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Abstract. We introduce a family of logics for reasoning about relational
evidence: evidence that involves an ordering of states in terms of their
relative plausibility. We provide sound and complete axiomatizations for
the logics. We also present several evidential actions and prove soundness
and completeness for the associated dynamic logics.
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Dynamic evidence logics [2,14-17] are logics for reasoning about the evidence
and evidence-based beliefs of agents in a dynamic environment. Evidence logics
are concerned with scenarios in which an agent collects several pieces of evidence
about a situation of interest, from a number of sources, and uses this evidence
to form and revise her beliefs about this situation. The agent is typically uncer-
tain about the actual state of affairs, and as a result takes several alternative
descriptions of this state as possible (these descriptions are typically called pos-
sible worlds or possible states). The existing evidence logics, i.e., neighborhood
evidence logics (NEL) [2,14-17], have the following features:

1. All evidence is ‘binary’. Each piece of evidence is modeled as a set of possible
states. This set indicates which states are good candidates for the actual state,
and which ones are not, according to the source. Hence the name binary; every
state is either a good candidate (‘in’), or a bad candidate (‘out’).

2. All evidence is equally reliable. The agent treats all evidence pieces on a par.
There is no explicit modeling of the relative reliability of pieces of evidence.

3. One procedure to combine evidence. The logics developed so far study the
evidence and beliefs held by an agent relying on one specific procedure for
combining evidence.

This work presents a family of dynamic evidence logics which we call rela-
tional evidence logics (REL). Relational evidence logics aim to contribute to the
existing work on evidence logic as follows.

1. Relax the assumption that all evidence is binary. This is accomplished by
modeling pieces of evidence by evidence relations. Evidence relations are pre-
orders over the set of possible states. The ordering is meant to represent the
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relative plausibility of states based on the evidence. While a special type of
evidence relation — dichotomous order — can be used to model binary evi-
dence, less ‘black-and-white’ forms of evidence can also be encoded in REL
models.

2. Model levels of evidence reliability. In general, not all evidence is equally reli-
able. Expert advice and gossip provide very different grounds for belief, and
a rational agent should weight the evidence that it is exposed to accordingly.
To model evidence reliability, we equipped our models with priority orders,
i.e., orderings of the family of evidence relations according to their relative
reliability. Priority orders were introduced in [1], and have already been used
in other DEL logics (see, e.g. [9,12]). Here, we use them to model the relative
reliability of pieces of evidence.

3. Explore alternative evidence aggregation rules. Our evidence models come
equipped with an aggregator, which merges the available evidence relations
into a single relation representing the combined plausibility of the possible
states. The beliefs of the agent are then defined on the basis of this combined
plausibility order. By focusing on different classes of evidence models, given by
their underlying aggregator, we can then compare the logics of belief arising
from different approaches to combining evidence.

1 Relational Evidence Models

Relational evidence. We call relational evidence any type of evidence that
induces an ordering of states in terms of their relative plausibility. A suitable
representation for relational evidence, which we adopt, is given by the class of
preorders. We call preorders representing relational evidence, evidence relations,
or evidence orders. As is well-known, preorders can represent several meaningful
types of orderings, including those that feature incomparable or tied alternatives.

Definition 1 (Preorder). A preorder is a binary relation that is reflexive and
transitive. We denote the set of all preorders on a set X by Pre(X). For a
preorder R on X and an element x € X, we define the following associated
notions: Rlx] = {y € X | Rxy}; R< = {(x,y) € X? | Ray and Ryz};
R~ = {(x,y) € X? | Rzy and ~Ryxz}.

Evidence reliability. In general, not all sources are equally trustworthy, so an
agent combining evidence may be justified in giving priority to some evidence
items over others. As suggested in [17], a next reasonable step in evidence logics
is modeling levels of reliability of evidence. One general format for this is given by
the priority graphs of [1], which have already been used extensively in dynamic
epistemic logic (see, e.g., [9,12]). In this work, we will use the related, yet simpler
format of a ‘priority order’, as used in [5,6], to represent hierarchy among pieces
of evidence. Our definition of a priority order is as follows:

Definition 2 (Priority order). Let Z be a family of evidence orders over W.
A priority order for # is a preorder < on %. For R,R' € #, R X R’ reads as:
“the evidence order R’ has at least the same priority as evidence order R”.
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Intuitively, priority orders tell us which pieces of evidence are more reliable
according to the agent. They give the agent a natural way to break stalemates
when faced with inconsistent evidence.

