.tD/ D .x; y C txF; z C 2tyF C t2xF2;w/

D .x; y; z;w � tF/ ı .x; y � wx; z � 2wy C w2x;w/

ı.x; y; z;w C tF/ ı .x; y C wx; z C 2wy C w2x;w/

Lemma 3.49 This Ga-action on A4 is not triangularizable.
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Proof Note first that the rank of D on kŒ4� is clearly 2. Let X � A4 be the set of fixed
points. Then X D C � A1 for a singular cone C, and the singularities of X form a
line. Suppose kŒx; y; z;w� D kŒa; b; c; d� and that D is triangular in the latter system
of coordinates, with Da D 0 and Db 2 kŒa�. The ideal defining X is .Db;Dc;Dd/,
and thus X � V.Db/. If Db ¤ 0, this is a union of parallel coordinate hyperplanes,
implying X � H for a coordinate hyperplane H. Since this is clearly impossible,
Db D 0. We also have X � V.Dc/, where Dc 2 kŒa; b�. If Dc ¤ 0, this implies
X D Y � A2, where Y is a component of the curve in Spec.kŒa; b�/ defined by Dc.
But this also cannot occur, since then the singularities of X would be of dimension
2. Thus, Dc D 0. But this would imply that the rank of D is 1, a contradiction.
Therefore, D extended to kŒx; y; z;w� cannot be conjugated to a triangular derivation
by any element of GA4.k/. ut
So in dimension 4 (and likewise in higher dimensions), there exist Ga-actions
which are tame but not triangularizable. It is an important open question whether
every tame Ga-action on A3 can be triangularized. It goes to the structure of the
tame subgroup. Shestakov and Umirbaev [382, 383] have shown that the Nagata
automorphism ˛1 above is not tame as an element of GA3.k/, thus confirming the
conjecture of Nagata. In [428], Wright gives a structural description of TA3.k/ as an
amalgamation of three of its subgroups.

3.8.4 Winkelmann’s Example 1 ([421], 1990)

In this groundbreaking paper, Winkelmann investigates CC-actions on Cn which
are fixed-point free, motivated by questions about their quotients. In dimension 4,
he defines exp.tD/, where D is the triangular derivation on B D CŒx; y; z;w� defined
by:

Dx D 0 ; Dy D x ; Dz D y ; Dw D y2 � 2xz � 1

exp.tD/ defines a free algebraic C
C-action on C

4, but the orbit space (geometric
quotient) is not Hausdorff in the natural topology (Lemma 8). In particular, D is not
a partial derivative, i.e., the action is not a translation, since both the geometric and
algebraic quotient for a translation of C4 is C3. Winkelmann calculates this kernel
explicitly: kerD D CŒx; f ; g; h�, where:

f D y2 � 2xz ; g D xw C .1 � f /y and xh D g2 � f .1 � f /2

In particular, kerD is the coordinate ring of a singular hypersurface in C4. This
implies rank.D/ D 3, since if the rank were 1 or 2, the kernel would be a polynomial
ring (see Chap. 4).
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Let BŒt� D BŒ1� and consider the subring:

R D BŒexp.tD/B� D BŒtx; ty C 1
2
t2x; t. f � 1/�

If R D BŒt�, then setting y D 1 and z D w D 0 shows:

CŒx; tx; t C 1
2
t2x� D CŒx; t�

However:

CŒx; tx; t C 1
2
t2x� Š CŒX;Y;Z�=.XZ � Y � 1

2
Y2/

This ring is evidently not a UFD, and is therefore not isomorphic to CŒ2�, a
contradiction. Therefore, R ¤ BŒt� and the Ga-action defined by D is not proper.

In [388], Snow gives the similar example

Ex D 0 ; Ey D x ; Ez D y ; Ew D 1C y2

and also provides a simple demonstration that the topological quotient is non-
Hausdorff (Example 3.5). (It is easy to show that D and E are conjugate.) In [142],
van den Essen considers E, and indicates that E does not admit a slice, a condition
which is a priori independent of the fact that the corresponding quotient is not an
affine space (Example 9.5.25). And in [111], Sect. 3, Deveney, Finston, and Gehrke
consider E as well, showing that the associated CC-action exp.tE/ on C4 is not
proper.

