
Chapter 2
Linear Wave Equations

2.1 Expression of Solutions

In this section we consider the following Cauchy problem of linear wave equations:

�u = F(t, x), (t, x) ∈ IR × IRn, (2.1.1)

t = 0 : u = f (x), ut = g(x), ∈ IRn, (2.1.2)

where x = (x1, . . . , xn),

� = ∂2

∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n
(2.1.3)

is the n−dimensional wave operator, and F, f and g are given functions with suitable
regularities.

According to the superposition principle and the Duhamel’s principle based on
this, to solve the Cauchy problem (2.1.1)–(2.1.2), it suffices to solve the Cauchy
problem of the following homogeneous wave equation:

�u = 0, (t, x) ∈ IR × IRn, (2.1.4)

t = 0 : u = 0, ut = g(x), x ∈ IRn. (2.1.5)

Denote the solution of this problem by

u = S(t)g. (2.1.6)

Here

S(t) : g → u(t, ·), (2.1.7)
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18 2 Linear Wave Equations

being a linear operator whose specific properties reflect the nature of wave equations,
is the key object of study of this chapter.

If the solution of the Cauchy problem (2.1.4)–(2.1.5) is known, then it is easy to
know that the solution to the Cauchy problem

�u = 0, (t, x) ∈ IR × IRn, (2.1.8)

t = 0 : u = f (x), ut = 0, x ∈ IRn (2.1.9)

can be expressed by

u = ∂

∂t
(S(t) f ); (2.1.10)

while, the solution to the Cauchy problem of the inhomogeneous wave equation:

�u = F(t, x), (t, x) ∈ IR × IRn, (2.1.11)

t = 0 : u = 0, ut = 0, x ∈ IRn (2.1.12)

can be expressed, according to the Duhamel’s principle, by

u =
∫ t

0
S(t − τ )F(τ , ·)dτ . (2.1.13)

Therefore, in general the solution to the Cauchy problem (2.1.1)–(2.1.2) of wave
equations can be represented uniformly by

u = ∂

∂t
(S(t) f ) + S(t)g +

∫ t

0
S(t − τ )F(τ , ·)dτ . (2.1.14)

On the other hand, the solution to the Cauchy problem (2.1.4)–(2.1.5) can also
be obtained by solving the Cauchy problem of the forms (2.1.8)–(2.1.9) or (2.1.11)–
(2.1.12). In fact, if the solution v to the Cauchy problem

�v = 0, (t, x) ∈ IR × IRn, (2.1.15)

t = 0 : v = g, vt = 0, x ∈ IRn (2.1.16)

is already known, then

u =
∫ t

0
v(τ , ·)dτ (2.1.17)

is exactly the solution to the Cauchy problem (2.1.4)–(2.1.5). Moreover, it is easy to
show from (2.1.14) that the solution to the Cauchy problem
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�u = g(x)δ(t), (t, x) ∈ IR × IRn, (2.1.18)

t = −1 : u = 0, ut = 0, x ∈ IRn (2.1.19)

is exactly the solution to the Cauchy problem (2.1.4)–(2.1.5), where δ is the Dirac
function.

2.1.1 Expression of Solutions When n ≤ 3

When n = 1, as t ≥ 0, the solution to the Cauchy problem (2.1.4)–(2.1.5) of the
one-dimensional wave equation is given by the well-known d’Alembert formula:

u(t, x) = 1

2

∫ x+t

x−t
g(y)dy. (2.1.20)

When n = 2, as t ≥ 0, the solution to the Cauchy problem (2.1.4)–(2.1.5) of the
two-dimensional wave equation is given by the two-dimensional Poisson formula:

u(t, x) = 1

2π

∫
|y−x |≤t

g(y)√
t2 − |y − x |2 dy, (2.1.21)

where x = (x1, x2), y = (y1, y2), and

|y − x | =
√

(y1 − x1)2 + (y2 − x2)2.