Evidence aggregators. We are interested in modeling a situation in which an
agent integrates evidence obtained from multiple sources to obtain and update a
combined plausibility ordering, and forms beliefs based on this ordering. When
we consider relational evidence with varying levels of priority, a natural way
model the process of evidence combination is to define a function that takes as
input a family of evidence orders # together with a priority order < defined on
them, and combines them into a plausibility order. The agent’s beliefs can then
be defined in terms of this output.

Definition 3 (Evidence aggregator). Let W be a set of alternatives. Let W
be the set of preorders on W. An evidence aggregator for W is a function Ag
mapping any preordered family P = (%#,=) to a preorder Ag(P) on W, where
0&€ZCW and = is a preorder on Z. X is seen here as a family of evidence
orders over W, < as a priority order for %, and Ag(P) as an evidence-based
plausibility order on W.

At first glance, our definition of an aggregator may seem to impose mild
constraints that are met by most natural aggregation functions. However, as it
is well-known, the output of some common rules, like the majority rule, may not
be transitive (thus not a preorder), and hence they don’t count as aggregators. A
specific aggregator that does satisfy the constraints is the lexicographic rule. This
aggregator was extensively studied in [1], where it was shown to satisfy several
nice aggregative properties. The definition of the aggregator is the following:

Definition 4. The (anti-)lexicographic rule is the aggregator lex given by
(w,v) € lex((#,=)) iff VR € Z (R'wv vV IR € Z(R' < R A R wv))

Intuitively, the lexicographic rule works as follows. Given a particular hier-
archy =< over a family of evidence &, aggregation is done by giving priority to
the evidence orders further up the hierarchy in a compensating way: the agent
follows what all evidence orders agree on, if it can, or follows more influential
pieces of evidence, in case of disagreement. Other well-known aggregators that
satisfy the constraints, but don’t make use of the priority structure, are the
intersection rule (defined below), or the Borda rule.

Definition 5. The intersection rule is the aggregator Agn given by (w,v) €

Agn((#, %)) iff (w,v) € NZ.

The models. Having defined relational evidence and evidence aggregators, we
are now ready to introduce relational evidence models.

Definition 6 (Relational evidence model). Let P be a set of proposi-
tional variables. A relational evidence model (REL model, for short) is a tuple
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M = (W, (%,=),V,Ag) where W is a non-empty set of states; (#,=) is an
ordered family of evidence, where: Z is a set of evidence orders on W with
W2 € % and =< is a priority order for Z; V : P — 2W is a valuation function;
Ag is an evidence aggregator for W.

W2 € Z is called the trivial evidence order. It represents the evidence stating
that “the actual state is in W7, which is taken to be always available to the agent
as a starting point. M = (W, (%, =),V, Ag) is called an f-model iff Ag = f.

Syntax and semantics. We now introduce a static language for reasoning
about relational evidence, which we call .. In [2], this language is interpreted
over NEL models (there, the language is called Z/on,)-

Definition 7 (£). Let P be a countably infinite set of propositional variables.
The language £ is defined by:

pu=plopleAe|Oop|Op| Ve (peP)

The intended interpretation of the modalities is as follows. [y reads as: ‘the
agent has basic, factive evidence for ¢’; Oy reads as: ‘the agent has combined,
factive evidence for ’. The language .Z is interpreted over REL models as follows.

Definition 8 (Satisfaction). Let M = (W, (%, =),V, Ag) be an REL model
and w € W. The satisfaction relation |= between pairs (M, w) and formulas
p € % is defined as follows (the propositional clauses are as usual):

M,w = Qo iff there is R € Z such that, for all v € W, Rwv implies M, v |= ¢
M,w Qe iff for allv e W, Ag({Z, <))wv implies M,v = ¢
M,w EYe iff for allve W, M,v = ¢

Definition 9 (Truth map). Let M = (W, (%, =),V, Ag) be a REL model. We
define a truth map [Ja : £ — 2V given by: [o]m = {w € W | M,w = ¢}.

Next, we introduce some definable notions of evidence and belief over REL
models, illustrated below with an example. Fix a model M = (W, (Z, <), V, Ag).

