
Introduction

But, in the further development of a branch of mathematics, the
human mind, encouraged by the success of its solutions,
becomes conscious of its independence. It evolves from itself
alone, often without appreciable influence from without, by
means of logical combination, generalization, specialization, by
separating and collecting ideas in fortunate new ways, new and
fruitful problems, and appears then itself as the real questioner.

David Hilbert, Mathematical Problems

The study of locally nilpotent derivations and Ga-actions has recently emerged from
the long shadows of other branches of mathematics, branches whose provenance is
older and more distinguished. The subject grew out of the rich environment of Lie
theory, invariant theory, and differential equations and continues to draw inspiration
from these and other fields.

At the heart of the present exposition lie 16 principles for locally nilpotent
derivations, laid out in Chap. 1. These provide the foundation on which the
subsequent theory is built. We would like to distinguish which properties of a locally
nilpotent derivation are due to its being a derivation and which are special to the
locally nilpotent condition. Thus, we first consider general properties of derivations.
The 16 First Principles which follow can then be seen as belonging especially to the
locally nilpotent derivations.

Of course, one must choose one’s category. While Ga-actions can be investigated
in a characteristic-free environment, locally nilpotent derivations are, by nature,
objects belonging to rings of characteristic zero. Most of the basic results about
derivations in Chaps. 1 and 2 are stated for a commutative k-domain B, where k is a
field of characteristic zero.

In discussing geometric aspects of the subject, it is also generally assumed that
B is affine and that the underlying field k is algebraically closed. The associated
geometry falls under the rubric of affine algebraic geometry. Miyanishi writes:
“There is no clear definition of affine algebraic geometry. It is one branch of
algebraic geometry which deals with the affine spaces and the polynomial rings,
hence affine algebraic varieties as subvarieties of the affine spaces and finitely
generated algebras as the residue rings of the polynomial rings” [306]. Due to their
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obvious importance, special attention is given throughout the book to polynomial
rings and affine spaces An

k .
Chapter 3 explores the case of polynomial rings over k. Here, the Jacobian

derivations are of central importance. Chapter 4 considers polynomial rings in
two variables, first over a field k and second over other base rings. Two proofs
of Rentschler’s Theorem are given, and this result is applied to give proofs for
Jung’s Theorem and the Structure Theorem for the planar automorphism group.
This effectively classifies all locally nilpotent derivations of kŒx; y� and likewise
all algebraic Ga-actions on the plane A2. Chapter 5 documents the progress in our
understanding of the three-dimensional case which has been made over the past
three decades, beginning with the Bass-Nagata example and Miyanishi’s Theorem.
We now have a large catalogue of interesting and instructive examples, in addition to
the impressive Daigle-Russell classification in the homogeneous case and Kaliman’s
classification of the free Ga-actions. These feats notwithstanding, a classification of
the locally nilpotent derivations of kŒx; y; z� remains elusive.

Chapter 6 examines the case of linear actions of Ga on affine spaces, and it is
here that the oldest literature on the subject of Ga-actions can be found. One of the
main results of the chapter is the Maurer-Weitzenböck Theorem, a classical result
showing that a linear action of Ga on An has a finitely generated ring of invariants.1

Nagata’s famous counterexamples to the Fourteenth Problem of Hilbert showed
that the Maurer-Weitzenböck Theorem does not generalize to higher-dimensional
groups, i.e., it can happen that a linear Gm

a -action on affine space has a nonfinitely
generated ring of invariants when m > 1. It can also happen that a nonlinear Ga-
action has nonfinitely generated invariant ring, and these actions form the main topic
of Chap. 7.

Chapter 8 discusses various algorithms associated with locally nilpotent deriva-
tions, including the van den Essen algorithm for calculating kernels of finite
type. Chapter 9 focuses on the Makar-Limanov and Derksen invariants of a ring
and illustrates how they can be applied. Chapter 10 shows how locally nilpotent
derivations can be found and used in a range of important problems, such as the
cancellation problem and embedding problem. The concluding chapter, Chap. 11,
is devoted to questions and open problems.

