
Chapter 2
Preliminary – Causal Calculus

The theory of noncausal calculus is an alternative to the causal theory of Itô calculus
but is not quite independent of it. Aswewill see in themain part of this book that starts
from Chap.3, our noncausal theory stands as a natural extension of the causal theory
of Itô calculus, to be more precise, the causal theory based on the stochastic integral
called symmetric integrals. Wemay emphasize that at this point our noncausal theory
keeps a large part of its raisons d’être.

Hence as preliminaries for the study of our noncausal theory of stochastic calculus
we need to present in this chapter a necessary andminimum review on thosematerials
and related facts from the causal calculus such as Brownian motion, the Itô integral,
the symmetric integrals and the notion of the B-derivative of random functions. By
doing this we also intend to prepare the list of symbols and terminologies concerning
those materials that will be used throughout the book.We remark that what we intend
to show in this chapter is not a standard review of Itô calculus but just a small note
on it, thus for the details or further understanding of the causal calculus we would
refer the reader to other standard textbooks on Itô calculus and some of the author’s
articles (e.g. [20–25]).

The presentation of these materials is in the following order: Brownian motion
in Sect. 2.1, the Itô integral and related statements in Sect. 2.2, some elementary
but important results concerning the SDE (stochastic differential equation) will be
referred to in Sect. 2.3, while Sect. 2.4 is devoted to the note on variants of the Itô
integral, where we repeat briefly the results concerning the B-derivative and the
symmetric integrals, especially the integral I1/2( f ) that is introduced by the author
([20, 21]) and will be of frequent use in the discussions on our main theme. We
also refer to the integral of symmetric type called the Stratonovich–Fisk integral
([14, 55]).

Before entering into the discussion the author would like to have the reader’s
attention on the symbols for stochastic integrals. As we are going to deal with plural
stochastic integrals we need appropriate symbols to make clear distinctions between
them. In particular, for the Itô integral we would assign

∫
f d0Wt , by putting “0”

at “dW” to signify that the Itô integral is at the origin of the theory of stochastic
calculus.
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12 2 Preliminary – Causal Calculus

2.1 Brownian Motion

Definition 2.1 (1) A real-valued random variable X (ω) defined on a probabil-
ity space (Ω,F , P) is called Gaussian if its characteristic function ϕX (θ) :=
E[exp{iθ X}] is given in the following form:

E[exp{iθ X (ω)}] :=
∫

Ω

exp{iθ X (ω)}d P(ω) = exp

{

imθ − σ 2

2
θ2

}
∀θ ∈ R1,

where m and σ ≥ 0 are real constants.
(2) An n-tuple of real random variables X := (X1, . . . , Xn) ∈ Rn is called an Rn-
valued (or n-dimensional) Gaussian random variable provided that any linear com-
bination Y = ∑n

k=1 tk Xk(ω) with ∀(t1, . . . , tn) ∈ Rn is a real Gaussian random vari-
able.

By definition (2) above we see that:

Proposition 2.1 The n components {Xk, k = 1, n} of the Rn-valued Gaussian vari-
able X = (X1, . . . , Xn) are independent provided that they are uncorrelated, namely,
Cov(Xi , X j ) = 0∀i �= j , where Cov(Xi , X j ) = E[(Xi − E Xi )(X j − E X j )] is the
covariance of (Xi , X j ).

Definition 2.2 (Gaussian process) A stochastic process Xt (ω), t ∈ T ⊂ R is called
Gaussian provided that for any n ∈ N and arbitrarily chosen n different points ti ∈
T, 1 = 1, . . . , n, the n-dimensional random variable (Xti (ω), . . . , Xtn ) is Gaussian.

We know that every finite dimensional Gaussian distribution is determined by a
pair of parameters, namely, a mean vector m =t (m1, m2, . . . , mn) ∈ Rn and an
n × n-real symmetric positive definite matrix Γ called the covariance matrix, in the
following way:

f (x) = 1√
(2π)n|Γ | exp{−

1

2
(Γ −1(x − m), x − m)}, x =t (x1, x2, . . . , xn) ∈ Rn.

Thus we notice that a Gaussian process Xt , t ∈ T is completely determined by
the pair of a mean function m(t) and a real kernel Γ (s, t), s, t ∈ T of positive
definite type. Notice also that a real Gaussian process Xt determined by these has
the following properties:

m(t) := E[Xt ],
Γ (s, t) := Cov(Xs, Xt ) = E[(Xs − m(s))(Xt − m(t))].

We introduce one of our principal materials, the Brownian motion (or the BM for
short), in the following:

Definition 2.3 (Brownian motion) (1) A real Gaussian process W.(ω) defined on
(Ω,F , P) is called Brownian motion provided that:



2.1 Brownian Motion 13

(b1) P{W0 = 0} = 1,
(b2) E[Wt ] = 0, E[Ws Wt ] = s ∧ t for ∀s,∀ t ≥ 0 where s ∧ t := min{s, t}.
(2) Let W1(t), W2(t), . . . , Wn(t) be n independent copies of the Brownian motion.
The Rn-valued Gaussian process W(t) =t (W1(t), W2(t), . . . , Wn(t)) is called the
n-dimensional Brownian motion.

Example 2.1 The following processes Xt are all Brownianmotions, where c is a pos-
itive constant: (1) Xt = Wt+c − Wc, (2) Xt = 1√

c
Wct , (3) Xt = tW1/t (t > 0)

with convention X0 = 0.

A right continuous and increasing family {Ft , t ≥ 0} of sub σ -fields ofF is called
“filtration”:

Fs ⊂ Ft ⊂ F ∀s < t, and Ft =
⋂

h>0

Ft+h .