Basic (factive) Evidence. We say that a piece of evidence R € % supports
v at w € W iff Rlw] C [¢]a- That is, every world that is at least as plausible
as w under R satisfies ¢. Using this notion of support, we say that the agent
has basic, factive evidence for ¢ at w € W if there is a piece of evidence R € #
that supports ¢ at w. That is: ‘the agent has basic evidence for ¢ at w € W’ iff
AR € Z(R[w] C [¢]m) if M,w = Opp. We also have a non-factive version of
this notion, which says that the agent has basic evidence for ¢ if there is a piece
of evidence R that supports ¢ at some state, i.e.: ‘the agent has basic evidence
for ¢ (at any state)’ iff Jw(IR € Z(Rw] C [¢]um)) ifft M, w | F0pp. We can
also have a conditional version of basic evidence: ‘the agent has basic, factive
evidence for ¢ at w, conditional on ¢ being true’. Putting O5v := Oo(p — 1),
we have: ‘the agent has basic, factive evidence for ¢ at w, conditional on ¢ being
true’ iff IR € Z(Vv(Rwv = (v € [p]m = v € [¢]um))) iff M, w | Of. The
notion of conditional evidence reduces to that of plain evidence when ¢ = T.
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Aggregated (factive) Evidence. We propose a notion of aggregated evidence
based on the output of the aggregator: the agent has aggregated, factive evidence
for pat w € Wit Ag((Z, <))[w] C [¢]a iff M, w = Op. The non-factive version
of the previous notion is as follows: the agent has aggregated evidence for ¢ (at
any state) iff Jw(Ag({(Z, <))[w] C [¢]ar) iff M, w = 3I0p. As we did with basic
evidence, we can define a conditional notion of aggregated evidence in ¢ by
putting (0% := O(¢ — ). The unconditional version is given by ¢ = T.

Evidence-Based Belief. The notion of belief we will work with is based on the
agent’s plausibility order, which in REL models corresponds to the output of the
aggregator. As we don’t require the plausibility order to be converse-well founded,
it may have no maximal elements, which means that Grove’s definition of belief
may yield inconsistent beliefs. For this reason, we adopt a usual generalization of
Grove’s definition, which defines beliefs in terms of truth in all ‘plausible enough’
worlds (see, e.g., [3,16]). Putting By := YOy, we have: the agent believes ¢ (at
any state) iff Vw(Jv((w,v) € Ag({(Z, <)) and Ag({Z, =<))[v] C [¢]m)) ifft M, w |=
VOOp. That is, the agent believes ¢ iff for every state w € W, we can always find
a more plausible state v € [p] s, all whose successors are also in [¢] . When the
plausibility relation is indeed converse well-founded, this notion of belief coincides
with Grove’s one, while ensuring consistency of belief otherwise. We can also define
a notion of conditional belief. Putting B%y := V(p — O(p — (Op — 1)), we
have: ‘the agent believes ¢ conditional on ¢ iff Vw(w € [¢]a = Fv(Ag({Z, =)
wv and v € [p]ar and Ag({Z, <)) [v]N[e]ar C [¢]m)) if M, w = B?. Asbefore,
this conditional notion reduces to that of absolute belief when ¢ = T.

Ezample 1 (The diagnosis). Consider an agent seeking medical advice on an
ongoing health issue. To keep thing simple, assume that there are four possible
diseases: asthma (a), allergy (al), cold (c), and flu (f). This can be described by
a set W consisting of four possible worlds, {wq, wqi, we, wy} and a set of atomic
formulas {a,al,c, f} (each true at the corresponding world). The agent consults
three sources, a medical intern (IN), a family doctor (FD) and an allergist
(AL). The doctors inspect the patient, observing fairly non-specific symptoms:
cough, no fever, and some inconclusive swelling at an allergen test spot. Given
the non-specificity of the symptoms, the doctors can’t single out a condition that
best explains all they observed. Instead, comparing the diseases in terms of how
well they explain the observed symptoms, and drawing on their experience, each
doctor arrives at a ranking of the possible diseases. Let us denote by Ryn, Rrp
and R4y the evidence orders representing the judgment of the intern, family
doctor and allergist, respectively, which we assume to be as depicted below. If
the agent has no information about how reliable each doctor is, she may just
trust them all equally. We can model this by a priority order < over the evidence
orders Ryy ~ Rpp ~ R4y, that puts all evidence as equally likely. On the other
hand, if the agent knows that the intern is the least experienced of the doctors,
she may consider his evidence as strictly less reliable than the one provided by
the other doctors. Similarly, if the allergist has a strong reputation, the agent
may wish to give the allergist’s judgment strict priority over the rest. We can
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model this by a different priority order <’ given by R;n <’ Rpp <’ Rar (note
that this is meant to be reflexive and transitive). If, e.g., the agent uses the
lexicographic rule, we arrive at the following scenarios, with different aggregated
evidence depending on the priority order used:

