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Abstract. Embedded systems are present virtually everywhere, from
simple home appliances to complex aerospace systems, and the esta-
blishment of the Internet of Things (IoT) increases this ubiquity. Natu-
rally, after deployment, updates might be necessary due to bugs found
in the original implementation, improvement of tasks, security holes,
etc. However, some domains require the deployment of a big number
of devices, which often cover a vast area or are unreachable after de-
ployment, and lead to very expensive, or even impossible updates with
physical access to the devices. Therefore, remote updates are of utmost
importance. In this paper, we present the existing approaches for remote
updates, and analyze the overheads each one causes in the devices and
in the update server. Furthermore, we present our concept for coping
with dynamically composed real-time systems. Our main goal will be
schedulability analysis during dynamic updates.

1 Introduction

Embedded systems are already present in virtually all application domains (au-
tomotive, robotics, home automation, smart production and logistics, etc.). In
addition, the establishment of the IoT will introduce tons of new smart devices
in the embedded world and heavily increase the number of connected devices.

As the number of devices and application domains grow, the need for remote
update mechanisms arises, in order to i) keep the systems always up-to-date in
the long run: bug fixes, security patches, etc. are always needed after deployment
and it is important to keep every device with the latest versions of software;
ii) reduce maintenance costs: physical access to individual devices can be very
expensive and time consuming (mainly if it is about millions or billions of units),
or even impossible sometimes, what reinforces the need of remote updates; iii)
provide more convenience to final customers: no need to visit service centers or
allow physical access to their devices or properties.

Remote updates are easily applied to devices that perform non-critical tasks;
the operation can be interrupted to update the system and the timing behavior
is not crucial. On the other hand, some embedded systems perform real-time
tasks in (life) critical situations, as pacemakers, automotive/aerospace systems,
etc. Thus, their operation can not be interrupted without drastic consequences.
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Hence, it is necessary to update devices without disrupting their normal opera-
tion, i. e, perform dynamic (on-the-fly) updates. However, dynamic systems have
an inherent overhead compared to static systems, due to the metadata necessary
to perform the dynamic procedures (symbol table, relocation entries, etc.). The-
refore, we aim at providing several solution variants, by sharing this overhead
with different proportions between the update server and the target devices.

Due to the increasing complexity and integration density of embedded soft-
ware, it will also become essential to dynamically compose the systems from
independent modules and keep them partially updatable at runtime. This will
be specially important because, in the future, there will be many software pro-
viders offering similar services to different classes of devices, similarly with what
happens nowadays with general purpose computers. Thus, manufactures can
choose the solutions that best fit their requirements (energy efficiency, response
time, low memory overhead, etc.).

Nevertheless, since those modules are independently developed, without any
knowledge about the target systems, it is necessary to carefully analyze their
compatibility with the system, i. e., check if all symbol references can be resolved
and make sure the real-time capability is not violated; compatible updates are
allowed to be deployed, non-compatible ones are rejected. Our ultimate goal is
to cope with dynamically composed real-time systems, i.e., systems that are
partially updated on-the-fly and that stay real-time capable during and after
any update. The concept presented in this paper is part of a holistic solution for
dynamically composed RTOS and MCU, presented by Martins Gomes et al. [16].

The remainder of this paper is organized as follows: Section 2 presents the
current approaches for remote updates in embedded systems and Section 3 in-
troduces our concept for building a dynamically composed real-time system.

2 State of the Art

The update process of a device can be divided in four steps: choice of update unit,
size reduction, transmission and installation. The chosen approach in each step
will affect the size of the data to be transmitted and the processing and memory
overheads in the device, which will impact the amount of energy spent — a very
important metric for battery powered devices. It is also worth to mention that
approaches that demand a reboot are not suitable most safety-critical real-time
systems, since the delay might cause real-time tasks to miss deadlines.

2.1 Update Units

Monolithic image: A monolithic image is built in the update server and sent
to the devices, which just need to load the image to memory for execution.
Therefore there is low in-node processing overhead. However, the amount of
data transmitted and the memory overhead are the highest from all approaches.
Another drawback is that the entire SW stack/source must be available for
compiling/linking at the update server. Furthermore, the replacement of the



Towards Dynamically Composed Real-time Embedded Systems 13

full image demands a reboot, so this approach is not suitable for dynamically
composed systems. Deluge [9] provides full reprogramming support for TinyOS
[14], including the dissemination protocol, loading and reboot mechanisms. Upon
an update, it transmits both the full image and the reprogramming protocol, so
there is an additional transmission overhead.

Stream [21], on the other hand, does not need to transmit the reprogramming
protocol; it pre-installs the protocol on the external flash memory of devices.