For instance, G W
t := σ {Ws | s ≤ t} or G W

t ∨ σ {V }where V (ω) is a random variable
independent of Brownian motion are filtrations.

Definition 2.4 In this book, by natural filtration we understand a right continuous
and increasing family of sub σ -fields {FW

t , t > 0} such that

FW
t ⊃ G W

t
∀t

and that for any s ≤ t incrementWt − Ws is independent ofFW
s . Hereweunderstand

that every sub σ -field FW
t is completed with all P-null sets.

2.1.1 Some Properties of BM

The Brownian motion process, which is also called the Wiener process, was intro-
duced by N.Wiener in 1930. Being one of the most important materials in the theory
of stochastic processes, it has been studied extensively by many authors, and many
books have been published. We do not intend to repeat in detail, even some parts of,
its basic properties but we shall content ourselves in this subsection with listing only
some of its remarkable properties which cannot be missed for our present purpose:

(f1) From (b2) we see that E[(Wt − Ws)
2] = |t − s| and that the random variable

Wt − Ws follows the normal law, Wt − Ws ∼ N (0, |t − s|).
(f2) The condition (b2) also implies that, for any 0 ≤ s ≤ t ≤ u ≤ v, we have

E[(Wv − Wu)(Wt − Ws)] = E[WvWt − Wt Wu − WvWs + Wu Ws]
= t − t − s + s = 0.

By virtue of Proposition 2.1 we see from (f2) that Brownian motion is a process
of independent increments.
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(f2)’ Or in other words, for any s ≤ t the increment Δs,t W := W (t) − W (s) is
independent of the field G W

s .
This property implies that Brownian motion is a martingale along with the family
of sub σ -fields {G W

t }t>0, that is, for any t ≥ s the following holds:

E[Wt |G W
s ] = Ws P − a.s.

(f3) Brownian motion Wt is a martingale with respect to any natural filtration men-
tioned in Definition 2.4,

E[Wt |FW
s ] = Ws P − a.s. ∀t ≥ s.

(f4) For any fixed α ∈ R the process Zt = exp{αWt − α2t
2 } becomes an FW

t -
martingale. In fact, for any t ≥ s we have

E[Zt |FW
s ] = E

[

Zs exp

{

αWt − α2(t − s)

2

}

|FW
s

]

= Zs E

[

exp

{

α(Wt − Ws) − α2(t − s)

2

}

|FW
s

]

= Zs P − a.s.

since

E

[

exp

{

α(Wt − Ws) − α2(t − s)

2

}

|FW
s

]

= E

[

exp

{

αWt−s − α2(t − s)

2

}]

= 1.

(f5) The fact (f2) also implies that Brownian motion is a homogeneous Markov
process having the following kernel as transition probability density:

p(t, x, y) = 1√
2π t

exp

{

− (y − x)2

2t

}

, x, y ∈ R, t > 0. (2.1)

Knowing the transition probability density we can construct the Markov process,
so we confirm the existence of BM.

Here are some important properties concerning the regularity of the sample path of
BM.
(f6) We notice the following property.

Proposition 2.2 Almost every sample path of BM is continuous but is not of bounded
variation on any finite interval.

For the verification of this statement we appeal to the following result called Kol-
mogorov’s test, whose proof is omitted.
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Theorem 2.1 If a real-valued stochastic process Xt t ∈ [0, T ] satisfies the following
condition for some positive constants α, β, C:

E[|Xt − Xs |α] ≤ C |t − s|1+β ∀ s, t ∈ [0, T ], (2.2)

then almost every sample function of Xt is continuous.

Proof Now we verify the validity of Proposition 2.2. From the fact (f1) we have,

E[(Wt − Ws)
4] = 3(t − s)2.

Hence we see the continuity of the sample function by virtue of Kolmogorov’s test
(Theorem 2.1) cited above.

For the verification of the second assertion, we put

Vn =
n∑

i=0

∣
∣
∣
∣W

(
i + 1

n

)

− W

(
i

n

)∣∣
∣
∣ .

It suffices to show that
lim

n→∞ Vn = ∞ P − a.s.

Notice that the condition (b1) together with (f1) and (f2) implies the following
inequality,

E[e−Vn ] = Πn
i=0E[e−|W ( i+1

n )−W ( i
n )|] = {E[e−|W ( 1

n )|]}n

≤ E

[

1 −
∣
∣
∣
∣W

(
1

n

)∣∣
∣
∣ +

1

2

∣
∣
∣
∣W

(
1

n

)∣∣
∣
∣

2
]n

≤
{

1 − 1√
n

+ 1

2n

}n

−→ 0, (as n → ∞).

Hence we see that limn→∞ Vn = ∞ almost surely and this implies the conclusion.
�

The properties (f7), (f8) below concern the regularity of sample paths of Brownian
motion. The proofs can be found in every standard textbook (cf. [15]) and are omitted
here for the sake of making the content of this chapter as compact as possible.

(f7) Almost every sample path of the BM is not differentiable at almost every t ∈
[0, T ].

(f8) As for the modulus of continuity of W , we have the following result due to
P. Lévy (cf. [15]):
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P

⎡

⎢
⎢
⎢
⎢
⎣

lim sup
0 ≤ s ≤ t ≤ 1
h = t − s ↓ 0

|W (t) − W (s)|
√
2h log 1

h

= 1

⎤

⎥
⎥
⎥
⎥
⎦

= 1. (2.3)

2.1.2 Construction of BM

We would like to finish this section with a note on the existence of the Brownian
motion, since we could find there a basic idea that leads us to the noncausal stochastic
integral. We have already mentioned in (f5) how the BM is constructed as a Markov
process. Here we shall show different ways for the construction.