Rin Rpp Rar
al al
a c a c
al 4.\‘: ’.
a j c
f
f
Lexicographic aggregation based on < Lexicographic aggregation based on =<’
Rin~Rpp~RarL Rin<"Rpp<'RaL

al

The best candidates for the actual disease, in each case, are depicted in white.
Note that, e.g., the agent has basic evidence for a V al V ¢, but she doesn’t have
evidence for f. Moreover, in the scenario based on =’, the agent believes that
the allergy is the actual disease, but she doesn’t in the scenario based on <.

A PDL language for relational evidence. Later in this work, we will discuss
evidential actions by which the agent, upon receiving a new piece of relational
evidence, revises its existing body of evidence. To encode syntactically the evi-
dence pieces featured in evidential actions, we will enrich our basic language
% with formulas that stand for specific evidence relations. A natural way to
introduce relation-defining expressions, in a modal setting such as ours, is to
employ suitable program expressions from Propositional Dynamic Logic (PDL).
We will follow this approach, augmenting £ with PDL-style evidence programs
that define pieces of relational evidence. As evidence orders are preorders, we
will employ a set of program expressions whose terms are guaranteed to always
define preorders. An natural fragment of PDL meeting this condition is the one
provided by programs of the form 7*, which always define the reflexive transitive
closure of some relation.

Definition 10 (Evidence programs). The set IT has all program symbols 7
defined as follows:

mu= Allp|nUn|mnm| 7"
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where ¢ € . Here A denotes the universal program, while the rest of the pro-
grams have their usual PDL meanings (see, e.g., [10]). We call IT, := {n* | 7 €
IT} the set of evidence programs.

To interpret evidence programs in REL models, we extend the truth map:

Definition 11 (Truth map). Let M = (W, (%, <),V, Ag) be an REL model.
We define an extended truth map []a; : L U I — 2% U2%" given by: [¢]y =
{weW | MuwE ¢} [Aln = W2 [2¢]lu = {(w,w) € W? | w e [¢]M};
[wUn'lae = [7]ag O lmlaes [ms 7' )ar = [w]ag o [7']as s I ]ae =[]y

Some Examples of Definable Evidence Programs. Here are some natural
types of relational evidence that can be constructed with programs from IT,.

Dichotomous evidence. For a formula ¢, let m, = (A4;7¢) U (7=p; A; 7=9). m,
puts the ¢ worlds strictly above the = worlds, and makes every world equally
plausible within each of these two regions. It is easy to see that 7, always defines
a preorder, and therefore (m,)* is an evidence program equivalent to =, (Fig. 1).

Fig. 1. The dichotomous order defined by =,

Totally ordered evidence. Several programs can be used to define total preorders.
For example, for formulas ¢1, ..., ¢,, we can define the program

Torsopn = (A 701) U (Top1; A5 72015 702)
U (715 ~p2; A; 72015 7025 T03)
U...
U (P15 3 7203 A 72155 Tmon—13 Tion) U (TT)
This type of program, described in [18], puts the ¢; worlds above everything else,
the =1 Ay worlds above the ¢ A -2 worlds, and so on, and the = A—pa A
<+ A=@n_1 Ay above the =1 A —pa A~ -+ A=, worlds. 7t (¢p1, ..., @,) always

defines a preorder, so the evidence program (7'(ip1,...,%n))* is equivalent to it
(Fig. 2).

