Chapter 3
Polynomial Rings

Locally nilpotent derivations are useful if rather elusive objects.
Though we do not have them at all on “majority” of rings, when
we have them, they are rather hard to find and it is even harder
to find all of them or to give any qualitative statements. We do
not know much even for polynomial rings.

Leonid Makar-Limanov, Introduction to [282]

This chapter investigates locally nilpotent derivations in the case B is a polynomial
ring in a finite number of variables over a field k of characteristic zero. Equivalently,
we are interested in the algebraic actions of G, on Aj.

3.1 Variables, Automorphisms, and Gradings

If B = k" for n > 0, then there exist xi,...,x, € B such that B = k[x, ..., x,].
Note that B cannot be generated over k by fewer than n elements Any such set
X = {x1,...,x,} is called a system of variables or a coordinate system for B over
k. Any subset {xi, ..., x;} is called a partial system of variables for B (1 <i < n).
A polynomial f € B is called a variable or coordinate function for B if and only if
f belongs to some system of variables for B.

The group Auty(B) of algebraic k-automorphisms of B = k" is called the
general affine group or affine Cremona group in dimension 7, and is denoted

GA,, (k). This group may be viewed as an infinite-dimensional algebraic group over
k. See [239].
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74 3 Polynomial Rings
3.1.1 Linear Maps and Derivations

Let V be a vector space of finite dimension n over k. The symmetric algebra S(V) is
isomorphic to B as a k-algebra and is N-graded: S(V) = @ 1., S?(V), where S¢(V)
is the vector space of n-forms of degree d in S(V). In particular, S°(V) = k and
SY (V) = V.If B = k|xi,...,x,], then identifying V in S(V) with the vector space
kx; @ - -+ @ kx, in B gives an isomorphism « : S(V) — B.

A linear operator L : V — V induces both a k-algebra endomorphism ¢, :
S(V) — S(V) and a k-derivation Dy : S(V) — S(V). These, in turn, give a¢,a™" €
End,(B) and aD, ! € Dery(B). Any ¢ € End;(B) arising in this way is a linear
endomorphism of B, and any D € Dery(B) arising in this way is a linear derivation
of B. Given D € Der,(B), D is linearlizable if D is conjugate to a linear derivation
by some element of GA,, (k).

Note that both ¢, and D;, are homogeneous functions of degree O relative to the
N-grading of S(V). In addition, observe that, if / : V — V is the identity, then
¢; : B — B is the identity, whereas Dy is the Euler derivation: D;(f) = df for
f € 84(V). We also have:

Proposition 3.1 A linear derivation of B is locally finite. If D € Dery(B) is a linear
derivation induced by the linear operator L : V — V, then D is locally nilpotent if
and only if L is nilpotent.

Proof Suppose that D € Der(B) is linear, where D = BD;B~! for some
isomorphism S : S(V) — B and some linear operator L on V. By Lemma 1.5,
Dy is locally finite, and therefore D is locally finite. In addition, Corollary 1.11
implies that Dy is locally nilpotent if and only if L is nilpotent. Therefore, D is
locally nilpotent if and only if L is nilpotent. O

If L € GL(V), then a¢ya™' € GA,(k), and this gives an algebraic embedding
GL(V) — GA, (k). The image of GL(V) is denoted by GL,(k), the general linear
group of order n, and elements of GL, (k) are called linear automorphisms of B.
Suppose that G C GL(V) is an algebraic subgroup. An algebraic representation
p : G — GA,(k) is linearizable if and only if p factors through a representation
y : GL(V) — GA,(k), i.e., p = yi, where t : G — GL(V) is the inclusion.

Example 3.2 Let G C GLy(k) acton V = k*. Then G acts on the symmetric algebra
S(V) = ®4>05%(V) = k™! and this action restricts to each homogeneous summand
Vy = S4V) = k1 If S(V) = k[x,y], then V, has basis X'y, 0 < i < d, and is
called the G-module of binary forms of degree d.

3.1.2 Triangular and Tame Automorphisms

Given a coordinate system B = k[xy, . .., x,], an automorphism F € GA, (k) is given
by F = (Fy,...,F,), where F; = F(x;) € B. The triangular automorphisms
or Jonquiéres automorphisms are those of the form F = (Fy,...,F,), where
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F; € k[x1,...,x;].! The triangular automorphisms form a subgroup, denoted BA,, (k),
which is the generalization of the Borel subgroup in the theory of finite-dimensional
representations. Note that the subgroup BA, (k) depends on the underlying coordi-
nate system.

The tame subgroup of GA, (k) is the subgroup generated by GL, (k) and BA, (k).
Its elements are called tame automorphisms relative to the coordinate system x. It
is known that for n < 2, every element of GA, (k) is tame (see Chap.4), whereas
non-tame automorphisms exist in GAz(k). See [382, 383].

As to gradings of polynomial rings, we are mainly interested in Z™-gradings for
some m > 1. In particular, suppose B = k[xi,...,x,]. Given a homomorphism
a 7" — Z" for m > 1, define the function deg, on the set of monomials
by deg, (x]'---x") = «a(ei,....e,). This defines a Z"-grading B = D,cym Bi.
For example, if @ : Z" — Z is defined by «(ey,...,e,) = ) e;, then the
induced grading is called the standard Z-grading of B, relative to x. Likewise,
if «(ey, ..., e,) = ey, then B is graded according to its usual degree relative to x;.

Remark 3.3 By considering the Jordan normal form of its defining matrix, we see
that any linear G,-action on A" is conjugate to a linear triangular G,-action. In
addition, it is well-known that an action of a linear algebraic group G on A" can be
extended to a linear action on some larger affine space AV. Therefore, any algebraic
Gg-action on A" extends to a linear triangular G,-action on some larger affine
space AV,

3.2 Derivations of Polynomial Rings

3.2.1 Definitions

Let B = k). Given D € Dery(B), define the corank of D to be the maximum integer
i such that there exists a partial system of variables {xi, ..., x;} of B contained in
ker D. In other words, the corank of D is the maximal number of variables within
the same system annihilated by D. Denote the corank of D by corank(D). The rank
of D is rank(D) = n — corank(D). By definition, the rank and corank are invariants
of D, in the sense that these values do not change after conjugation by an element
of GA, (k). The rank and corank were first defined in [159].

!Ernest Jean Philippe Fauque de Jonquigres (1820-1901) was a career officer in the French navy,
achieving the rank of vice-admiral in 1879. He learned advanced mathematics by reading works of
Poncelet, Chasles, and other geometers. In 1859, he introduced the planar transformations (x, y) —

( a(x)y+b(x)

X cloydeo) ), where ad — bc # 0. These were later studied by Cremona.
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A k-derivation D of B is said to be rigid when the following condition holds: If
corank(D) = i, and if {xi,...,x;} and {yy,...,y;} are partial systems of variables
of B contained in ker D, then k[xy,...,x;] = k[y1,...,y;]. This definition is due to
Daigle [69].

We say that D € Dery(B) is quasi-linear if and only if there exists a coordinate
system X = (x,...,x,) and matrix M € M, (ker D) such that Dx = xM, where
Dx = (Dxy, ..., Dx,). Note that D is locally nilpotent if and only if M is a nilpotent
matrix, since D’x = xM'’. A family of quasi-linear locally nilpotent derivations is
discussed in Sect. 3.9.3.

D € Dery(B) is a triangular derivation of B if and only if Dx; € k[xy, ..., xi—{]
fori = 2,...,n and Dx; € k. Note that triangularity depends on the choice of
coordinates on B. By a triangularizable derivation of B we mean any D € Der,(B)
which is triangular relative to some system of coordinates on B, i.e., conjugate to
a triangular derivation. As we will see, the triangular derivations form a large and
important class of locally nilpotent derivations of polynomial rings. Several of the
main examples and open questions discussed below involve triangular derivations.

For polynomial rings, other natural categories of derivations to study include the
following: Let D € Dery(B) for B = k[xi, ..., x,] = k"

1. D is a monomial derivation if each image Dx; is a monomial in xy, . . ., X,,.

2. D is an elementary derivation if, for some j with 1 < j < n, Dx; = 0 for
1 <i<jand Dx; € k[x|,...,x]ifj+1<i<n.

3. Dis a nice derivation?® if D?x; = 0 for each i.

These definitions depend on the underlying coordinate system. Note that any nice
derivation is locally nilpotent, and that any elementary derivation is both triangular
and nice. We also have:

Proposition 3.4 ([243]) For the polynomial ring B = k[xy,...,x,] = k", every
monomial derivation D € LND(B) is triangular relative to some ordering of
X1y ooy Xp.

Proof We may assume, with no loss of generality, that:

degp(x1) < degp(xa) <--- < degp(x,)

Given i, write Dx; = ax{'---x% # 0 fora € k and ¢; > 0. If Dx; # 0, then
degp(x;)) —1 = 27:1 ejdegp,(x;). Due to the ordering above, this is only possible if
ej = 0 forj > i. Therefore, Dx; € k[x1, ..., x;_] for every i. |
We will see that triangular monomial derivations provide us with important
examples.

2Van den Essen gives a more exclusive definition of a nice derivation. See [142], 7.3.12.
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3.2.2 Partial Derivatives

To each system of variables x = (xi,...,x,) on the polynomial ring B = k[x] we
associate a corresponding system of partial derivatives d,, relative tox, 1 <i <n.
In particular, d,, € Dery (B) is defined by dy,(x;) = 8;; (Kronecker delta). Another
common notation for d,, is , . Givenf € B, let f;, = 0,f.

Note that d,, is locally n1lp0tent for each i, since B = Alx] for A =
klx1,..., X, ..., xy], and d;,(A) = 0. Note also that the meaning of d,, depends on the
entire system of variables to which x; belongs. For example, in the two-dimensional
case, k[x,y] = k[x,y+x], and 9,(y+x) = 1 relative to (x, y), whereas d,(y+x) =0
relative to (x,y + x). In general, we will say D € LND(B) is a partial derivative if

and only if there exists a system of coordinates (y,...,y,) on B relative to which
D=9,,.
It is easy to see that, as a B-module, Dery(B) is freely generated by {d,,, .. ., dy, },

and that this is a basis of commuting derivations. In particular, given D € Dery(B):

D= Y D(x),

1<i<n

To verify this expression for D, it suffices to check equality for each x;, and this is
obvious. Note that the rank of D is the minimal number of partial derivatives needed
to express D in this form. Thus, elements of Der,(B) having rank one are precisely
those of the form fd,, for f € B, relative to some system of coordinates (xp, . . ., x,)
for B.

Example 3.5 On the polynomial ring B = k[xi, . .., x,] = kI"l, define the derivation:

"\ 0
DZ;axi

IfN = []/Z, i, then

xff—l x”n_l
x';—2 xZ—Z
Wl ) = N-det| D =N -5
'xl DY xn l>‘]
1 ... 1
i.e., the Vandermonde determinant of x1, . . ., x, may be realized as a Wronskian. 0O

The partial derivatives d,, also extend (uniquely) to the field K = k(xi, ..., x,)
by the quotient rule, although they are no longer locally nilpotent on all K:

Nil(dy,) = k(X1 -« oy Xiy -« s X)) [X1] -
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In this case, we see that Der(K) is a vector space over K of dimension n, with basis
Oy, - - ., Oy,. More generally:

Proposition 3.6 If L is a field of finite transcendence degree n over k, then Dery (L)
is a vector space over L of dimension n.

