
Chapter 2
Mathematics for Reading Later Chapters

2.1 Introduction and Summary

This chapter covers a number of mathematical concepts that are used in the following
chapters. The basic concepts that play important roles in this book are the probability
capacity, which is a set function defined on the state space that is not necessarily
additive over a disjoint family of subsets, the integral with respect to a probability
capacity, called the Choquet integral, and an extension of a probability capacity to a
Markovian stochastic environment, which we call the capacitary kernel. We define
these concepts carefully and then present some of their important properties, which
we repeatedly use in this book.

Some results are well known and their proofs are easily available in the literature
unless otherwise stated. Regularly cited works include those of Dellacherie (1970),
Shapley (1971), and Schmeidler (1986).

On the other hand, some results first appeared in the authors’ own works. If such
cases, we provide the proofs as fully as possible and the readers are referred to the
Appendix.

2.2 Probability Charges and Probability Measures

2.2.1 Algebra, σ-Algebra, and Measurable Spaces

Let S be a set.We call a family of subsetsA of a set S an algebra if it satisfies the three
conditions: (1) φ ∈ A, (2)1 A ∈ A ⇒ Ac ∈ A, and (3) A, B ∈ A ⇒ A ∪ B ∈ A.
Furthermore, consider the following condition that strengthens (3): (4) A1, A2, . . . ∈
A ⇒ ∪∞

i=1Ai ∈ A. Condition (4) is clearly strengthening of (3), because we can
simply set A3 = A4 = · · · = φ in (4). We call a family of subsets A of a set S a

1Here, Ac denotes the complement of A in S.
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σ-algebra if it satisfies (1), (2), and (4). An element of an algebra and a σ-algebra
is called an event. A pair of a set and an algebra or a σ-algebra defined on that set,
(S,A), is a measurable space. While it is often the case that whether we are talking
about an algebra or a σ-algebra is clear from the context, we will be as specific
as possible. The family of subsets of a given set S consisting of all its subsets is
called the power set and is denoted by 2S . Clearly, 2S is a σ-algebra and (S, 2S) is a
measurable space.

2.2.2 Probability Charge and Finite Additivity

Given a measurable space (S,A), a set function p : A → [0,+∞] that satisfies the
following two conditions is called a finitely additive measure or a charge:

p(φ) = 0 and (2.1)

(∀A, B ∈ A) A ∩ B = φ ⇒ p(A ∪ B) = p(A) + p(B) . (2.2)

Condition (2.2) is called a finite additivity. It immediately follows that a charge p is
monotonic in the sense that

(∀A, B ∈ A) A ⊆ B ⇒ p(A) ≤ p(B) . (2.3)

To see this, note that for any A and B such that A ⊆ B, it holds that B = A ∪ (B\A)
and A ∩ (B\A) = φ. This implies that p(B) = p(A) + p(B\A) ≥ p(A), where the
equality holds by the finite additivity of p and the inequality holds by the fact that p
takes on only non-negative values.

A chargep that satisfies p(S) < +∞ is a finite charge and a finite charge that sat-
isfies p(S) = 1 is a finitely additive probability measure or a probability charge. We
denote the set of all probability charges on a measurable space (S,A) byM(S,A).

A probability charge p is simple if the set given by { s ∈ S | p({s}) �= 0 } is a
finite set. In particular, we write the simple probability charge such that p({s}) = 1
for some s ∈ S as δs . That is, δs is a point mass concentrated at s.

A probability charge p on a measurable space (S,A) is said to be convex-ranged
or strongly nonatomic if it satisfies the condition: (∀A ∈ A)(∀r ∈ [0, p(A)])(∃B ∈
A) B ⊆ A and p(B) = r . Roughly speaking, the convex-rangedness or strong
nonatomicity requires that the measurable space together with the given charge
should have a “rich” structure. A closely related concept is nonatomicity. A proba-
bility charge p on a measurable space (S,A) is said to be nonatomic if it satisfies
(∀A ∈ A) [ p(A) > 0 ⇒ (∃B ∈ A) B ⊆ A and p(B) ∈ (0, p(A)) ]. As the names
suggest, if a probability charge is convex-ranged or strongly nonatomic, then it is
nonatomic. However, the converse does not hold in general.2

2See, however, Proposition 2.2.1.
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2.2.3 Dunford-Schwartz Integral with Respect to Charge

This subsection briefly explains the Dunford-Schwartz integral with respect to a
probability charge. If a charge happens to be a measure, which will be defined in the
next subsection, it coincides with the well known Lebesgue integral.

Let S be a set and let A be an algebra on it. We denote B(S,A), or more simply
B, as the set of all A-measurable and bounded real-valued functions defined on a
measurable space (S,A). Here, a function a : S → R is A-measurable if for any
Borel set E on R, a−1(E) := { s ∈ S | a(s) ∈ E } ∈ A. We denote by B0(S,A) or
B0 the subset of B(S,A) consisting of functions, called simple functions, whose
ranges are finite sets.

Given a probability charge on (S,A) and a ∈ B(S,A), the Dunford-Schwartz
integral of a with respect to p is denoted by

∫
S
a(s) dp(s) .

TheDunford-Schwartz integral is a functional defined on B or B0. Instead of defining
it formally, we choose to characterize it by some axioms. For its definition, see
Dunford and Schwartz (1988) and Rao and Rao (1983).

To this end, we introduce some definitions about a functional. Let I : B → R be
a functional on a measurable space B(S,A). It is homogeneous if for any x ∈ R

and for any a ∈ B, I (xa) = x I (a), and it is additive if (∀a, b ∈ B) I (a + b) =
I (a) + I (b). A functional I is a linear functional if it is both homogeneous and
additive. Also, a functional I is monotonic if (∀a, b ∈ B) a ≥ b ⇒ I (a) ≥ I (b).
Finally, a functional I is norm-continuous if for any sequence 〈an〉∞n=1 ⊆ B and for
any element a ∈ B, ‖a − an‖ → 0 ⇒ |I (a) − I (an)| → 0, where ‖ · ‖ is the sup
norm on B.

The Dunford-Schwartz integral is linear and norm-continuous. One of the most
important results of the Dunford-Schwartz integral is that the converse holds.

Theorem 2.2.1 (RieszRepresentation Theorem) For any linear functional I : B →
R that is norm-continuous and satisfies I (χS) = 1, it holds that

(∀a ∈ B) I (a) =
∫
S
a(s) dp(s) . (2.4)

Here, p is the probability charge on (S,A) defined by (∀A ∈ A) p(A) = I (χA).