When n = 3, as t ≥ 0, the solution to the Cauchy problem (2.1.4)–(2.1.5) of the
three-dimensional wave equation is given by the three-dimensional Poisson formula:

u(t, x) = 1

4πt

∫
|y−x |=t

g(y)dSy, (2.1.22)

where x = (x1, x2, x3), y = (y1, y2, y3),

|y − x | =
√

(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2,

and dSy stands for the area element of the sphere |y − x | = t .
The derivation of formulas (2.1.20)–(2.1.22) can be found, say, in Gu Chaohao,

Li Tatsien et al. 1987.
We can find out from (2.1.20)–(2.1.22) that, when the space dimension n ≤ 3,

the expressions of the solution u = u(t, x) to the Cauchy problem (2.1.4)–(2.1.5)
involve only g(x) itself but not its derivatives. Besides, when

g(x) ≥ 0, ∀x ∈ IRn, (2.1.23)
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we always have

u(t, x) ≥ 0, ∀(t, x) ∈ IR+ × IRn, (2.1.24)

where n = 1, 2 and 3. This property is called the positivity of the fundamental
solution (See Remark 2.2).

When n ≥ 4, the fundamental solution does not have the positivity any longer.
This can be shown by the expression of solutions, which will be derived later soon.

2.1.2 Method of Spherical Means

Here and throughout this section, we always assume that n > 1.
For any given function ψ(x) = ψ(x1, . . . , xn), denote by

h(x, r) = 1

ωnrn−1

∫
|y−x |=r

ψ(y)dSy (2.1.25)

the integral mean of ψ on the sphere centered at x = (x1, . . . , xn) with radius r ,
where ωn stands for the area of the unit sphere Sn−1 in IRn , dSy is the area element
of the sphere |y − x | = r , and ωnrn−1 is the area of this sphere. The above formula
can be easily rewritten as

h(x, r) = 1

ωn

∫
|ξ|=1

ψ(x + rξ)dωξ, (2.1.26)

where dωξ is the area element of the unit sphere Sn−1, and ξ = (ξ1, . . . , ξn).
From the above formula, it turns out that the function h(x, r) is well-defined not

only for r ≥ 0 but also for r < 0, and is an even function of r .
If ψ ∈ C2, then it is obvious that h ∈ C2, and

h(x, 0) = ψ(x), (2.1.27)

and since h is an even function of r , we have

∂h

∂r
(x, 0) = 0. (2.1.28)

In addition, from (2.1.26) we have

∂h(x, r)

∂r
= 1

ωn

∫
|ξ|=1

n∑
i=1

ψxi (x + rξ)ξi dωξ
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= 1

ωnrn−1

∫
|ξ̃|=r

n∑
i=1

ψxi (x + ξ̃)ξi dS,

where ξ̃ = rξ, and dS stands for the area element of the sphere |ξ̃| = r . Then, from
the Green’s formula we get

∂h(x, r)

∂r
= 1

ωnrn−1

∫
|y−x |≤r

�ψ(y)dy, (2.1.29)

where

� = ∂2

∂x21
+ · · · + ∂2

∂x2n
(2.1.30)

is the n-D Laplacian operator.
Differentiating (2.1.29) oncewith respect to r , and using (2.1.29) again, we obtain

∂2h(x, r)

∂r2
= −n − 1

ωnrn

∫
|y−x |≤r

�ψ(y)dy

+ 1

ωnrn−1

∫
|y−x |=r

�ψ(y)dSy

= −n − 1

r

∂h(x, r)

∂r

+ 1

ωnrn−1

∫
|y−x |=r

�ψ(y)dSy . (2.1.31)

On the other hand, from (2.1.26) we have

�xh(x, r) = 1

ωn

∫
|ξ|=1

�xψ(x + rξ)dωξ

= 1

ωnrn−1

∫
|y−x |=r

�ψ(y)dSy, (2.1.32)

where �x stands for the Laplacian operator with respect to x (see (2.1.30)).
Combining (2.1.31)–(2.1.32) and noting (2.1.27)–(2.1.28), we obtain the

following

Lemma 2.1 Assume thatψ(x) ∈ C2, then its spherical mean function h(x, r) ∈ C2,
and satisfies the following Darboux equation