Proof Suppose k C k(xi,...,x,) C L for algebraically independent x;, and set K =
k(x1,...,x,). Suppose D € Dery(L) and ¢ € L are given, and let P € K[T] = K[!
be the minimal polynomial of 7 over k. Suppose P(T) = Y, a;T' for a; € K. Then
0 = D(P(t)) = P'(t)Dt + Y, D(a;)t". Since P'(t) # 0, this implies

Dt =—(P'()~" ) D)t

meaning that D is completely determined by its values on K. Conversely, this same
formula shows that every D € Der;(K) can be uniquely extended to L.

In particular, the partial derivatives d,, extend uniquely to L. If f € K and D €
Dery(L), then Df = 0,,fDx; + --- + 9,,/Dx,. We conclude that

Dery(L) = span;{dy,, ..., 0y, } .

If @10y, +-- - a,0,, = O fora; € L, then evaluation at x; shows that a; = 0. Therefore,
the partial derivatives are linearly independent over L, and the dimension of Der (L)
equals 7. O

Proposition 3.7 (Multivariate Chain Rule) Suppose D € Dery(K) for K =
k(xi,....x,), andfi,....fu € K. Then for any g € k(y1,...,ym) = k"

0 d
D(g(fi. .. /) = afl (fioeonfu) - DA + oo+ ayg (fioeefon) - Dfo

Proof By the product rule, it suffices to assume g € k[yi,..., V|- In addition,
by linearity, it will suffice to show the formula in the case g is a monomial:
g=y|"ymforey,....,e, €N.

From the product rule and the univariate chain rule, we have that:

ad = .
a.X'(flel fony = fol e f e (1)
J i

= Zei- ! ...fi‘-’i—l e fom e (f)y
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Since D = Dxdy, + - -+ + Dx,0,,, we have:

DU -+ fyr) = Y0y ofy) - Dy
i

= ZZ(ﬁ)X]_ ceiff e fATN e Dy
i

= ZZ(ﬁ)X]_ e fO - fT e Dy
i

=D el T i D () - Dy
i i

ZZEi el e Df,

08 et e
=Zayi(f1 -f") - Df

O
The use of partial derivatives also allows us to describe homogeneous decompo-
sitions of derivations relative to G-gradings of B = k[xy, ..., x,] = k"l

Proposition 3.8 (See Prop. 5.1.14 of [142]) Let G be an abelian group and B =
@gEG B, a G-grading such that x; is G-homogeneous for 1 < i < n. Every nonzero
D € Der(B) admits a unique decomposition D = dec D,, where D, € Dery(B)
is G-homogeneous of degree g and D, = 0 for all but finitely many g € G.

Proof There exist fi,....fy € B such that D = ) f;dy,. Since each x; is G-
homogeneous, each partial derivative d,, is a G-homogeneous derivation of B. Each
coefficient function f; admits a decomposition into G-homogeneous summands;
suppose fi = Y geG( fi)q- Then each summand f;d,, can be decomposed as a finite

sum of G-homogeneous derivations, namely, fidx; = ) geG( f)¢0x,. Therefore,
D = Zi’g( fi)20yx;, and by gathering terms of the same degree, the desired result
follows. O

Example 3.9 Let G = Z, and define a G-grading on Clx, y, z] = CP! by declaring
that x,y, z are G-homogeneous with deg; x = deg;z = 0 and deg;y = 1. Then
0y, 0y, 0, are G-homogeneous with deg; d, = deg; 9, = 0 and deg; 0, = 1. Define
D € LND(CJx, y, z]) by:

D = (=37)0, + (3iz)d, + 2(x — iy)d,

Then D = Dy + D for Dy = (—3z?)d, + 2(x — iy)d, and D = (3iz?)d,. Note that,
if f = x? + > + 2%, then deg; f = 0 and Df = 0.
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The preceding example can be used to show that Proposition 3.8 does not
generalize to affine rings: Let B = Clx, y, z]/(f) and let § € LND(B) be the quotient
derivation defined by D. In particular, § # 0. Since f is G-homogeneous, B inherits
a non-trivial G-grading. However, it is shown in [83], Prop. 6.5, that A = 0 for any
G-homogeneous A € LND(B).

On the other hand, recall that when the group G is totally ordered and B is a
G-graded affine k-domain, then any nonzero D € LND(B) induces a nonzero G-
homogeneous element of LND(B); see Sect. 1.1.5.

3.2.3 Jacobian Derivations

Let B = k[xi,...,x,] = k", The jacobian matrix of fi,....f,, € Bisthe m x n
matrix of partial derivatives:

o a(flv .. 7fm) _

T(froeend) 1= X1, . Xn)

((fi)y)

Note that the jacobian matrix depends on the underlying system of coordinates.
When m = n, the jacobian determinant of f1, .. .,f, € Bisdet 7 (f1,....f,) € B.

Suppose k[y1,...,ym] = k" and let F : k[y1,...,ym] — k[x1,...,x,] be a k-
algebra homomorphism. Then the jacobian matrix of F is J(F) = J(fi,...,fum)s
where f; = F(y;), and the jacobian determinant of F is det 7 (F).? In addition,
suppose A = (a;;) is a matrix with entries a;; in k[yi, ..., ym]. Then F(A) denotes
the matrix (F (aij)) with entries in k[xy, . . ., X;].

Given k-algebra homomorphisms

G F
K[z, ..o z] = k[ vy ym] = klx1, ..., x0]
the chain rule for jacobian matrices is
J(FoG)=F(J(G)- T(F)

where (-) on the right denotes matrix multiplication. This follows from the multi-
variate chain rule above. Note that if 7 (G) is a square matrix, then we have:

detF (J(G)) = F (det J(G))
Observe that the standard properties of determinants imply that:

det J is a k-derivation of B in each one of its arguments.

3Some authors use DF to denote the jacobian matrix of F, but we prefer to reserve D for derivations.
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In particular, suppose fi,...,f,—1 € B are given, and set f = (fi,...,f,—1). Then f
defines A¢ € Dery(B) via:

Ar(g) :=det I (fi,....fu-1.8) (g €B)

Ay is called the jacobian derivation of B determined by f.
Observe that the definitions of jacobian matrices and jacobian derivations also

extend to the rational function field K = k(x1, ..., x,).
If F = (fi,....fy) is a system of variables for B, then:
0(fi, .. fa
det 7(F) = det U1 ) Ay e ke
(X, ..., Xn)

This is easily seen from the chain rule: By definition, ' admits a polynomial inverse
F~!,and I = FF~! implies that

1 =det(F(J(F™") - J(F)) = det F(J(F")) det J (F)

meaning det 7 (F) is a unit of B.
In the other direction lurks the famous Jacobian Conjecture, which can be
formulated in the language of derivations: Suppose f = (fi,...,f,—1) for f; € B.

If Ag has aslice s, then k[fi,...,fu—1,s] = B. Equivalently, if A has a slice, then Ag is
locally nilpotent and ker A¢ = k[fi, ..., fu—1].

See van den Essen [142], Chap. 2, for further details about the Jacobian
Conjecture.

Let B = @D, B: be the standard Z-grading relative to (xj,...,x,). Given a
system of variables F = (fi,....f,) for B, writt F = ) ., F;, where F; =
((fD)is- - (fn)i)- Tt is easy to check that det 7 (F) = det J(F;) € k*. It follows
that F is a linear system of variables for B. We have thus shown:

FeGAk) = Fi€GLy(k 3.1)

Following are several lemmas about jacobian derivations, which will be used to
prove certain properties of locally nilpotent derivations of polynomial rings.

Lemma 3.10 Suppose K = k(xy,...,x,) = k™. Given fi,....fu—1 € K, setf =
(fi1, - -,fu=1) and consider Ag € Dery(K).

(@) Af=0ifandonlyiffi,...,fn—1 are algebraically dependent.

(b) If Af # O, then ker Ay is the algebraic closure of k(fi, . .., fu—1) in K.

(¢) For any g € K, A¢(g) = 0 if and only if fi,...,.fu—1,8 are algebraically
dependent.

Proof (Following [276]) To prove part (a), suppose fi, ...,f,—1 are algebraically
dependent. Let P(f) be a polynomial with coefficients in the field k(f2, .. .,f,—1) of
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minimal degree such that P(f;) = 0. Then:

0= Ay fofior) = PUDAG Aoy = P(F1)Ar

By minimality of degree, P'(f;) # 0, so Af = 0.

Conversely, suppose f1, . . ., fu—1 are algebraically independent, and choose f;, € K
transcendental over k(f7, . . ., fu—1). Then for each i, x; is algebraic over k(f1, . . ., f),
and there exists P; € k[y1,...,Yut+1] = k1 guch that Pi(fi1,....fu,xi) = 0. Now
dP;/dy,+1 # 0, since otherwise P; gives a relation of algebraic dependence for
fis .. fn- We may assume the degree of P; is minimal in y,1, so that dP;/dy, .+ is
nonzero when evaluated at (f1, .. .,f, X;).

By the chain rule, for each i and each j,

0= 8yPi(fis-wofo k) = ) (P)s(f)y + (Pur1(xi)y

1<s<n

where (P;); denotes ?15 “(f1, ..+ fu, xi). In matrix form, this becomes

0
(Pi(f1s oo fus X))y (P
0= : =Ml |+ | (Pt
(Pi(f1s- - osfus X)), (Pi)n
0

where M = J(fi,....fn). Lete; = (0,...,1,...0) € K" be the standard basis
vectors (1 < i < n). The image of M as a linear operator on K" is spanned by
(P1)n+1€15 -+ -, (Pn)n+1€n, and since (P;),+1 # 0 for each i, we conclude that M is
surjective. Therefore, det M = A¢(f,,) # 0. So part (a) is proved.

To prove (b), note first that, under the hypothesis Af # 0, part (a) implies
fis .., fa—1 are algebraically independent. This means that the transcendence degree
of k(fi1,...,fu—1) equals n — 1. Since k(fi,...,fu—1) C ker Ag, we have that ker Ag
is the algebraic closure of k(f,...,f,—1) in K.

To prove (c), suppose first that fi, .. ., f,—1, g are algebraically independent. Then
fis ..., fa—1 are algebraically independent, and ker Af is an algebraic extension of
k(fi,...,fa—1)- Since g is transcendental over k(fi, . . ., fu—1), it is also transcendental
over ker Ag. Therefore, Ag(g) # 0.

Conversely, suppose thatf, . . ., f,—1, g are algebraically dependent. If f1, . . ., f,—1
are algebraically independent, the same argument used above shows that g € ker Ay.
And if fi,...,f,—1 are algebraically dependent, then A¢ is the zero derivation, by
part (a). |
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Lemma 3.11 (Lemma 6 of [276]) Suppose K = k(xi,....x,) = k" and
D € Dery(K) has tr.deg,(ker D) = n — 1. Then for any set £ = (fi,....fo—1) of
algebraically independent elements of ker D, there exists a € K such that D = aAy.

Proof First, kerD = ker A¢, since each is equal to the algebraic closure of
k(fi,....fiu1) in K. Choose g € K so that Dg # 0. Define a = Dg(A¢g)~". Then
D = aAg when restricted to the subfield k(fi,...,f,—1,&). Since Dg # 0, g is
transcendental over ker D, hence also over k(fj,...,f,—1). Thus, K is an algebraic
extension of k(fi,...,fu—1,&). By Proposition 1.14 we conclude that D = aA¢ on
all of K. O

Lemma 3.12 (Lemma 7 of [276]) Forn > 2, let K = k(xi,...,x,) = k.
Given fi, ..., fa1 € K algebraically independent, set £ = (fi,....fu—1). If g =
(81, ..., 8n—1) for gi € ker Ay, then there exists a € ker Ag such that Ag = a/y.

