
Batch Composite Transactions
in Stream Processing

K. Vidyasankar(B)

Department of Computer Science, Memorial University,
St. John’s, Newfoundland A1B 3X5, Canada

vidya@mun.ca

Abstract. Stream processing is about processing continuous streams
of data by programs in a workflow. Continuous execution is discretized
by grouping input stream tuples into batches and using one batch at a
time for the execution of programs. As source input batches arrive con-
tinuously, several batches may be processed in the workflow simultane-
ously. Ensuring correctness of these concurrent executions is important.
As in databases and several advanced applications, the transaction con-
cept can be applied to regulate concurrent executions and ensure their
correctness in stream processing. The first step is defining transactions
corresponding to the executions in a meaningful way. A general require-
ment in stream processing is that each batch be processed completely in
the workflow. That is, all the programs triggered by the batch, directly
and transitively, in the workflow must be executed successfully. Then,
considering each program execution as a transaction, all the transactions
involved in processing a batch can be grouped into a single batch compos-
ite transaction, abbreviated as BCT, and transactional properties applied
to these BCTs. This works well when a batch is processed individually
and completely in isolation. However, when the batches are split, merged
or overlapped along the workflow computation, the resulting BCTs will
have some transactions in common and applying transactional properties
for them becomes complicated. We overcome the problems by defining
nonblocking BCTs that have disjoint collections of transactions. They
satisfy some properties analogous to those of the database transactions
and facilitate (i) defining correctness of concurrent executions in terms
of equivalent serial executions of composite transactions and (ii) process-
ing each batch either completely or not at all, and rolling back partially
processed batches without affecting the processing of other batches. We
also suggest an appropriate roll back mechanism.

1 Introduction

Stream processing is about processing continuous streams of data arriving from
external sources by programs in a workflow. Continuous execution is discretized

This research is supported in part by the Natural Sciences and Engineering Research
Council of Canada Discovery Grant 3182.

c© Springer-Verlag GmbH Germany 2017
A. Hameurlain et al. (Eds.): TLDKS XXXIV, LNCS 10620, pp. 13–32, 2017.
https://doi.org/10.1007/978-3-662-55947-5 2

14 K. Vidyasankar

by grouping (input) stream tuples into batches and using one batch at a time for
the execution of programs. As source input batches arrive continuously, several
batches may be processed in the workflow simultaneously. Ensuring correctness
of these concurrent executions is important.

As in databases and several advanced applications, the transaction concept
can be applied to regulate concurrent executions and ensure their correctness in
stream processing. To do this, the first step is defining transactions correspond-
ing to the executions in a meaningful way. A general requirement in stream
processing is that each batch be processed completely in the workflow. Each
batch will trigger a set of programs in the workflow. Considering each execution
of a program as a transaction, all the transactions involved in processing a batch
can be grouped into a composite transaction, called batch composite transac-
tion, abbreviated as BCT, for that batch. Then, transactional properties can be
applied to the BCTs.

In the database context, a transaction is a partially ordered set of operations,
but any such set does not qualify as a transaction. Certain properties and con-
ventions are followed in the definition and execution of database transactions.
We look at applying these properties to BCTs. In this paper, we focus on the
following four properties, denoted Transaction Properties, abbreviated as TPs.

TP1. A transaction is a partially ordered set of operations such that any two
conflicting operations are ordered.

TP2. The operations of each transaction are distinct. That is, no two transac-
tions have any operations in common.

TP3. Each transaction can be executed independently of other transactions.
TP4. Partial execution of a transaction can be rolled back without affecting

other transactions.

Denoting the operations of a transaction T as op(T) and partial order as ≺t,
TP1 states that conflicting operations in T are ordered by ≺t. Two operations are
non-conflicting if their effects are the same in whichever order they are executed;
they are conflicting otherwise. For example, a read and a write of a data item
are conflicting. TP2 states that op(T)∩op(T ′) is empty for any two transactions
T and T ′. Note that both T and T ′ may have similar operations like read(x),
for the same data item x, but the operations are different, not shared by both
the transactions.

We now look at applying these properties to BCTs. They can be stated as
follows, replacing ‘transaction’ by ‘BCT’ and ‘operation’ by ‘transaction’ in the
above.

BP1. A BCT is a partially ordered set of transactions such that any two con-
flicting transactions are ordered.

BP2. The transactions of each BCT are distinct. That is, no two BCTs have
any transactions in common.

BP3. Each BCT can be executed independently of other BCTs.
BP4. Partial execution of a BCT can be rolled back without affecting other

BCTs.

Batch Composite Transactions in Stream Processing 15

We note that conflicts among the transactions of a BCT are to be determined by
the semantics of the operations in the transactions and the data items accessed
by them in the application.

In many applications, all processing pertaining to an input batch is done in
isolation. That is, if a transaction T (which is an execution of a program P)
takes as input a batch a and produces as output a batch a′, and the output is
fed to another transaction T ′ (an execution of program P ′), then a′ constitutes
the input batch b for T ′. In such cases, BCTs defined as consisting of all transac-
tions triggered by the individual batches satisfy the above properties. However,
when the batches are merged or overlapped along the workflow computation, the
resulting BCTs may not satisfy the above properties. For example, in the case
of a merge, when b contains tuples from the outputs of two executions of P , on
two source input batches, the BCTs of both batches will contain T ′ and so will
not satisfy BP2-BP4. In this paper, to overcome this problem, we propose a new
notion called nonblocking BCTs (NBCTs) which satisfy the properties BP1-BP4
and, in addition, the following requirements for processing batches.

B1. Completion: Each batch must be processed completely. If it is not possible,
then partial processing, if any, must be rolled back non-intrusively, that is,
without affecting the processing of other batches.