3.8.5 Winkelmann’s Example 2 ([421], 1990)

On B D CŒu; v; x; y; z� D CŒ5�, define the triangular derivation F by:

Fu D Fv D 0 ; Fx D u ; Fy D v ; Fz D 1C .vx � uy/

Then Fx;Fy;Fz 2 kerF and .Fx;Fy;Fz/ D .1/, which implies exp.tF/ is a locally
trivial CC-action on C5. The kernel of F is presented in [111], namely:

kerF D CŒu; v; vx � uy; x C x.vx � uy/� uz; y C y.vx � uy/� vz�

To see that the associated CC-action on C5 is not globally trivial, note that F is
homogeneous of degree 0 relative to the C�-action .�u; ��1v; �x; ��1y; z/, � 2 C�.
We thus have an action of CC � C� on C5. The invariant ring of the C�-action is
B0 D CŒuv; xy; vx; uy; z�, the ring of degree-0 elements. Therefore F restricts to B0.
If F has a slice in B, then by homogeneity there exists a slice s 2 B0. But the ideal
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generated by the image of F restricted to B0 equals .vxCuy; uv; 1Cvx�uy/, which
does not contain 1, meaning F has no slice in B0. (The fixed-point set of the induced
CC-action on Spec.B0/ is of dimension one.) Therefore, F has no slice in B.

3.8.6 Example of Deveney and Finston ([104], 1995)

Define ı on B D CŒu; v; x; y; z� D CŒ5� by:

ıu D ıv D 0 ; ıx D u ; ıy D v ; ız D 1C uy2

The authors show that exp.tı/ is a proper CC-action on C5. To see this, let BŒt� D
BŒ1� and consider the subring:

R D BŒexp.tı/B� D BŒtu; tv; t.1 C vy2/C t2uvy C 1
3
t3uv2�

Then R D BŒt�, since:

t D �
t.1C vy2/C t2uvy C 1

3
t3uv2

� � �
.tu/y2 C .tu/.tv/y C 1

3
.tu/.tv/2

�

Therefore ı defines a proper action. Deveney and Finston show that ker ı is
isomorphic to the ring

CŒu1; u2; u3; u4; u5�=.u2u5 � u21u4 � u33 � 3u1u3/

which is the coordinate ring of a singular hypersurface Y � C5. If p W C5 ! Y is the
quotient morphism, then fibers of p over singular points of Y are two-dimensional,
which implies that the action is not locally trivial.

3.9 Homogeneous Dependence Problem

In a remarkable paper [184] dating from 1876, Paul Gordan and Max Nöther
investigated the vanishing of the Hessian determinant of an algebraic form, using
the language of systems of differential operators. In particular, the question they
consider is the following. Suppose h 2 CŒx1; : : :; xn� is a homogeneous polynomial
whose Hessian determinant is identically zero:

det
� @2h

@xi@xj

�

ij
D 0
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Does it follow that h is degenerate, i.e., that h 2 CŒTx1; : : :;Txn�1� for some T 2
GLn.C/? They prove that the answer is yes when n D 3 and n D 4, and garner some
partial results for the case n D 5.

In the course of their proof, the authors consider changes of coordinates involving
a parameter � 2 C:

Die Functionen ˚.x/, gebildet für die Argumente x C ��, sind unabhängig von �:

˚.x C ��/ D ˚.x/ : ( p. 550)4

Here, x denotes a vector of coordinates .x1; : : :; xn/, and � a vector of homoge-
neous polynomials. In modern terms, the association ��x D xC�� gives aCC-action
on Cn (where � 2 C), and the functions ˚ are its invariants. The authors continue:

Ist eine solche ganze Function ˚ das Product zweier ganzen Functionen

˚ D �.x/ � .x/
so sind auch die Factoren selbst Functionen ˚ . (p. 551)5

We recognize this as the property that the ring of invariants of a CC-action is
factorially closed. In effect, Gordan and Nöther studied an important type of CC-
action on Cn, which we will now describe in terms of derivations.