Loadable modules: Component-based systems provide the possibility of a
more flexible update mechanism. Since components/modules are independently
developed, it is possible to update single modules instead of the whole program.
When only compiling a module an object file, a relocatable Executable and
Linking Format (ELF) file, is produced. Relocatable files contain references to
symbols whose addresses are unknown at compile time. The addresses are de-
fined through linking and relocation. Linking resolves the addresses of external
symbols and relocation resolves the addresses of internal symbols. Relocatable
files also contain metadata to describe where the references to each unresolved
symbol occur, so that the file can be properly modified and become an executa-
ble binary. Nevertheless, the metadata overhead in relocatable files is quite large,
from 45 % to 55 % of the object file [19]. One strategy for reducing this over-
head is using Position Independent Code (PIC), which uses relative references
for all internal symbols. However, PIC demands compiler and CPU architec-
ture support, adds processing overhead, and modules might be subject to size
restrictions.

All implementations of this approach, which do not demand a reboot after
an update, are suitable to dynamically composed systems. The processing and
memory overhead of the device, as well as the size of the transmitted data
depends on how the metadata storage and processing are divided between device
and update server. The more metadata the server stores, the more it can tailor
updates for specific devices, so less data will be transmitted and the overhead in
the devices will be lower. The less metadata the server stores, the more generic
is the update. Thus, the devices themselves must tailor their own updates. It is
worth to mention that every global symbol whose address is not known on the
server side must be stored in the device, leading to higher memory overhead.

Some solutions implemented with PIC loadable modules are SOS [7], which
is able to dynamically load modules without a reboot, and [10], which focuses
on safety-critical systems. Without PIC, Contiki [5] is also able to update appli-
cations without a reboot, but not the system core. A module is pre-linked with
the core symbols in the update server, but the remaining linking is performed
in-node. On SenSpireOS [3] the server receives ROM and RAM loading addresses
from the device and pre-relocates the module before transmitting. FlexCup [15]
adds modular update capability to TinyOS, but it demands a reboot after up-
dates. Additionally, in order to cope with module dependencies and versioning,
FiGaRo [18] proposes a solution on top of Contiki.
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Virtual machine: Virtual machine bytecode is much more compact than
native code. Therefore, it is often used to reduce the size and cost of transmission.
The memory overhead of each application is lower than native code, but the
virtual machine itself must also be considered. In fact, the processing overhead
due to code interpretation at runtime mostly outweighs the costs saved in the
transmission [6].

Maté [13] is a virtual machine built over TinyOS. It is able to update ap-
plications, but no lower level binary code (drivers, kernel, etc.), since virtual
machines for resource-constrained devices usually are not able to perform ope-
rations on registers. Since it does not reboot after an update, it is also suitable
for the application layer of dynamically composed systems.

2.2 Size Reduction

Optimizations on standard ELF: The standard ELF format is designed to
work on 32-bit and 64-bit architectures. Therefore all the internal data structures
are defined with 32-bit data types [1]. When the target device is 8-bit or 16-bit,
the high 16 bits of the fields are unused. In order to avoid this waste of memory,
some compact versions of ELF were proposed.

Contiki [5] uses the Compact ELF (CELF) format for dynamic linking and
loading. A CELF file contains the same information as an ELF file, but with 8
and 16-bit data types. SenSpireOS [3] proposes Slim ELF (SELF), which chan-
ges the data types, just like CELF, and tailors the ELF relocation, string and
symbol tables. The result is a format 15 %-30% of standard ELF, 38 %83 % of
CELF.

Delta files: In the so-called incremental approach, only the differences between
consecutive versions are transmitted with delta files. These files are actually
diff-scripts, which are basically composed of two types of commands: COPY and
ADD. The delta file and the old version are used to build new version in the
device. COPY commands simply copy a chunk from the old version into the
new version, and ADD commands insert content nonexistent in the old version.
However, a small delta file does not mean low processing overhead in the device.
For example, if the only change is the removal of the first byte of a module, a
naive solution may shift the whole module in memory. Furthermore, whenever
a symbol is placed in a different address, every piece of code that has references
to it must be patched. Therefore, some work has been devoted to increase the
similarity between two consecutive versions of code and avoid function shifts.
The RMTD [§] is a byte-level differencing algorithm, suitable for small pie-
ces of code (the O(n?) space requirement makes it unsuitable to scale to large
programs — 1.3 GB when comparing 100KB files, and around 5GB when compa-
ring 200KB files [2]). R3 [2] proposes a method to achieve large similarity with
low metadata overhead. To mitigate the function shift issue, Zephyr [20] uses
a function indirection table (all function calls are indirected via fixed jump ta-
ble slots to their implementations) and [11] uses slop regions after each function
so that the address does not change when a function grows within the slop region.
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Compression: This is yet another alternative for size reduction and can be
used in addition to the aforementioned approaches. Design issues involved in
adapting compression algorithms for energy-constrained devices are investigated
in [22]. An implementation of the gzip algorithm on sensor nodes is done in [24].