In addition to the articles found in the References, there are four larger works
used in preparing this manuscript. These are the books of Nowicki (1994) and
van den Essen (2000) and the extensive lecture notes written by Makar-Limanov
(1998) and Daigle (2003). In addition, I found in the books of Kraft (1985),
Popov (1992), Grosshans (1997), Borel (2001), Derksen and Kemper (2002),
and Dolgachev (2003) a wealth of pertinent references and historical background
regarding invariant theory.

1This result is commonly attributed only to R. Weitzenböck, but after reading Borel’s Essays in
the History of Lie Groups and Algebraic Groups, it becomes clear that L. Maurer should receive at
least equal credit.
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The reader will find that this book focuses on the algebraic aspects of locally
nilpotent derivations, as the book’s title indicates. The subject is simply too large
and diverse to include a complete geometric treatment in a volume of this size. The
outstanding survey articles of Kaliman [228] and Miyanishi [306] will serve to fill
this void.

Historical Overview

The study of locally nilpotent derivations in its present form appears to have
emerged in the 1960s, and was first made explicit in the work of several mathemati-
cians working in France, including Dixmier, Gabriel and Nouazé, and Rentschler.
Their motivation came from the areas of Lie algebras and Lie groups, where
the connections between derivations, vector fields, and group actions were well-
explored.

Linear Ga-actions were one of the main objects of interest for invariant theory in
the nineteenth century. Gordan (1868) gave an algorithm to calculate the invariants
of the basic Ga-actions and found their invariant rings up to dimension 7. Stroh
(1888) gave a transcendence basis for the invariants of the basic Ga-actions, and
Hilbert calculated the invariants of the basic actions up to integral closure (see [188],
§10, Note 1). In 1899, Maurer outlined his proof showing the finite generation
of invariant rings for one-dimensional group actions. In 1932, Weitzenböck gave
a more complete version of Maurer’s proof, which used ideas of Gordan and M.
Roberts dating to 1868 and 1871, respectively, in addition to the theory developed
by Hilbert. In their paper dating to 1876, Gordan and M. Nöther studied certain
systems of differential operators and were led to investigate special kinds of non-
linear Ga-actions on C

n, though they did not use this language; see Chap. 3.
It seems that the appearance of Nagata’s counterexamples to Hilbert’s Fourteenth

Problem in 1958 spurred a renewed interest in Ga-actions and more general
unipotent actions, since the theorem of Maurer and Weitzenböck could then be
seen in sharp contrast to the case of higher-dimensional vector group actions. It
was shortly thereafter, in 1962, that Seshadri published his well-known proof of the
Maurer-Weitzenböck result. Nagata’s 1962 paper [322] contains significant results
about connected unipotent groups acting on affine varieties, and his classic Tata
lecture notes [323] appeared in 1965. The case of algebraic Ga-actions on affine
varieties was considered by Białynicki-Birula in the mid-1960s [30–32]. In 1966,
Hadziev published his famous theorem [198], which is a finiteness result for the
maximal unipotent subgroups of reductive groups. In 1967, Shioda gave the first
complete system of generators for the basic Ga-action in dimension 9. The 1969
article of Horrocks [212] considered connectedness and fundamental groups for
certain kinds of unipotent actions, and the 1973 paper of Hochschild and Mostow
[208] remains a standard reference for unipotent actions. Grosshans began his work
on unipotent actions in the early 1970s; his 1997 book [188] provides an excellent
overview of the subject. Another notable body of research from the 1970s is due
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to Fauntleroy [148–150] and Fauntleroy and Magid [151, 152]. The papers of
Pommerening also began to appear in the late 1970s (see [188, 340]), and Tan’s
algorithm for computing invariants of basic Ga-actions appeared in 1989. In his
2002 thesis, Cröni gave a complete set of generators for the basic Ga-action in
dimension 8.

In a famous paper published in 1968, Rentschler classified the locally nilpotent
derivations of the polynomial ring in two variables over a field of characteristic
zero and pointed out how this gives the equivalent classification of all the algebraic
Ga-actions on the plane A2. This article is highly significant, in that it was the first
publication devoted to the study of certain locally nilpotent derivations (even though
its title mentions only Ga-actions). Indeed, Rentschler’s landmark paper crystallized
the definitions and concepts for locally nilpotent derivations in their modern form,
and further provided a compelling illustration of their importance, namely, a simple
proof of Jung’s Theorem using locally nilpotent derivations.