B2. Monotonic execution: At any time, for each batch, the amount of processing
done on that batch should be a prefix of the workflow.

We describe a procedure for composing NBCTs, that is, figuring out the trans-
actions of each NBCT, in a simple manner. We also describe a non-intrusive roll
back mechanism.

With the new notion, the correctness of concurrent executions of the batches
can be described in terms of equivalent serial executions of their NBCTs. Rolling
back the executions pertaining to a batch can be accomplished by rolling back
the NBCTs that process the batch.

The transaction concept was introduced first in the context of (centralized)
database systems, characterized by ACID (Atomicity, Consistency, Isolation and
Durability) properties, and then adopted in various advanced database and other
applications, for example, in transactional processes [12], Web services [17], and
electronic contracts [16]. In all these applications, the composite/nested trans-
actions defined corresponding to the executions satisfy the properties BP1-BP4.
There have been several studies on the application of the transaction concept in
stream processing, including [2,3,6,9,18]. We elaborate the approaches in the
Related Works section. Some of them define composite transactions for batches
consisting of single tuples or batches executed in isolation. To our knowledge,
none of them define composite transactions when the batches are split, merged
or overlapped along the workflow computation.

We start with core definitions of compositions and transactions in stream
processing environments in Sect. 2. We study the executions involving splits,
merges and overlapping of batches and arrive at the definition of the NBCTs
in Sect. 3. A recovery mechanism that supports BP4 and B1 for the NBCTs is

16 K. Vidyasankar

given in Sect. 4. We initially consider only one source input stream. Inputs from
multiple source streams are considered in Sect. 5. Concurrent execution of BCTs
is dealt with in Sect. 6. We discuss related work in Sect. 7 and conclude in Sect. 8.

2 Executions in Stream Processing

A stream processing workflow is a composition of programs. Formally, a compo-
sition C is (P, ≺p), where P is a set of transaction programs {P1, P2, . . . , Pn},
simply called programs, and ≺p is a partial order, called program order, among
them. The partial order consists of dataflow order (of the streams) and control
order. We also include conflict order. We discuss conflict order in Sect. 6. We call
the (acyclic) graph representing the partial order the composition graph GC(C).
Stream data are sequences of tuples. Streams coming from outside the composi-
tion are called source streams. The output streams (of any program) are called
derived streams. Each execution of a program yields a transaction.

T1,i

T2,i

T3,i

ai

a’ibi

b’ici

(a) (b)

Fig. 1. A schema example

We use the simple composition, shown in Fig. 1, to illustrate the definitions.
It is a workflow consisting of a sequence of three programs P1, P2 and P3. Input
batches will be denoted by unprimed variables xi and the corresponding outputs
by primed variables x′

i. Stream inputs/outputs for P1, P2 and P3 will be denoted
by a, b and c, respectively. The sequence of input batches for P1 is a1, a2, . . . ,
and the executions are transactions T1,1, T1,2, . . . (the first index is that of the
program and the second index is that of the input batch), producing the output
sequence a′

1, a
′
2

The processing of a source input batch will involve executions of some of the
programs in the workflow, resulting in a set of transactions with a partial order
≺t, called transaction order. We call this a batch composite transaction, BCT,

Batch Composite Transactions in Stream Processing 17

denoted as T = ({T1, T2, . . . , Tm}, ≺t). We denote {T1, T2, . . . , Tm} as set(T).
The graph representing ≺t is called transaction graph GT (T). The transaction
graphs are acyclic. We note that each Ti is an execution of some program Pj . It is
possible that T has more than one execution of some Pj . The transaction partial
order ≺t reflects the program partial order ≺p, that is, if Ti is an execution of
Pj , Tk is an execution of Pl and Pj ≺p Pl, then Ti ≺t Tk. In addition, ≺t will
contain triggering relationships, if any. (We note that, in this paper, we use the
term ‘transaction’ exclusively to denote some Ti; a T always denotes a ‘batch
composite transaction’, that is, BCT.) We denote the BCT that is executed for
source input batch b as T (b). In the execution shown in Fig. 1, the BCT for
batch ai, T (ai), is {T1,i, T2,i, T3,i} (omitting the transaction order for brevity).

Stream input batches arrive in sequence, for example, as b1, b2, The batch
order is denoted ≺b. The batch b2 and a few more batches may arrive before
all the transactions in T (b1) are completely executed. Thus many BCTs may be
executed concurrently.

General requirements for concurrent executions of BCTs can be stated as
follows [14].

1. Unit of atomicity: Each BCT is executed either completely or not at all. That
is, the entire T is an atomic unit for each T .

2. Serializability: The execution is equivalent to a serial execution of the BCTs.
3. Transaction order: The effective execution order of the transactions of T

should obey the partial order ≺t. That is, for any i, j, if Ti ≺t Tj , then Ti

should precede Tj in the serial execution.
4. Batch order: The serial execution should reflect the batch order ≺b. That is,

for i < j, (all the transactions in) T (bi) should precede (the transactions of)
T (bj) in the equivalent serial execution.

We define nonblocking BCTs in the next section.

3 Batch Composite Transaction Model

Batch composite transactions are initiated by arrival of batches of tuples from
source streams. Batch sizes vary. A batch may contain all the tuples with the
same timestamp (time-based) or a certain number of tuples (count-based). A
program may process one tuple at a time (as in selection and projection opera-
tions) or all the tuples in the batch together (as in join). We stipulate only that
each execution of a program is a transaction. Therefore, with the all-or-nothing
atomicity property, the result of the execution will be known only after the entire
batch is processed. The intermediate results and states of the program will not
be available. In general, smaller batches will reduce latency while larger ones,
resulting in fewer executions of the program, may improve efficiency. Batch sizes
may also be different for different programs, and even for different executions of
the same program.