*HH%G

Fig. 2. The total preorder defined by 7y, ...,
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Incompletely ordered evidence. Several programs can be used to define evidence
orders featuring incomparabilities. To illustrate this, let us consider the program
Tong = (A 270 AY) U (T2 A =3 A; 70 V ) U (T2 A s As 7= A ) U (T A
—; A; 7o A—p)U (7T). As depicted in Fig. 3, this program puts the ¢ A1) worlds
above everything else, the = A ¢ and ¢ A = as incomparable ‘second-best’
worlds, and the —p A =) below everything else. As with the other programs
Ty always defines a preorder, so (Tyay)* is an equivalent evidence program.

. b
\ /
Fig. 3. The incomplete preorder defined by myay

2 The Logics of Agn-Models and lex-Models

We initiate here our logical study of the statics of belief and evidence in the REL
setting. We first zoom into two specific classes of REL models, the classes of Agn-
models and lex-models, and study the static logics for belief and evidence based
on these models. In particular, we introduce systems L~ and L., that axiomatize
the class of Agn-models and the class of lex-models, respectively. (To simplify
notation, we write N-models instead of Agn-models hereafter). In later sections,
we will ‘zoom out’ and study the class of all REL models. Our choice to study N
and lex models in some detail is motivated as follows. The class of N-models is
interesting because it links our relational evidence setting back to the NEL setting
that inspired it. Indeed, as we show right below, given any NEL model with
finitely many pieces of evidence, we can always find a N-model that is modally
equivalent to it (with respect to language £). This N-model represents binary
evidence in a relational way, thereby encoding the same information presented in
the NEL model. lex-models, on the other hand, provide a good study case for the
REL setting, as they exemplify its main novel features: non-binary evidence and
reliability-sensitive aggregation. We recall here the definition of a NEL model to
compare them to N-models. The definition given for these models follows the
one in [2]. For a more general notion, see [15], where the models we consider are
called uniform models.

Definition 12 (Neighborhood evidence model). A neighborhood evidence
model is a tuple M = (W, Ey, V) where: W is a non-empty set of states; Ey C
P (W) is a family of basic evidence sets, such that ) € Eq and W € Ey; V :
P — P2(W) is a valuation function. A model is called feasible if Ey is finite. A
body of evidence is a family F C Ey such that every non-empty finite subfamily
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F' C F s consistent, i.e., (\F' # 0. A piece of combined evidence is any
non-empty intersection of finitely many pieces of basic evidence. We denote by
E = {N\F|F CEy,|F| €N} the family of all combined evidence.

Definition 13 (Satisfaction). Let M = (W, Ey, V') be an NEL model and w €
W. The satisfaction relation = between pairs (M, w) and formulas ¢ € £ is:

M,w = Oy iff there is e € Eqy such that w € e C [p]m
M,w =0Op iff there is e € E such that w € e C [p]m
M,w Ve iff W= [¢]m

We now present a way to ‘transform’ a NEL model into a matching REL
model. To do that, we first encode binary evidence, the type of evidence consid-
ered in NEL models, as relational evidence.

Definition 14. Let W be a set. For each e C W, we denote by R, the relation
given by: (w,v) € Re iff wE€e= v Ee.

That is, R, is a preorder with at most two indifference classes (i.e., a dichoto-
mous weak order) of ‘good’ and ‘bad’ candidates for the actual state, which puts
all the ‘bad’ candidates strictly below the ‘good’ ones (Fig. 4).

Fig.4. A piece of binary evidence, represented as an evidence set e (left) and as a
dichotomous evidence order R, (right).

Having fixed this connection between evidence sets and evidence orders, we
can now consider a natural way to transform every NEL into a N-model in which

each evidence order is dichotomous. To fix this link, we define a mapping between
NEL and REL models.

Definition 15. Let Rel be a map from NEL to REL models given by:
(W, Ey, V) — (Rel(W), (Rel(Eyp), <), Rel(V), Agn)

where Rel(W) = W, Rel(V) = V Rel(Ey) := {R. | e € Ey} and <=
Rel(Ep)?.

We can then observe that feasible NEL models and their images under Rel are
modally equivalent, in the sense of having point-wise equivalent modal theories.