Proof If Ay = 0, we can take a = 0. So assume A, 7# 0, meaning that g1, . .., gn—1
are algebraically independent. In particular, g; & k for each i.

Since tr.deg. ker Ay = n — 1, the elements fi,...,f,—1, g are algebraically
dependent. Let P € k[T, ..., T,] = k" be such that P(f, g;) = 0. The notation P;
will denote the partial derivative 0P/d7;. Then we may assume that P, (f, g;) # 0;
otherwise replace P by P,. Likewise, by re-ordering the f; if necessary, we may
assume that Py (f, g;) # 0. It follows that:

0= APg)pfa)

= > Pilf.g)AGpfin + Pal 8D A i

1<i<n—1

= Pl(f7gl)A(fI:va---uz—l) + Pn(f’gl)A(glava---:fn—l)

If n = 2 we are done. Otherwise n > 3, and we may assume inductively that for
some [ with 1 <i < n — 2 we have

Ay gisiprdumr) = DAL

for some nonzero b € kerAs. Then gi,..., g fi+1....fn—1 are algebraically
independent, since the derivation they define is nonzero. Choose Q € k[T, ..., T,]

with Q(g1, ..., &i»fi+1»- - »fu—1,&+1) = 0, noting that Q,, # 0 (otherwise Q is a
dependence relation for gy, .. ., i, fi+1, - . ..fu—1)- By re-ordering the f; if necessary,
we may assume that Qi+1(g1, . .., &i>fi+1, - - -»fu—1, &+1) 7 0. As above, we have

0= A(gl ----- 8i-Q(*) fit 25 efu—1)
= Ql+l(*)A(g1 ..... g,‘,fl‘_l,_l,...,”—l) + Qn(*)A(gl ----- 8is8i+1Jn+25---y fn—1)
= Qit1(*) - bAr + Qn(¥)Agq,...., 8i it 1n42efa—1)
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where (x) denotes the input (g1, ..., &, fi+1, - - -»fu—1, &i+1). Therefore,

Agr i figrodar) = CA¢

for some nonzero c € ker A¢. By induction, the proof is complete. O
If K = k(xi,...,x,) = k™ and D € Der(K), define the divergence of D by:

div(D) = ) 35 (Dx)

Lemma 3.13 If Ay is a jacobian derivation of k™, then div(Ag) = 0.

Proof Given x;, Proposition 2.60 implies that:

Therefore:

1<ij<n

Expanding these determinants, we see that

div(Ap) = Y sign(0) (A (A By -+ a1y

OES,
where 0 = (y1,...,y,) is a permutation of (x1,...,x,). Since (f)yy, = (fy.y»
terms corresponding to (y1,...,¥j,...,¥») and (y1,..., ¥, ..., ;) cancel each other
out, their signs being opposite. Therefore, the entire sum is 0. O

An additional fact about jacobian derivations is due to Daigle. It is based on the
following result; the reader is referred to the cited paper for its proof.

Proposition 3.14 (Cor. 3.10 of [70]) Letfi,....fn € B = klx1....,x,] = k" be
given. Set A = k[fi,....fu]l and M = J(fi,....fm). Suppose I C B is the ideal
generated by the d x d minors of M, where d is the transcendence degree of A over
k. If A is factorially closed in B, then height(I) > 1.

Corollary 3.15 (Cor. 2.4 of [70]) Suppose fi,....fu-1 € B = klx1,...,x,] =
k" are algebraically independent, and set £ = (fi,....fo—1). If k[fi.....foz1] is a
factorially closed subring of B, then Ay is irreducible, and ker A¢ = k[fi, ..., fu—1].

Proof Since Ay # 0, we have that ker A is equal to the algebraic closure of
k[fi,-...fa—1] in B. By hypothesis, k[fi,...,f,—1] is factorially closed, hence also
algebraically closed in B. Therefore ker A¢ = k[fi, . . .. fu—1]-
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Let I be the ideal generated by the image of A, namely,

I = (Af(X]), D) Af(-xn)) .

Since the images Ag(x;) are precisely the (n — 1) x (n — 1) minors of the jacobian
matrix J(fi,....fa.—1), the foregoing proposition implies that height(/) > 1.
Therefore, I is contained in no principal ideal other than B itself, and Ay is
irreducible. O
This, of course, has application to the locally nilpotent case, as we will see.
However, not all derivations meeting the conditions of this corollary are locally
nilpotent. For example, it was pointed out in Chap. I that k[x*> — y?] is factorially
closed in k[x,y] = kP, but is not the kernel of any locally nilpotent derivation of
k[x, y].
Another key fact about Jacobians is given by van den Essen.

Proposition 3.16 (1.2.9 of [142]) Let k be a field of characteristic zero and let F =
(F1,...,F,) for F; € k[xy, ..., x,] = k"\. Then the rank of J (F) equals tr.deg,k(F).
Here, the rank of the jacobian matrix is defined to be the maximal order of a nonzero
minor of J(F).

Remark 3.17 Tt was observed that the jacobian determinant of a system of variables
in a polynomial ring is always a unit of the base field. This fact gives a method
to construct locally nilpotent derivations of polynomial rings, as follows. Let B =
k[x1,...,x,] = k" forn > 2. Giveni with 1 <i <n—1,letK = k(xy,...,x;), and
SUppOSe fit1, ... fuo1 € B satisfy K[xit1,....,%:] = K[fi+1,-.-.fo—1,g] for some
g € B. Define D € Dery(B) by

D=Ay,., Xifid 1oeefn—1)

and let E denote the extension of D to K[x;11, .. ., x,]. Since E(f;) = 0 for each j and
E(g) € K*, it follows that E is locally nilpotent. Therefore, D (being a restriction of
E) is also locally nilpotent.

Example 3.18 Let B = Clx,y,z,u] = C¥, and define:

p:yu—}—zz , V=XxZ+yp, w:xzu—2xzp—yp2
The Vénéreau polynomials are f;, := y + x"v, n > 1. The preceding remark can be
used to prove that f, is an x-variable of B when n > 3.

First, define a C(x)-derivation 6 of C(x)[y, z, 4] by

Oy =0, 0z=x"'y, Qu=—-2x"'z
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noting that Op = 0. Then:

y =exp(pf)(y) . v=exp(pf)(xz) and w = exp(p8)(x*u)

It follows that, for all n > 1:
C[y,z.u] = Cx)[y,v,w] = C[fu, v, W]

Next, assume n > 3, and define a derivation d of B by d = A ). Since
C@)[y,v,w] = C(x)[y, z, u], it follows from the preceding remark that d is locally
nilpotent. And since dx = dv = 0, we have that x"~3vd is also locally nilpotent. In
addition, it is easily checked that dy = x3. Therefore:

exp( vd)(x) =x and  exp(X"vd)(y) =y + X" vd(y) = y+ x"v = f,

Set P, = exp(¥"vd)(z) and Q, = exp(x"vd)(u). Then Clx,f,,P,, Q)] =
Clx,y, z, u].
The Vénéreau polynomials are further explored in Sect. 10.3 below.

3.2.4 Homogenizing a Derivation

Suppose B = k[x1....,x,] = k", and D € Dery(B) is given, D # 0. Set A = ker D.
Write Dx; = fi(x1,...,x,) for f; € B, and set d = max; deg(Dx;), where degrees
are taken relative to the standard Z-grading of B. The homogenization of D is the
derivation D¥ € Der;(B[w]) defined by

D(w) =0 and D"(x) =wifi(!,....")

where w is an indeterminate over B. Note that D/ is homogeneous of degree d — 1,
relative to the standard grading of B[w], and DY mod (w — 1) = D as derivations of
B. In addition, if D is (standard) homogeneous to begin with, then Df (x;) = Dx; for
every i.

In order to give further properties of D relative to D, we first extend D to the
derivation D € Dery(B[w,w™!]) defined by Db = Db for b € B, and Dw = 0. Note
that ker D = A[w, w™!], and that if D € LND(B), then D € LND(B[w, w™']).

Next, define & € Auty(Blw,w™']) by a(x;) = i and a(w) = w, noting that
aDa~! € Dery(Blw,w™']). In particular:

aDa~' (x;) = aD(wx;) = wa(Dx;) = wfi("!,...."™")
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Therefore, w'=! - aDa~'(x;) = D (x;), that is, D" equals the restriction of
w?laDa~! to B[w]. From this we conclude that D has the following properties.

. D" is homogeneous of degree d — 1 in the standard Z-grading of B[w].
. ker (D) = ker («Da~") N Blw] = a(A[w, w™']) N B[w]

. If p : B[w] — B is evaluation at w = 1, then p(ker D) = ker D.

. If D is irreducible, then DY is irreducible.

. If D € LND(B), then D¥ € LND,,(B[w]).

[T I S OST \R

Since D' = D modulo (w — 1), the assignment D — D is an injective function
from LND(B) into the subset of standard homogeneous elements of LND,,(B[w]).
This is not, however, a bijective correspondence, since D will never be of the form
wE for E € LND,,(B[w]).

Homogenizations are used in Chap. 8 to calculate kernel elements of D, where
property (3) above is especially important.

3.2.5 Other Base Rings

Observe that many of the definitions given for k) naturally generalize to the rings
Al for non-fields A. In this case, we simply include the modifier over A. For
example, if B = A[xy, ..., x,], we refer to variables of B over A as those f € B such
that B = A[f]""~!l. Likewise, partial derivatives over A, jacobian derivations
over A, linear derivations over A, and triangular derivations over A are defined
as elements of Dery4 (B) in the obvious way.

For example, let A be a commutative k-domain and A[xy, ...,x,] = Al Given
D € Ders(A[xi, . . ., x4]), the divergence of D over A is defined by

diva(D) = ) 8,,(Dxi)
i=1
where 0,;(A) = 0 and 9,,(x;) = §; for each i,j. Nowicki [333] defines D to be

special if div4 (D) = 0. When D is locally nilpotent, we have:
Proposition 3.19 ([142], Prop. 1.3.51; [22], Prop.2.8) div4(D) = 0 for every D €

LND4(Alx1, . . ., xp])-
3.3 Locally Nilpotent Derivations of Polynomial Rings

One fundamental fact about locally nilpotent derivations of polynomial rings is the
following, which is due to Makar-Limanov (Lemma 8 of [276]).
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Theorem 3.20 (Makar-Limanov Theorem) Let D € LND(B) be irreducible,
where B = kU, Let fi, . . .,f,—1 be algebraically independent elements of ker D, and
setf = (fi,...,fu—1). Then there exists a € ker D such that Ay = aD. In particular,
Af € LND(B).
In case n < 3, even stronger properties hold; see Theorem 5.9 below.

The proof below follows that of Makar-Limanov, using the lemmas proved earlier
concerning jacobian derivations.

Proof Let S be the set of nonzero elements of A = ker D, and let K be the field S™'A.
Then D extends to a locally nilpotent derivation S~ D of S~!B. By Principle 13, we
have that K = ker (S~'D), and S™'B = K[r] = K for some local slice r of D.
Therefore (S~'B)* = K*.