∂2h(x, r)

∂r2
+ n − 1

r

∂h(x, r)

∂r
= �xh(x, r) (2.1.33)
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and the initial condition

r = 0 : h = ψ(x),
∂h

∂r
= 0. (2.1.34)

In particular, taking

ψ(x1, . . . , xn) = φ(x1) (2.1.35)

as a function depending only on x1 but not on x2, . . . , xn, we can prove that its
spherical mean function has the expression

h(x, r) = ωn−1

ωn

∫ 1

−1
φ(x1 + rμ)(1 − μ2)

n−3
2 dμ, (2.1.36)

where, ωn−1 is taken to be 2 when n = 2, i.e., it is defined artificially that ω1 = 2,
and the same below. This coincides with the value of ω1 deduced by using (2.4.7) in
this chapter when n = 2.

In fact, from (2.1.26) we easily get

h(x, r) = 1

ωnrn−1

∫
|y|=r

ψ(x + y)dS

= 1

ωnrn−1

∂

∂r

∫
|y|≤r

ψ(x + y)dy. (2.1.37)

Noticing (2.1.35), we have

∫
|y|≤r

ψ(x + y)dy =
∫

λ2+|ỹ|2≤r2
φ(x1 + λ)dλd ỹ,

where ỹ = (y2, . . . , yn). Adopting polar coordinates to the variable ỹ and denoting
ρ = |ỹ|, the above formula can be rewritten as

∫
|y|≤r

ψ(x + y)dy

= ωn−1

∫
λ2+ρ2≤r2

φ(x1 + λ)ρn−2dλdρ

= ωn−1

∫ r

−r
dλ

∫ √
r2−λ2

0
φ(x1 + λ)ρn−2dρ,
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then it is easy to show that

∂

∂r

∫
|y|≤r

ψ(x + y)dy

= ωn−1r
∫ r

−r
φ(x1 + λ)(r2 − λ2)

n−3
2 dλ

= ωn−1r
n−1

∫ 1

−1
φ(x1 + rμ)(1 − μ2)

n−3
2 dμ.

Thus, (2.1.36) follows from (2.1.37).
The spherical mean function h(x, r) given by (2.1.36) depends only on x1 and r ,

then the corresponding Darboux equation (2.1.33) is reduced to

∂2h

∂r2
+ n − 1

r

∂h

∂r
= ∂2h

∂x21
, (2.1.38)

moreover,

∂2h

∂x21
= ωn−1

ωn

∫ 1

−1
φ′′(x1 + rμ)(1 − μ2)

n−3
2 dμ. (2.1.39)

Taking x1 = 0 in (2.1.38)–(2.1.39), we obtain

Lemma 2.2 Suppose that

h(r) = ωn−1

ωn

∫ 1

−1
φ(rμ)(1 − μ2)

n−3
2 dμ, (2.1.40)

then we have

h′′(r) + n − 1

r
h′(r) = ωn−1

ωn

∫ 1

−1
φ′′(rμ)(1 − μ2)

n−3
2 dμ. (2.1.41)

Nowwe apply the above results to solving the Cauchy problem of wave equations.
Suppose that v = v(t, x) is the solution to the Cauchy problem (2.1.15)–(2.1.16).