2.3 Data Transmission

Often code dissemination over the network is necessary, as in Wireless Sensor
Networks (WSNs). Efficient code dissemination protocols can save energy on
transmission, as well as speed up the transmission process.

Deluge [9] uses a three-way handshake and NACK-based protocol for relia-
bility, as well as segmentation into pages and pipelining for spatial multiplexing.
MNP [12] addresses the problem of concurrent senders with a sender selection
algorithm, that attempts to guarantee that at most one source at a time trans-
mits in a neighborhood. ECD [4] considers link quality of 1-hop neighbors to
improve the sender selection algorithm.

2.4 Installation

Installation is everything that happens after the update is fully received by a
device and before the new version is ready to run. It can be divided in four major
steps: 1) make sure that the data is not corrupted and that it is a legit update; ii)
configure related control blocks (from tasks, resources, etc.); iii) if the file is not
yet an executable, build it based on the update (build new version from delta
file and old version, and/or link and relocate the code); iv) load the executable
file and add it to the ready queue.

2.5 Real-Time Awareness

The techniques listed so far are sufficient to dynamically compose non-critical
systems in general, but fail on real-time systems, since none of them takes timing
into consideration. In order to ensure that a system will remain real-time capable
during and after any update, the update process must not interfere with any real-
time tasks and must also ensure that no deadlines will be missed after the update.
In other words, it must be non-intrusive and perform schedulability analysis.
Both [17] and [23] propose solutions for rate-monotonic scheduled systems.
[17] is extremely simplified: the Worst Case Execution Time (WCET) of a new
module is assumed to be lower or equal the old one and new modules are stored
in the heap. On the other hand, [23] is more realistic: upon every update, there is
a schedulability test to determine whether or not a new module can be accepted
and the update process is assured to be finished within two hyper-periods. Howe-
ver, to the best of our knowledge, there are no approaches considering resource
sharing or tasks synchronization mechanisms in the schedulability analysis.
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3 Owur Concept

As listed in Section 2, there are a number of works handling the different steps of
remote updates. We will focus on the topic where there is lack of research: real-
time capability assurance during and after updates, which can be an extra step
in the installation. We will define a solution with a set of steps necessary to do
it, and implement some variants of this solution, by assigning some steps to the
device and others the server. Finally, we will define the minimum requirements
of devices that are able to run each of the variants. For the update unit, we will
use loadable modules without PIC.

3.1 Requirements

Direct server-device communication: Some of our solutions variants will
send generic data to any device of a network; this is fine also on multi-hop net-
works, since the data would have to be disseminated just once. However, other
variants will send data linked and relocated to fit in specific devices; a multi-hop
network would thus have to disseminate individual data to each of the modules
to be updated. Since that would lead to a very high traffic, what might not be
acceptable, we propose a direct server-device communication.

Unintrusive update: As mentioned in Section 2.5, it is essential not to in-
terfere with real-time tasks while updating the system, so the update task must
run with lower priority. However, if the priority is too low and the CPU uti-
lization is high, the update process might starve. In mixed criticality systems,
we can assign an intermediate priority to the update task, higher than either
all soft real-time tasks or all the best-effort tasks. The trade-off between update
completion time and user experience will be taken into consideration to define
the priority.

Low execution overhead: Ideally, the execution time of the dynamically com-
posed system should be exactly the same as for the static system. However,
indirections are inevitable, for example, to isolate the kernel from the applica-
tions (kernel jump tables) or to access global variables or functions using PIC.
We will minimize this overhead by using as few indirections as possible, so our
first design decision is not using PIC. For other indirections, we will analyze the
trade-offs as we progress with the implementation.

Loose coupling: Kernel and applications will be completely isolated, so that
an update in the kernel does not require the applications to be rebuilt. A clas-
sical strategy to obtain it is through a kernel jump table in a fixed position
in memory, where pointers to all system calls are stored. Thus, upon changing
the kernel, only the jump table must be updated. We will also investigate the
feasibility of relocating the application code instead of using the jump table; it
would be a more expensive update process, but we would save the indirections
during normal operation.
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Portability: We won’t rely on special compilers or architectures feature; this is
another reason why we will not use PIC. Also, we will stick to standards: we do
not intend to modify the standard ELF format, compiler or linker.