Extend D to a derivation D’ on all frac(B) via the quotient rule. (Note: D’ is not
locally nilpotent.) From Corollary 1.29, we have that ker D' = K.

By Lemma 3.11, there exists n € frac(B) such that D’ = nAs. Note that Ag
restricts to a derivation of B.

Suppose n = b/a for a,b € B with ged(a,b) = 1. Write A = ¢6 forc € B
and irreducible § € Dery(B). Then aD = bcé, and by Proposition 2.3 we have that
(a) = (bc). Since ged(a, b) = 1, this means b € B*, so we may just as well assume
b = 1. Therefore, Ay = aD. The key fact to prove is that a € ker D.

Let gi,....g» € S7'B be given, and consider the jacobian determinant
det J(g1,...,gs) € frac(B). We claim that det 7 (g1, ..., g,) is contained in the
principal ideal aS™!B of S~!B.

Since !B = K[r], each g; can be written as a finite sum g; = Y a;¥ for
a; € K and j > 0. Therefore, det 7 (g1, ..., &) is a sum of functions of the form
det 7 (a;r',...,a,r") for a; € K and ¢; > 0. By the product rule, for each i we also
have:

det J(ar®,...,ay,r) =
ajdet J(ayre',...,r%, ... a,r) + rfidet J(air', ..., a;, . .., apr"

So detJ(g1,...,8,) may be expressed as a sum of functions of the form
qdetJ(by,...,b,), where q € S7!B, and either b; € K or b; = r% for ¢; > 1.
If every b; € K, then by, ..., b, are linearly dependent, and this term will be zero.
Likewise, if b; = r“ and b; = r% for i # j, then by, ..., b, are linearly dependent,
and this term is zero. Therefore, by re-ordering the b; if necessary, any nonzero
summand gdet J (by, ..., b,) is of the form gdet J(ay,...,a,—1,7°) = qA.(r°),
where g € S7'B,a; e K,a = (ai,...,an—1),and e > 1. By Lemma 3.12, there exists
h € ker Ay = K such that A, = hA¢ for some i € K. In particular, A, restricts to
S7!B. Since A¢(y) € aB for all y € B, it follows that gA,(r°) € ahS™'B = aS™'B
(since & is a unit). Since det 7 (g1, - .., g,) is a sum of such functions, we conclude
that det 7 (g1,...,8n) € aS™'B for any gi,...,8n € S~!B, as claimed.

In particular, if B = k[x{, ..., x,], then 1 = det 7 (x1,...,x,) € aS™'B, implying
that a € (S™'B)* = K*. But this means a € BN K = kerD. O

Makar-Limanov generalized this result in [282] to give a description of the
locally nilpotent derivations of any commutative affine C-domain. He writes that
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his goal is “to give a standard form for an Ind on the affine domains. This form
is somewhat analogous to a matrix representation of a linear operator” (p. 2). The
theorem he proves is the following.

Theorem 3.21 (Generalized Makar-Limanov Theorem) Let I be a prime ideal
of B = C", and let R be the factor ring B/I, with standard projection = : B — R.
Given D € LND(R), there exist elements fi,...,fn—1 € B and nonzero elements
a,b € RP such that, for every g € B:

aD(r(g)) = br(det T (fi.....fu-1.8))

Another way to express the conclusion of this theorem is that aD = bAg/I, where
f = (fi,...,fa—1). The reader is referred to Makar-Limanov’s paper for the general
proof.

The Makar-Limanov Theorem implies the following.

Corollary 3.22 (Prop. 1.3.51 of [142]) If B = k"l and D € LND(B), then
div(D) = 0.

Proof Choose algebraically independent fi,...,f,—1 € kerD. There exists an
irreducible § € LND(B) and ¢ € ker D such that D = ¢§. According to the theorem
above, there also exists a € ker D such that a§ = Ayg. Therefore, D = (c/a)Ag, so
by the product rule, together with Lemma 3.13, we have:

div(D) = (¢/a)div(Ar) + ) B (c/@) Ar(x) = 0+ Arlc/a) = 0

The next two results are due to Daigle.

Lemma 3.23 (Prop. 1.2 of [70]) Let B be a commutative k-domain and A a
subalgebra such that B has transcendence degree 1 over A. If D,E € Dery(B),
then there exist a,b € B for which aD = bE.

Proof Let K = frac(A) and L = frac(B). By Proposition 3.6, the dimension of
Derg (L) as a vector space over L is equal to one. Therefore, if S is the set of nonzero
elements of B, then S~' D and S™'E are linearly dependent over K, and consequently
aD = bE for some a, b € B. O

Proposition 3.24 (Cor. 2.5 of [70])  Suppose B = k", and D € LND(B) has
ker D > k" Ifker D = k[fi,....fo_1] andf = (fi,...fo—1), then At is irreducible
and locally nilpotent, and D = aAs for some a € ker D.

Proof Let A = kerD. Since A is factorially closed, the fact that Ag is irreducible
follows from Corollary 3.15 above. By Lemma 3.23, there exist a, b € B such that
bD = aAy, since D and Ay have the same kernel. We may assume ged(a, b) = 1.
Then A¢B C bB, implying that b is a unit. So we may assume b = 1. The fact that
Ay is locally nilpotent and a € A now follows from Principle 7. O
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In the other direction, we would like to know whether, if f = (f1, .. .,f,—) forf; €
B, the condition that Ay is irreducible and locally nilpotent always implies ker Af =
k[fi,....fa—1]- But this is a hard question. For example, the truth of this property for
n = 3 would imply the truth of the two-dimensional Jacobian Conjecture!

To see this, we refer to Miyanishi’s Theorem in Chap. 5, which asserts that
the kernel of any nonzero locally nilpotent derivation of kP! is isomorphic to k2.
Suppose A = k[f.g] is the kernel of a locally nilpotent derivation of k%l Let
u,v € k[f, g] have the property that det gg;g is a nonzero constant. We have

a(u,v)

Ay = det A
(u,v) € a(f’g) (f.8)

which we know to be irreducible and locally nilpotent. If the above property were
true, it would follow that A = ker A, = k[u, v].

Proposition 3.25 (Lemma 3 of [159]) Suppose B = k"l and D € Dery(B) is
linear relative to the coordinate system (xy, ..., x,) on B. Let V be the vector space
V =kx; @ -+ ® kx,. Then rank(D) equals the rank of D as a linear operator on V.

Proof Suppose that corank(D) = m, and let 1 denote the nullity of D as a
linear operator on V. Let F = (fi,...,f,) be a system of variables on B for
which fi,...,f,, € kerD. Suppose that the standard N-grading of B is given by
B = ®jenB; and let f; = ZjeN(ﬁ)j' Since Df; = --- = Df,, = 0, we also have
D(fi)1 =+ = D(fw)1 = 0. By (3.1), (fi)1, ..., (fw) are linearly independent. It
follows that n > m.

Conversely, let vy, ..., v, € V be linearly independent vectors annihilated by D.
Since (vi, ..., vy,) is a partial system of variables on B, it follows that n < m. O

In his thesis, Wang [414] (Lemma 2.3.5) gives the equivalent statement: With the

notation and hypotheses of the proposition above:

dimg(V N ker D) = corank(D)

3.4 Slices in Polynomial Rings

The general topic of slices for locally nilpotent derivations is covered in Chap. 10.
For polynomial rings, we have the following basic result.

Proposition 3.26 Suppose B = k"l and D € LND(B) has Ds = 1 for s € B.
(a) s is a variable of Blw] = kI"+11,
(b) IfB/sB = kI"™Y1 then D is a partial derivative.

Proof Let A = kerD C B. By the Slice Theorem, B = A[s] and 7,(B) = A,
where 7 is the Dixmier map defined by s. Let B[w] = B!l and extend D to D* ¢
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LND(B[w]) by setting D*w = 0. Then ker D* = A[w]. Since w is transcendental
over A, we have A[w] = A[s] = B = kIl So there exist g1, ..., g, € B[w] such that
Alw] = k[g1, ..., g]. Therefore,

Blw] = A[sllw] = Alwlls] = kg1, ... gu.s] = K"+

and s is a variable of B[w].

In addition, we have that A =~ B/sB by the Slice Theorem. Thus, if B/sB =
k=1 then B = A[s] implies that s is a variable of B. O
Note that the condition of part (b) holds if s is a variable. Part (a) appears as part of
the proof of Thm. 1.2 in [283]. But it clearly deserves to be highlighted. A crucial
question is:

If s € B is a variable of B[w], does it follow that follow that s is a variable of B?

A negative answer to this question would imply a negative solution to either
the Embedding Problem or Cancellation Problem. A potential example of such
phenomena is provided by the Vénéreau polynomial f; € C: This is known to
be a variable of CP), but it is an open question whether it is a variable of C1*l. See
Chap. 10 for details.

In summary, suppose D € LND(k") has a slice s. Then:

. ker D is n-generated.
. The trivial extension D* of D to k"*!] has ker D* is n-generated.
3. If s is a variable of k"], then ker D is (n — 1)-generated.

N —

The following result concerns systems of local slices in a ring; §; denotes the
Kronecker delta.

Proposition 3.27 B is a commutative k-domain. Suppose that there exist
Dy,...,D, e LND(B) and sy, ...,S, € Bsuch that, for1 <i <n:

1. [Di,Dj] = 0

2. DiSj = 81]

Then B = Alsy, ..., s,] = A, where A = ﬂlﬁiﬁn ker D;.

Proof We proceed by induction on n. The case n = 1 follows from the Slice
Theorem. Assume that n > 2 and that B = C[sy,...,5,—1] = C" U where

C = ()j<j<,—; kerD;. Note that s, € C. In addition, since [D;,D,] = 0 for

1 < i < n, it follows that D, restricts to C. Since D,s, = 1, the Slice Theorem

implies C = A[s,] = Al'l. Therefore, B = A[sy, ..., s,] = A, O
As an application, we have the following.

Corollary 3.28 Let A = k[xi,..., x,] = K, and let k be the algebraic closure of
k. If yi,...,yn € A are such that k|xy, ..., x,| = k[y1,...,yn), then k[x1,...,x,] =

k[yls---vyn]'
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Proof Since A = k[xi, ..., x,], we have:
A=k @A =kxi, ... %] = k[y1,...,ya) =kl
Define the jacobian derivations Dy, . .., D, of A by:

_ a(yla"'v.);iw‘wymf) I
bf = a(xy, ..., X,) (fed)

Note that D; restricts to A. If ¢; = D;y;, then ¢; € k* N A for each i; see Sect. 3.2.3.
Since k is algebraically closed in A, we have K* NA = k*, soc; € k*. In addition,
D(c;i'y;) = 1 and Dyy; = 0 fori # j, and [D;,D;] = 0 for every i,j. Since
each c¢;1y; belongs to A, Proposition 3.27 implies that A = k[c]'y1,....¢; 'y =
k[yls---vyn]' O

3.5 Triangular Derivations and Automorphisms

Fix a coordinate system B = k[x, ..., x,]. Define subgroups H;, K; C BA,(k), i =
1,...,n,by:

H; = {h € BA,(k)|h(x}) = xj, 1 <j <n—1i}
K; = {g € BA,(k)|g(x;) = xj,i + 1 <j < n} = BA;(k)

Then for each i, K; acts on H; by conjugation, and BA, (k) = H; x K,—;.

Proposition 3.29 Suppose B = k" and D € Dery(B) is triangular in some
coordinate system. Then D € LND(B). In addition, if n > 2, then rank(D) < n — 1.