Proposition 1. Let M = (W, Ey, V) be a feasible NEL model. For any ¢ € £
and any w € W, we have: M,w = ¢ iff Rel(M),w [ ¢.
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That is, feasible NEL models can be seen as ‘special cases’ of REL models in
which all evidence is dichotomous and equally reliable. As the following propo-
sition shows, the modal equivalence result does not extend to non-feasible NEL
models. This is because, in models with infinitely many pieces of evidence, the
notion of combined evidence presented in [2] differs from the one proposed here
for REL models. To clarify this, consider a NEL model M = (W, Ey, V). Recall
that the agent has combined evidence for a proposition ¢ at w if there is a finite
body of evidence whose combination contains w and supports ¢, i.e., if there is
some finite ' C Ey such that w € (| F C [¢]ar- Suppose M is a non-feasible
model in which we have w € () Ey C [¢]ar, while no finite family F' C Ej is such
that w € (V| F C [¢]a- That is, the combination of all the evidence supports ¢
at w, but no combination of a finite subfamily of Ey does. In a NEL model like
this, the agent does not have combined evidence for ¢ at w. That is, M, w = Op.
However, our proposed notion of aggregated evidence for REL models is based
on combining all the available evidence, and as a result in Rel(M) the agent does
have aggregated evidence for ¢ (i.e., Rel(M),w = Og). A concrete example of
such a model is M = (W, Ep, V) with W =N, Eyg = {N\ {2n+ 1} | n € N} and
V(p) = {2n | n € N}. It is easy to verify that M,0 [~ p, while Rel(M),0 [ p.
The proofs for all the results presented in this paper can be found in an extended
version of it that will constitute the basis for a journal version. This extended
version can be found in [4].

Proposition 2. Non-feasible NEL models need not be modally equivalent to
their images under Rel. In particular, the left-to-right direction of Proposition 1
holds for non-feasible evidence models, but the right-to-left direction doesn’t: there
are non-feasible neighborhood models M s.t. Rel(M),w = Oy but M,w = .

Having motivated our interest in N-models via their connection to neighbor-
hood evidence logics, we now focus again on the static logics of N- and lex-models.
Table 1 lists the axioms and rules in L4 and L.

As stated in Theorem 1, these two systems completely axiomatize the logics
of N and lex models, respectively.

Theorem 1. L and Liex are sound and strongly complete with respect to N-
models and lex-models, respectively.

Evidence dynamics for N-models. Having established the soundness and
completeness of the static logics, we now turn to evidence dynamics, starting
with N-models. In line with the work on NEL, we consider update, evidence
addition and evidence upgrade actions for N-models. As the intersection rule is
insensitive to the priority order, when we consider N-models, it is convenient to
treat the models as if they came with a family of evidence orders & only, instead
of an ordered family (#, <). Accordingly, hereafter we will write N-models as
follows: M = (W, 2,V, Agn). Let us fix a N-model M = (W, %,V, Agn), some
proposition P C W and some evidence order R € Pre(W).
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Table 1. The systems Lo and Ljex

Axioms and inference rules System(s)
All tautologies of propositional logic both
S5 axioms for V, S4 axioms for [0, axiom 4 for [y both
Vo — o both
(Do A V) — Dol A V) L
(Oop AVY) — Oo(p A V) Liex
Oop — Oy Ln
Axioms T and N for Oy Liex
Vo — O Liex
Modus ponens both
Necessitation Rule for e € {V,}: from ¢ infer ey both
Monotonicity Rule for Ug: from ¢ — 9 infer Oy — oty | both

Update. We first consider updates that involve learning a new fact P with
absolute certainty. Upon learning P, the agent rules out all possible states that
are incompatible with it. For REL models, this means keeping only the worlds
in [P] s and restricting each evidence order accordingly.

Definition 16 (Update). The model M'* = (W'P %'* V'F' Ag) has
W' = P, #" .= {RNP?| R c %}, Ag¥ := Agn restricted to P, and
for allp € P, V' (p) := V(p)N P.

Evidence addition. Unlike update, which is standardly defined in terms of
an incoming proposition P C W, our proposed notion of evidence addition for
N-models involves accepting a new piece of relational evidence R from a trusted
source. That is, relational evidence addition consists of adding a new piece of
relational evidence R C Pre(W) to the family Z.

Definition 17 (Evidence addition). The model M*tF = (W+E Z+k,
VAR Agh B has WHE .= W, 8 .= # U{R}, VIt = V and Agi? =
Agm.

Evidence upgrade. Finally, we consider an action of upgrade with a piece
of relational evidence R. This upgrade action is based on the notion of binary
lezicographic merge from Andréka et al. [1].