Batches may be split, merged or overlapped along the workflow computa-
tion [4,7]. For example, splitting may occur for processing the batches in parallel.

18 K. Vidyasankar

Subsequently, the resulting output batches may be merged. Merging and overlap-
ping will also occur in aggregates computation. We assume arbitrary splitting,
merging and overlapping in this paper. We consider several examples and come
up with a definition of nonblocking BCTs and an execution model underlying
the definition.

We first consider only one source input stream. (Note that in many appli-
cations where multiple input streams are involved, the tuples from the different
streams are combined and input as one stream.) We consider multiple source
streams in Sect. 5.

Details of the model are itemized with label M. Though we are dealing with
concurrent processing of the batches and hence concurrent executions of their
BCTs, we assume in this paper that:

M1. Each program in the workflow is executed serially.

It follows that each transaction in a BCT is executed atomically, akin to each
operation in a database transaction being executed atomically.

We have identified the composite transaction to be executed for batch b as
the BCT T (b). Suppose b is input to transaction T . Then we define T (b) as the
union of {T} and all the transactions triggered directly or indirectly by T in
the composition, with the corresponding partial order. Suppose Ti precedes Tj .
If the precedence is due to dataflow order, the execution of Tj will start only
after the execution of Ti finishes. The same can be assumed for control order.
We also assume an implementation such that if Ti triggers Tj , the triggering is
done only after Ti commits. Then, in all cases, for Ti preceding Tj , the execution
of Tj starts only after the execution of Ti finishes. This is true whether Ti and
Tj are conflicting or not. If Ti and Tj are executions of the same program, then
the assumed serial execution of programs (M1) induces an ordering between the
two transactions. Thus, BP1 will be satisfied for T (b). In the following, we look
at the properties BP2-BP4 for various cases. We use the composition shown in
Fig. 1 to illustrate the cases.

M2. We model the dataflow, from an output stream of one program Pi to an
input stream of another program Pj , with a FIFO (first-in-first-out) queue
Qi,j ; Pi enqueues its output into Qi,j and Pj dequeues its input from that
queue. Both enqueueing and dequeueing a batch are assumed to be done
atomically.

In the execution shown in Fig. 1, the dataflow between P1 and P2 is such that
bi = a′

i, that is, P2 empties the queue Q1,2 (in a serial execution of the batches),
and similarly P3 empties the queue Q2,3 resulting in ci = b′

i. Here, the BCT for
batch ai, T (ai), is {T1,i, T2,i, T3,i}. Rolling back partially executed T (ai) involves
rolling back the corresponding transactions in this set. Clearly, the BCT T (ai),
for each i, satisfies all the properties BP1-BP4.

We note that, in a serial execution of the batches, all the queues are empty
before the processing of ai starts, and all of them are empty after the processing

Batch Composite Transactions in Stream Processing 19

is completed. This property captures the notion of the batch being processed in
isolation.

In the following, we consider splits, merges, and overlapping of batches.

P1

P2

P3

a1

a'1

b13
b12
b11

b'13

b'12

b'11

c132
c131
c122
c121
c112
c111

a1

a'1

b11 b12 b13

b'11 b'12 b'13

c111 c112 c121 c122 c131 c132

(b)(a) T1,1

T2,11 T2,12 T2,13

T3,111 T3,112 T3,121 T3,122 T3,131 T3,132

Fig. 2. Splitting of the batches

(a) Splits: Consider the following with respect to our composition example,
depicted in Fig. 2. (In all the figures, horizontal edges denote batch order.)

– Input batch a1 for P1 results in execution of T1,1, producing output batch a′
1.

– The batch a′
1 is split into three batches b11, b12, b13, and each b′

1j is split into
two batches c1j1 and c1j2.

– Then the corresponding executions of P2 are T2,11, T2,12, T2,13. The batch
order among the three batches translates to T2,11 ≺b T2,12 ≺b T2,13.

– The executions of P3 are T3,111, T3,112, T3,121, T3,122, T3,131, T3,132.

Here, T (a1) consists of all the transactions listed above. Again, to satisfy
BP1, all conflicting transactions must be ordered. Imposing batch order on the
split batches will guarantee this property. (We assume that any two executions
of the same program are conflicting.) The other three properties, BP2-BP4, are
clearly satisfied. We note that, here also, (again in a serial execution of the
batches) all the queues are empty before the processing of a1 starts and are
empty after the processing is complete. That is, the batch a1 is processed in
isolation.

(b) Merges: Merging of the batches is depicted in Fig. 3:

– Input batches a1, a2, . . . , a6, for P1, result in executions of T1,1, T1,2, . . . , T1,6,
producing output batches a′

1, a
′
2, . . . , a

′
6, respectively.

20 K. Vidyasankar

P1

P3

a6
a5
a4
a3
a2
a1

a’6
a’5
a’4
a’3
a’2
a’1

b3
b2
b1

b'3
b’2
b’1

c1

T1,1 T1.2 T1,3 T1,4 T1,5 T1,6

T2,1 T2,2 T2,3

T3,1

a1 a2 a3 a4 a5 a6

a'3 a'4 a'5 a'6

b1 b2 b3

b'1 b'2 b'3
c1

(a) (b)

a'1 a'2

Fig. 3. Merging of batches

– Batch b1 is a′
2 · a′

1, b2 is a′
4 · a′

3, and b3 is a′
6 · a′

5 and the executions of P2 are
T2,1, T2,2, T2,3. Here “.” indicates concatenation, of the batches in the order
of their arrival, that is, from right to left.