Proof We argue by induction on n for n > 1, the case n = 1 being obvious.
For n > 2, note that since D is triangular, D restricts to a triangular derivation
of k[xi, ..., x,—1]. By induction, D is locally nilpotent on this subring. In particular,

Dx, € k[xi,...,x,—1] C Nil(D), which implies x,, € Nil(D). Therefore, D is locally
nilpotent on all B.
Now suppose n > 2. If Dx; = 0 we are done, so assume Dx; = ¢ € k*. Choose
f € klxi] so that Dx, = f'(x;). Then D(cx; — f(x1)) = 0, and cx, — f(x;) is a
triangular variable of B. O
We next describe the factorization of triangular automorphisms into unipotent
and semi-simple factors. (See [123] for a related result.)

Proposition 3.30 Every triangular automorphism of k" is of the form expT o L,
where L is a diagonal matrix and T is a triangular derivation.

Proof If F € BA,(k), then F o L is unipotent triangular for some diagonal matrix L.
So it suffices to assume F is unipotent, i.e., of the form

F = (x1, 0+ A1), 23 +f(0,x2), ..o x0 + fulxi, .., X0—1))
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for polynomials f;. We show by induction on n that the map F — I = (0,f2,...,f»)
is locally nilpotent, the case n = 1 being obvious. (Observe that (F — I)(c¢) = 0 for
cek)

Let A = k[xi,...,x,—1], and suppose by induction that F — [ restricts to a
locally nilpotent map on A. Then it suffices to show that F — [ is nilpotent at every
polynomial of the form ax), (a € A). One easily obtains the formula:

(F—D"(ax}) = (F — )"(a)x’, + (lower x, terms)

By induction, (F — I)"(a) = 0 for m > 0. Since the x,-degree is thus lowered, we
eventually obtain (F — I)M(ax!) = 0 for M > 0. It follows that F — [ is locally
nilpotent on all B. Thus, Proposition 2.57 implies F = exp D for D = log(I + (F —
I)) € LND(B). O
Observe that, for triangular derivations Dy,D, of B = K. D, + D, is again
triangular, hence locally nilpotent. In general, however, the triangular derivations
Dy and D; do not commute, and exp Dy exp D, # exp(D; + D;). Nonetheless, the
product on the left is an exponential automorphism.

Corollary 3.31 If D, and D, are triangular k-derivations of B = k), then there
exists a triangular k-derivation E of B such that:

expDiexpD, = expE

Proof Since exp D exp D, is triangular, it equals exp E o L for triangular E and
diagonal L; see Proposition 3.30. It is clear that in this case L = I (identity). O
See also the proof of Cor. 3 in [123].

The main theorem of this section is the following.

Theorem 3.32 If F € BA, (k) has finite order, then there exists L € GL,(k) and a
triangular D € LND(B) such that F = exp(—D)Lexp D.
The linearizability of finite-order triangular automorphisms was first proved by Iva-
nenko in [219]. The proof presented below makes use of exponential automorphisms
to give a shorter demonstration. Whether a general element of finite order in GA,, (k)
can be linearized remains an open problem.

The proof of the theorem is based on the following more general fact.

Proposition 3.33 Let R be a UFD containing k, let D € LND(R), and let A €
Auti(R) have finite order m > 2. Set A = kerD and y = exp D o A. Suppose the
following properties hold.

1. Aa) € Aforalla € A.
2. Ma) = aforall a € A*.
3. y has finite order m

Then there exists E € LND(R) such thatkerE = A and y = exp(—E)A expE.

Proof Write D = fA for irreducible A € LND(R) and f € A. Since kerA =
ker (A" A1) = A by hypothesis (1), we conclude from Principle 12, together with
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the fact that R is a UFD and A is irreducible, that ™' AL = cA for some ¢ € A*.
By hypothesis, A(c) = c, and thus A" AL} = ¢/ A for each i € Z. It follows that for
eachi € Z, A\™'DA' = A"7(f)c' A. In particular, D = A™""DA™ = ¢"D, so " = 1.
Set E = gA for undetermined g € A. Then:
exp(—E)A exp(E) = (expD)A & exp(—E) exp(AEA™') = expD
& exp((A(g)e™ —g)A) = exp(fA)
So we need to solve for g € A which satisfies the equation f = ¢! (g) —g. We find

asolution g € spany{f, A(f), A*(f)..... A" (f)} C A. (Note that k[c] is a field.)
First, if y; := A7 (exp D)/, then:

Il =y" =(expDoA)" = Yu¥Ym—1-"y2V1

Since y; = exp(A"7(f)c' A), it follows that

m

exp(hA) =1 for h= ka_i(f)ci

i=1

Therefore, i = 0, and we may eliminate A" ~!(f) from the spanning set above.
Next, for undetermined coefficients a; € k[c], consider g = aif + aA(f) +---+
Ap—1A"2(f). Then ¢~ A(g) — g equals:

—aif + (c_lal —a)A(f) + -+ (¢ Lapn — am_l)/\m—Z(f) + C_ldm_llm_l(f)
Since & = 0, we have that ¢ ™' a,,— A"~ ! (f) equals:
—aprf — M)~ = VA () — @ A7)

Combining these gives that ¢c"'A(g) — g equals:

(—a1 — ¢ Pap-))f + (¢ 'ay — ay — cPau-)A(f) + -
st (c_lam—3 —ap—2 — C_(m_l)am—lkm_:;(f) + (C_lam—Z - 2am—l)km_2(f)

So we need to solve for a; such that M(ay, a, ..., an—1)" = (1,0,...,0)7 for:
10 0 -0 —c2

cl'=10 - 0 =3

0 ¢c'=1.-.- 0 —c*
M =

(m—1)x(m—1)
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It is easily checked that [M| # 0. For example, replace row 2 by ¢! (row 1) +
(row 2); then replace row 3 by ¢ !(row 2) + (row 3); and so on. Eventually, we
obtain the non-singular upper-triangular matrix:

10 0 - —2
0—10 - —273
N=|0 0 -1 -3

00 0 - —m
Therefore, we can solve for g, and thereby conjugate y to A. O

Proof of Theorem 3.32 Let m be the order of F. We have that BA, (k) = H, x K1,

sowe can write F = hgforg € K,—; and h € H,. Then 1 = F" = (gh)™ = g"I’ for

some /' € Hj, which implies g” = #' = 1. By induction, there exists a triangular

derivation D with Dx, = 0 and g := exp(—D)gexpD € GL,(k) N Ky—;. Thus,

exp(—D)FexpD = hg for h := exp(—D)hexpD € H,. So it suffices to assume

from the outset that ' = hg for linear g € K,,_; and h € H,.
Ifth=(x1,...,xp—1,ax, + f(x1,...,x,—1)), then:

0
h = exp (fax ) 0 (X1, ...y Xp—1, axy)

Thus, F = exp(fai )L, where L = (xi,...,x,—1,ax,)g € GL,(k). Note that

L restricts to ker(ai ) = k[xi,...,x,—1]. By Proposition 3.33, the theorem now
follows. |

3.6 Group Actions on A"

3.6.1 Terminology

Givenf € B = kIl the variety in A" defined by f will be denoted by V(f). Likewise,
if I C B is an ideal, the variety defined by [ is V(I).

The group of algebraic automorphisms of A" is anti-isomorphic to GA,(k), in the
sense that (F o F»)* = F3 o F| in GA, (k) when F and F, are automorphisms of
A". Thus, we identify these two groups with one another.

If an algebraic k-group G acts algebraically on affine space X = A", we also
define the rank of the G-action exactly as rank was defined for a derivation, i.e., the
least integer » > 0 for which there exists a coordinate system (xp, ..., x,) on k[X]
such that k[x,+1, . ... x,] C k[X]°.
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The G-action on X = A” is a linear action if and only if G acts by linear
automorphisms. The action is a triangular action if and only if G acts by triangular
automorphisms. And the action is a tame action if and only if G acts by tame
automorphisms. Similarly, the action is linearizable if it is conjugate to a linear
action, and triangularizable if it is conjugate to a triangular action.

The case in which the ring of invariants is a polynomial ring over k is important.
For example, if H is a normal subgroup of G, and if k[X]H = k" for some m,
then G/H acts on the affine space A" defined by k[X]”, and this action can be quite
interesting. This is the idea behind the main examples of Chaps. 7 and 10 below.

Following are some particulars when the group G, acts on affine space. Let a
Gg-action on A" be given by

p:G,x A" - A" where p(t,x) = (F((t,X), ..., F,(t,X))

for functions F;, and x = (x, ..., x,) for coordinate functions x; on A",

* pis algebraic if and only if F; € k[t, x1, . .., x,] = k"1 for each i.

* pis linear if and only if each F; is a linear polynomial in x, . . ., x, over k[f].

* pis triangular if and only if F; € k[t, x1, . . ., x;] for each i.

* p is quasi-algebraic if and only if F;(t,Xx) € k[xi,...,x,] for each #, € k and
each i. (See [387].)

e Ifk = C, then p is holomorphic if and only if each F; is a holomorphic function
on C"+!,

Note that exp(zD) is a linear algebraic G,-action if and only if D is a linear locally
nilpotent derivation (i.e., given by a nilpotent matrix), and exp(¢D) is a triangular
Gg-action if and only if D is a triangular derivation. In [398], Suzuki classified
the quasi-algebraic and holomorphic Ct-actions on C2, and the holomorphic
C*-actions on C2.

3.6.2 Translations

The simplest algebraic G,-action on X = A" is a translation, meaning that for
some system of coordinates (xi, ..., x,), the action is given by

te (X1, .0 Xy) = (0 + £,x2, ..., x,) = exp(tdy,) .

Clearly, a translation is fixed-point free, and admits a geometric quotient: X/G, =
X)G, = AL,

In case n = 1, the locally nilpotent derivations of k[x] are those of the form cjx
for some ¢ € k (Principle 8). So translations are the only algebraic G,-actions on

the affine line: - x = x + tc.
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3.6.3 Planar Actions

The simplest linear G,-action on the plane comes from the standard representation

of G, on V = A? via matrices:
10
tek
(}9) ¢en

The algebraic quotient V /G, is a line A'. If = : V — V /G, is the quotient map,
then the fiber 77'(1) over any A € V /G, is the line x = A, which is a single orbit
if A # 0, and a line of fixed points if A = 0. In this case, the geometric quotient
V/G, does not exist.

More generally, a triangular action on A? is defined by

t-(x.y) = (x,y +1f (x)) = exp(tD)

for any f(x) € k[x], where D = f(x)d,. In case k = C, define a planar G,-action by
the orthogonal matrices

(CQSt —sin t) (teC).

sint cost

This is not an algebraic action, although it is quasi-algebraic, locally finite, and
holomorphic. It is the exponential of the locally finite derivation xd, —yd, on C[x, y].

3.6.4 Theorem of Deveney and Finston

Deveney and Finston showed the following fundamental property of invariant rings
for G,-actions on affine spaces.

Theorem 3.34 ([101]) Over the ground field C, the quotient field of the ring of
invariants of an algebraic action of G, on A" (n > 1) is ruled. Equivalently, if
D € LND(C") and A = ker D, then frac(A) is a ruled field.

Suppose that D € LND(C!") is given, where 1 < n < 4 and D # 0. Then ker D
is a polynomial ring: The case n = 1 is true because ker D is an algebraically closed
subring of C; the case n = 2 follows from results in Chap. 4; and the case n = 3 is
the content of Miyanishi’s Theorem in Chap. 5.