1. Construction by a Fourier series.
Let {ϕn(t)} be an orthonormal basis in L2(0, 1) and let {Ξn(ω)} be an i.i.d. family
of random variables following the standard normal law N (0, 1). Given these,
consider a sequence {Xn(t, ω)}n of random functions defined in the following
way:

Xn(t, ω) :=
n∑

k=1

Ξn(ω)

∫ t

0
ϕk(s)ds.

Notice that by Perseval’s equality we have

∞∑

k=1

∣
∣
∣
∣

∫ t

0
ϕk(s)ds

∣
∣
∣
∣

2

= ||1[0,t](·)||2L2 = t,

and notice that this convergence is uniform in t ∈ [0, 1]. Hence,

lim
m,n→∞

∫ 1

0
E
[|Xn(t) − Xm(t)|2] dt =

∫ 1

0

n∑

k=m+1

|
∫ t

0
ϕk(s)ds|2dt = 0.

In other words the sequence {Xn(t, ω)}n converges in L2([0, 1] × Ω) to a limit,
say X (t, ω). We see that E[X (t)] = limn E[Xn(t)] = 0 and that

Cov(X (s), X (t)) = lim
n→∞Cov(Xn(s), Xn(t))

= lim
n→∞

n∑

k=1

∫ s

0
ϕk(r)dr

∫ t

0
ϕk(r)dr = (1[0,s](·), 1[0,t](·))L2

= s ∧ t,

which shows that the limit X is a Brownian motion.
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2. As for the convergence of the series X (·) we must refer to a much more general
result due to K. Itô and M. Nisio:

Theorem 2.2 (Itô and Nisio [12]) For an arbitrary orthonormal basis {ϕn(t)} in
L2(0, 1) the series

X (t.ω) =
∑

n

Ξnϕ̃n(t), where ϕ̃n(t) =
∫ t

0
ϕn(s)ds (2.4)

converges uniformly in t over [0, 1] with probability one.

For the proof we would refer the reader to the article [12] cited above.

3. Instead we would like to show the result due to Ciesielski [1] which deals with
the series (2.4) for a special basis and can be verified in an elementary way:
Let {Hn,i , 0 ≤ i ≤ 2n−1 − 1, n ∈ N ∪ {0}} be the orthonormal system of Haar
functions, namely

H0,0(t) = 1, t ∈ [0, 1],
Hn,i (t) = 2

n−1
2 {1[2−n+1i,2−n+1(i+1/2))(t) − 1[2−n+1(i+1/2),2−n+1(i+1))(t)}, (2.5)

n ≥ 1, 0 ≤ i ≤ 2n−1 − 1,

where 1A(·) is the indicator function of set A.
Given this we take a family of independent and identically distributed N (0, 1)
random variables {Ξ0,0, Ξn,i ; 0 ≤ i ≤ 2n − 1, n ∈ N} and consider the random
series as follows:

X (t) = Ξ0,0t +
∞∑

n=1

2n−1∑

i=0

Ξn,i H̃n,i (t), (2.6)

where

H̃n,i (t) =
∫ t

0
Hn,i (s)ds, t ∈ [0, 1].

Proposition 2.3 (Ciesielski [1]) The series X (t, ω) converges uniformly in t over
[0, 1] with probability one and the sum X is a Brownian motion:

P

⎡

⎣ lim
m,n→∞ sup

t∈[0,1]
|

n∑

k=m

2k−1∑

i=0

Ξk,i H̃k,i (t)| = 0

⎤

⎦ = 1.

Proof Sketch of the proof:

Put X (t, ω) := Ξ0,0t +
∞∑

n=1
Yn(t), where

Yn(t, ω) =
2n−1∑

i=0

Ξn,i H̃n,i (t), n ≥ 1.
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We are going to show that the series
∞∑

n=1
Yn(t, ω) converges uniformly in t ∈ [0, 1]

with probability one.
The functions H̃n,k(t) = ∫ t

0 Hn.k(s)ds are just the functions called the Schauder

basis, each of which has an equi-lateral triangular shape with height 2− n+1
2 . Also we

notice that
H̃n,k(t)H̃n, j (t) = 0 whenever k �= j. (2.7)

Then by the property (2.7) we have the following estimate:

sup
t∈[0,1]

|Yn(t)| =
∣
∣
∣
∣
∣

2n−1∑

i=0

Ξn,i (ω)H̃n,i (t)

∣
∣
∣
∣
∣
≤ max

i
|Ξn,i |2−(n+1)/2.

Hence for an arbitrary positive α we get the inequality below:

P{sup
t

|Yn(t)| ≥ α
√
2−n log 2n}

≤ P{max
i

|Ξn,i |2−(n+1)/2 ≥ α
√
2−n log 2n}

≤ P{ max
0≤i≤2n−1

|Ξn.i | ≥ α
√
2 log 2n} ≤ 2n P{|Ξ0,0| ≥ α

√
2 log 2n}

≤ 2n2
∫ ∞

α
√
2n log 2

e−x2/2

√
2π

dx .

By the elementary inequality

∫ ∞

A
e−x2/2 ≤ 1

A
e−A2/2,

we get the following estimate,

P{sup
t

|Yn(t)| ≥ α
√
2−n log 2n} ≤

√
2

2π log 2
· 1√

n
2(1−α2)n.

Since
∑

n

1√
n
2(1−α2)n < ∞ when α > 1, we see by Borel–Cantelli’s first lemma that

P

[

sup
t∈[0,1]

|Yn(t)| < α
√
2−nn log 2 for all large enough n

]

= 1.