– Batch c1 is b′
3 · b′

2 · b′
1, and the execution of P3 yield T3,1.

Here, T (a1) is {T1,1, T2,1, T3,1} and T (a2) is {T1,2, T2,1, T3,1}. We note that
these two sets have {T2,1, T3,1} in common. Thus BP2 is not satisfied.

To satisfy BP2, keeping in mind the completion and monotonic execution
requirements, B1 and B2, of the batches, we choose an appropriate prefix1 of T (b)
as a composite transaction for batch b. We can interpret that in the executions of
a program where merges occur, on arrival of an earlier batch, the program waits
(blocks) for further batches. For instance, in Fig. 3, after a′

1 arrives, P2 waits
for a′

2 for execution of T1,2. We take this as the execution of the BCT for a1 is
complete when it cannot proceed any farther by itself, that is, once a′

1 is sent to
P2. Therefore, eliminating waiting for batches from other transactions, we can
close the composition of the BCT with {T1,1}. We call this nonblocking BCT,
abbreviated as NBCT and denoted ˜T (a1). Arguing along the same lines, the
nonblocking batch composite transactions for other batches will be as follows.

– ˜T (a2) is {T1,2, T2,1}.
– ˜T (a3) is {T1,3}.
– ˜T (a4) is {T1,4, T2,2}.
– ˜T (a5) is {T1,5}.
– ˜T (a6) is {T1,6, T2,3, T3,1}.

1 A subgraph H of an acyclic graph G is a prefix of G if all the edges from H to the
rest of the graph are outdirected.

Batch Composite Transactions in Stream Processing 21

This approach is captured in the following definition.

Definition 1. For a batch a, the nonblocking batch composite transaction ˜T (a)
is the maximal prefix of T (a) that is executed without inputs from subsequent
batch composite transactions.

We note that with this definition, referring to the above example, the prop-
erties BP1-BP3 will be satisfied. Now, BP4 requires that roll back of any par-
tial execution can be done without affecting other NBCTs. We describe a non-
intrusive roll back mechanism that will accomplish this in the next section. As
an example, in Fig. 3, suppose T1,1, T1,2 and T1,3 have been executed by P1, and
P2 has not yet executed T2,1. Now, to roll back ˜T (a2), the state of P1 is rolled
back to the one before T1,2 and a3 is processed again. That is, we roll back the
processing of subsequent batches also and then reprocess them. We note that
the completion requirement for each batch is fulfilled jointly by the NBCTs of
all batches.

Fig. 4. Overlapping batches

(c) Overlapping batches: In the previous examples, the batches input to the
executions of a program are disjoint. In some applications, the batches may
overlap. For example, in the problem of computing an aggregate function every
5 min where the batch consists of the tuples received in the preceding 10 min,
every two consecutive batches will overlap. Figure 4 depicts overlapping batches
in our composition example. The transactions and batches used for them are:

– Input batches of T1,1, T1,2 and T1,3 are a3 · a2 · a1, a4 · a3 · a2, and a5 · a4 · a3;
the respective output batches are b1, b2 and b3.

22 K. Vidyasankar

– Input batches of T2,1 and T2,2 are b2 · b1, and b3 · b2; the respective output
batches are c1 and c2;

– Input batches of T3,1 and T3,2 are c1 and c2, respectively.

Here, we can interpret as (i) an input batch is made up of several smaller batches
and (ii) each such batch is input multiple times in the executions of a program.
We can then consider BCTs of the smaller batches.

We extend our execution model to accommodate overlapping input batches
as follows.

M3. With each program, for each stream input, we associate a local FIFO win-
dow. At the beginning of an execution, the input batches used for the com-
putation are dequeued from the queues and placed (enqueued, let us say on
top) in the respective windows. In the next execution of the program, either
all or a part of the content (always from the bottom) is used. At the end of
that execution, a part of the content, again from the bottom, is dequeued
and discarded if and only if it is not used in any further executions. Then,
in an overlapping window, some contents are removed and some are added,
dequeued from the queue. It is also possible that an entire window content is
used for the next computation, without adding a batch from the queue.

M4. The main point is that any batch (tuple) is dequeued from the queue (just
once), but kept in the window for using in one or more executions of the
program.

Considering the example in Fig. 4, P1, to execute T1,2, will have a2 and a3,
concatenated as a3 · a2 in its window, dequeue a4 from its input queue to form
the input batch a4 ·a3 ·a2. The program P2 would have b1 in its window, dequeue
b2 after the execution of T1,2, and merge them to get b2 · b1 for the execution of
T2,1, and then clear b1 but keep b2 for the next execution T2,2.

Here, by Definition 1, ˜T (a4) will have {T1,2, T2,1, T3,1} and ˜T (a5) will have
{T1,3, T2,2, T3,2}. Clearly, BP1-BP3 are satisfied. Let us consider BP4. Suppose
after the execution of T1,2 and T2,1, but before the execution of T3,1, it is decided
that ˜T (a4) needs to be rolled back. Assume that T1,3 and T2,2 have been executed
with a5, and also, T1,4 has been executed with a6 (not shown in the figure). With
the roll back of ˜T (a4), P1 has to be reset to its state before T1,2, and P2 to its
state before T2,1.

M5. We define the states of the programs to include the states (that is, contents)
of their windows also.

Thus, when P1 is reset, its window will contain a3 · a2 and when P2 is reset,
its window will have b1. Then, we want P1 to process a5 again, and then a6

again. With the resulting outputs, P2 should execute (new) T2,1, and then (new)
T2,2. This way, we achieve non-intrusive roll back. Here also, the completion
requirement of each batch is satisfied jointly by several NBCTs.