Schedulability analysis: It must be possible to define whether or not a system
will remain schedulable after any update. If an update is to break schedulabi-
lity, it should be rejected. This is the step that demands the highest processing
power; in a future work, we will analyze what are the minimum requirements of
a device, so that it is able to run our schedulability analysis algorithms without
compromising the normal operation of the system.

Easy programming: We aim to avoid specific restrictions and rules inherent
to our approach, in order to reduce the learning curve of developers. Ideally,
writing a program with our approach would be exactly the same as in the static
approach. Some changes are inevitable though, for example, modules versioning
and dependencies declaration.

3.2 Update Protocol

In order to avoid unnecessary traffic, there is firstly metadata exchange between
update server and device to check the compatibility of the update; only if it is
compatible, the binary is finally transmitted.

Compatibility is ensured by two properties: pluggability and interoperability.
Pluggability is about checking if modules fit in the system; a new module is plug-
gable if there is enough RAM and ROM to load it and every symbol it references
can be resolved; similarly, a module can not be removed if it is currently used
by other ones, since they would become unpluggable. Interoperability is more
related to the execution behavior; here is where the schedulability is checked, as
well as possible starvations and deadlocks.

During the full procedure, memory, processing and transmission overhead
will depend on how the steps are divided between servers and devices. Table 1
shows some possible implementations. Tasks that must be accomplished in every
possible implementation are not considered as overhead, for example, loading the
module on the device or storing the modules on the server. Some slight changes
in the update protocol can decrease the overhead on devices, as shown in cases
2 and 3: instead of just signaling if there is enough memory, sending the load
positions to the server enables it to perform relocation, so the devices are spared
from this step. Due to the high memory and processing overhead, it is very
unlikely that the last case will be used in real-time embedded systems.

Building customized modules at the server side for individual devices might
not be the ideal solution if billions of devices are deployed — a realistic magni-
tude with the advent of the IoT. But storing too much metadata in resource
constrained devices is not feasible either. Therefore, a trade-off between device
overhead and server overhead must be met, and it depends on how powerful the
devices and server are and how energy efficient the system must be.
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Table 1. Examples of implementation variants
Case|Server knowl. |[Server overhead |Device overhead |Data transmission
1 |Full Full metadata, None Executable module
compatibility
checks, linking and
relocation
2 |Global symbols |List of symbols Memory layout Module size, enough
per device, information and  |memory flag and
compatibility relocation executable module
checks and linking
3 |Global symbols |List of symbols Memory layout Module size,
per device, information memory load
compatibility positions and
checks, linking and executable module
relocation
4 |None None Full metadata, Module metadata
compatibility and executable
checks, linking and |module
relocation

3.3 Implementation

Metadata extraction: The metadata for linking and relocation is automati-
cally generated by the compiler. Nevertheless, information about execution time
and synchronization mechanisms still need to be extracted. We will write cus-
tom tools to extract such information from the source code and standard ELF
file. From an individual loadable module (ELF relocatable file), it is possible
to extract i) its priority and deadlines: explicitly declared in the code; ii) a pa-
rametrized number of cycles needed for execution: this number is obtained by
summing the amount of cycles each instruction needs to run — the exact num-
ber of cycles can not be defined because the amount of iterations in a loop can
not always be directly predicted, so the programmer will still need to provide
some parameters in order to specify the WCET; iii) waiting points: every system
call that can put the task in waiting state. From the source code, it is possible
to check for inconsistencies in the synchronization mechanisms, like getting a
resource and never releasing it. We are currently also working on related theo-
retical foundations and implementation for this purpose.

Execution model: The information extracted from individual modules will
be used as base for an execution model. When the information about all modu-
les that compose a system are put together, and the scheduling algorithm and
resource management protocol are defined, it is possible to extract the remaining
information, like waiting time (time waiting for a resource or event), interference
(time in ready state, but not running due to higher priority tasks), and Worst
Case Response Time (WCRT).
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Execution simulation: The execution model will be used to simulate exe-
cution scenarios and define the WCRT for every task. If in at least one of the
scenarios, the WCRT of any task is higher than the respective deadline, the
system is not schedulable.

4 Conclusion

We have presented an overview on the state-of-the-art approaches to performe
remote updates. The only approach not suitable for dynamically composed sy-
stems is replacing the full image of the devices with a new monolithic image,
because it always demands a reboot, what might cause an unacceptable delay.
There is still lack of research on dynamically composed real-time systems (sy-
stems that remain real-time capable during and after any update) and that is
exactly our focus. Our main goal is the schedulability analysis during an update,
considering resource sharing and synchronization mechanisms. Several solutions
variants will be implemented, with different trade-offs among overhead in the
devices, overhead in the server and size of the data transmission.
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