Since
∑

n

√
2−nn log 2 < ∞, we confirm that the series X (t, ω) converges uniformly

in t ∈ [0, 1] with probability one. It is immediate to see that the process X (t, ω) is
Gaussian and that.,
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E[X (t)] = 0, Cov(X (s), X (t)) = s∧t,

hence we get the conclusion. �

2.2 Itô Integral with Respect to BM

Let Wt (ω) or W (t, ω), (t ≥ 1) be Brownian motion defined on a probability space
(Ω,F , {FW

t }, P), where {FW
t } is the natural filtration mentioned in Definition2.4.

We review in this section how the Itô integral with respect to Brownian motion, the
first stochastic integral,

∫
f (t, ω)d0Wt is introduced for a certain class of random

functions.

2.2.1 Classes of Random Functions

We need to introduce some classes of random functions. First of all, by random
function we understand in this book a real or complex-valued function f (t, ω)which
is defined on the complete measure spaces (R1 × Ω, dt × d P) and is measurable in
(t, ω) with respect to the product σ -field BR+ × F , where BR+ is the Borel field
on R+ = [0,∞). For the simplicity of argument and notations we restrict ourselves
to the case of random functions f (t, ω) defined on the unit interval t ∈ [0, 1], but
depending on the subject this restriction will be changed in a customary way to a case
of random functions defined on a larger interval like functions on a finite interval
[0, T ] or on R+.

Here is the list of symbols for classes of random functionswhichwill be in frequent
use throughout the book.

• H: The totality of such random functions f (t, ω) that verify the condition

P

{∫ 1

0
| f (t, ω)|2dt < ∞

}

= 1.

• M: Set of all such random functions f (t, ω) ∈ H that are adapted to the filtration
{FW

t }t>0 and, more precisely, are progressively measurable in (t, ω) with respect
to the product field B[0,t] × FW

t . We will call this constraint on the measurability
of random functions the causality condition and call the random function of this
class causal.

• Note: When we say that a random function f (t, ω) is noncausal, it means that the
function is not assured to be causal, in other words it simply means that f ∈ H.
This may be an abuse of the word noncausal: nevertheless the word has been in
use since the beginning of the theory, so also in this book we would like to follow
this custom and hope that the reader will not be confused.
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• M2: The set of all causal random functions f (t, ω) that satisfy the condition
E[∫ 1

0 | f (t, ω)|2dt] < ∞, i.e. M2 = M ∩ L2([0, 1] × Ω, dt × d P).
• M2c: The subset of M2, consisting of all elements that are uniformly continuous
in the mean sense, namely limh→0 supt E[| f (t + h) − f (t)|2] = 0.

• S0: The totality of such a random function f (t, ω) whose sample path is almost
surely a step function in t ∈ [0, 1], that is, there exists a finite partition {0 = t0 <

t1 < · · · < tn = 1} of [0, 1] and random variables { fi (ω), 0 ≤ i ≤ n − 1} such
that

f (t, ω) = fi (ω), t ∈ [ti , ti+1), i = 0, . . . , n − 1. (2.8)

The random function of this class is called simple.
• S: The set of all causal simple functions, that is, S = S0 ∩ M. Being “simple and
causal” is equivalent to the fact that each randomvariable fi (ω) (i = 0, . . . , n − 1)
in the form (2.8) is measurable with respect to the σ -field FW

ti .
• S2: The set of all simple and causal random functions which are square integrable
in (t, ω), namely S2 = S0 ∩ M2.

Itô’s stochastic integral of a causal random function f (t, ω) ∈ M with respect to
Brownian motion is introduced step by step in the following way.

2.2.2 Itô Integral for f ∈ S

Let f (t, ω) be an S-class random function. By definition of the class, there exists
a partition {0 = t0 < t1 < · · · < tn = 1} of [0, 1] and a family of random variables
{ fi (ω), 0 ≤ i ≤ n − 1} such that

f (t, ω) =
n−1∑

i=0

fi (ω)1[ti ,ti+1)(t), t ∈ [0, 1], (2.9)

Notice that each fi (ω) = f (ti , ω) isFW
ti measurable.

Definition 2.5 For a causal simple function f (t, ω) of the form (2.9) we put

I ( f ) :=
n−1∑

i=0

fi (ω)Δi W, Δi W = W (ti+1) − W (ti ).

We call I ( f ) the Itô integral of f (∈ S) with respect to Brownian motion and
denote it by

∫ 1
0 f (t, ω) d0Wt .

Here we notice that the representation form (2.9) of a simple function is not unique,
indeed it can be represented along a different partition, but the above definition of
the integral I ( f ) for f ∈ S does not depend on those representation forms.
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For a sub-interval [a, b] ⊂ [0, 1], it is clear that the function 1[a,b](·) f (·, ω)

belongs to the class S. Hence the stochastic integral on the sub-interval [a, b] is
well-defined in the following form:

∫ b

a
f (t.ω)d0Wt := I (1[a,b](·) f (·)).

We will denote the integral I (1[0,t] f ) also by It ( f ).
The stochastic integral I ( f ) defines an application from S to L0(Ω, d P).

Proposition 2.4 The integral I ( f ) (defined on S) has the following properties:

(1) Linearity: The application I ( f ) is linear, that is, for any functions f, g ∈ S
and constants α, β the following equality holds:

I (α f + βg) = α I ( f ) + β I (g).

(2) Isometry: For a causal and square integrable simple function, f (t, ω) ∈ S2,
we have E[I ( f )] = 0 and

E[|I ( f )|2] = E[
∫ 1

0
| f (t, ω)|2dt] = || f ||2L2([0,1]×Ω).