Let B D kŒx1; : : :; xn� D kŒn�, and let D 2 LND.B/ be given, D ¤ 0. The
Homogeneous Dependence Problem for locally nilpotent derivations asks:

If D is standard homogeneous and has the property that D2xi D 0 for each i, is the rank of D
always strictly less than n? Equivalently, does there exist a linear form L 2 B with DL D 0,
i.e., are the images Dxi linearly dependent?

For such a derivation D, note that the Ga-action is simply

exp.tD/ D .x1 C tDx1; : : :; xn C tDxn/

and these are precisely the kinds of coordinate changes considered by Gordan and
Nöther. Note also that, given i:

D ı expD.xi/ D D.xi C Dxi/ D Dxi C D2xi D Dxi

On the other hand, Dxi 2 kerD means that expD.Dxi/ D Dxi. Therefore, D and
expD commute. This in turn implies that, if we write F D expD D x C H, where
x D .x1; : : :; xn/ andH D .Dx1; : : :;Dxn/, then HıH D 0. Herein lies the connection
to the work of Gordan and Nöther.

In their paper, Gordan and Nöther effectively proved that the answer to the
Homogeneous Dependence Problem is yes when n D 3 or n D 4. In fact, they

4“The functions ˚.x/, constructed for the arguments x C ��, are independent of �.”
5“If such an entire function ˚ is a product of two entire functions ˚ D �.x/ .x/, then so also are
the factors themselves functions ˚ .”
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showed that in these cases there exist two independent linear forms, L and M, with
DL D DM D 0, which implies that the rank of D is 1 when n D 3, and at most 2
when n D 4.

In the modern era, Wang proved in his 1999 thesis (Prop. 2.4.4) that if D 2
LND.kŒx1; x2; x3�/ has the property that D2xi D 0 for each i, then rank.D/ � 1

[414, 415]. So in the case of dimension 3, the homogeneity condition can be
removed. A short proof of Wang’s result is given in Chap. 5 below. Wang further
proved that, in dimension 4, the rank of a homogeneous derivation having D2xi D 0

for each i could not equal 3 (Lemma 2.5.2). Then in 2000, Derksen constructed
an example of such a derivation D in dimension 8 whose rank is 7, thereby
showing that the stronger result of Gordan and Nöther (i.e., that the kernel contains
two independent linear forms) does not generalize. In 2004, de Bondt found a
way to construct counterexamples to the Homogeneous Dependence Problem in
all dimensions n � 6 by using derivations of degree 4. So the Homogeneous
Dependence Problem remains open only for the case n D 5. The examples of
Derksen and de Bondt are discussed below.

At the time of their work, neither Wang nor Derksen seems to have been aware
of the paper of Gordan and Nöther. Rather, it is an example of an important question
resurfacing. The Gordan-Nöther paper was brought to the author’s attention by van
den Essen, and its existence was made known to him by S. Washburn. Van den
Essen was interested in its connections to his study of the Jacobian Conjecture; see
[33–35, 147] for a discussion of these connections, and some positive results for
this conjecture. The article of DeBondt [93] gives a modern proof of the results of
Gordan and Nöther, in addition to some partial results in dimension 5.

3.9.1 Construction of Examples

We construct, for each N � 8, a family of derivations D of the polynomial ring
kŒx1; : : :; xN � with the property that D2xi D 0 for each i. The example of Derksen
belongs to this family.

Given m � 1, let B D kŒs1; : : :; sm� D kŒm� and let ı 2 LND.B/ be such that
ı2si D 0 for each i (possibly ı D 0). Let u 2 Bı D ker ı be given (u ¤ 0). Extend ı
to BŒt� D BŒ1� by setting ıt D 0.

Next, given n � 3, choose an n � n skew-symmetric matrix M with entries in
BŒt�ı , i.e., M 2 Mn.BŒt�ı/ and MT D �M. Also, let v 2 .BŒt�ı/n be a nonzero vector
in the kernel of M.