In the theorem, χ denotes the indicator function. That is, for any A ∈ A, χA is the
measurable function on (S,A) such that χA(s) = 1 if s ∈ A and χA(s) = 0 if s /∈ A.
For the proof of the Riesz Representation Theorem, see Rao and Rao (1983, p.135,
Theorem 4.7.4).
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It is often not easy to verify the norm-continuity of a given functional. In that case,
the next corollary is convenient. Let K be a convex set that satisfies [−1, 1] ⊆ K ⊆ R

and denote the subset of B (resp. B0) consisting of all the K -valued functions by
B(K ) (resp. B0(K )).

Corollary 2.2.1 Let I : B(K ) → R be a functional. If I is additive, monotonic, and
satisfying I (χS) = 1, then (2.4) holds with B replaced by B(K ).

2.2.4 Probability Measure and σ-Additivity

Let A be a σ-algebra and let p be a charge on (S,A). A charge p that satis-
fies the following condition is called a σ-additive measure or simply a measure:
(∀i, j such that i �= j) Ai ∩ A j = φ

⇒ p(A1 ∪ A2 ∪ . . .) = p(A1) + p(A2) + · · · . (2.5)

Note that A needs to be a σ-algebra. Otherwise, the second line of (2.5) is not well
defined. The condition (2.5) is called countable additivity or σ-additivity. Clearly,
σ-additivity implies finite additivity because we may set Ai to be φ except for finite
i values and because p(φ) = 0 by (2.1).

A measure p on a measurable space (S,A) that satisfies p(S) = 1 is called a
probability measure. In other words, if a set function p : A → [0,+∞] satisfies
(2.1), (2.5) and p(S) = 1, then p is called a probability measure. These conditions
constitute the so-called Kolmogorov’s Axioms.

In a very similar manner, we may define the convex-rangedness (or equivalently,
the strong nonatomicity) and the nonatomicity for probabilitymeasures. Unlike prob-
ability charges, however, these two concepts coincide as the next proposition states3:

Proposition 2.2.1 A probability measure is convex-ranged if and only if it is
nonatomic.

Note that a probability measure p is continuous from below in the sense that
(∀〈Ai 〉i ⊆ A) A1 ⊆ A2 ⊆ A3 ⊆ · · · ⇒ p(∪i Ai ) = limi→∞ p(Ai ) and that it is
continuous from above in the sense that (∀〈Ai 〉i ⊆ A) A1 ⊇ A2 ⊇ A3 ⊇ · · · ⇒
p(∩i Ai ) = limi→∞ p(Ai ). Therefore, a probability measure p is continuous in the
sense that it is continuous from below and above. Note that when A is a σ-algebra,
if a probability charge defined on (S,A) is continuous, then it turns out to be a
probability measure (that is, it is σ-additive).

3For the proof, see Rao and Rao (1983).
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2.3 Probability Capacity

2.3.1 Basic Definitions

Let (S,A) be a measurable space, where A may only be an algebra (instead of a σ-
algebra). A set function θ : A → [0,+∞] is a nonadditive measure or a capacity by
definition if it only satisfies both (2.1) and the monotonicity condition, (2.3). As we
have already seen, a charge is monotonic. However, the monotonicity never implies
finite additivity.

A capacity θ such that θ(S) < +∞ is called a finite capacity or a game. A finite
capacity that satisfies θ(S) = 1 is a probability capacity by definition.4

A probability capacity θ is said to be convex if it holds that

(∀A, B ∈ A) θ(A ∪ B) + θ(A ∩ B) ≥ θ(A) + θ(B) . (2.6)

If the converse inequality always holds in (2.6), θ is said to be concave. Note that if
the inequality always holds with an equality, θ turns out to be a probability charge.

Given a probability capacity θ, we can define its conjugate, denoted by θ′, by
(∀A ∈ A) θ′(A) := 1 − θ(Ac). It can be easily verified that if a probability capacity
is convex, then its conjugate is concave, and vice versa. Because the convexity implies
that 1 = θ(S) ≥ θ(A) + θ(Ac), θ(A) ≤ 1 − θ(Ac) = θ′(A) holds if θ is convex.

Similar to charges and measures, a probability capacity θ is said to be convex-
ranged if the next condition holds: (∀A ∈ A)(∀r ∈ [0, θ(A)])(∃B ∈ A) B ⊆ A and
θ(B) = r .

When A is a σ-algebra, a probability capacity θ is continuous from below if

(∀〈Ai 〉i ⊆ A) A1 ⊆ A2 ⊆ A3 ⊆ · · · ⇒ θ(∪i Ai ) = lim
i→∞ θ(Ai ) (2.7)

and it is continuous from above if

(∀〈Ai 〉i ⊆ A) A1 ⊇ A2 ⊇ A3 ⊇ · · · ⇒ θ(∩i Ai ) = lim
i→∞ θ(Ai ) . (2.8)

A probability capacity θ is continuous if it is continuous both from below and above.
Note that any finite measure is continuous, and that continuity and finite additivity
together imply countable additivity.

Remark 2.3.1 Assume that S is a topological space. Then, let A be the Borel
σ-algebra on S, that is, the smallest σ-algebra that contains all open sets on S.
Sometimes, a set function θ : A → [0,+∞] is defined as a capacity if it satisfies
(2.1), (2.3) as well as (2.8) and if (2.7) also holds when Ai is restricted to be open

4In the definitions that follow, unity can be replaced by θ(S) for a finite capacity, while we exclu-
sively consider probability capacities in this book.



34 2 Mathematics for Reading Later Chapters

(see, for example, Huber and Strassen, 1973). However, in this book, we stick to
(2.1) and (2.3) as defining properties of the capacity.

2.3.2 Decomposability

Given a probability capacity θ on (S,A) and a nondecreasing function g : [0, 1] →
[0, 1] such that g(0) = 0 and g(1) = 1, we define a mapping g ◦ θ : A → [0, 1] by
(∀A ∈ A) g ◦ θ(A) = g (θ(A)). Then g ◦ θ is a probability capacity. Furthermore,
g ◦ θ is convex (resp. concave, continuous) when both g and θ are convex (resp.
concave, continuous). (See A.1.2 in the Appendix.)