In other words, the Itô integral defines an isometry from S2 (⊂ L2([0, 1] ×
Ω, dt × d P)) to L2(Ω, d P).

Proof Property (1) is evident. As for the second equality in (2), we have

E[|I ( f )|2] = E

⎡

⎣
∑

i> j

{ fi f j + fi f j }Δi WΔ j W +
∑

k

| fk |2(Δk W )2

⎤

⎦

=
∑

i> j

E
[{ fi f j + fi f j }Δ j W · E{Δi W |FW

ti }] +
∑

k

E
[| fk |2E{(Δk W )2|FW

tk }]

=
∑

k

E[| fk |2](tk+1 − tk) = E
∫ 1

0
| f (t, ω)|2dt,

and this implies the conclusion. �

Proposition 2.5 Let f (t, ω) be a causal simple function. Then the stochastic process
It ( f ) := I (1[0,t](·) f (·)) has the following properties:

(a) Almost all sample functions of It ( f ) are continuous in t .
(b) The process It ( f ) is an FW

t - martingale.
(c) When f ∈ S is real, the process Zt := exp{It ( f ) − 1

2

∫ t
0 f 2(s)ds} is

a continuous FW
t martingale and E[Zt ] = 1 ∀t .
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Proof (a) Let Δ be a partition associated to the simple function f (t, ω). Fix a t ∈
(0, 1] and denote by [tk, tk+1) the sub-interval that contains the t , then

It ( f ) =
k−1∑

i=0

fi (ω)Δi W + fk(ω){W (t) − W (tk)}

which shows the continuity in t of the path of process It ( f ).
(b) Let s, t ∈ [0, 1] be such that t ≥ ti ≥ t j ≥ s ≥ t j−1. Then we have

It ( f ) =
i−1∑

k=0

fk · Δk W + fi (Wt − Wti )

=
j−2∑

k=0

fk · Δk W + f j−1(Ws − Wt j−1) + f j−1(Wt j − Ws)

+
i∑

k= j

fkΔk W + fi (Wt − Wt j ),

Hence we get

E[It ( f )|FW
s ] =

j−2∑

k=0

fk · Δk W + f j−1(Ws − Wt j−1)

+ E

⎡

⎣ f j−1(Wt j − Ws) +
i∑

k= j

fk · Δk W + fi (Wt − Wt j )
∣
∣FW

s

⎤

⎦

= Is( f ) + E
[

f j−1 · E[Wt j − Ws |FW
j−1]

+
i∑

k= j

fk E[Δk |FW
k ] + fi E[Wt − Wt j |FW

j ] ∣∣FW
s

⎤

⎦

= Is( f ) P − a.s.

(c) Let s, t be such that t ≥ ti ≥ s ≥ ti−1. We have

It ( f ) = Is( f ) + fi−1(Wti − Ws) + fi (Wt − Wti ),

and

∫ t

0
f 2(r)dr =

∫ s

0
f 2(r)dr +

∫ t

s
f 2(r)dr

=
∫ s

0
f 2(r)dr + f 2i−1(ti − s) + f 2i (t − ti ).
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Combining these we get the following equality:

Zt = Zs

× exp

{

fi−1(Wti − Ws) − 1

2
f 2i−1(ti − s) + fi (Wt − Wti ) − 1

2
f 2i (t − ti )

}

.

Hence

E[Zt |FW
s ] = Zs × E

[

exp{ fi−1(Wti − Ws) − 1

2
f 2i−1(ti − s)}

×E[exp{ fi (Wt − Wti ) − 1

2
f 2i (t − ti )}|FW

ti ]∣∣FW
s

]

.

Since

E[exp{ fi (Wt − Wti ) − 1

2
f 2i (t − ti )}|FW

ti ] = 1 P − a.s.

we see that

E[Zt |FW
s ] = Zs E

[

exp{ fi−1(Wti − Ws) − 1

2
f 2i−1(ti − s)|FW

s

]

= Zs P − a.s.

This completes the proof of (c). �

From property (c) in Proposition 2.5, we get the following result:

Proposition 2.6 Let f be a real and causal simple function. Then for any positive
constants a, b, we have the following inequality:

P

[

sup
t

{It ( f ) − a

2

∫ t

0
f 2(s, ω)ds} > b

]

≤ e−ab. (2.10)

Proof For a real f ∈ S, we put

Zt ( f ) := exp{It ( f ) − 1

2

∫ t

0
f 2(s, ω)ds}.

By property (c) we know that Zt (a f ) is an FW
t -martingale. For the left-hand side

of the inequality in (2.10) we have the following expression:
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P

[

sup
t

{It ( f ) − a

2

∫ t

0
f 2(s, ω)ds} > b

]

= P

[

sup
t

{It (a f ) − a2

2

∫ t

0
f 2(s, ω)ds} > ab

]

= P

[

sup
t

Zt (a f ) > eab

]

Hence by applying the submartingale inequality (Corollary10.1 in Chap.9) to the
last term in the above inequality, we get

P

[

sup
t

{It ( f ) − a

2

∫ t

0
f 2(s, ω)ds} > b

]

≤ e−ab E[Z1(a f )] = e−ab.

This completes the proof. �

2.2.3 Extension to f ∈ M

We have introduced the stochastic integral I ( f ) for the causal simple functions
f ∈ S. We show that the domain of the integral is extended to the class M; the
integral I ( f ) thus introduced for f ∈ M we call the Itô integral and denote by∫

f (t, ω)d0Wt .
There are many ways to achieve this aim. Here we basically follow the argument

by H. McKean [15] which makes use of the exponential martingale Zt ( f ) ( f ∈ S).
Let us begin with the following lemma, the verification of which may be found

in every standard textbook on calculus and is left to the reader.