Batch Composite Transactions in Stream Processing 23

4 A Roll Back Mechanism

In general, we assume that splits, merges and overlapping of batches could occur
arbitrarily in an execution. The source input batches that transactions process
can be kept track of as follows.

M6. 1. Index the source input batches serially.
2. For a batch b, we denote the source input batch set from which b is

derived as sb-set, denoted ψ(b). If b itself is a source input batch, then
ψ(b) contains just b.

3. We define sb-sets for transactions also. For a transaction T , let ψ(T)
denote the source input batch set that T processes. It will be the union
of ψ(b) of all batches b input to T .

4. Each of the output batches of T will have sb-set equal to that of ψ(T).

We observe that, for a batch bi, set(T (bi)) is the set of all the transactions T

whose sb-set contains bi. An alternate definition of ˜T (bi) is the following.

Definition 2. For a batch bi, ˜T (bi) is the subgraph of T (bi) with all the trans-
actions T such that i is the largest index of the batches in ψ(T).

We note that if bi is in ψ(T) of a transaction T , then bi is in ψ(T ′) of all
descendents T ′ of T also. Therefore, it follows that ˜T (bi) is a prefix of T (bi).

The roll back mechanism is as follows.

Preliminaries:

M7. 1. (a) We denote the completion of a BCT by committing it once all its
transactions are successfully executed.

(b) A source input batch b can be committed when all the BCTs process-
ing b have been committed, that is, all the transactions in T (b) (not
˜T (b)) have been executed successfully.

(c) The batches are committed serially, in the order of their indices.
2. For each transaction T of program P , we denote the state of P before

the execution of T as prev(P, T). Rolling back T amounts to resetting P
to this state. Resetting will also roll back changes, if any, made by T to
objects in persistent storage.

3. We require each program P to remember prev(P, T) for T s correspond-
ing to all the BCTs that are currently executed and not yet committed
in the workflow. These are for transactions T whose ψ(T) contains an
uncommitted batch; if all the batches in ψ(T) are committed, then the
prev(P, T) can be discarded. Since we consider serial execution of the
programs, a sequence of previous states can be kept corresponding to the
executions.

4. In addition, we require P1, the first program that processes source input
batches, remembering (temporarily) all the uncommitted batches them-
selves. A batch is kept until it commits.

24 K. Vidyasankar

Mechanism:

1. Rolling back an NBCT ˜T (bi), of batch bi is done by resetting the programs of
each of the transactions in that NBCT to the previous states corresponding
to the first execution of that batch. This amounts to rolling back all the
subsequent transactions of that program too, that is, a cascade roll back.

2. A subsequent batch might have been processed by a program that does not
process bi. Therefore, all the programs that have executed a transaction whose
sb-set contains a batch with index greater than or equal to i are rolled back.

3. The program P1, after rolling back its state to the one prior to the first
execution of the batch bi, resumes executions of the successor batches, one
by one. All other programs simply roll back their states to the ones prior to
the first execution of that batch. Then they wait for normal execution.

4. Some derived batches of the ones that are rolled back may arrive to the other
programs in the mean time. They should be ignored. To facilitate this, the
reprocessed batches could be given new indices (that are greater than any
previous index).

5. Each transaction could have modified different variables and thus state of the
program differently. All these changes have to be rolled back, in reverse order.

A Stream Processing Engine (SPE) can regulate the executions.

M8. 1. The SPE will index the source input batches.
2. It will keep track of the transactions executed by programs, and their

sb-sets.
3. Therefore, the SPE can figure out the composition of the NBCTs, that is

the set of transactions in each NBCT. Note that this set can be completed
only after the sb-sets of all transactions have been received.

4. It will determine commitment of the batches.
5. When a decision to roll back an NBCT is made, the SPE will figure out

the programs that need to be rolled back and inform them. The actual
roll back will be done by the programs themselves. Likewise, the previous
states will also be maintained by the programs themselves.

6. The SPE, instead of P1, could keep the uncommitted source batch sets.

We note that since ˜T (bi) is a prefix of T (bi), rolling back ˜T (bi) amounts
to rolling back T (bi) itself, and thus rolling back the batch bi, and it is done
non-intrusively.

Stream tuples are usually not stored persistently. They are used in the com-
putation and then discarded. Typically, as we have assumed, the tuples arriving
from a source or derived by some transaction are written into a queue and read
by the next program (transaction) in the workflow. Once the tuples are used,
they are not available anymore. However, many recovery considerations require
that the tuples are available for a while [8]. The duration of their availablity
may vary from (i) only until they are used by the successor program(s), (ii) until
a certain amount of downstream computations have been carried out, (iii) until

Batch Composite Transactions in Stream Processing 25

the corresponding BCT commits, or (iv) until some time later or when a cer-
tain number of subsequent batches have been processed. Some of the (source or
derived) batches may even be stored persistently as part of a checkpoint or for
archival purposes. The recovery mechanism described above assumes the avail-
ability of source input batches until they are committed, and the availability of
the previous states of transactions executed by programs. The previous states
can be stored in terms of before-images of the changes each transaction makes.
Then, resetting to a previous state of a transaction would amount to installing
before-images of all the transactions up to that transaction in reverse order.