Given a probability charge p on (S,A) and a nondecreasing function g on [0, 1]
that satisfies g(0) = 0 and g(1) = 1, we define a mapping θ = g ◦ p : A → [0, 1]
by

(∀A ∈ A) θ(A) = g ◦ p(A) = g(p(A)) . (2.9)

Then, θ is clearly a probability capacity. However, it is not true that any probability
capacity can be decomposed in this way as the next example by Chateauneuf (1991,
Example 4, p.364)

Example 2.3.1 Let S := {1, 2, 3, 4} and define a mapping m : 2S → [0, 1] by
m({1}) = m({3}) = 1

5 ; m({2}) = m({4}) = m({2, 4}) = 1
6 ; m(S) = 1

10 and for any
other A ⊆ S, m(A) = 0. Furthermore, if we define a mapping θ : 2S → [0, 1] by:
(∀A) θ(A) = ∑

B⊆A m(B), then it can be easily verified that θ thus defined is a con-
vex probability capacity. Now suppose that (2.9) holds for some probability charge
p and for some nondecreasing function g. Then, it holds that θ({1}) = θ({3}) =
1
5 > 1

6 = θ({2}) = θ({4}) and that p({1}) > p({2}) and p({3}) > p({4}) because g
is nondecreasing, and hence, it follows that p({1, 3}) > p({2, 4}). However, because
θ({1, 3}) = 2

5 < 1
2 = θ({2, 4}), we obtain a contradiction. �

Some conditions for a probability capacity to be decomposable as in (2.9) are
known. A probability capacity θ is weakly additive if it satisfies the next condition:
(∀A, B, E, F ⊆ S) [E ⊆ A ∩ B, F ⊆ (A ∪ B)c, θ((A\E) ∪ F) > θ((B\E) ∪ F)
⇒ θ(A) > θ(B)]. Then the next theorem holds.

Theorem 2.3.1 (Scott) LetA be 2S. Then, for any convex-ranged probability capac-
ity θ on (S,A), it is weakly additive if and only if there exists a unique strictly increas-
ing function g : [0, 1] → [0, 1] and a unique convex-ranged probability charge p
such that θ = g ◦ p.

Note that the function g in the theoremmust be strictly increasing. Gilboa (1985)
proved that it can be only nondecreasing if the weak additivity is replaced by “almost
weak additivity” and “infinite decomposability.” See Gilboa (1985) for these axioms
and for more details.
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2.3.3 The ε-Contamination

A very important example of a probability capacity is the ε-contamination, which is
used repeatedly in this book. The ε-contamination is a sort of distortion of a given
probability charge p obtained by “contaminating” p in the degree of ε. We present
three versions of ε-contamination in this subsection.

Example 2.3.2 (The ε-Contamination) Let p ∈ M(S,A), let ε ∈ [0, 1] and let θ
be defined by

(∀A ∈ A) θ(A) =
{
(1 − ε)p(A) if A �= S
1 if A = S .

The probability capacity thus defined is called the ε-contamination of p. It can be
easily verified that θ is a convex probability capacity. Note that the ε-contamination
is not in general5 continuous from below even if the charge p is continuous. To see
this, consider an increasing sequence of measurable sets such that each component
is not equal to the whole state space and the limit (the union) is equal to it. �
Example 2.3.3 (The Naïve ε-Contamination) Let p ∈ M(S,A), let ε ∈ [0, 1] and
let θ̂ be defined by

(∀A ∈ A) θ̂(A) =
{
(1 − ε)p(A) if p(A) �= 1
1 if p(A) = 1 .

The probability capacity thus defined is called the naïve ε-contamination of p. The
naïve ε-contamination of p can be decomposed as g ◦ p where g : [0, 1] → [0, 1]
is defined by g(x) = (1 − ε)x if x < 1 and g(1) = 1. By the observation made in
the previous subsection, the naïve ε-contamination is convex because g is convex.
However, the naïve ε-contamination is not in general continuous from below even if
p is continuous because the mapping g defined above is not continuous. �

While the difference between the naïve and ordinary ε-contamination is subtle,
they are in fact different. To see this, let p be a probability charge on (S,A). Note
that the two concepts of the ε-contamination are distinct if there exists a set A such
that A �= S and p(A) = 1 because θ̂(A) = 1 and θ(A) = 1 − ε. However, such a
situation is common. For instance, let S = [0, 1], let A be the family of Lebesgue
measurable subsets of [0, 1], let p be the Lebesgue measure, and let A = (0, 1).

Example 2.3.4 (The δ-Approximation of the ε-Contamination) Let p ∈ M
(S,A), let ε, δ ∈ (0, 1] and let θδ be defined by

(∀A ∈ A) θδ(A) =
⎧⎨
⎩
(1 − ε)p(A) if p(A) ≤ 1 − δ

(1 − ε)p(A) + ε

(
p(A) − 1

δ
+ 1

)
if p(A) > 1 − δ .

5We say “in general” because the correctness of this statement hinges upon the information structure
as assumed.
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The probability capacity thus defined is called the δ-approximation of the ε-
contamination of p. It can be decomposed as g ◦ pwhere g : [0, 1] → [0, 1] is some
convex function that can be easily figured out (see Sect. 9.3.2), and hence, it is a con-
vex probability capacity. Importantly, the δ-approximation of the ε-contamination
is continuous when p is continuous because the mapping g thus figured out is
continuous. �

The δ-approximation of the ε-contamination was introduced by Nishimura and
Ozaki (2004). We discuss this probability capacity in more detail in Chap.9.

2.3.4 The Core

We denote by core(θ) the core of a probability capacity θ and define it by

core(θ) := { p ∈ M(S,A) | (∀A ∈ A) p(A) ≥ θ(A) } .

The inequalities must hold for all events, and hence, writing p(A) ≥ θ(A) is
equivalent to writing θ′(A) ≥ p(A) ≥ θ(A). If a probability capacity θ turns out to
be a probability charge, core(θ) consists only of θ itself. Furthermore, it can be shown
that if A is a σ-algebra and if θ is continuous, any element of core(θ) is countably
additive; that is, a probability measure.

Any element of the core of θ can be thought of as an allocating scheme that cannot
be blocked by any coalition in the cooperative game characterized by θ.6 It is well
known that the core of a “convex game” is nonempty. (See Shapley 1971.)

Proposition 2.3.1 When θ is convex, core (θ) is nonempty.

Conveniently, the core of some probability capacity can be calculated explicitly.

Example 2.3.5 (The ε-Contamination) Let p ∈ M(S,A), let ε ∈ [0, 1], and let θ
be the ε-contamination of p. Then, the core of θ is given by the following simple
form:

core (θ) = { (1 − ε)p + εq | q ∈ M(S,A) } . (2.10)

The set itself of probability charges defined by the right-hand side of (2.10) is often
called ε-contamination of p. We sometimes denote it simply by {p}ε. See Chaps. 12
and 14. �

Here, we remark that (2.10) is the core of the ε-contamination of p, not that of the
naïve ε-contamination of p. Actually, in general, the former is a proper superset of the
latter. To see this, let S = {1, 2}, let p be the probability charge such that p({1}) = 0
and p({2}) = 1, and let θ and θ̂ be the ordinary and naïve ε-contamination of p,

6In this context, the requirement that a capacity (and a charge) of the whole space be unity is a mere
normalization. See the discussion in Sect. 1.1.4.

http://dx.doi.org/10.1007/978-4-431-55903-0_9
http://dx.doi.org/10.1007/978-4-431-55903-0_9
http://dx.doi.org/10.1007/978-4-431-55903-0_12
http://dx.doi.org/10.1007/978-4-431-55903-0_14
http://dx.doi.org/10.1007/978-4-431-55903-0_1
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respectively. Then, core(θ) = { (x, 1 − x) | x ∈ [0, ε]} and core (θ̂) = {(0, 1)}, the
former of which equals (2.10).