Lemma 2.1 Let f (t) be a deterministic function which is square integrable over
[0, 1]. We suppose that the function is extended over a larger interval in such way
that; f (t) = 0 outside of [0, 1], then we have the following equality:

lim
h→0

∫ 1

0
| f (t + h) − f (t)|2dt = 0.

The next statement plays a key rôle in the discussion. The proof will be given in the
Appendices (see Chap. 10).

Proposition 2.7 The class S is dense in M, that is: for any f ∈ M there exists a
sequence { fn} in S such that

lim
n→∞

∫ 1

0
| f (t, ω) − fn(t, ω)|2dt = 0 P-a.s.

http://dx.doi.org/10.1007/978-4-431-56576-5_10
http://dx.doi.org/10.1007/978-4-431-56576-5_10
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Now given a causal function f ∈ M and a positive α > 1, we consider a sequence
of causal simple functions { fn} ∈ S such that

P

{∫ 1

0
| f (t, ω) − fn(t, ω)|2dt ≤ 1

2n2α
for any large enough n

}

= 1. (2.11)

Notice that the existence of such a sequence is assured by Proposition 2.7, and that
the following equality holds:

P

{∫ 1

0
| fn(t, ω) − fn−1(t, ω)|2dt ≤ 2

n2α
for all large enough n

}

= 1. (2.12)

Let us consider the sequence of random functions {It ( fn)} defined by the integrals
It ( fn) = ∫ t

0 fn(s, ω)d0Ws , then we have the following statement.

Proposition 2.8 For the sequence { fn} ∈ S satisfying the condition (2.11) the
sequence {It ( fn)} converges uniformly in t over [0, 1] with probability one, that
is,

P

[

lim
m,n→∞ sup

t∈[0,1]
|It ( fn) − It ( fm)| = 0

]

= 1.

Proof We put gn = fn − fn−1. For any fixed positive constants a, b, we have from
Proposition 2.6 the following estimate:

P

[

sup
t

{It (gn) − a

2

∫ t

0
g2

n(s, ω)ds} > b

]

≤ e−ab.

Now fix another constant c > 1 and choose a, b in the above inequality in the fol-
lowing way:

a = nα
√
log n, b = c

nα

√
log n,

then we get the following estimate:

P

[

sup
t∈[0,1]

{It (gn) − a

2

∫ t

0
gn(s)

2ds} > b

]

≤ e−c log n = 1

nc
.

Since
∑

n

1
nc < ∞, by Borel–Cantelli’s first lemma we get the following equality:

P

[

sup
t∈[0,1]

{It (gn) − a

2

∫ t

0
gn(s)

2ds} ≤ b for large enough n

]

= 1,

which together with the estimate (2.12) implies that
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1 = P

[

sup
t∈[0,1]

It (gn) ≤ b + a

2

∫ 1

0
g2

n(s)ds for large enough n

]

≤ P

[

sup
t

It (gn) ≤ 2
√
log n

nα
for all large enough n

]

.

Repeating the same argument with −gn instead of the gn , we find that

P

[

sup
t

|It (gn)| ≤ 2
√
log n

nα
for all large enough n

]

= 1.

Since
∑

n

√
log n
nα < ∞ and since It (gn) = It ( fn) − It ( fn−1), we confirm that the

sequence {It ( fn)} almost surely converges in uniform topology. Hence we are done.
�

We remark at this stage that the limn I ( fn) does not depend on the choice of the
approximating sequence { fn}(∈ S), hence we arrive at the following definition of
the Itô integral.

Definition 2.6 (Itô integral) For the sequence {I ( fn)} constructed in Proposition
2.8 we call the limn I ( fn) the Itô integral of the causal random function f ∈ M and
denote it by

∫ 1
0 f (t, ω)d0Wt .

Remark 2.1 (Integration over a general interval) It is only for the simplicity of the
argument that we have limited our discussion to the integration over the interval
[0, 1]. We clearly see that our argument works for the case of any finite interval
[0, T ] T < ∞. Extension to the integration over the infinite interval [0,∞) can be
carried out in a similar way.

For a causal random function f (t, ω) such that
∫∞
0 | f (t, ω)|2dt < ∞P-a.s. Since

limA→∞
∫∞

A | f (t, ω)|2dt = 0 (P-a.s.), we choose an increasing sequence of real
numbers {cn} in the following way:

P

{∫ ∞

cn

| f (t, ω)|2dt <
1

2n2α
for large enough n

}

= 1,

and we put fn(t, ω) = 1[0,cn ](t) f (t, ω). Then we see that for each n the Itô integral
I ( fn) = ∫ cn

0 f (t, ω)d0Wt is well-defined and that

P

{∫ ∞

0
| f (t, ω) − fn(t, ω)|2dt <

1

2n2α
for large enough n

}

= 1.

Now following a similar argument given in the proof of Proposition 2.8 we would
confirm that the sequence {I ( fn)} almost surely converges as n tends to infinity. We
define the stochastic integral of f (t, ω) over [0,∞) by its limit:
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∫ ∞

0
f (t, ω)d0Wt = lim

n→∞

∫ n

0
f (t, ω)d0Wt .

Here are some basic properties of the Itô integral I ( f ) ( f ∈ M), most of which
can be verified by checking the limit procedure for the corresponding equalities given
in Propositions2.4 and 2.5.

Proposition 2.9 The stochastic integral I ( f ) defined for f ∈ M has the following
properties:
(I–1) Linearity: I ( f ) defines a linear application from M to L0(Ω, d P), that is,
for any f, g ∈ M and any α, β ∈ C the next relation holds:

I (α f + βg) = α I ( f ) + β I (g).