In some applications, source input streams, also called raw streams, should
only be processed (by edge devices) and not stored anywhere, for example, for
privacy reasons. In such cases, the derived batches at some downstream level
can be stored for reprocessing. For example, in our composition schema, instead
of remembering ai’s at P1, bi’s can be remembered at P2. Then, when aj , for
some j, needs to be rolled back, bj can be rolled back instead (and subsequent
bi’s reprocessed from P2). This would amount to dropping aj , literally after P1

but semantically at P1 itself.
We discuss another semantic adjustment in the following. In many applica-

tions, a source input batch is processed for several functionalities. We may find
that a batch should be rolled back with respect to some functionality, but used
for others. This will redefine the NBCT of that batch. We illustrate with an
example.

P1

P2 P3 P4

P6 P5

Fig. 5. A composition example

A simple composition is shown in Fig. 5, and its execution on input batch a1,
that is, the NBCT ˜T (a1), is shown in Fig. 6. In this example, T1,1, the execution
of P1 on input a1, produces two stream outputs b1 and c1. The batch c1 is input
to P3. It is also input to P4 split into two batches c11 and c12. The outputs

26 K. Vidyasankar

b1

T1,1

T2,1 T3,1 T4,1 T4,2

T6,1 T5,1

a1

c1 c11
c12

d1 e1 f11 f12

Fig. 6. A batch composite transaction

from the two executions of P4, namely, T4,1 and T4,2, are merged and fed to one
execution T5,1 of P5. The programs P2 and P3 process b1 and c1 respectively, and
produce d1 and e1 which are processed together by P6. Suppose that after T4,1

and T4,2 are executed but before T5,1 is executed, it is decided to drop c11. Then,
P4 has to be reset to prev(P4, T4,1) and it has to reprocess c12. Then P5 could
execute just with (new) f12. It is possible that c11, and hence c1, is processed for
different functionality by P3 and T3,1 is still valid. Thus, wherever reprocessing
is allowed, the batches that are processed must be stored until their source input
batches are committed.

5 Multiple Source Streams

So far, we have considered only one source input stream. We now consider mul-
tiple streams. We start with an example with two streams to illustrate the prob-
lem. Consider the composition and one of its executions shown in Fig. 7. Here,
program P1 processes batches a1 and a2, in T1,1 and T1,2, P2 processes batch b1
from a different source, and their outputs are processed by P3 as shown.

In some applications that have inputs from multiple source streams, it may
be appropriate to define NBCTs for combinations of batches of different source
inputs. For the example shown, ˜T (a1, b1) and ˜T (a2, b1) would be appropriate.
However, when the batch a2 arrives at the source input level, we may not know
whether it will be processed downstream with b1 or some other batch b. This
problem arises even when batches from both sources are input to the same (first)
program. Irrespective of how the NBCTs are identified, we would like to compose
them as per Definitions 1 and 2. We resolve the issue as follows.

M9. We introduce a hypothetical program P0 and let batches from all source
streams be input to this program. This will be a filter program sorting out
batches to be fed to the original source programs.

Batch Composite Transactions in Stream Processing 27

T1,2

b1a1

a’1 b’1 b’1

a2

T1,1 T2,1

T3,1 T3,2

a’2

a

a’

b

b’

P1 P2

P3

(a) (b)

Fig. 7. Inputs from multiple source streams

The construction for the composition in Fig. 7 is shown in Fig. 8 with the hypo-
thetical program in grey box. We identify the executions of P0 first with a1 and
b1, and then with a2. In Fig. 8, we extend the execution in Fig. 7 with input b2
next and then with a3 and b3. Now we can identify the NBCTs with the sets
of new batches used in the executions of P0; as per our notion, they will con-
tain all the transactions triggered directly or transitively, but executed without
waiting for subsequent batches. The NBCTs and their transactions are shown in
the figure in part (i), omitting the transactions (hypothetically) executed by P0.
(The first and the third NBCTs are in one line, and the second and the fourth in
the next line.) We apply this idea for any number of source streams. We stipulate
only that each execution of P0 will have a new batch that is dequeued from the
appropriate queue, from at least one source. It may have new batches from any
number of sources. Also, once dequeued into its window, a batch could be used
for any number of executions.

Again, for each ai and bj , ˜T (ai, bj) would contain all transactions T such
that its sb-set contains ai but not ak, for k > i, and similarly for bj . Note that
in ˜T (ai, bj), P0 is executed with ai and bj , and hence all the transactions in the
NBCT will have both ai and bj . Hence, ˜T (ai, bj) could as well be identified as
˜T (ai), and similarly as ˜T (bj). The execution of the hypothetical program P0 can
be managed by the SPE.

We note that each of the source input batches can be rolled back; the NBCT
of that batch as per Definition 2 will be rolled back, with the result that the batch
is not used for any NBCT at all. The roll back mechanism described in the last
section is applicable here also. When the NBCT has several (new) batches in the
execution of P0, any number of those batches can be rolled back, and subsequent
batches of the respective streams are reprocessed. We note that the reprocessing
may produce different NBCTs, compared to the execution without roll back. For
instance, in the example of Fig. 8, suppose a1 is rolled back. Then we might end

28 K. Vidyasankar

up with ˜T (a2, b1) with the transactions T1,2, T2,1 and T3,2, which would not be
present if a1 is not rolled back.

We have illustrated the application of the idea of composing a batch com-
posite transaction with all the transactions triggered by arrival of new batches
and executed independently without waiting for subsequent batches to different
executions where batches are not processed in isolation. Part (ii) in Fig. 8 dis-
plays another interesting case. Here, each time, new pairs of batches from the two
source streams are processed. However, P3 accumulates the previous batches and
uses them with the new batches for the next execution. This type of processing
is described in [1]. The NBCTs are shown in the figure.