For the core of the δ-approximation of the ε-contamination, see Chap.10.

2.3.5 Updating Probability Capacity

To conclude this section, we introduce the concept of updating. Let θ be a probability
capacity on (S,A), and let A, B ∈ A. By writing θB(A), we mean the probability
capacity of A when we know that the event B has already occurred. We always
require that given B ∈ A, θB(·) : A → [0, 1] should be a probability capacity. If this
is the case, θB(A) is a conditional probability capacity given B or an update of θ
given B.

We discuss three updating rules, all of which are identical and coincide with
Bayes’ rule for a probability charge p; i.e., p(A ∩ B)/p(B), if θ is a probability
charge (that is, it is additive).

The most simple updating rule for a probability capacity is the naïve Bayes’
rule, or equivalently, the generalized Bayesian updating rule, which is a natural
extension ofBayes’ rule for probability charges. Thus, it is defined by (∀A) θB

B (A) :=
θ(A ∩ B)/θ(B) as far as θ(B) �= 0. It is easy to see that θB

B is convex as far as it is
well defined if θ is convex.

The next updating rule is what Denneberg (1994) calls the general updating rule.
This is studied by Denneberg (1994) and the authors cited there. According to this
rule, the conditional probability capacity of A ∈ A given B ∈ A, denoted by θG

B (A),
is defined by

θG
B (A) := θ(A ∩ B)

θ(A ∩ B) + θ′(Ac ∩ B)
.

This updating rule is well defined as far as θ(B) > 0 if θ is convex because θ(A ∩
B) + θ′(Ac ∩ B) = θ(A ∩ B) + θ(S) − θ(A ∪ Bc) ≥ θ(A ∩ B) + [θ(A ∪ Bc) +
θ(B) − θ(A ∩ B)] − θ(A ∪ Bc) = θ(B) > 0 where the weak inequality holds by
the convexity of θ and the fact that (A ∪ Bc) ∩ B = A ∩ B and (A ∪ Bc) ∪ B = S.
Therefore, the general updating rule θG

B is well defined if θ is convex and if θ(B) > 0.
It can be also shown that θG

B is convex as far as θ(B) > 0 if θ is convex (Denneberg
1994, Proposition 2.3 (ii), (iv), and Proposition 2.5). Furthermore, if θ is convex, it
follows that

(∀A ∈ A) θG
B (A) = min { P(A ∩ B)/P(B) | P ∈ core(θ) } (2.11)

(Denneberg 1994, Theorem 2.4). That is, the general updating rule coincides with
the minimum of the updates of the probability charges in the core of θ.

The final updating rule we introduce in this subsection is the Dempster-Shafer
updating rule. According to this rule, the probability capacity of A ∈ A updated
given B ∈ A, denoted by θDS

B (A), is defined by

http://dx.doi.org/10.1007/978-4-431-55903-0_10
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θDS
B (A) := θ((A ∩ B) ∪ Bc) − θ(Bc)

θ′(B)
.

This updating rule is well defined as far as θ(B) > 0 if θ is convex because θ′(B) ≥
θ(B) when θ is convex. Also, it turns out that θDS

B is convex as far as θ(B) > 0 if θ
is convex.7

Gilboa and Schmeidler found another important expression of the Dempster-
Shafer updating rule. They showed that the following holds true: (∀A)

θDS
B (A) = min

{
P(A ∩ B)

P(B)

∣∣∣∣ P ∈ core(θ) and P(B) = θ′(B)
}

(2.12)

(Gilboa and Schmeidler 1993, Theorem 3.3, and Denneberg 1994, Theorem 3.4).
Because (∀B) θ′(B) = max{P(B) | P ∈ core (θ) } by Corollary 2.4.1, (2.12) shows
that the Dempster-Shafer updating rule is equal to themaximum-likelihood updating
rule: it keeps the priors in the core of θ, which assign themaximumprobability charge
to the actually realized event and thenminimizes the conditional probabilities of these
remaining priors. It is obvious from (2.11) and (2.12) that (∀A) θG

B (A) ≤ θDS
B (A),

and hence, the general updating rule by Denneberg is more “cautious” than the
Dempster-Shafer rule.8

We take up these updating rules again when we discuss conditional preferences
and their representations by the updated probability capacities in Sect. 3.13, andwhen
we develop an economicmodel where a learning process takes place under Knightian
uncertainty in Chap.14.

2.4 Choquet Integral

2.4.1 Definition

Recall from Sect. 2.2.3 that we denote by B(S,A), or more simply B, the set of
allA-measurable and bounded real-valued functions defined on a measurable space
(S,A). We also denote by B0(S,A), or B0, the subset of B(S,A) consisting of
simple functions.

7To see this, note that θ is convex ⇔ θ′ is concave ⇒ (θ′)B is concave ⇔ (
(θ′)B

)′
is convex

⇔ ((θ′)′)DS is convex ⇔ θDS is convex, where the second and fourth arrows are by Denneberg,
1994, Proposition 3.2 (vi) and (iv), respectively.
8Another important distinction between these two updating rules exists in the consequence of their

iterated applications. Let B,C ∈ A be such that θ(B ∩ C) > 0. Then,
(
θDS
B

)DS
C = θDS

B∩C while(
θGB

)G
C ≥ θGB∩C (Gilboa and Schmeidler (1993), Theorem 3.3, and Denneberg (1994), Proposition

2.6 and Proposition 3.2 (viii)). The equality above for the Dempster-Shafer updating rule is referred
to as the commutativity by Gilboa and Schmeidler (1993).

http://dx.doi.org/10.1007/978-4-431-55903-0_3
http://dx.doi.org/10.1007/978-4-431-55903-0_14
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Given a probability capacity θ, we define a (nonlinear) functional I : B → R by:
(∀a ∈ B)

I (a) =
∫

a dθ =
∫
S
a(s) dθ(s)

=
∫ 0

−∞
(θ(a ≥ y) − 1) dy +

∫ +∞

0
θ(a ≥ y) dy (2.13)

=
∫ 0

−∞
(θ({ s | a(s) ≥ y }) − 1) dy +

∫ +∞

0
θ({ s | a(s) ≥ y }) dy .