(I–2) Isometry: For f ∈ M2 we have E[I ( f )] = 0 and ||I ( f )||2L2(d P)
=

E[|I ( f )|2] = || f ||2L2(dt×d P)
. But for the function f ∈ M we only have the inequality

||I ( f )||2L2(d P) ≤ E[
∫ 1

0
f 2(t, ω)dt] (≤ ∞).

(I–3) Continuity: Almost every sample of It ( f ) = I (1[0,t] f ) is continuous in t .
(I–4) Martingale property:

(i) For f ∈ M2 the process It ( f ) is an FW
t -martingale.

(ii) Let f (t, ω) be in M. Take an arbitrary positive number A and let τA(ω) =
max{t > 0,

∫ t
0 | f (s, ω)|2ds ≤ A}. Then I{t∧τ }( f ) is an FW

t -martingale.

Proof Theproperty (I–1) is evident fromdefinition of the integral. For the verification
of the first part of (I–2), we fix an f (t, ω) in M2 and take a sequence { fn} in S that
converges to f in M2, namely,

lim
n→∞ E

∫ 1

0
| f (t, ω) − fn(t, ω)|2dt = 0.

We know from (2) in Proposition 2.4 that

E[I ( fn)] = 0andE[|I ( fn)|2] = || fn||2L2([0, 1] × Ω).

Letting n → ∞ on both sides of these equalities we see that E[I ( f )] = 0,
E[|I ( f )|2] = || f ||2L2([0,1]×Ω)

.

Now suppose that f ∈ M and { fn} ∈ S is such that

lim
n→∞

∫ 1

0
| f (t) − fn(t)|2dt = 0 P-a.s.
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Then we have

E[|I ( f )|2] = E[lim inf
n→∞ |I ( fn)|2] ≤ lim inf

n→∞ E[|I ( fn)|2]

= lim
n→∞E[

∫ 1

0
| fn|2dt] ≤ E[ lim

n→∞

∫ 1

0
| fn|2dt] = E[

∫ 1

0
| f |2dt].

Hence we see the validity of property (I–2).
The property (I–3) being also immediate from the argument given in the proof of

Proposition 2.8, we are going to verify the property (I–4).

(i) Let f ∈ M2, thenwe can choose a sequence { fn} inS2 such that E[∫ 1
0 | f (t, ω) −

fn(t, ω)|2dt] = 0. For instance we may take

fn(t, ω) = f (ηn(t), ω) where ηn(t) = k

n
for t ∈

[
k

n
,

k + 1

n

)

.

For each fn the It ( fn) being anFW
t -martingale, we know that for any t ≥ s ≥ 0,

the following holds:

E[It ( fn)|FW
s ] = Is( fn) P-a.s. (2.13)

Fix an FW
s -measurable random variable X in an arbitrary way, then we have

from (2.13) the equality

E[X · It ( fn)] = E[X · E{It ( fn)|FW
s }] = E[X · Is( fn)].

Letting n → ∞ on both sides of the above equality, we get the equality E[X ·
It ( f )] = E[X · Is( f )], which states that the It ( f ) is an FW

t -martingale.
(ii) Notice that τA(ω) is an FW

t -stopping time and that the function
1{t≤τA}(ω) f (t, ω) belongs to the class M2. Since It∧τA( f ) = It (1{· ≤τA} · f ) we
confirm the validity of the statement.

�

2.2.4 Linearity in Strong Sense

We have seen how the Itô integral is introduced for causal functions in H and we
have listed some of its basic properties. In the following sections we are going to
show how the stochastic calculus based on the Itô integral works. Before that we
like to close this section with the note on a remarkable character of the Itô integral,
which is often missed in standard textbooks.

• It is said that the Itô integral is a Riemann-type integral in the sense that the Itô
integral can be defined as a limit of Riemann sums as follows:
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Given a finite partition Δ = {0 = t0 < t1 < t2 < · · · < ti < · · · tn = 1} on the
interval, that is [0, 1] in our present set-up, we consider the sum

RΔ( f ) :=
∑

ti ∈Δ

f (ti , ω)Δi W, where Δi W = W (ti+1) − W (ti ).

and say that
∫ 1
0 f (t, ω)d0Wt = lim|Δ|→0RΔ( f ), where |Δ| = max{ti+1 − ti ; ti ∈

Δ}.
By looking at the proof of Proposition 2.7 we are sure that this is true at least for
any f ∈ Mc. Remember that any f ∈ Mc is approximated by the sequence of
causal simple functions fΔ as follows:

fΔ(t, ω) = f (ηΔ(t), ω), where ηΔ(t) =
∑

k

tk1[tk ,tk+1)(t).

We are also sure that

∫ 1

0
f (t, ω)d0Wt = lim|Δ|→0

RΔ( f ) in the mean

when f ∈ M2,c, i.e. when f is causal and continuous in the mean,

lim
h→0

sup
t∈[0,1]

E | f (t + h) − f (t)|2 = 0.

In fact, we have

I ( f ) − RΔ( f ) =
n−1∑

i=0

∫ ti+1

ti

{ f (t) − f (ti )}d0Wt ,

hence

lim|Δ|→0
E[|I ( f ) − RΔ( f )|2] = lim|Δ|→0

n∑

i=0

∫ ti+1

ti

E[| f (t) − f (ti )|2]dt = 0.

Itô calculus was introduced for the theory of SDEs (stochastic differential equa-
tions) whose solutions in most cases belong to those classes cited above, hence
the slogan saying “the Itô integral is a Riemann integral” has caused no problem.