Fig. 8. Nonblocking batch composite transactions for multiple source streams

6 Concurrent Executions

In this section, we consider concurrent executions of NBCTs. Let T be a set of
NBCTs. We define an execution graph GE(T) as the graph whose vertex set is
the union of set(˜T)’s of all ˜T in T, and edges for the following:

– the transaction partial order ≺t of each ˜T in T;
– the serial order among the transactions of the same program, for each program

in the workflow; and
– the conflict order among the transactions, as described below.

We associate conflicts between programs in a composition. Conflicts are to be
determined based on the semantics of the operations executed by the programs
and the data items that are operated on. In general, the execution order is
important for conflicting operations and irrelevant for non-conflicting ones. We
assume that the conflicts between programs carry over to their executions. For

Batch Composite Transactions in Stream Processing 29

example, suppose programs Pi and Pj , i < j, are conflicting. Then, we assume
that every execution of Pi conflicts with every execution of Pj . These executions
may be for the same source input batch or different source input batches. We also
assume that any two conflicting programs in a composition are related by the
program order ≺p. Then, since the program order will yield transaction partial
order, conflicts between executions of the programs for the same input batch,
that is, transactions of the same NBCT, are taken care of by the transaction
order edges. For example, for executions Ti,m and Tj,m for the same source input
batch am, a conflict edge from Ti,m to Tj,m need not be added since Ti,m ≺t Tj,m

and hence the corresponding transaction order edge will be added. However, for
different source input batches am and an, m < n, the edges from Ti,m to Ti,n,
as well as from Tj,m to Ti,n need to be added. The former edges are already
included in the serial order of the transactions of the same program; only the
latter edges need to be added.

We note that the graph obtained as above is acyclic. There are no edges
directed from a transaction of an NBCT of a batch bj to that of batch bi, for
j > i. (This is certainly true for conflict edges and those between the transactions
of the same program. Consider a transaction order edge of ˜T (bj), say from an
execution T of Pk to an execution T ′ of Pl, for k < l. Now, T ′ could be in T (bi),
but it must be waiting for a batch derived from bj . Then, by definition, T ′ is
not in ˜T (bi). Therefore, by contracting the subgraphs generated by the set of
vertices of NBCTs ˜T (b) into single vertices, we will indeed get a graph consisting
of a single directed path whose vertices are the NBCTs and edges correspond to
the batch order, that is, a serial execution of the NBCTs in T, according to the
batch order.

Again, note that the vertices of the execution graph GE(T) are the transac-
tions, not the NBCTs, in T. Therefore the graph can be constructed without
waiting to know the composition of the NBCTs.

We note that, in the above discussions, we have insisted on the serial order of
the NBCTs to be the same as the batch order among the batches. With multiple
source input streams, the batch order will be the lexicographic order of the set
(of indices) of the batches as they arrive for processing.

7 Related Work

Composite transactions have been defined in different ways in different heteroge-
neous distributed environments depending on the required/relaxed ACID prop-
erties appropriate to the applications. In most cases, they are defined as sagas
and then the properties of the transactions constituting a saga are explored.
With respect to atomicity (all-or-nothing property of composite transactions),
an early proposal [10] was the schema c∗[p]r∗ denoting a partially ordered set
of compensatable transactions followed by at most one pivot (which is non-
compensatable) and then followed by a partially ordered set of retriable (assured)
transactions. This schema has been extended, allowing multiple pivots, for Trans-
actional processes [12], and then for Web services [17], Electronic contracts

30 K. Vidyasankar

[16] and recently for Internet of Things services [13]. In the latter applications,
nested transactions were considered. The properties BP1-BP4, as applicable to
sagas, were satisfied by the (high level) transactions. Our NBCTs are also nested
transactions but treated as non-nested ones, capturing the top level of the nest-
ing only.

The works in the context of stream processing include the following. A uni-
fied transaction model, called UTM, is proposed in [2]. It treats events also as
transactions. It discusses splitting continuous executions into transactions. Iso-
lation and atomicity properties are relaxed. Events and triggers in the context of
Complex Event Processing over Event Streams are discussed in [18]. They also
define stream ACID properties for transactions. The stream atomicity notion
requires “all operations stimulated by a single input event should occur in their
entirety”. In S-Store [9], the unit of atomicity is the entire composite transaction.
The batches are executed in isolation. In [6,11], entire read-only composite trans-
actions reflecting “continuous queries reading updatable resources” are taken as
units of atomicity. Such considerations are very useful especially in IoT environ-
ments, where monitoring and actuations are predominant and monitoring should
be consistent. Reprocessing upstream batches is also considered in [11]. Other
papers discussing stream transactions and compositions include [3,5]. None of
these papers deal with executions arising with splitting, merging or overlapping
of the batches and defining composite transactions satisfying properties consid-
ered in this paper. Splitting batches for parallel execution and merging them
later have been considered in the literature, for example in [4,7].

This paper is closely related to [15]. There, the source input batches b for
which T (b) satisfies BP1-BP4 and B1-B2 are called atomic batches. (The prop-
erties BP1-BP4 are not brought out explicitly in that paper.) As observed in
this paper, when splits, merges and overlapping of the batches occur in an exe-
cution, some source input batches may not be atomic. The contribution in [15]
is showing that several source input batches can be grouped into a single atomic
batch. In contrast, the goal in this paper is to define an NBCT for each source
input batch individually to satisfy the properties BP1-BP4, at the expense of
satisfying the completion requirement of batches jointly by several NBCTs and
achieving non-intrusive roll back by rolling back some subsequent batches also
and reprocessing them.

8 Conclusion

In stream processing, input stream tuples are processed in batches by programs
in a workflow. Several batches are processed concurrently and the batches may
be split, merged or overlapped along the workflow. In this paper, we have iden-
tified the executions corresponding to the batches in terms of nonblocking batch
composite transactions (NBCTs) that satisfy some basic transactional properties
BP1-BP4.