It is clear that v is an even function of t . Let

w(x, r) = ωn−1

ωn

∫ 1

−1
v(rμ, x)(1 − μ2)

n−3
2 dμ. (2.1.42)
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Regarding x as a parameter, from Lemma 2.2 and using equation (2.1.15), it yields

∂2w(x, r)

∂r2
+ n − 1

r

∂w(x, r)

∂r

= ωn−1

ωn

∫ 1

−1
vt t (rμ, x)(1 − μ2)

n−3
2 dμ

= ωn−1

ωn

∫ 1

−1
�xv(rμ, x)(1 − μ2)

n−3
2 dμ

= �xw(x, r),

i.e.,w = w(x, r) satisfies the Darboux equation (2.1.33). Meanwhile, from (2.1.16),
and taking particularly φ ≡ 1 (thus its spherical mean is h ≡ 1) in (2.1.36), we have

ωn−1

ωn

∫ 1

−1
(1 − μ2)

n−3
2 dμ = 1, (2.1.43)

then it is clear that

r = 0 : w = g(x),
∂w

∂r
= 0. (2.1.44)

Hence, it follows from Lemma 2.1 that

w(x, r) = 1

ωn

∫
|ξ|=1

g(x + rξ)dωξ. (2.1.45)

Combining (2.1.42) and (2.1.45) and noting that v is an even function of t , we
obtain

2ωn−1

ωn

∫ 1

0
v(rμ, x)(1 − μ2)

n−3
2 dμ = 1

ωn

∫
|ξ|=1

g(x + rξ)dωξ. (2.1.46)

Equation (2.1.46) is an integral equation satisfied by the solution v = v(t, x) to
the Cauchy (2.1.15)–(2.1.16). Therefore, the Cauchy problem (2.1.15)–(2.1.16) can
be solved through inversion of (2.1.46).

Applying in (2.1.46) the variable substitution

r = √
s, rμ = √

σ, (2.1.47)

and denoting

Q(r, x) = 1

ωn

∫
|ξ|=1

g(x + rξ)dωξ, (2.1.48)
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we obtain
ωn−1

ωn

∫ s

0

v(
√

σ, x)√
σ

(s − σ)
n−3
2 dσ = s

n−2
2 Q(

√
s, x). (2.1.49)

Ignoring for the time being the dependence with respect to x , and denoting

w(s) = s
n−2
2 Q(

√
s, x), χ(σ) = v(

√
σ, x)√
σ

, (2.1.50)

Equation (2.1.49) can be rewritten as

ωn−1

ωn

∫ s

0
χ(σ)(s − σ)

n−3
2 dσ = w(s). (2.1.51)

Next we will solve the integral equation (2.1.51) so as to derive the expression of
solutions to the Cauchy problem of wave equations as n > 1.

2.1.3 Expression of Solutions When n(> 1) Is Odd

When n(> 1) is odd, n−3
2 is a nonnegative integer, by taking derivatives of order n−1

2
on both sides of (2.1.51), we can solve that

χ(s) = ωn

ωn−1 · ( n−3
2 )!

( d

ds

) n−1
2

w(s), (2.1.52)

thus, noting (2.1.50), we have

v(
√
s, x)√
s

= ωn

ωn−1 · ( n−3
2 )!

(
d

ds

) n−1
2

(s
n−2
2 Q(

√
s, x)). (2.1.53)

Taking s = t2 in the above formula, we get that the solution to the Cauchy problem
(2.1.15)–(2.1.16) is

v(t, x) = ωn

ωn−1 · ( n−3
2 )! t

(
1

2t

∂

∂t

) n−1
2

(tn−2Q(t, x)),

(t, x) ∈ IR+ × IRn. (2.1.54)

Using Theorem 2.5 in the appendix (Sect. 2.4) of this chapter, namely,

ωn = 2π
n
2

�( n2 )
, (2.1.55)
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the above formula can also be written as

v(t, x) =
√

π

�( n2 )
t
( 1

2t

∂

∂t

) n−1
2

(tn−2Q(t, x)),

(t, x) ∈ IR × IRn. (2.1.56)

Finally, using (2.1.17), we obtain the following

Theorem 2.1 When n(> 1) is odd, the solution to the Cauchy problem (2.1.4)–
(2.1.5) is

u(t, x) =
√

π

2�( n2 )

(
1

2t

∂

∂t

) n−3
2

(tn−2Q(t, x)), (2.1.57)

where

Q(t, x) = 1

ωn

∫
|ξ|=1

g(x + tξ)dωξ. (2.1.58)

Taking particularly n = 3 in Theorem 2.1, and noting that ω3 = 4π and �( 12 ) =√
π, the three-dimensional Poisson formula (2.1.22) follows immediately.