When n = 4, there are kernels which are not polynomial rings; see Sect. 3.8
below for examples. However, these kernels are rational over C. To see this, let
A = kerD and let s € B be a local slice. By the Deveney and Finston result,
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frac(A) = L for a subfield L C A. Since Bp, = A}) we have:

1
1) e

((C(z))(z) = frac(CH) = (frac(4))V = (L(l))
We can now invoke the cancellation theorem for fields to conclude that L =~ C®@,
and therefore frac(A) = C®.
In this way, Deveney and Finston obtain the following corollary.

Corollary 3.35 Over the ground field C, the quotient field of the ring of invariants
of an algebraic action of G, on A* is rational. Equivalently, if D € LND(CH) is
nonzero and A = ker D, then frac(A) =c C®.

3.6.5 Proper and Locally Trivial G,-Actions

Proper G,-actions on complex affine varieties were studied in the 1976 paper
of Fauntleroy and Magid [151], with particular attention to surfaces. This paper,
together with the examples of Winkelman given in [421], motivated a series of
papers on the subject dating from 1994 by Deveney and Finston [103—110] and by
Deveney, Finston and Gehrke [111]. These papers study proper and locally trivial
G,-actions on C".

Suppose that B = C"l and D € LND(B), let A = ker D and let

0:G,xC"—=C"
denote the G,-action on C" associated to D. In addition, let B[] = B! and extend

D to B[f] by Dt = 0. The following result is from [111], Thm. 2.3.

Theorem 3.36 (Properness Criterion) o is proper if and only if:
Blexp(tD)B] = B[t

Moreover, a proper Gg-action on C" is fixed-point free and its topological orbit
space is Hausdorff.

The same paper also characterizes the locally trivial actions, as follows (see [111],
Thm. 2.5, Thm. 2.8).

Theorem 3.37 (Local Triviality Criterion) The following conditions are equiva-
lent.

1. o is locally trivial.
2. o is proper and B is a flat extension of A.
3. pl(D)-B=B
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In [103], Deveney and Finston asked if the ring of invariants for a locally trivial
Gg-action on C" is finitely generated. In [110], they gave an affirmative answer to
this question.

Theorem 3.38 ([110], Thm. 2.1) Let X be a factorial affine variety over C. For any
locally trivial G4-action on X, the invariant ring C[X]® is finitely generated as a
C-algebra.

Any fixed-point free G,-action on C? or C? is a translation, due to Rentschler
and Kaliman, respectively (see Chaps.4 and 5). In higher dimensions this is no
longer the case. The examples in Sect. 3.8 below show that there are fixed-point
free G,-actions on C* which are not proper; proper G,-actions on C> which are
not locally trivial; and locally trivial G,-actions on C°> which are not globally
trivial. Each of these examples is triangular. In [221], Question 2, Jorgenson asked:
Is there a triangular G,-action on C* that is locally trivial but not equivariantly
trivial? Recently, Dubouloz, Finston and Jaradat showed the following, which gives
a negative answer to this question.

Theorem 3.39 ([130]) A proper triangular G,-action on C* is a translation.
It is an open question whether every proper G,-action on C* is a translation.

3.7 G,-Actions Relative to Other Group Actions

A special property belonging to a G,-action is, in many cases, equivalent to the
condition that that the action can be embedded in a larger algebraic group action.
For example, homogeneity for Z-gradings equates to an action of G, X G,,. Another
important condition to consider is symmetry. The symmetric group S, acts naturally
on the polynomial ring k[x1, . . ., x,] by permutation of the variables x;.

In the first case, suppose D € LND(B) is homogeneous of degree d relative to
some Z-grading of B, where B is any affine k-domain. This is equivalent to giving
an algebraic action of the group G, x G,, on X = Spec(B), where the action of
G,, on G, = Spec(k[x]) is given by ¢ - x = t“x. This is further equivalent to giving
D € LND(B) and an action G,, — Auty(B), t — A,, such that A;'DA, = #*D for
all #. The homogeneous polynomials f € B; are the semi-invariants f € B for which

t-f =1ff (t e G,).

Proposition 3.40 Under the hypotheses above, if s € G, has finite order m not
dividing d, then exp D o A, is conjugate to A,. In particular,

(expDo )" =1.
Proof

j— Yd

exp (lidsd D) (expD)A exp( 1‘_de) = A
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In particular, this result shows that any action of a finite cyclic group on k"l of
the form given in the proposition can be embedded in a G,,-action.
The second result of this section is about kernels of homogeneous derivations.

Proposition 3.41 Suppose D € LND(B), D # 0, is homogeneous relative to some
N-grading ®ienB; of B = k. If ker D is a polynomial ring and By NkerD = k,
then ker D = k[g1, ..., gu—1] for homogeneous g;.

This is immediately implied by the following more general fact about positive Z-
gradings, which is due to Daigle.

Proposition 3.42 (Lemma 7.6 of [68]) Let A = k'l forr > 1 and let A = @,z Ai
be a positive Z-grading. If A = k[f1, . . .,fu] for homogeneous f; € A, then there is a

subset {g1,...,g/} of {f1,.. . fm} With A = k|[g1, ..., &

Proof By Corollary 3.28, it suffices to assume that the field & is algebraically closed.

LetM = @i>0Ai. Then M is an ideal, and since Ay = k, it is a maximal ideal of
A. Since A is a polynomial ring, there exist X1, ..., X, € A so that A = k[Xy,...,X,]
and M = (X\,...,X,). We may assume, without loss of generality, that f; € M for
1<i<m.

Consider a subset {gi,...,gs} of {fi1,....fm} satisfying A = k[g1,...,gs] and
minimal with respect to this property; in particular, degg; > O for all i. Let R =
K[Ty,...,T] = kI with positive Z-grading R = €D,,, R; determined by deg 7; =
deg g;. Then the surjective k-homomorphism e : R — A, e(¢) = ¢(g1,-..,8s), 1S
homogeneous of degree zero, and ker e is a homogeneous ideal.

If m = (Ty,...,Ty), then e(m) C M and e(m?) C M>. We thus have a well-
defined mapping of k-vector spaces ¢ : R/m> — A/M?, where {1,Ty,...,T;}is a
basis of R/m? and {1,X), ..., X,} is a basis of A/M?.

Given F € kere, write F = )_F; for F; € R;. Since kere is a homogeneous
ideal, F; € kere for all i. In particular, Fy € kere. Since Ry = k by hypothesis, we
see that Fyy € k. But e is a k-map, so Fy = 0. It follows that kere C m.

If F ¢ m?, then F; ¢ m? for some i > 1. Therefore, there exist ci,...,c, € k
not all 0 such that F; = T + --- + ¢,T,(mod mz). By degree considerations,
it follows that, if ¢; # O and F; = 171 + -+ + ¢,T, + G for G € m?, then
G ek[T,....Ti—1,Tjt1, ..., T;]. Therefore:

Fi—c¢TieklT,....Ti—1,Tjx1,.... Ty]
But then
o(Fi —ciTj) = —cjgj € k[g1, ... 8j—1, &j+1» - - -» &]
contradicting the minimality of {g, .. ., gs}.
Therefore, kere C m?2. Consequently, there is a well-defined surjection A =

R/kere — R/m?, which_implies_that, if P; € Rissuchthate(P;) = X;, 1 <i<r,
then R/m? has basis {1, Py, ..., P,}. It follows that » = s. O
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Corollary 3.43 If B = k" and if G,, acts algebraically on A" in such a way that
BCn = k, then the action is linearizable. Equivalently, for any positive Z-grading of
B there exists a system of homogeneous variables for B.

Proof The action induces a Z-grading of B for which elements of B; are semi-
invariants of weight i. In particular, By = B®". If f € B;and g € Bjfori < 0
and j > 0, then ff g‘i € By, a contradiction. Therefore, we can assume any non-
constant semi-invariant has strictly positive weight. So the grading on B induced by
the G,,-action is an N-grading: B = ®;enB;.

Suppose B = k[xy,...,x,]. Given i (1 < i < n), we can write x; = ZjeNf,j,
where f;; € B;. So B is generated as a k-algebra by finitely many homogeneous
polynomials f;;. By the preceding result, there exist homogeneous gi,...,g, € B
such that B = k[gy, ..., g, i-e., (g1,--.,&n) is a system of semi-invariant variables
for B. O

Next, let B = k") and consider the standard action of the symmetric group S, on
B relative to coordinates (xp, . .., x;,). Define D € Der,(B) to be fully symmetric if

and only if Do = oD for each o € §,. To give D € LND(B) fully symmetric is
equivalent to giving an algebraic action of G, x S,, on B or on A".

Example 3.44 E = Y_"_, 0y, is fully symmetric and locally nilpotent, and ker E =
k[x; —x2,X3—X3, . .., X,—1 —X,]. Note that E is a partial derivative. If f € ker ENB%,
then fE is also fully symmetric and locally nilpotent.

Proposition 3.45 Let 7, act on B = k[xi,...,x,] by transposing x| and x,, and
fixing x3, ..., x,. If D € LND(B) commutes with this Z,-action, then D(x; —x;) = 0.

Proof Let t € Z, transpose x| and x,, fixing x3, . . ., x,, and let Dx; = F(x;, x) for
F € kfxs, ..., x,]. Then Dx, = D(rx;) = tDx; = F(x3, x;). This implies:

D(x; —x3) = F(x1,x) — F(x2,x1) € (x] —x2)B

By Corollary 1.23, we conclude that D(x; — x;) = 0. O
Now suppose D is a fully symmetric locally nilpotent derivation. Then D(x;—x;) = 0
forall i, j, so k[x; —x2,xp —x3, . .., X,—1 —X,] C ker D. Consequently, the derivations

JE above are the only fully symmetric locally nilpotent derivations.
Corollary 3.46 If D € LND(B) is fully symmetric and D # 0, then rank(D) = 1.

Remark 3.47 The conclusion of Proposition 3.42 may fail to hold for more
general polynomial algebras. For instance, we saw in Example 1.27 that if U =
R[x1,x2]/ (63 +x3—1) and B = U[y1,y2]/(x1y1 +x2y2), then B = U[s] = U, But
we also have B = UJx;s, x,s], ahomogeneous system of generators when degx; = 0
and degy; = 1 for each i, whereas B # Ulx;s] fori = 1, 2.
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3.8 Some Important Early Examples

This section illustrates the fact that the triangular derivations of polynomial rings
already provide a rich source of examples.

In 1972, Nagata [325] published an example of a polynomial automorphism of
A3 which, he conjectured, is not tame. Later, Bass embedded Nagata’s automor-
phism as an element of a one-parameter subgroup of polynomial automophisms
of A3, gotten by exponentiating a certain non-linear locally nilpotent derivation
of k[x,y,z]. It was known at the time that every unipotent group of polynomial
automorphisms of the plane is triangular in some coordinate system (see Chap. 4).
In sharp contrast to the situation for the plane, Bass showed that the subgroup
he constructed could not be conjugated to the triangular subgroup. Then Popov
generalized Bass’s construction to produce non-triangularizable G,-actions on A"
for every n > 3. These discoveries initiated the exploration of a new world of
algebraic representations G, < GA, (k).

Note that for some of the examples below, we exhibit, without explanation, the
kernel of the derivation under consideration. Methods for calculating these kernels
are discussed in Chap. 8 below.