Here, the two integrals in the third line are Riemann integrals in a broad sense. To see
that these integrals are well defined, first note that the integrands are nonincreasing
functions because of the monotonicity of θ. Because a nonincreasing function has at
most countably many discontinuous points, it is Riemann integrable. Second, note
that a is a bounded function. Therefore, a Riemann integral in a broad sense here is
a finite number. The functional I defined by (2.13) is called a Choquet integral.

One of immediate consequences of the definition of the Choquet integral is the
following fact: (∀a ∈ B)

∫
(−a) dθ =

∫ 0

−∞
(θ(−a ≥ y) − 1) dy +

∫ +∞

0
θ(−a ≥ y) dy

=
∫ 0

−∞
(θ(a < −y) − 1) dy +

∫ +∞

0
θ(a < −y) dy

=
∫ 0

−∞
(1 − θ′(a ≥ −y) − 1) dy +

∫ +∞

0
(1 − θ′(a ≥ −y)) dy

=
∫ +∞

0
(1 − θ′(a ≥ y) − 1) dy +

∫ 0

−∞
(1 − θ′(a ≥ y)) dy

= −
∫ 0

−∞
(θ′(a ≥ y) − 1) dy −

∫ +∞

0
θ′(a ≥ y) dy

= −
∫

a dθ′ ,

where the first and last equalities are definitional; the second equality is trivial; the
third equality holds by the definition of the conjugate; the fourth equality holds by
the change of variable (−y → y); and the fifth equality holds by exchanging the first
and the second terms. The combined equalities thus imply the next proposition.

Proposition 2.4.1 (Choquet Integral by the Conjugate)

(∀a ∈ B)
∫
S
a dθ′ = −

∫
S
(−a) dθ

where θ′ is the conjugate of θ.



40 2 Mathematics for Reading Later Chapters

For a function a ∈ B, if we let a := infs a(s), then a − a ≥ 0 and it holds that:

∫
(a − a) dθ =

∫ +∞

0
θ(a − a ≥ y) dy =

∫
a dθ − a . (2.14)

By (2.14), we may apply only the definition of the Choquet integral for non-negative
functions:

I (a) =
∫ +∞

0
θ({ s | a(s) ≥ y }) dy

when we calculate the Choquet integrals of bounded functions, which largely sim-
plifies the story.

The expression of theChoquet integral is largely simplifiedwhen the integrand is a
simple function. Given a ∈ B0, we denote it by a = ∑k

i=1 αiχEi . Here, we let α1 ≥
α2 ≥ · · · ≥ αk ≥ 0 and 〈Ei 〉ki=1 is a partition of S such that (∀i) Ei = a−1({αi }).
Because a is A-measurable, Ei is certainly an event for each i . (Such a partition is
called anA-measurable partition.) Then, the definition of a Choquet integral (2.13)
implies

∫
a dθ =

∫
a(i) θ(di) =

k∑
i=1

(αi − αi+1)θ
(∪i

j=1E j
)

= α1θ(E1) +
k∑

i=2

αi

(
θ
(∪i

j=1E j
) − θ

(
∪i−1

j=1E j

))
(2.15)

where αk+1 := 0.
Finally,wedefine theChoquet integral of a function that is not necessarily bounded

in a similar fashion. Let L(S, R̄) be the space ofA-measurable functions from S into
R̄, where R̄ denotes the set of extended real numbers, [−∞,+∞], and define the
Choquet integral of u ∈ L(S, R̄) with respect to a capacity θ by (2.13) unless the
expression is (−∞) + ∞.

2.4.2 Properties of Choquet Integral

For the remainder of this chapter, θ is a probability capacity on (S,A), where A is
an algebra on S.

The following two results are immediate from the definition of the Choquet inte-
gral.

Proposition 2.4.2 (Monotonicity)

(∀a, b ∈ B) a ≥ b ⇒
∫
S
a dθ ≥

∫
S
b dθ .
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Proposition 2.4.3 (Positive Homogeneity)

(∀a ∈ B)(∀λ ≥ 0)
∫
S
λa dθ = λ

∫
S
a dθ .

The next result concerns the convexity and the concavity of a probability capacity.

Proposition 2.4.4 (Super- (Sub-)Additivity) A probability capacity is convex (resp.
concave) if and only if

(∀a, b ∈ B)
∫
(a + b) dθ ≥ ( resp. ≤)

∫
a dθ +

∫
b dθ .

As this result indicates, theChoquet integral is not linear in general.However, there
is an important case where it does become linear. For any pair of functions a, b ∈ B,
they are said to be co-monotonic if it holds that (∀s, t ∈ S) (a(s) − a(t))(b(s) −
b(t)) ≥ 0. The co-monotonicity requires that two functions should move in the same
directionwhen the state changes. Intuitively, one function does not work as a “hedge”
of the other function.

The co-monotonicity has an important implication for the Choquet integral. It
immediately follows that for any pair of functions b, c ∈ B0, they are co-monotonic
if and only if there exist a natural number k, an A-measurable partition 〈Ei 〉ki=1,
and two k-dimensional vectors (β1,β2, . . . ,βk) and (γ1, γ2, . . . , γk) such that
β1 ≥ β2 ≥ · · · ≥ βk and γ1 ≥ γ2 ≥ · · · ≥ γk and such that b = ∑k

i=1 βiχEi and c =∑k
i=1 γiχEi . It also can be shown that for any function a ∈ B, there exists a sequence

of pairs of co-monotonic simple functions, (an, bn), which satisfies that (∀n) an ≤
an+1 ≤ · · · ≤ a ≤ · · · ≤ bn+1 ≤ bn and limn→∞ I (an) = I (a) = limn→∞ I (bn).
These two facts are used to show the next proposition.

Proposition 2.4.5 (Co-monotonic Additivity) For any pair of functions a, b ∈ B, if
a and b are co-monotonic, then it holds that

∫
S
(a + b) dθ =

∫
S
a dθ +

∫
S
b dθ .

The next result is extremely important in the interpretation of the Choquet integral
in the framework of economics. Therefore, we name this result the fundamental
theorem of the Choquet integral.

Theorem 2.4.1 (Fundamental Theorem of Choquet Integral) A probability capacity
θ is convex if and only if

(∀a ∈ B)
∫
S
a dθ = min

{ ∫
S
a dp

∣∣∣∣ p ∈ core(θ)

}
.
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The integral in the right-hand side is the Dunford-Schwartz integral (Sect. 2.2.3).
Note that because a is bounded and measurable and the core is compact in the weak
∗ topology, the minimum is actually attained.9

Let θ be a convex probability capacity and let a ∈ B. Because the fundamental
theorem of the Choquet integral applies to −a, we have

−
∫
S
(−a) dθ = −min

{ ∫
S
(−a) dp

∣∣∣∣ p ∈ core(θ)

}

= max

{ ∫
S
a dp

∣∣∣∣ p ∈ core(θ)

}
.