Next, let x D .x1; : : :; xn/, y D . y1; : : :; yn/, and z be indeterminates over BŒt�,
so that BŒt; x; y; z� D kŒmC2nC2�. Note that m C 2n C 2 � 9. Extend ı to a locally
nilpotent derivation of this larger polynomial ring by setting:

ıx D uv ; ıy D xM ; ız D u�1ı.hx; yi/
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Here, it is understood that for vectors a D .a1; : : :; an/ and b D .b1; : : :; bn/, the
statement ıa D b means ıai D bi for each i. In addition, ha;bi denotes the inner
product of a and b. Observe the product rule for inner products::

ı.ha;bi/ D hıa;bi C ha; ıbi

It is clear from the definition that ı2x D 0. In addition:

ı2y D ı.xM/ D .ıx/M D .uv/M D u.vM/ D 0

Further, since M is skew-symmetric, we have 0 D hx; xMi D hx; ıyi. Therefore:

ı.hx; yi/D hıx; yi C hx; ıyi D hıx; yi � hx; ıyi 2 ker ı

It follows that ız is a well-defined polynomial (since u divides ıx), and ı2z D 0. In
addition, if F D uz � hx; yi, then ıF D 0.

Since F does not involve t, the kernel element t � F is a variable. It follows that

BŒt; x; y; z�=.t � F/ D BŒx; y; z� D kŒmC2nC1�

and that the derivation D WD ı mod .t � F/ has the property that D2x D D2y D
D2z D 0.

3.9.2 Derksen’s Example

This example appears in [142], 7.3, Exercise 6. It uses the minimal values m D 1

and n D 3 from the construction above, so that m C 2n C 1 D 8. Derksen found this
example by considering the exterior algebra associated to three linear derivations.

First, let ı be the zero derivation of B D kŒs� D kŒ1�, and choose u D s. The
extension of ı to kŒs; t� is also zero. Choose:

v D
0

@
t2

s2t
s4

1

A and M D
0

@
0 s4 �s2t

�s4 0 t2

s2t �t2 0

1

A

With these choices, we get the derivation D on the polynomial ring

kŒs; x1; x2; x3; y1; y2; y3; z� D kŒ8�
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defined by Ds D 0,

Dx D
0

@
sF2

s3F
s5

1

A ; Dy D
0

@
0 s4 �s2F

�s4 0 F2

s2F �F2 0

1

A

0

@
x1
x2
x3

1

A

and Dz D F2y1 C s2Fy2 C s4y3, where F is the quadratic form F D sz � .x1y1 C
x2y2 C x3y3/.

Observe that D is homogeneous, of degree 4. To check that s is the only linear
form in the kernel of D (up to scalar multiples), let Vi denote the vector space of
forms of degree i in these 8 variables, and let W � V5 denote the subspace generated
by the monomials appearing in the image of D W V1 ! V5. Then it suffices to
verify that the linear map D W V1 ! W has a one-dimensional kernel, and this is
easily done with standard methods of linear algebra. We conclude that the rank of
D is 7. ut

3.9.3 De Bondt’s Examples

Theorem 3.50 ([92]; [93], Cor. 3.3) For n � 3, let

B D kŒ2n� D kŒx1; y1; : : :; xn; yn�

and define D 2 Derk.B/ by

Dxi D fgxi � g2yi and Dyi D f 2xi � fgyi

where f D x1y2 � x2y1 and g D x1y3 � x3y1. Then:

(a) D is standard homogeneous of degree 4
(b) f ; g 2 kerD
(c) D2xi D D2yi D 0 for each i
(d) rank.D/ D 2n

Proof Let R D kŒa; b� D kŒ2� and let N 2 M2.R/ be given by:

N D
�

ab �b2

a2 �ab

�

Then N2 D 0.
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Let B D RŒx1; y1; : : :; xn; yn� D kŒ2nC2�. Define R-linear D 2 LNDR.B/ by:

D D

0

B
B
B
@

N 0 � � � 0
0 N � � � 0
:::
:::
: : :