2.1.4 Expression of Solutions When n(≥ 2) Is Even

When n(≥ 2) is even, to obtain the solution u = u(t, x) to the Cauchy problem
(2.1.4)–(2.1.5), we can add an argument xn+1 artificially, and regard u as the solution
to the following Cauchy problem

�n+1u = 0, (2.1.59)

t = 0 : u = 0, ut = g(x), (2.1.60)

where x = (x1, . . . , xn), and

�n+1 = ∂2

∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n+1

(2.1.61)

is the (n + 1)-dimensional wave operator.
Applying Theorem 2.1 to the Cauchy (2.1.59)–(2.1.60), we get

u(t, x) =
√

π

2�( n+1
2 )

( 1

2t

∂

∂t

) n−2
2

(tn−1Q(t, x)), (2.1.62)
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where

Q(t, x) = 1

ωn+1

∫
|ξ′|=1

g(x1 + tξ1, . . . , xn + tξn)dωξ′ , (2.1.63)

and ξ′ = (ξ, ξn+1) = (ξ1, . . . , ξn, ξn+1).

Denote y′ = (y, yn+1). It is clear that

Q(t, x) = 1

ωn+1tn

∫
|y′|=t

g(x + y)dSy′

= 1

ωn+1tn
∂

∂t

∫
|y′|≤t

g(x + y)dy′

= 1

ωn+1tn
∂

∂t

∫
|y|≤t

∫ √
t2−|y|2

−
√

t2−|y|2
g(x + y)dyn+1dy

= 2

ωn+1tn
∂

∂t

∫
|y|≤t

√
t2 − |y|2g(x + y)dy

= 2

ωn+1tn−1

∫
|y|≤t

g(x + y)√
t2 − |y|2 dy

= 2

ωn+1tn−1

∫
|y−x |≤t

g(y)√
t2 − |y − x |2 dy. (2.1.64)

Thus, using (2.4.7) in the appendix (Sect. 2.4) of this chapter, namely,

ωn+1

ωn
= �( n2 )

�( n+1
2 )

√
π, (2.1.65)

we obtain

Theorem 2.2 When n(≥ 2) is even, the solution to the Cauchy problem (2.1.4)–
(2.1.5) is

u(t, x) = 1

ωn�( n2 )

(
1

2t

∂

∂t

) n−2
2

R(t, x), (2.1.66)

where

R(t, x) =
∫

|y−x |≤t

g(y)√
t2 − |y − x |2 dy. (2.1.67)

Taking particularly n = 2 in Theorem 2.2, and noting that ω2 = 2π, the two-
dimensional Poisson formula (2.1.21) follows immediately.

Some of the results in Sects. 2.1.2–2.1.4 can be found in Courant and Hilbert
(1989).
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2.2 Expression of Fundamental Solutions

The solution E = E(t, x) of the following Cauchy problem of wave equation

�E = 0, (t, x) ∈ IR+ × IRn, (2.2.1)

t = 0 : E = 0, Et = δ(x), x ∈ IRn (2.2.2)

in the sense of distributions, is called the fundamental solution of thewave operator.
In (2.2.2), δ(x) is the Dirac function.

Obviously, when we find the fundamental solution E = E(t, x), the solution to
the Cauchy problem (2.1.4–2.1.5) can be expressed by

S(t)g = E(t, ·) ∗ g, ∀t ≥ 0, (2.2.3)

where ∗ stands for the convolution of distributions.
Conversely, if there exists a distribution E such that (2.2.3) holds for any given

function g, then E must be the fundamental solution of the wave operator.
Now we derive the expression of the fundamental solution of the wave operator.
For any given a > 0, define the function

χa
+(y) = (max(y, 0))a

�(a + 1)
=

{ ya

�(a+1) , y ≥ 0,
0, y < 0.