Because, however, the first term is equal to the Choquet integral of a with respect to
the conjugate of θ by Proposition 2.4.1, we have established the next corollary.

Corollary 2.4.1 A probability capacity θ is convex if and only if

(∀a ∈ B)
∫
S
a dθ′ = max

{ ∫
S
a dp

∣∣∣∣ p ∈ core(θ)

}
,

where θ′ is the concave conjugate probability capacity of θ.
Given any convex probability capacity θ and any bounded measurable function

a, we define a set of probability charges, P(θ, a), by

P(θ, a) := argmin

{ ∫
S
a dp

∣∣∣∣ p ∈ core(θ)

}
. (2.16)

This is the set of probability charges on S that are “equivalent” to θ with respect to
the Choquet integral of a given the fundamental theorem of the Choquet integral.
The same theorem guarantees that P(θ, a) is nonempty. Rather, in general, it is not
a singleton set unless θ happens to be a probability charge.

9To be more precise, let p : A → R be a bounded charge on (S,A). That is, p satisfies a finite
additivity (2.2) and is such that (∃M > 0)(∀A ∈ A) |p(A)| < M . The set of all bounded charges
on (S,A) is denoted by ba(S,A) and it turns out that ba(S,A) = B∗(S,A), where B∗ denotes
the dual space of B, i.e., the space of linear functionals on B that are continuous with respect to
the sup norm topology on B (Dunford and Schwartz, 1988). Note that the linearity does not imply
the continuity automatically for infinite-dimensional spaces. Also note that any linear functional
on B is specified by the Dunford-Schwartz integral by some bounded charge, which is a version of
Riesz Representation Theorem (Theorem 2.2.1). Therefore, B∗ can be identified as a set of bounded
charges. Furthermore, the unit ball in B∗ isweak ∗ compact by Banach-Alaoglu’s theorem (Dunford
and Schwartz, 1988, p.424). Here, the weak ∗ topology, or equivalently, σ(ba, B)-topology, refers
to the weakest topology on B∗ with respect to which any element of B should be continuous, in
which we identify any element of B as a linear functional on B∗ in a natural way. As is well known,
B∗∗, the dual of B∗ = ba, is a proper superset of B. Hence, the weak ∗ topology is strictly coarser
than the weak topology on B∗. Finally, because core(θ) is the weak ∗ closed subset of the unit
ball in ba, and hence, it is weak ∗ compact (Munkres, 1975, p.165, Theorem 5.2) and because a is
assumed to be an element of B, Weierstrass’ theorem (Munkres, 1975, p.167, Theorem 5.5) proves
the claim in the main text.



2.4 Choquet Integral 43

Given a pair of bounded andmeasurable functions onA, (u, v), v is u-measurable
if v is measurable with respect to the smallest algebra on S that makes u measurable.
A function v is u-ordered if u and v are co-monotonic and if v is u-measurable. As
for the u-measurability and u-orderedness, the following result is of importance.

Theorem 2.4.2 Let θ be a convex probability capacity on (S,A), let u be a bounded
and measurable function on it, and let P, Q ∈ P(θ, u). If v is u-measurable, then

∫
S
v dP =

∫
S
v dQ ,

and if v is u-ordered, then

∫
S
v dP =

∫
S
v dQ =

∫
S
v dθ .

The proof of this theorem can be found in Ozaki (2000).
The next result is easy to prove, but essential in solving dynamic economicmodels

that appear later in this book. (See Sect. 7.1.)

Theorem 2.4.3 Let θ be a convex capacity. Then,

(∀u ∈ B(S,R))

∣∣∣∣
∫

u dθ −
∫

v dθ

∣∣∣∣ ≤
∫

|u − v| dθ′ .

Wehave already seen that theChoquet integral ismonotonic and co-monotonically
additive. Similar to the Riesz Representation Theorem, we now see that these prop-
erties are sufficient to characterize the Choquet integral. A functional I is co-
monotonically additive if (∀a, b ∈ B) I (a + b) = I (a) + I (b) whenever a and b
are co-monotonic. If I is co-monotonically additive, it is homogeneous with respect
to positive rational numbers. To see this, let r = m/n (m, n ∈ N). Then the co-
monotonic additivity implies that nI ((m/n)a) = I (n(m/n)a) = I (ma) = mI (a).
Also, in a similar manner to the proof of Corollary 2.2.1, if a functional I : B → R

is co-monotonically additive, monotonic, and satisfies I (χS) = 1, then I satisfies
the norm-continuity. Therefore, if I is co-monotonically additive, monotonic, and
satisfies I (χS) = 1, then it is homogeneous with respect to positive rational numbers
and it is norm-continuous; hence, it follows that it is positively homogeneous.

The next theorem is a Choquet integral version of the Riesz Representation The-
orem.

Theorem 2.4.4 (Schmeidler’s Representation Theorem) Suppose that I : B → R

is a functional satisfying I (χS) = 1. Then I satisfies the co-monotonic additivity and
monotonicity if and only if I can be represented by the Choquet integral with respect
to the probability capacity θ defined by (∀A ∈ A) θ(A) = I (χA).

http://dx.doi.org/10.1007/978-4-431-55903-0_7
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For proofs of this and the following theorems, see Schmeidler (1986). Note that
there is a stark contrast between this theorem and Corollary 2.2.1. In this and the
next theorems, B and B(K ) can be replaced by B0 and B0(K ), respectively.10

Theorem 2.4.5 (Schmeidler 1986) Suppose that a functional I : B(K ) → R sat-
isfies the following three conditions: (i) (∀λ ∈ K ) I (λχS) = λ; (ii) For any triplet
of functions, (a, b, c), any two of which are co-monotonic, if I (a) > I (b), then it
holds that (∀α ∈ (0, 1)) I (αa + (1 − α)c) > I (αb + (1 − α)c); and (iii) a ≥ b ⇒
I (a) ≥ I (b). Then the function I can be represented by the Choquet integral with
respect to the probability capacity θ defined by (∀A ∈ A) θ(A) = I (χA).

The remaining results of this section assume that a probability capacity is contin-
uous.

Theorem 2.4.6 (Monotone Convergence Theorem) Let (S,A) be a measurable
space where A is a σ-algebra and let θ be a probability capacity on it. (a) Suppose
that θ is continuous from below and let 〈un〉∞n=0 be a sequence of A-measurable
functions such that u0 ≤ u1 ≤ u2 ≤ u3 ≤ · · · and ∫

u0 dθ > −∞. Then,

lim
n→∞

∫
un dθ =

∫
lim
n→∞ un dθ .