:::

0 0 � � � N

1

C
C
C
A

2n�2n

Then for each i, we have:

Dxi D abxi � b2yi ; Dyi D a2xi � abyi ; and D2xi D D2yi D 0

In addition, for every pair i; j, we have

D.xiyj/ D xi.a
2xj � abyj/C yj.abxi � b2yi/ D a2xixj � b2yiyj D D.xjyi/

which implies xiyj � xjyi 2 kerD for each pair i; j.
Set f D x1y2 � x2y1 and g D x1y3 � x3y1. The crucial observation is that f

and g are kernel elements not involving a or b. Thus, .a � f ; b � g; x1; : : :; yn/ is a
triangular system of coordinates on B. If I � B is the ideal I D .a � f ; b � g/, then
B WD Bmod I is isomorphic to kŒ2n�, and we may take B D kŒx1; y1; : : :; xn; yn�. Since
a � f and b � g belong to kerD, the ideal I is an integral ideal of D, and we have
that D WD Dmod I is well-defined, locally nilpotent and homogeneous on B.

It remains to show that rank.D/ D 2n. If Dv D 0 for a variable v 2 B, then by
homogeneity, there exists a linear form L D P

.aixi C biyi/ for scalars ai; bi such
that DL D 0. But then

P
.aiDxi C biDyi/ D 0. So it suffices to show that the images

Dx1;Dy1; : : :;Dxn;Dyn are linearly independent.
To this end, define a vector of univariate polynomials

t D .t; t2; t3; t4 � 1; t5 � 1; t6; : : :; t2n/

noting that f .t/ D �t and g.t/ D �t2. Then for each i, we have:

degt Dyi.t/ D 2i C 3 and degt Dxi.t/ D 2i C 4

Since these degrees are all distinct for 1 � i � n, it follows that these polynomials
are linearly independent. ut
Note that de Bondt’s derivations are quasi-linear, in addition to being nice deriva-
tions.

In order to exhibit an example in odd dimension 2n C 1 for n � 3, let kŒ2nC1� D
BŒz�, and extend D to this ring. In particular, Dz should satisfy: (1) Dz 2 kerD,
(2) degDz D 5, and (3) Dz is not in the span of Dx1; : : :;Dyn. For example, h D
x2y3 � x3y2 2 kerD, so we may take Dz D h. fxn � gyn/. Then Dz 2 kerD and
degDz D 5. Moreover, degt Dz.t/ D 2n C 7, so Dz is independent of the other
images.
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Remark 3.51 The examples of de Bondt given above are for n � 6 and have
degD D 4. In [93], Cor. 3.4, de Bondt also gives examples with n � 10 and
degD D 3. It is an open question whether there exist homogeneous D 2 LND.kŒn�/
with degD D 2 and rank.D/ D n.

3.9.4 Rank-4 Example in Dimension 5

In the notation of de Bondt’s examples, consider the case n D 2: Let B D
kŒa; b; x1; y1; x2; y2� D kŒ6� and R D kŒa; b�. In this case, replace the matrix N with:

N0 D
�

ab2 �b4

a2 �ab2

�

This defines an R-linear D 2 LNDR.B/, namely:

D D
�

N0 0
0 N0

�

4�4

Note that we still have f D x1y2 � x2y1 2 kerD. Set E D Dmod .a � f / on
B D Bmod .a � f / D kŒ5�. Then E is standard homogeneous of degree 4, and
satisfies:

E2b D E2x1 D E2y1 D E2x2 D E2y2 D 0

In addition, the rank of E is 4. To see this, it suffices to show that the images
Ex1;Ey1;Ex2;Ey2 are linearly independent. As above, evaluate these polynomials
at t D .1; t; t2 � 1; t3; t4/. Then:

Ex1.t/ D t4 � t2 C 1 ; Ey1.t/ D t7 � t5 C t3 ; Ex2.t/ D t6 � t4 ; Ey2.t/ D t9 � t7

Therefore, Ex1;Ey1;Ex2;Ey2 are linearly independent.
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