(2.2.4)

χa+(y) is a continuous function of y, whose support is {y ≥ 0}. It is easy to show
that, as a > 0 we have

d

dy
χa+1

+ (y) = χa
+(y). (2.2.5)

Since one can keep differentiating a continuous function in the sense of distributions,
χa+(y) can be defined inductively for a ≤ 0 in the category of distributions by using
the above formula. Hence, for any given real number a, the function χa+(y) with
support ⊆ {y ≥ 0} can be defined. It is easy to know that χa+(y) is a homogeneous
function of degree a with respect to y, and

sing suppχa
+ ⊆ {y = 0}, (2.2.6)

where sing supp stands for the singular support of distributions.
In particular, we have

χ0
+(y) = d

dy
χ1

+(y) = H(y), (2.2.7)
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where

H(y) =
{
1, y > 0,
0, y < 0

(2.2.8)

is the Heaviside function. Then

χ−1
+ (y) = d

dy
χ0

+(y) = δ(y). (2.2.9)

In addition, noticing that �( 12 ) = √
π, it is easy to show that

χ
− 1

2+ (y) = d

dy
χ

1
2+(y) =

{ 1√
πy , y > 0,

0, y < 0.
(2.2.10)

Theorem 2.3 The fundamental solution of the n(≥ 1)-dimensional wave operator
is

E(t, x) = 1

2π
n−1
2

χ
− n−1

2+ (t2 − |x |2). (2.2.11)

Proof It suffices to verify (2.2.3).
When n = 1, from (2.2.11) and noting (2.2.7) we have

E(t, ·) ∗ g = 1

2

∫
H(t2 − |x − y|2)g(y)dy

= 1

2

∫
H(t − |x − y|)g(y)dy

= 1

2

∫
|y−x |≤t

g(y)dy

= 1

2

∫ x+t

x−t
g(y)dy.

From D’Alembert formula (2.1.20), it yields (2.2.3) as n = 1.
When n(≥ 2) is even, noting that due to (2.2.10) we have

χ
− 1

2+ (t2 − | · |2) ∗ g = 1√
π

∫
|y−x |≤t

g(y)√
t2 − |x − y|2 dy,

then from Theorem 2.2 and noting (2.1.55) we have

S(t)g =
√

π

ωn�( n2 )

(
1

2t

∂

∂t

) n−2
2

(χ
− 1

2+ (t2 − | · |2) ∗ g)
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=
√

π

ωn�( n2 )
χ

− n−1
2+ (t2 − | · |2) ∗ g

= E(t, ·) ∗ g,

i.e., (2.2.3) is satisfied when n(≥ 2) is even.
When n(≥ 3) is odd, noting that due to (2.2.9) we have

χ−1
+ (t2 − | · |2) ∗ g

=
∫

δ(t2 − |x − y|2)g(y)dy

=
∫

δ((t + |x − y|)(t − |x − y|))g(y)dy

=
∫

δ(2t (t − |x − y|))g(y)dy

= 1

2t

∫
δ(t − |x − y|)g(y)dy

= 1

2t

∫
|y−x |=t

g(y)dSy

= tn−2

2

∫
|ξ|=1

g(x + tξ)dωξ,

then from Theorem 2.1 and noting (2.1.55) we have

S(t)g =
√

π

ωn�( n2 )

(
1

2t

∂

∂t

) n−3
2

(χ−1
+ (t2 − | · |2) ∗ g)

=
√

π

ωn�( n2 )
χ

− n−1
2+ (t2 − | · |2) ∗ g

= E(t, ·) ∗ g,

i.e., (2.2.3) is satisfied when n(≥ 3) is odd.
The proof of Theorem 2.3 is finished. �

Remark 2.1 Noting (2.2.9) and (2.2.5), fromTheorem 2.3we easily know that: when
n(> 1) is odd, the support of the fundamental solution E(t, x) is the characteristic
cone |x | = t .