(b) Suppose that θ is continuous from above and let 〈un〉∞n=0 be a sequence of A-
measurable functions such that u0 ≥ u1 ≥ u2 ≥ u3 ≥ · · · and ∫

u0 dθ < +∞. Then,

lim
n→∞

∫
un dθ =

∫
lim
n→∞ un dθ .

Note that by the monotone convergence theorem, all of the above properties of
the Choquet integrals hold true for any continuous capacity θ and for any function
u ∈ L(S, R̄) whenever the integral is well defined.

Theorem 2.4.7 (Fatou’s Lemma) Let θ be a probability capacity that satisfies: for
any decreasing sequence of A-measurable subsets of S, 〈An〉∞n=1, limn→∞ θ(An) ≤
θ (limn→∞ An). Also, let 〈un〉∞n=1 be a sequence of non-negativeA-measurable func-
tions such that (∃M ∈ R)(∀n) un ≤ M. Then,

lim
n→∞

∫
un(s) θ(ds) ≤

∫
lim
n→∞ un(s)θ(ds) .

2.5 Capacitary Kernel

Amapping θ : S × A → [0, 1] is a capacitary kernel (from S to S) if it satisfies (∀s ∈
S) θs is a probability capacity on (S,A), and (∀B ∈ A) θ·(B) is A-measurable.

10We only need to assume here that K is convex.
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A capacitary kernel is convex (resp. continuous) if θs is convex (resp. continuous)
for all s. In particular, if θs is a probability measure for all s, θ is called stochastic
kernel (Stokey and Lucas, 1989, p.226).

As for a capacitary kernel, the next result is used repeatedly.

Theorem 2.5.1 (Fubini Property) Let θ be a continuous capacitary kernel. Then
for any (A ⊗ A)-measurable function u, the mapping

s �→
∫

u(s, s+) θs(ds+) (2.17)

is A-measurable.

In this theorem, the continuity of θ cannot be dispensed with, as the following
example shows.

Example 2.5.1 Let (S,A) be a measurable space such that any singleton set is
included in A, and let a capacitary kernel θ be defined by

(∀A ∈ A)(∀s ∈ S) θs(A) =
{
0 if A �= S
1 if A = S .

It is immediately apparent that θ thus defined is certainly a capacitary kernel that is
convex. Furthermore, for any (A ⊗ A)-measurable function u, it turns out that

∫
S
u(s, s+) θs(ds+) = inf

s+∈S u(s, s+) . (2.18)

To see this, fix s ∈ S. Then, there exists a sequence 〈sn+〉∞n=1 ⊆ S such that u(s, sn+) →
infs+∈S u(s, s+). For each n, we denote by δn the point mass concentrated at sn+. By
the weak ∗-compactness of the core, there exists a subsequence, 〈δn j 〉∞j=1, of 〈δn〉∞n=0

that converges in the weak ∗-topology to some probability charge p0 in the core of
θs because each δn is obviously in the core. Thus, p0 actually attains the infimum in
the right-hand side of (2.18) because u

(
s, s

n j

+
) → infs+∈S u(s, s+) and

u
(
s, s

n j

+
) =

∫
S
u(s, s+) δn j (ds+) →

∫
S
u(s, s+) p0(ds+)

by the weak ∗-convergence of 〈δn j 〉. (Note that p0 may not be a point mass.)
Note that for any a ∈ R, {s | infs+∈S u(s, s+) < a} = {s | (∃s+) u(s, s+) < a}, the

latter of which is the projection of the set {(s, s+) | u(s, s+) < a} onto S. Unfortu-
nately, the projection of a measurable set is not necessarily measurable (for instance,
the projection of a Lebesgue measurable set inR2 ontoR is not necessarily Lebesgue
measurable). Therefore, the right-hand side of (2.18) is not necessarilyA-measurable
as a function of s.
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The set that is defined as the projection of the measurable set in the product
measurable space is called analytic set. For the analytic set, see Dellacherie and
Meyer (1988), Bertsekas and Shreve (1978), and Remark 2.5.1 right below. �

The Fubini property is key for dynamic analyses conducted in the latter half of this
book. An extension of the ε-contamination to a capacitary kernel inherits the same
difficulty as Example 2.5.1. The δ-approximation of the ε-contamination (Example
2.3.4) is a mechanism to resolve this problem. See Chap.9.

Remark 2.5.1 Note that the capacitary kernel in Example 2.5.1 is continuous from
above but is not continuous from below. Furthermore, if we assume that S is a topo-
logical space and if we define the capacity by way of Remark 2.3.1, the “continuity
from below” in the weak sense described there follows because the conjugate of θs
is “continuous” with respect to a decreasing sequence of closed sets by the finite
intersection property of compact sets. (Munkres 1975, p.170, Theorem 5.9) If we
assume that θs is a capacity in the sense of Remark 2.3.1, the mapping defined by
(2.17) is alwaysA-analytic instead ofA-measurable. (Dellacherie and Meyer 1988)
The analyticity is a concept that is weaker than the measurability and Epstein and
Wang (1995) use this concept to analyze asset pricing in the presence of Knightian
uncertainty (see Chap. 8).

The rest of this chapter assumes that S is a nonempty Borel-measurable subset
of a Polish space (i.e., a Borel-measurable subset of a topological space that is a
homeomorph of a complete separable metric space). Also, when S is a topological
space, the algebra on it should be always understood to be theBorel σ-algebra, which
is the smallest σ-algebra containing all open sets. We denote it by BS , and hence,
A = BS in what follows.

Acapacitary kernelθ is strongly continuous if (∀〈sn〉∞n=1 → s0) supE∈BS
|θsn (E) −

θs0(E)| → 0.
The concept of upper quasi-continuity was introduced by Ozaki and Streufert

(1996) for amore general class of operators that includes as a special case theChoquet
integral with respect to a capacitary kernel. A capacitary kernel θ is upper quasi-
continuous beneath a function ū ∈ L(S, R̄) if (∀〈sn〉∞n=1 → s0 ∈ S)(∀〈un〉∞n=1 ≤ ū)

lim
n→∞

∫
S
un(s)θsn (ds) ≤

∫
S
lim
n→∞ un(s)θs0(ds) .