It should be noted that the classification of planar Ga-actions in characteristic
zero was first given by Ebey in 1962 [133]. Ebey’s paper clearly deserves more
recognition than it receives. Of the more than 400 works listed in the References
of this book, only the papers of Shafarevich (1966) and Koshevoi (1967) cite it
[252, 380]. Ebey’s paper was an outgrowth of his thesis, written under the direction
of Max Rosenlicht. Rather than using the standard theorems of Jung (1942) or van
der Kulk (1953) on planar automorphisms, the author used an equivalent result of
Engel, dating to 1958.

The crucial Slice Theorem appeared in the 1967 paper of Gabriel and Nouazé
[178], which is cited in Rentschler’s paper. Other proofs of the Slice Theorem were
given by Dixmier in 1974 ([116], 4.7.5), Miyanishi in 1978 ([297], 1.4), and Wright
in 1981 ([426], 2.1). In Dixmier’s proof we find the implicit definition and use of
what is herein referred to as the Dixmier map. Wright’s proof also uses such a
construction. The first explicit definition and use of this map is found in van den
Essen [141], 1993, and in Deveney and Finston [101], 1994. Arguably, the Dixmier
map is to unipotent actions what the Reynolds operator is to reductive group actions
(see [142], 9.2).

Certainly, one impetus for the study of locally nilpotent derivations is the
Jacobian Conjecture. This famous problem and its connection to derivations is
briefly described in Chap. 3 and is thoroughly investigated in the book of van
den Essen [142]. It seems likely that the conjecture provided, at least partly, the
motivation behind Vasconcelos’s Theorem on locally nilpotent derivations, which
appeared in 1969. In the paper of Wright mentioned above, locally nilpotent
derivations play a central role in his discussion of the conjecture.

There are not too many papers about locally nilpotent derivations or Ga-actions
from the decade of the 1970s. A notable exception is found in the work of Miyanishi,
who was perhaps the first researcher to systematically investigate Ga-actions
throughout his career. Already in 1968, his paper [293] dealt with locally finite
higher iterative derivations. These objects were first defined by Hasse and Schmidt
[204] in 1937 and serve to generalize the definition of locally nilpotent derivations
in order to give a correspondence with Ga-actions in arbitrary characteristic.
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Miyanishi’s 1971 paper [294] is about planar Ga-actions in positive characteristic,
giving the analogue of Rentschler’s Theorem in this case. His 1973 paper [295]
uses Ga-actions to give a proof of the cancellation theorem of Abhyankar, Eakin,
and Heinzer. In his 1978 book [297], Miyanishi entitled the first section “Locally
Nilpotent Derivations” (Sect. 1.1). In these few pages, Miyanishi organized and
proved many of the fundamental properties of locally nilpotent derivations: the
correspondence of locally nilpotent derivations and exponential automorphisms
(Lemma 1.2) the fact that the kernel is factorially closed (Lemma 1.3.1) the Slice
Theorem (Lemma 1.4), and its local version (Lemma 1.5). While these results
already existed elsewhere in the literature, this publication constituted an important
new resource for the study of locally nilpotent derivations. A later section of the
book, called “Locally Nilpotent Derivations in Connection with the Cancellation
Problem” (Sect. 1.6), proved some new cases in which the cancellation problem has
a positive solution, based on locally nilpotent derivations. Miyanishi’s 1980 paper
[298] and 1981 book [299] include some of the earliest results about Ga-actions on
A3. Ultimately, his 1985 paper [301] outlined the proof of his well-known theorem
about invariant rings of Ga-actions on A3. In many other papers, Miyanishi used
Ga-actions extensively in the classification of surfaces, characterization of affine
spaces, and the like.

In 1984, Bass produced a non-triangularizable Ga-action on A3, based on the
automorphism published by Nagata in 1972. This example, together with the 1985
theorem of Miyanishi, marked the beginning of the next generation of research on
Ga-actions and locally nilpotent derivations. The subject gathered momentum in the
late 1980s, with significant new results of Popov, Snow, M. Smith, Winkelmann, and
Zurkowski [344, 386–388, 421, 431, 432].2 This trend continued in the early 1990s,
especially in several papers due to van den Essen, and Deveney and Finston, which
began a more systematic approach to the study of locally nilpotent derivations. Paul
Roberts’ counterexample to the Fourteenth Problem of Hilbert appeared in 1990,
and it was soon realized that his example was the invariant ring of a Ga-action on
A7. The 1994 book of Nowicki [333] includes a chapter about locally nilpotent
derivations. The book of van den Essen, published in 2000, is about polynomial
automorphisms and the Jacobian Conjecture and takes locally nilpotent derivations
as one of its central themes.