When BP1 is satisfied, the conflicting transactions in each NBCT are ordered.
If the transactions that are ordered are executed strictly serially (as can be

Batch Composite Transactions in Stream Processing 31

expected in stream processing), then all conflicts during the execution are
between transactions of different NBCTs, and not between those of the same
NBCT. Therefore, conflict-serializability of the NBCTs can be checked with a
conflict graph consisting of nodes corresponding to NBCTs and directed edges
representing conflicts among them. That is, there is no need to construct a graph
with individual transactions of the NBCTs as vertices. Therefore, management
of conflict graphs, and concurrency control, will be simpler.

In this paper, we have considered roll back of partially processed batches only.
We have not considered compensation of the BCTs, after their commitment, at
a later time. As in sagas, we can consider compensating BCTs. Further, these
BCTs could be of compensating batches. Then, these BCTs could be executed like
any other BCTs. The availability of compensating batches will be application-
dependent.

References

1. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma,
R.J., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt, E., Whittle, S.: The
dataflow model: a practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. Proc. VLDB Endow.
8(12), 1792–1803 (2015). http://dx.doi.org/10.14778/2824032.2824076

2. Botan, I., Fischer, P.M., Kossmann, D., Tatbul, N.: Transactional stream process-
ing. In: Proceedings of the 15th International Conference on Extending Database
Technology EDBT 2012, pp. 204–215. ACM, New York (2012). http://doi.acm.
org/10.1145/2247596.2247622

3. Conway, N.: Transactions and data stream processing. In: Online Publication, pp.
1–28 (2008). http://neilconway.org/docs/stream txn.pdf

4. De Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators
on data streams: an algorithmic skeleton approach. Int. J. Parallel Prog., pp. 1–20
(2016)

5. Golab, L., Özsu, M.: Issues in data stream management. ACM SIGMOD Rec.
32(2), 5–14 (2003)

6. Gürgen, L., Roncancio, C., Labbé, S., Olive, V.: Transactional issues in sensor
data management. In: Proceedings of the 3rd International Workshop on Data
Management for Sensor Networks (DMSN 2006), Seoul, South Korea, pp. 27–32
(2006)

7. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Comput. Surv. 46(4), 46: 1–46: 34 (2014).
http://doi.acm.org/10.1145/2528412

8. Hummer, W., Satzger, B., Dustdar, S.: Elastic stream processing in the cloud.
Wiley Interdisc. Rev. Data Min. Knowl. Disc. 3, 333–345 (2013)

9. Meehan, J., Tatbul, N., Zdonik, S., Aslantas, C., Cetintemel, U., Du, J., Kraska, T.,
Madden, S., Maier, D., Pavlo, A., Stonebraker, M., Tufte, K., Wang, H.: S-store:
streaming meets transaction processing. Proc. VLDB Endow. 8(13), 2134–2145
(2015)

10. Mehrotra, S., Rastogi, R., Silberschatz, A., Korth, H.F.: A transaction model for-
multidatabase systems. In: Proceedings of the 12th International Conference on
Distributed Computing Systems 1992, pp. 56–63. IEEE (1992)

http://dx.doi.org/10.14778/2824032.2824076
http://doi.acm.org/10.1145/2247596.2247622
http://doi.acm.org/10.1145/2247596.2247622
http://neilconway.org/docs/stream_txn.pdf
http://doi.acm.org/10.1145/2528412

32 K. Vidyasankar

11. Oyamada, M., Kawashima, H., Kitagawa, H.: Continuous query processing with
concurrency control: reading updatable resources consistently. In: Proceedings of
the 28th Annual ACM Symposium on Applied Computing SAC 2013, pp. 788–794.
ACM, New York (2013). http://doi.acm.org/10.1145/2480362.2480514

12. Schuldt, H., Alonso, G., Beeri, C., Schek, H.: Atomicity and isolation for transac-
tional processes. ACM Trans. Database Syst. 27, 63–116 (2002)

13. Vidyasankar, K.: Transactional properties of compositions of internet of things
services. In: 2015 IEEE First International Smart Cities Conference (ISC2), pp.
1–6, October 2015

14. Vidyasankar, K.: A transaction model for executions of compositions on internet
of things services. In: Procedia Computer Science, pp. 195–202. Elsevier (2016)

15. Vidyasankar, K.: Atomicity of batches in stream processing. J. Ambient Intell.
Humanized Comput. (2017)

16. Vidyasankar, K., Krishna, P.R., Karlapalem, K.: A multi-level model for activ-
ity commitments in e-contracts. In: Meersman, R., Tari, Z. (eds.) OTM
2007. LNCS, vol. 4803, pp. 300–317. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76848-7 20

17. Vidyasankar, K., Vossen, G.: Multi-level modeling of web service compositions with
transactional properties. Database Manag. 22(2), 1–31 (2011)

18. Wang, D., Rundensteiner, E.A., , Ellison III, R.T.: Active complex event processing
over event streams. In: Proceedings of the VLDB Endowment, pp. 634–645. ACM
Press (2011)

http://doi.acm.org/10.1145/2480362.2480514
http://dx.doi.org/10.1007/978-3-540-76848-7_20
http://dx.doi.org/10.1007/978-3-540-76848-7_20

http://www.springer.com/978-3-662-55946-8

	Batch Composite Transactions in Stream Processing
	1 Introduction
	2 Executions in Stream Processing
	3 Batch Composite Transaction Model
	4 A Roll Back Mechanism
	5 Multiple Source Streams
	6 Concurrent Executions
	7 Related Work
	8 Conclusion
	References