3.8.1 Bass’s Example ([12], 1984)

The example of Bass begins with the linear derivation of k[x,y, 7] given by A =
xdy + 2y0,. Then ker A = k[x, F], where F = xz — y*. Note that D := FA is also a
locally nilpotent derivation of k[x, y, z], and the corresponding G,-action on A? is:

o := exp(tD) = (x,y + txF, z 4 2tyF 4 *xF?)

Nagata’s automorphism is «;. The fixed point set of this action is the cone F = 0,
which has an isolated singularity at the origin. On the other hand, Bass observed that
any triangular automorphism (x,y + f(x),z + g(x, y)) has a cylindrical fixed point
set, i.e., defined by f(x) = g(x,y) = 0, which (if non-empty) has the form C x A!
for some variety C. In general, an affine variety X is called a cylindrical variety
if X = Y x A! for some affine variety Y. Since a cylindrical variety can have no
isolated singularities, it follows that o, cannot be conjugated into BA3(k) relative to
the coordinate system (x, y, z).

3.8.2 Popov’s Examples ([344], 1987)

Generalizing Bass’s approach, Popov pointed out that the fixed-point set of any
triangular G,-action on A" is a cylindrical variety, whereas the hypersurface defined
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by a non-degenerate quadratic form is not a cylindrical variety. So to produce non-
triangularizable examples in higher dimensions, it suffices to find D € LND(k!"))
such that ker D contains a non-degenerate quadratic form /; then exp(¢hD) is a non-

triangularizable G,-action. In even dimensions, let B = k[xy, ..., X,, y1, - - -, Yu], and
define D by:

Dx; =0, Dx, = x1, Dx3 = x2, ... ,Dx;, = x,—1

Dy, =y2, Dy =y3. ... ,Dy,—1 = yn, Dy, =0
Then D is a triangular (linear) derivation, and Dh = 0 for the non-degenerate

quadratic form & = Y 7_,(=1)"1x;y;. For odd dimensions at least 5, start with
D above, and extend D to k[xi,..., X, V1,.--, Y, 2] by Dz = 0. Then h + Zisa
non-degenerate quadratic form annihilated by D.

3.8.3 Smith’s Example ([386], 1989)

At the conclusion of his paper, Bass asked whether the G,-action he gave on A? is
stably tame, i.e., whether the action becomes tame when extended trivially to A
M. Smith gave a positive answer to this question by first showing the following.

Lemma 3.48 (Smith’s Formula) Let D € LND(B) for B = k" and let f € ker D
be given. Extend D to Bw] by Dw = 0, and define t € GA,+1(k) by t = exp(fa,).
Then:

exp(fD) = 1~ exp(—wD) exp(wD)
Proof Since t fixes B, tD = Dt, so v '(—wD)t = t~'(—w)D = (f — w)D.
Applying the exponential now gives:
exp(fD) exp(—wD) = exp((f —w)D)
= exp(r_l(—wD)r)

=t lexp(—wD)t

O
Applying this lemma with f = tF and D = A from Bass’s example yields the
following tame factorization for the example of Bass-Nagata. For 1 € G,:

exp(tD) = (x,y + txF, z + 2tyF + *xF*, w)
= (x,y,z,w—tF) o (x,y —wx,z — 2wy + w?x, w)

o(x,y,z,w + tF) o (x,y + wx, z + 2wy + w’x, w)

Lemma 3.49 This G,-action on A* is not triangularizable.
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Proof Note first that the rank of D on k¥l is clearly 2. Let X C A* be the set of fixed
points. Then X = C x A! for a singular cone C, and the singularities of X form a
line. Suppose k[x, y, z, w| = kla, b, ¢, d] and that D is triangular in the latter system
of coordinates, with Da = 0 and Db € k[a]. The ideal defining X is (Db, Dc, Dd),
and thus X C V(Db). If Db # 0, this is a union of parallel coordinate hyperplanes,
implying X C H for a coordinate hyperplane H. Since this is clearly impossible,
Db = 0. We also have X C V(Dc), where Dc € k[a, b]. If Dc # 0, this implies
X = Y x A2, where Y is a component of the curve in Spec(k[a, b]) defined by Dc.
But this also cannot occur, since then the singularities of X would be of dimension
2. Thus, Dc = 0. But this would imply that the rank of D is 1, a contradiction.
Therefore, D extended to k[x, y, z, w] cannot be conjugated to a triangular derivation
by any element of GA4(k). O
So in dimension 4 (and likewise in higher dimensions), there exist G,-actions
which are tame but not triangularizable. It is an important open question whether
every tame G,-action on A3 can be triangularized. It goes to the structure of the
tame subgroup. Shestakov and Umirbaev [382, 383] have shown that the Nagata
automorphism o above is not tame as an element of GA3(k), thus confirming the
conjecture of Nagata. In [428], Wright gives a structural description of TA3(k) as an
amalgamation of three of its subgroups.

3.8.4 Winkelmann’s Example 1 ([421], 1990)

In this groundbreaking paper, Winkelmann investigates CT-actions on C" which
are fixed-point free, motivated by questions about their quotients. In dimension 4,
he defines exp(tD), where D is the triangular derivation on B = Clx, y, z, w] defined
by:

Dx=0, Dy=x, Dz=1y, Dw=y2—2xz—1

exp(tD) defines a free algebraic C*-action on C*, but the orbit space (geometric
quotient) is not Hausdorff in the natural topology (Lemma 8). In particular, D is not
a partial derivative, i.e., the action is not a translation, since both the geometric and
algebraic quotient for a translation of C* is C3. Winkelmann calculates this kernel
explicitly: ker D = Clx, f, g, h], where:

f=y—2z, g=w+(1~f)y and xh=g —f(1—f)
In particular, ker D is the coordinate ring of a singular hypersurface in C*. This

implies rank(D) = 3, since if the rank were 1 or 2, the kernel would be a polynomial
ring (see Chap. 4).
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Let B[] = B!" and consider the subring:
R = Blexp(tD)B] = Btx, ty + étzx, t(f —1)]
If R = BJf], then setting y = 1 and z = w = 0 shows:
Clx, tx, t + ;tzx] = Clx, 1]
However:
Clx,tx,t + 1Px] = C[X. Y. Z)/(XZ — Y — }Y?)

This ring is evidently not a UFD, and is therefore not isomorphic to CP, a
contradiction. Therefore, R # B[f] and the G,-action defined by D is not proper.
In [388], Snow gives the similar example

Ex=0, Ey=x, Ez=y, Ew=1+)’

and also provides a simple demonstration that the topological quotient is non-
Hausdorff (Example 3.5). (It is easy to show that D and E are conjugate.) In [142],
van den Essen considers E, and indicates that £ does not admit a slice, a condition
which is a priori independent of the fact that the corresponding quotient is not an
affine space (Example 9.5.25). And in [111], Sect. 3, Deveney, Finston, and Gehrke
consider E as well, showing that the associated CT-action exp(tE) on C* is not
proper.

3.8.5 Winkelmann’s Example 2 ([421], 1990)

On B = Clu,v,x,y,7] = CPl, define the triangular derivation F by:
Fu=Fv=0,Fx=u,Fy=v, Fz=1+4 (vx —uy)

Then Fx, Fy, Fz € ker F and ( Fx, Fy, Fz) = (1), which implies exp(tF) is a locally
trivial CT-action on C°. The kernel of F is presented in [111], namely:

ker F = Clu, v, vx — uy, x + x(vx — uy) — uz, y + y(vx — uy) — vz]

To see that the associated CT-action on C° is not globally trivial, note that F is
homogeneous of degree 0 relative to the C*-action (Au, A~ 'v, Ax, A7y, 7), A € C*.
We thus have an action of C*t x C* on C°. The invariant ring of the C*-action is
By = Cluv, xy, vx, uy, z], the ring of degree-0 elements. Therefore F restricts to By.
If F has a slice in B, then by homogeneity there exists a slice s € By. But the ideal
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generated by the image of F restricted to By equals (vx+ uy, uv, 1 + vx—uy), which
does not contain 1, meaning F has no slice in By. (The fixed-point set of the induced
C™-action on Spec(By) is of dimension one.) Therefore, F has no slice in B.

3.8.6 Example of Deveney and Finston ([104], 1995)

Define § on B = Clu, v, x,y,z] = CFl by:
bu=86v=0,0x=u, fy=v, 8z=1+uy2

The authors show that exp(#§) is a proper C*-action on C°. To see this, let B[] =
B! and consider the subring:

R = Blexp(t8)B] = Bltu, tv, (1 + vy?) + Fuvy + §t3uv2]
Then R = B{], since:
t= (t(1 +vy*) + Puvy + Puv?) — (()y* + () (w)y + § () (1)?)

Therefore § defines a proper action. Deveney and Finston show that kerd is
isomorphic to the ring

Clur, uz, u3, us, us]/ (uous — utus — w3 — 3uyus)

which is the coordinate ring of a singular hypersurface Y € C°. If p : C° — Y is the
quotient morphism, then fibers of p over singular points of Y are two-dimensional,
which implies that the action is not locally trivial.

3.9 Homogeneous Dependence Problem

In a remarkable paper [184] dating from 1876, Paul Gordan and Max Nother
investigated the vanishing of the Hessian determinant of an algebraic form, using
the language of systems of differential operators. In particular, the question they
consider is the following. Suppose & € Clxy, ..., x,] is a homogeneous polynomial
whose Hessian determinant is identically zero:

32
det(a)Ci;;i)ij -0
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Does it follow that 4 is degenerate, i.e., that h € C[Txy,..., Tx,—] for some T €
GL,(C)? They prove that the answer is yes when n = 3 and n = 4, and garner some
partial results for the case n = 5.

In the course of their proof, the authors consider changes of coordinates involving
a parameter A € C:

Die Functionen @(x), gebildet fiir die Argumente x + A, sind unabhiingig von A:
D+ AE) = d(x) . (p. 550)*

Here, x denotes a vector of coordinates (xi, ..., x,), and £ a vector of homoge-
neous polynomials. In modern terms, the association A-x = x+A£ gives a CT-action
on C" (where A € C), and the functions @ are its invariants. The authors continue:

Ist eine solche ganze Function @ das Product zweier ganzen Functionen

P =¢x) Y
so sind auch die Factoren selbst Functionen ®. (p. 551)°

We recognize this as the property that the ring of invariants of a CT-action is
factorially closed. In effect, Gordan and Nother studied an important type of C*-
action on C", which we will now describe in terms of derivations.

Let B = kfx;,....,x,] = k", and let D € LND(B) be given, D # 0. The
Homogeneous Dependence Problem for locally nilpotent derivations asks:

If D is standard homogeneous and has the property that D?x; = 0 for each i, is the rank of D

always strictly less than n? Equivalently, does there exist a linear form L € B with DL = 0,
i.e., are the images Dx; linearly dependent?

For such a derivation D, note that the G,-action is simply
exp(tD) = (x; + tDxy, .. .,x, + tDx,)

and these are precisely the kinds of coordinate changes considered by Gordan and
Nother. Note also that, given i:

D oexpD(x;) = D(x; + Dx;) = Dx; + D*x; = Dx;

On the other hand, Dx; € ker D means that exp D(Dx;) = Dx;. Therefore, D and
exp D commute. This in turn implies that, if we write ' = expD = x + H, where
x = (x1,...,x,) and H = (Dxy, ..., Dx,),then HoH = 0. Herein lies the connection
to the work of Gordan and Néther.