By the mid-1990s, Daigle, Kaliman, Makar-Limanov, Russell, Bhatwadekar, and
Dutta began making significant contributions to our understanding of the subject.
The introduction by Makar-Limanov in 1996 of the ring of absolute constants (now
called the Makar-Limanov invariant) brought widespread recognition to locally
nilpotent derivations as a tool in understanding affine geometry and commutative
ring theory. Extensive (unpublished) lecture notes on the subject of locally nilpotent
derivations were written by Makar-Limanov (1998) and by Daigle (2003). Papers
of Kaliman which appeared in 2004 contain important results about CC-actions

2My own work in this area began in 1993, and I “went to school” on these papers.
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on threefolds, bringing to bear a wide range of tools from topology and algebraic
geometry.

The Makar-Limanov invariant is currently one of the central themes in the
classification of algebraic surfaces. In particular, families of surfaces having a trivial
Makar-Limanov invariant have been classified by Bandman and Makar-Limanov,
Daigle and Russell, Dubouloz, and Gurjar and Miyanishi [9, 88, 126, 193]. Already
in 1983, Bertin [24] had studied surfaces which admit a CC-action.

By the late 1990s, locally nilpotent derivations began to appear in some thesis
work, especially from the Nijmegen School, i.e., students of van den Essen at the
University of Nijmegen. It appears that Z. Wang’s 1999 PhD thesis, written under
the direction of Daigle at the University of Ottawa, holds the distinction of being
the first thesis devoted to the subject of locally nilpotent derivations.

The foregoing overview is by no means a complete account of the subject’s
development. Significant work in this area from many other researchers can be
found in the References, much of which is discussed in the following chapters. In
a conversation with the author about locally nilpotent derivations and Ga-actions,
Białynicki-Birula remarked: “I believe that we are just at the beginning of our
understanding of this wonderful subject.”

Notes on the Second Edition

New material presented in the second edition includes an overview of results about
linear Ga-actions from the nineteenth century, with the disclaimer that, given the
vast body of literature on classical invariant theory, this is done in only the most
cursory fashion. In this volume, I have also endeavored to better represent the work
of certain researchers, including that of Bhatwadekar and Dutta and of Deveney and
Finston.

There remain 16 First Principles, but a new principle (the Generating Principle)
is introduced, taking the place of the original Principle 14, which can be seen as a
consequence of Principle 15. Chapter 1 discusses degree functions, gradings, and
associated graded rings in a more general setting and devotes a new section to degree
modules for locally nilpotent derivations and the canonical factorization of the
quotient morphism for the induced Ga-action; Chap. 8 then gives a new algorithm
for calculating degree modules. Chapter 2 has been expanded to become a gathering
place for a large number of fundamental results used in later chapters. New topics
found there include cable algebras, transvectants, G-critical elements, and the AB
and ABC theorems. In particular, the cable algebra structure on a ring induced by
a locally nilpotent derivation can be viewed as a generalization of Jordan block
form for a nilpotent linear operator. Other new topics include the down operator in
Chap. 7 and the Pham-Brieskorn surfaces in Chap. 9.

This edition features a new proof for the Abhyankar-Eakin-Heinzer Theorem for
algebraically closed fields of characteristic 0, based on a proof given by Makar-
Limanov. It also includes a new proof of nonfinite generation for the triangular
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derivation in dimension 5 due to Daigle and the author, showing that this kernel
is a cable algebra of an especially simple type. Chapter 10 gives a new proof that
the Danielewski surfaces are not cancelative. In addition, readers are introduced to
the theory of affine modifications relative to Ga-actions, which was developed by
Kaliman and Zaidenberg in the late 1990s and which underlies the discussion of
canonical factorizations found in Chap. 1.

Above all, this second edition is intended to be an improved reference for locally
nilpotent derivations and Ga-actions and their applications.
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