Definition 18 (Evidence upgrade). The model M = (WTE MR ik
Agh®y has WTR .= W, 2" .= {R<U(RNR) | R € #Z}, VI® .= V and
TR _
Agn™ = Agn.
Intuitively, this operation modifies each existing piece of evidence R’ with R

following the rule: “keep whatever R and R’ agree on, and where they conflict,
give priority to R”. To encode syntactically the evidential actions described
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above, we present extensions of £, obtained by adding to £ dynamic modalities
for update, evidence addition and evidence upgrade. The modalities for update
will be standard, i.e., modalities of the form [l¢]i. The new formulas of the form
[lo]w are used to express the statement: “i is true after ¢ is publicly announced”.

Definition 19 (£"). The language " is defined recursively by:
pu=pl-plone|Dup|Op Vel [lole (peP)

Satisfaction for formulas [l¢]y) € Z* is given by: M, w = [y iff M,w = ¢
implies M'leIv = 4. For the remaining actions, we extend . with dynamic
modalities of the form [+]y) for addition and [f} 7]y for upgrade, where the
symbol 7 occurring inside the modality is an evidence program.

Definition 20 (.Z*). Let o € {+,1}. The language £* is defined by:

pi=ploploAe|Dop [Op [ Vo |[en]e (peP)
mu=Allo|mUn | mmw |7

The new formulas of the form [+7]¢ are used to express the statement: “p
is true after the evidence order defined by w is added as a piece of evidence”,
while the [f} 7]y are used to express: “p is true after the existing evidence is
upgraded with the relation defined by n”. We extend the satisfaction relation
= to cover formulas of the form [em]y as follows: for a formula [e7]p € .Z°, we
have M, w = [en]y iff Melmla = .

The next natural step is to introduce proof systems for the languages .£",
2t and " with respect to N-models. A standard approach to obtain sound-
ness and completeness proofs is via a reductive analysis, appealing to reduction
azioms. We refer to [11] for an extensive explanation of this technique. Tak-
ing this route, we obtained complete proof systems for the dynamic logics. The
reduction axioms and the completeness proofs can be found in the Extended
version of this paper (see Definitions 12, 13 and 21, Lemma 1 and Theorem 2
therein).

Theorem 2. There exist proof systems for &', L+ and £ that are sound and
complete with respect to N-models.

Evidence dynamics for lex-models. We now have a first look at the dynamics
of evidence over lex models. In the REL setting, evidential actions can be seen as
complex actions involving two possible transformations on the initial model: (i)
modifying the stock of evidence, #Z, perhaps by adding a new evidence relation
R to it, or modifying the existing evidence with R; and (ii) updating the priority
order, =<, e.g. to ‘place’ a new evidence item where it fits, according to its reli-
ability. We may also have actions involving evidence, not about the world, but
about evidence itself or its sources (sometimes called ‘higher-order evidence’ [7]),
which trigger a reevaluation of the priority order without changing the stock of
evidence (for instance, upon learning that a specific source is less reliable than
we initially thought, we may want to lower the priority of the evidence provided
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by this source). To illustrate the type of actions that can be explored in this
setting, here we study an action of prioritized addition over lex models. For the
sake of generality, we describe this action over REL models.

Prioritized addition. Let M = (W, (%, <),V, Ag) be a REL model and R €
Pre(W) a piece of relational evidence. The prioritized addition of R adds R to
the set of available evidence £, giving the highest priority to the new evidence.

Definition 21 (Prioritized addition). The model M®ft = (WO (9F,
<ORY VOR AGPRY has WO .= W, #9F .= ZU{R}, VO .= V, Ag®F =
Ag and PR =< U{(R",R) | R' € #}.

To encode this action, we add formulas [B7]¢, used to express the statement
that ¢ is true after the prioritized addition of the evidence order defined by 7.

Definition 22 (£?). The language £ is given by:

pi=pl e lene | Dop|Op | Vo [om*]e (peP)
mu=Al?p|mUn | Ty |7

Satisfaction for formulas [B7]p € Z9 is given by: M,w [
[@7]p iff MOl 4 = . As we did with the dynamic extensions presented
for actions in N-models, we wish to obtain a matching proof system for our
dynamic language £®. We do this via reduction axioms; the axioms and the
completeness proof can be found in the Extended version of this paper (see
Definition 29 and Theorem 3 there).