Remark 2.2 From Theorem 2.3, it is easy to show that the fundamental solution of
the wave operator as n = 1 is

E(t, x) =
{

1
2 , |x | ≤ t,
0, |x | > t; (2.2.12)
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as n = 2 it is

E(t, x) =
{

1

2π
√

t2−|x |2 , |x | ≤ t,

0, |x | > t,
(2.2.13)

where x = (x1, x2); while, as n = 3 it is

E(t, x) = δ(|x | − t)

4π|x | , (2.2.14)

where x = (x1, x2, x3). These coincide with the results shown by (2.1.20)–(2.1.22),
and indicate directly the positivity of fundamental solutions as n = 1, 2 and 3 shown
in Sect. 2.1.1.

2.3 Fourier Transform

The solution of the Cauchy problem to linear wave equations can also be obtained
by the Fourier transform.

Taking the Fourier transform in the Cauchy problem (2.1.4)–(2.1.5) with respect
to the argument x , we have

ût t (t, ξ) + |ξ|2û(t, ξ) = 0, (2.3.1)

t = 0 : û = 0, ût = ĝ(ξ), (2.3.2)

where û and ĝ stand for the Fourier transforms of u and g, respectively. Regarding
ξ as a parameter and solving the above Cauchy problem of ordinary differential
equation, we immediately get

û(t, ξ) = sin(|ξ|t)
|ξ| ĝ(ξ). (2.3.3)

Using (2.1.14), we obtain the following

Theorem 2.4 Suppose that u = u(t, x) is the solution of the Cauchy problem
(2.1.1)–(2.1.2), then the Fourier transform of u with respect to x is

û(t, ξ) = cos(|ξ|t) f̂ (ξ) + sin(|ξ|t)
|ξ| ĝ(ξ)

+
∫ t

0

sin(|ξ|(t − τ ))

|ξ| F̂(τ , ξ)dτ . (2.3.4)

Hereafter, we will utilize Theorem 2.4 to establish some estimates on solutions
to the Cauchy problem of wave equations.
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2.4 Appendix—The Area of Unit Sphere

It is known that � function is defined by (see Chen and Yu 2010):

�(z) =
∫ ∞

0
t z−1e−t dt, ∀z > 0. (2.4.1)

We have

�(z + 1) = z�(z), ∀z > 0, (2.4.2)

and when z is a positive integer,

�(z + 1) = z!. (2.4.3)

Moreover

�(1) = 1 and �

(
1

2

)
= √

π. (2.4.4)

B function is defined by (see Chen and Yu 2010)

B(p, q) =
∫ 1

0
x p−1(1 − x)q−1dx, ∀p, q > 0, (2.4.5)

and we have

B(p, q) = �(p)�(q)

�(p + q)
. (2.4.6)

Taking x = μ2 in the following operations, and noting (2.4.6) and (2.4.4), when
n > 1 we have

∫ 1

−1
(1 − μ2)

n−3
2 dμ = 2

∫ 1

0
(1 − μ2)

n−3
2 dμ

=
∫ 1

0
x− 1

2 (1 − x)
n−3
2 dx

= B

(
1

2
,
n − 1

2

)

= �( 12 )�( n−1
2 )

�( n2 )

=
√

π�( n−1
2 )

�( n2 )
,



2.4 Appendix—The Area of Unit Sphere 33

then from (2.1.43) we obtain: when n > 1 we have

ωn

ωn−1
= �( n−1

2 )

�( n2 )

√
π. (2.4.7)

This shows that {�( n2 )ωn} forms a geometric sequence with common ratio
√

π.
Hence, noticing that ω2 = 2π, we have

�
(n
2

)
ωn = π

n−2
2 (�(1)ω2) = 2π

n
2 ,

then we obtain the following

Theorem 2.5 The area of the unit sphere Sn−1 in n(> 1)-dimensional space IRn is

ωn = 2π
n
2

�( n2 )
. (2.4.8)
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