In their paper, Gordan and Nother effectively proved that the answer to the
Homogeneous Dependence Problem is yes when n = 3 or n = 4. In fact, they

4“The functions @(x), constructed for the arguments x + A&, are independent of A.”

3“If such an entire function @ is a product of two entire functions @ = ¢ (x)¥ (x), then so also are
the factors themselves functions @.”
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showed that in these cases there exist two independent linear forms, L and M, with
DL = DM = 0, which implies that the rank of D is 1 when n = 3, and at most 2
whenn = 4.

In the modern era, Wang proved in his 1999 thesis (Prop. 2.4.4) that if D €
LND(k[x;., x2,x3]) has the property that D?x; = 0 for each i, then rank(D) < 1
[414, 415]. So in the case of dimension 3, the homogeneity condition can be
removed. A short proof of Wang’s result is given in Chap. 5 below. Wang further
proved that, in dimension 4, the rank of a homogeneous derivation having D*x; = 0
for each i could not equal 3 (Lemma 2.5.2). Then in 2000, Derksen constructed
an example of such a derivation D in dimension 8 whose rank is 7, thereby
showing that the stronger result of Gordan and Nother (i.e., that the kernel contains
two independent linear forms) does not generalize. In 2004, de Bondt found a
way to construct counterexamples to the Homogeneous Dependence Problem in
all dimensions n > 6 by using derivations of degree 4. So the Homogeneous
Dependence Problem remains open only for the case n = 5. The examples of
Derksen and de Bondt are discussed below.

At the time of their work, neither Wang nor Derksen seems to have been aware
of the paper of Gordan and Néther. Rather, it is an example of an important question
resurfacing. The Gordan-Nother paper was brought to the author’s attention by van
den Essen, and its existence was made known to him by S. Washburn. Van den
Essen was interested in its connections to his study of the Jacobian Conjecture; see
[33-35, 147] for a discussion of these connections, and some positive results for
this conjecture. The article of DeBondt [93] gives a modern proof of the results of
Gordan and Noéther, in addition to some partial results in dimension 5.

3.9.1 Construction of Examples

We construct, for each N > 8, a family of derivations D of the polynomial ring
k[xi, ...,xy] with the property that D?x; = 0 for each i. The example of Derksen
belongs to this family.

Given m > 1, let B = k[s,...,s,] = k" and let § € LND(B) be such that
§%s; = 0 for each i (possibly § = 0). Let u € B = ker § be given (u # 0). Extend §
to B[1] = B!' by setting §¢ = 0.

Next, given n > 3, choose an n x n skew-symmetric matrix M with entries in
B[t]’,i.e., M € M,(B[f]*) and MT = —M. Also, let v € (B[f]*)" be a nonzero vector
in the kernel of M.

Next, let x = (x1,...,%,), ¥ = (y1,...,¥n), and z be indeterminates over Blt],
so that B[t,x,y,z] = k"T2"*2 Note that m + 2n + 2 > 9. Extend § to a locally
nilpotent derivation of this larger polynomial ring by setting:

§x=uv, 8y =xM , 8z =u"'8((x,y))
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Here, it is understood that for vectors a = (ay,...,a,) and b = (by,...,b,), the
statement §a = b means §a; = b; for each i. In addition, (a, b) denotes the inner
product of a and b. Observe the product rule for inner products::

5({(a, b)) = (Sa,b) + (a, 5b)
It is clear from the definition that §x = 0. In addition:
8%y = 8(xM) = (8x)M = (uv)M = u(vM) =0
Further, since M is skew-symmetric, we have 0 = (x, xM) = (x, dy). Therefore:
§({x.y)) = (x.y) + (x.dy) = (6x.y) — (x.dy) € kerd

It follows that 8z is a well-defined polynomial (since u divides §x), and §2z = 0. In
addition, if F = uz — (x,y), then §F = 0.

Since F does not involve ¢, the kernel element ¢t — F is a variable. It follows that

B[t,x,y.2)/(t — F) = B[x,y, z] = k"2 +1l

and that the derivation D := § mod (¢ — F) has the property that D°x = D’y =
D*2=0.

3.9.2 Derksen’s Example

This example appears in [142], 7.3, Exercise 6. It uses the minimal values m = 1
and n = 3 from the construction above, so that m + 2n + 1 = 8. Derksen found this
example by considering the exterior algebra associated to three linear derivations.

First, let § be the zero derivation of B = k[s] = k!, and choose u = s. The
extension of § to k[s, 1] is also zero. Choose:

2 0 s* —s%t
v=|s% and M=|—s* 0 #
st 2t =2 0

With these choices, we get the derivation D on the polynomial ring

k[s, x1, %2, X3, V1,2, y3,2) = k¥l
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defined by Ds = 0,

sF? 0 s* —s*F X1
Dx=|sF|, Dy=|—-s* 0 F? X2
s $F —F% 0 X3

and Dz = F?y, + s>Fy, + s*y3, where F is the quadratic form F = sz — (x;y; +
X2y + X3)3).

Observe that D is homogeneous, of degree 4. To check that s is the only linear
form in the kernel of D (up to scalar multiples), let V; denote the vector space of
forms of degree i in these 8§ variables, and let W C V5 denote the subspace generated
by the monomials appearing in the image of D : V; — Vs. Then it suffices to
verify that the linear map D : V| — W has a one-dimensional kernel, and this is
easily done with standard methods of linear algebra. We conclude that the rank of
Dis 7. O

3.9.3 De Bondt’s Examples

Theorem 3.50 ([92]; [93], Cor.3.3) Forn > 3, let
B =K = k[x;,y1,. ... Xn yu]
and define D € Dery(B) by
Dx; = fogxi—g°yi and  Dy; = f*xi — fgyi

where f = x1y, — xy1 and g = x1y3 — x3y1. Then:

(a) D is standard homogeneous of degree 4
(b) f,gekerD

(¢) D*x; = D*y; = 0 for each i

(d) rank(D) = 2n

Proof Let R = kla, b] = k¥ and let N € M,(R) be given by:

ab —b?
N pr—
(a2 —ab)

Then N? = 0.
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Let B = R[x{. Y1, . ... X, yu] = k22 Define R-linear D € LNDg(13) by:

ON---0
D:

2nX2n

Then for each i, we have:
Dx; = abx; — bzy,- , Dy, = a’x; — aby; , and Dx; = Dzy,- =0
In addition, for every pair i, j, we have
D(xyyj) = xi(azxj — aby;) + yj(abx; — by = azxixj - bzyiyj = D(xjy;)

which implies x;y; — x;y; € ker D for each pair i, j.

Set f = x1y» — x2y; and ¢ = x1y3 — x3y;. The crucial observation is that f
and g are kernel elements not involving a or b. Thus, (¢ —f,b — g, x1,...,y,) is a
triangular system of coordinates on 5. If I C B is theideal I = (a — f, b — g), then
B := Bmod/ is isomorphic to k", and we may take B = k[x;,y1,. .., X,, ya]. Since
a — f and b — g belong to ker D, the ideal / is an integral ideal of D, and we have
that D := D mod I is well-defined, locally nilpotent and homogeneous on B.

It remains to show that rank(D) = 2n. If Dv = 0 for a variable v € B, then by
homogeneity, there exists a linear form L = Y (a;x; + b;y;) for scalars a;, b; such
that DL = 0. But then Y_(a;Dx; + b;Dy;) = 0. So it suffices to show that the images
Dx1, Dy, ..., Dx,, Dy, are linearly independent.

To this end, define a vector of univariate polynomials

t=02.0, =1, —1,6 ...,/
noting that f(t) = —t and g(t) = —¢>. Then for each i, we have:
deg, Dy;j(t) =2i+3 and deg Dx;(t) =2i+4

Since these degrees are all distinct for 1 < i < n, it follows that these polynomials
are linearly independent. O
Note that de Bondt’s derivations are quasi-linear, in addition to being nice deriva-
tions.

In order to exhibit an example in odd dimension 2n + 1 forn > 3, let k
BJz], and extend D to this ring. In particular, Dz should satisfy: (1) Dz € kerD,
(2) deg Dz = 5, and (3) Dz is not in the span of Dxj, ..., Dy,. For example, h =
X2y3 — x3y2 € kerD, so we may take Dz = h(fx, — gy,). Then Dz € ker D and
degDz = 5. Moreover, deg, Dz(t) = 2n 4 7, so Dz is independent of the other
images.

2n+1] _
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Remark 3.51 The examples of de Bondt given above are for n > 6 and have
degD = 4. In [93], Cor.3.4, de Bondt also gives examples with » > 10 and
deg D = 3. It is an open question whether there exist homogeneous D € LND(k!"))
with deg D = 2 and rank(D) = n.

3.9.4 Rank-4 Example in Dimension 5

In the notation of de Bondt’s examples, consider the case n = 2: Let B =
kla, b, x1,y1,%x2,y2] = k1 and R = k[a, b]. In this case, replace the matrix N with:

pr —p*
N=(
(a2 —abz)

This defines an R-linear D € LNDg(B), namely:

/
D= (N 0/)
0N 4x4
Note that we still have f = x1y, — x2y; € kerD. Set E = Dmod (a — f) on
B = Bmod(a —f) = kPl. Then E is standard homogeneous of degree 4, and
satisfies:
E* = E’x) = E*y, = E’x; = E*y;, =0

In addition, the rank of E is 4. To see this, it suffices to show that the images
Exy, Eyy, Exy, Ey, are linearly independent. As above, evaluate these polynomials
att = (1,1, ?—1,7, t4). Then:

Exi() =" =72+ 1, Eyy(t)y =1t =P+, Exx(t) = —1*, Ey,(t) =1 -1

Therefore, Ex;, Ey;, Ex;, Ey, are linearly independent.



2 Springer
http://www.springer.com/978-3-662-55348-0

Algebraic Theory of Locally Nilpotent Derivations
Freudenburg, G.

2017, XX, 319 p., Hardcover

ISBMN: @78-3-662-55348-0



	3 Polynomial Rings
	3.1 Variables, Automorphisms, and Gradings
	3.1.1 Linear Maps and Derivations
	3.1.2 Triangular and Tame Automorphisms

	3.2 Derivations of Polynomial Rings
	3.2.1 Definitions
	3.2.2 Partial Derivatives
	3.2.3 Jacobian Derivations
	3.2.4 Homogenizing a Derivation
	3.2.5 Other Base Rings

	3.3 Locally Nilpotent Derivations of Polynomial Rings
	3.4 Slices in Polynomial Rings
	3.5 Triangular Derivations and Automorphisms
	3.6 Group Actions on An
	3.6.1 Terminology
	3.6.2 Translations
	3.6.3 Planar Actions
	3.6.4 Theorem of Deveney and Finston
	3.6.5 Proper and Locally Trivial Ga-Actions

	3.7 Ga-Actions Relative to Other Group Actions
	3.8 Some Important Early Examples
	3.8.1 Bass's Example ([12], 1984)
	3.8.2 Popov's Examples ([344], 1987)
	3.8.3 Smith's Example ([386], 1989)
	3.8.4 Winkelmann's Example 1 ([421], 1990)
	3.8.5 Winkelmann's Example 2 ([421], 1990)
	3.8.6 Example of Deveney and Finston ([104], 1995)

	3.9 Homogeneous Dependence Problem
	3.9.1 Construction of Examples
	3.9.2 Derksen's Example
	3.9.3 De Bondt's Examples
	3.9.4 Rank-4 Example in Dimension 5