Theorem 3. There exists a proof system for £ that is sound and complete
with respect to lex models.

3 The Logic of REL Models

In this section, we briefly study the logic of evidence and belief based on some
abstract aggregator. That is, instead of fixing an aggregator, we are now inter-
ested in reasoning about the beliefs that an agent would form, based on her
evidence, irrespective of the aggregator used. With respect to dynamics, we will
focus on the action of prioritized addition introduced for lex-models, consider-
ing an iterated version of prioritized addition, defined with a (possibly empty)
sequence of evidence orders R = (Ry,..., R,) as input.

Definition 23 (Iterated prioritized addition). Let M = (W, (%, =),V, Ag)
be a REL model and R = (Ry,...,R,) be a sequence of evidence orders. The
model M®T = (WOR (OB OR) VOR AGOR) pog WOR = W %R .=
RUL{R; |ie€{l,...n}}, VOB =V, Ag@R = Ag and
<P .= <U{(R,R)|Re Z}U{(R,Rs) | Re ZU{R:1}}
U...
U{(R,R,) | REZU{R; |je{l,...,n—1}}}
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That is, first R; is added as the highest priority evidence, then Ry is added as
the highest priority evidence, on top of every other evidence (including Ry ), and
so on, up to R,. When R has one element, we get the basic notion of addition.

Syntax and semantics. To pre-encode part of the dynamics of iterated priori-
tized addition, we will modify our basic language £ with conditional modalities
of the form O™, where 7 is a finite, possibly empty sequence of evidence pro-
grams 7y, ..., 7T,. The intended interpretation of 1™y is “the agent would have
aggregated evidence for ¢, after the iterated prioritized addition of 7”.

Definition 24 (%.). The language £, is defined as follows:

pu=plop|eAe | O | O%¢ | Ve (peP)
mu=A?p|nUn | myw | 7"

where 7 is a (possibly empty) finite sequence of evidence programs (i.e. *-
programs).

Notation 1. We abuse the notation for the truth map [-]as and write [7]as to
denote ([m1]ass - -, [7n]as), where m = (71,..., 7).

As we allow 7 to be empty, 07 reduces to the Oy from £ when 7 is the
empty sequence, giving us a fully static sub-language. Satisfaction for formulas
O7p € Z. is given by: M,w = 07y iff Ag((#®l7lm <87y [w] C [¢]ar.
Next, we introduce a complete proof system for the language with conditional
modalities (proof of completeness in the Extended Version).

Definition 25 (L.). The system L. includes the same axioms and inference
rules as Liex, with azioms and inference rules for O in L applying to O™ in L.

Theorem 4. L. is sound and strongly complete with respect to REL models.

Evidence dynamics for REL models. Having established the soundness and
completeness of the static logic, we now turn to evidence dynamics, focusing on
prioritized evidence addition. To encode prioritized addition, we add formulas of
the form [@7]p, used to express the statement that ¢ is true after the prioritized
addition of the sequence of evidence orders defined by 7.

Definition 26 (.£). The language £ is given by:

pu=plp|leAe|Oop | O | Ve | [@m]e (p€P)

mu=Allp|mUT | T | T*

where ™ is a (possibly empty) finite sequence of evidence programs (i.e. *-
programs).

The satisfaction for these formulas is given by M,w | [®7]p
iff MOl 4y = . A complete system for £ can be found in the extended
version of this paper (see Definition 36).

Theorem 5. There is a proof system for £F that is complete w.r.t REL models.
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4 Conclusions and Future Work

We have presented evidence logics that use a novel, non-binary representation
for evidence and consider reliability-sensitive forms of evidence aggregation. Here
are a few avenues for future research. Additional aggregators: we studied two of
them. An interesting extension to this work involves developing logics based on
other well-known rules. Additional actions: in a setting with ordered evidence,
evidence actions are complex transformations, both of the stock of evidence
and the priority order. For the lexicographic case, we studied a form of pri-
oritized addition. More general actions, e.g., transforming the priority order
(re-evaluation of reliability) without affecting the stock of evidence, can be
explored. Probabilistic evidence: we moved from the binary evidence case to
the relational evidence case. Probabilistic opinion pooling [8] and pure inductive
logic [13] study the aggregation of probability functions, but a dynamic-logic
analysis is missing.
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