The concept of upper semi-continuity was introduced by Ozaki (2002) for a more
general class of operators that includes as a special case the Choquet integral with
respect to a capacitary kernel. Assume that X is another Polish space. A capaci-
tary kernel θ is upper semi-continuous on S × X beneath a function ū ∈ L(S, R̄) if
(∀〈(sn, xn)〉∞n=1 → (s0, x0) ∈ S × X)(∀u ∈ L(S × X, R̄))

u is upper semi-continuous and (∀n ≥ 1) u(·, xn) ≤ ū

⇒ lim
n→∞

∫
S
u(s, xn) θsn (ds) ≤

∫
S
u(s, x0) θs0(ds) .

http://dx.doi.org/10.1007/978-4-431-55903-0_9
http://dx.doi.org/10.1007/978-4-431-55903-0_8
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The next result is proved byOzaki (2002), and it states that the upper quasi-continuity
is a stronger assumption than the upper semi-continuity.

Theorem 2.5.2 Suppose that a capacitary kernel θ is upper quasi-continuous
beneath a function ū. Then for any Polish space X, θ is upper semi-continuous
on S × X beneath ū.

Thenext theoremprovides a sufficient condition for θ to beupper semi-continuous.

Theorem 2.5.3 (Upper Semi-continuity) Assume that a capacitary kernel θ is
strongly continuous and that (∀s) θs(·) is continuous from above. Then, for any
Polish space X, θ is upper semi-continuous on S × X beneath any constant func-
tion.

For the remainder of this chapter, we exploit the orderedness of the state space
by setting S = Z := [z, z̄] for some z and z̄ such that 0 ≤ z ≤ z̄ < +∞. We let
A := BZ , the Borel σ-algebra on Z .

A capacitary kernel θ is stochastically nondecreasing if for each nondecreasing
function h : Z → R, the mapping defined by

z �→
∫
Z
h(z′) θz(dz′) (2.19)

is nondecreasing. The definition of the stochastic nondecrease here extends that of
(Topkis 1998, p.159) for a probability measure to a probability capacity. The concept
of the stochastic nondecrease for the capacitary kernel first appeared in Ozaki and
Streufert (2001), where the state space is assumed to be a finite set.

Topkis uses (2.20) below for additive θ to define this concept, which turns out
to be equivalent to the definition that uses (2.19). This equivalence also holds for
nonadditive θ as the next theorem shows.

Theorem 2.5.4 (Stochastic Nondecrease) A continuous capacitary kernel θ is sto-
chastically nondecreasing if and only if a mapping defined by

z �→ θz({z′ ∈ Z |z′ ≥ t}) (2.20)

is nondecreasing for each t ≥ 0.

Similarly, a capacitary kernel θ is stochastically convex if for each nondecreasing
function h : Z → R, the mapping defined by (2.19) is convex. For this concept, we
have a counterpart of Theorem 2.5.4.

Theorem 2.5.5 (Stochastic Convexity) A continuous capacitary kernel θ is stochas-
tically convex if and only if a mapping defined by (2.20) is convex for each t ≥ 0.

Some of the assumptions on capacitary kernels introduced so far remain to be
satisfied even after some distortion. The next theorem shows this fact.
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Theorem 2.5.6 Assume that f : [0, 1] → [0, 1] is a convex and continuous func-
tion satisfying f (0) = 0 and f (1) = 1. Also, assume that θ is a convex and con-
tinuous capacitary kernel that is stochastically nondecreasing (resp. stochastically
convex, upper semi-continuous). Then, a mapping f ◦ θ : Z × BZ → [0, 1] defined
by (∀z)(∀A) ( f ◦ θ)z (A) = f (θz(A)) is a convex and continuous capacitary ker-
nel that is stochastically nondecreasing (resp. stochastically convex, upper semi-
continuous).

In general, a stochastic kernel need not be stochastically nondecreasing nor upper
semi-continuous. The next example provides a stochastic kernel P that is strongly
continuous, stochastically nondecreasing, and stochastically convex. Because a sto-
chastic kernel is automatically continuous from above, P in the example is also upper
semi-continuous by Theorem 2.5.3.

Example 2.5.2 Let Z = [0, 1] and let P be a stochastic kernel defined by

(∀z, t ∈ Z) Fz(t) = Pz([0, t]) :=
∫ t

0
(2 − z) dμ ,

where F is the associated (conditional) distribution function and μ is the Lebesgue
measure. That is, Pz(·) is the uniform distribution on [0, 1/(2 − z)]. Then, P is
strongly continuous, stochastically nondecreasing, and stochastically convex. (See
A.1.12 in the Appendix.)

Suppose that P is a stochastic kernel that is upper semi-continuous, stochastically
nondecreasing, and stochastically convex. The existence of such a stochastic kernel is
guaranteed by Example 2.5.2. Also, suppose that f : [0, 1] → [0, 1] is a convex and
continuous function satisfying f (0) = 0 and f (1) = 1.Then, byTheorem2.5.6,θ :=
f ◦ P is convex and a continuous capacitary kernel that is upper semi-continuous and
stochastically nondecreasing, as well as stochastically convex, and hence it satisfies
all the assumptions for some results appearing in Chap. 11.

2.6 Remarks: Upper Quasi/Semi-Continuity of a Stochastic
Kernel

Easily verifiable conditions for the upper quasi-continuity and the upper semi-
continuity are still unknown. We only have the following conjecture.

Conjecture 2.6.1 (Upper Quasi-continuity) A capacitary kernel θ is upper quasi-
continuous beneath ū ∈ L(S, R̄) if (θ, ū) satisfies

M1.
(∀〈sn〉∞n=1 → s0

)
sup
E∈BS

|θsn (E) − θs0(E)| → 0 and

M2.
(∀〈sn〉∞n=1 → s0

)
lim

b→+∞ lim
n→+∞

∫
{s ′| ū(s ′)≥b }

ū(s ′) θsn (ds ′) = 0 .

http://dx.doi.org/10.1007/978-4-431-55903-0_11
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The conjecture holds true if θ is a stochastic kernel (see Ozaki and Streufert (1996),
p.424, Lemma C.1).

For the upper semi-continuity capacitary kernel, we have

Conjecture 2.6.2 (Upper Semi-continuity) Let X be a Polish space. Then a capac-
itary kernel θ is upper semi-continuous on S × X beneath ū ∈ L(S, R̄) if (θ, ū)
satisfies M2 and

M1−.
(∀〈sn〉∞n=1 → s0

)
θsn converges to θs0 “weakly” as n → +∞.

We think that the strong continuity of a capacitary kernel assumed in Theorem 2.5.3
that gives sufficient conditions for the upper semi-continuity may be too strong. We
think so because the above conjecture holds true if θ is a stochastic kernel (see Ozaki
2002, p.30, Theorem 1) where the sense in which θ weakly converges is clear. For a
general capacitary kernel, there are several proposals about what a weak convergence
is. See, for example, Narukawa et al. (2003).
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