• Anyhow, the fact that the Itô integral I ( f ) for f ∈ M is defined along the sequence
of approximate causal simple functions is important. Let f (t, ω) be a function in
M and let α(ω) be an arbitrary random variable. Then we see that the function
g(t, ω) := α(ω) f (t, ω) is no more causal and is excluded from the class M. But
it does not prevent us from defining the Itô integral of a noncausal function of
this particular form. In fact, let { fn} be a sequence of causal simple functions that
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converges to f (t, ω), and let gn(t, ω) := α(ω) fn(t, ω). Then gn(t, ω) is simple
but not causal, but still the sequence {gn} converges to g(t, ω) in H P-a.s. By the
definition of the Itô integral for simple functions we have

I (gn) = α(ω)I ( fn),

hence we see that {I (gn)} converges to α(ω)I ( f ), namely we confirm that g(t, ω)

is Itô integrable.
• Generally speaking, once an integral is defined for functions in some subspace D
of a function space, it defines at the same time an application from that domain
D to a set in a metric space. In the case of the Itô integral the application I ( f )

is a mapping from M to L0(Ω, d P). On the other hand, in analysis it is widely
believed that any application induced by an integral is linear. This is true for all
stochastic integrals that we treat in this book, but the mappings, say T ( f ) for the
moment, induced by the Itô integral or by the noncausal integral of the author (see
Chap.3) exhibit more strong linearity as follows:

T (α(ω) f + β(ω)g) = α(ω)T ( f ) + β(ω)T (g),

for any random variables α(ω), β(ω). This property we like to call the strong
linearity.

2.2.5 Itô Formula

Let Xt be a stochastic process that accepts the following representation:

Xt = ξ(ω) +
∫ t

0
b(s, ω)ds +

∫ t

0
a(s, ω)d0Ws (2.14)

where ξ(ω) is a random variable independent of the Brownian motion W., and
a(·), b(·) are causal functions.
Definition 2.7 Every causal stochastic process Xt of the form (2.14) is called an Itô
process and the totality of all such processes will be denoted by MI . In other words
the Itô process is a special type of the Brownian semi-martingale.

The expression (2.14) is also denoted by the following differential form:

d Xt = b(t, ω)dt + a(t, ω)d0Wt , X0 = ξ(ω).

Remark 2.2 As a variant of this, the process of the following form (2.15) is called a
quasi martingale:

d Xt = d B(t, ω) + a(t, ω)d0Wt , (2.15)

http://dx.doi.org/10.1007/978-4-431-56576-5_3
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when a(t, ω) ∈ M and b(t, ω) is a process, causal or not, almost every sample
of which is of bounded variation on [0, 1]. We will denote the totality of quasi-
martingales by MQ . The semi-martingale is the name for a causal quasi-martingale.

Let Xt be an Itô process and let F(t, x) be a real-valued function that is defined on
R+ × R1 and is of C1-class in t and of C3-class in x with bounded derivatives.

Theorem 2.3 (Itô formula) The stochastic process F(t, Xt ) satisfies the following
equality:

d F(t, Xt )

=
{

F ′
t (t, Xt ) + F ′

x (t, Xt )b(t, ω) + 1

2
F ′′

xx (t, Xt )b
2(t, ω)

}

dt + F ′
x (t, Xt )a(t, ω)d0Wt ,

where F ′
t = ∂t F, F ′

x = ∂x F, F ′′
xx = ∂2x F. (2.16)

This equality is called the Itô formula.

Proof Fix t and set tn
k = k

n t, k = 0, . . . , n.
Then by the mean value theorem in calculus we have the following equality:

F(t, Xt ) − F(0, X0) =
n−1∑

k=0

{F(tn
k+1, X (tn

k+1)) − F(tn
k , X (tn

k ))}

=
n−1∑

k=0

{F(tn
k+1, X (tn

k+1)) − F(tn
k , X (tn

k+1)) + F(tn
k , X (tn

k+1)) − F(tn
k , X (tn

k ))}

=
n−1∑

k=0

{
F ′

t (t
n
k + θ1

k Δn
k , X (tn

k+1))Δ
n
k + F ′

x (t
n
k , X (tn

k ))Δn
k X

+ 1

2
F ′′

xx (t
n
k , X (tn

k ) + θ2
k Δn

k X)(Δn
k X)2},

where θ1
k , θ2

k (k = 0, . . . , n − 1) are constants in (0, 1) and

Δn
k = tn

k+1 − tn
k , Δn

k X = X (tn
k+1) − X (tn

k ).

By virtue of the smoothness of F ′
t , F ′

x and the continuity of the sample of X (t, ω),
we see that

lim
n→∞

n−1∑

k=0

F ′
t (t

n
k + θ1

k Δn
k , X (tn

k+1))Δ
n
k =

∫ t

0
F ′

t (s, X (s))ds, P-a.s.
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and

lim
n→∞

n−1∑

k=0

{F ′
x(t

n
k , X (tn

k ))Δn
k X + 1

2
F ′′

xx (t
n
k , X (tn

k ) + θ2
k Δn

k X)(Δn
k X)2}

=
∫ t

0
F ′

x (s, X (s))

{

b(s, ω)ds + a(s, X (s))d0Ws + 1

2
F ′′

xx (s, X (s))b2(s)ds

}

,

P-a.s.

This completes the proof. �

Weknow that Itô formula (2.16) is valid for a function F(t, x)with a less restrictive
condition on regularity, but we do not enter into the details since we need not do so
for our discussion in later chapters.

Example 2.2 Applying the formula (2.16) to the case where

F(x) = ex , Xt =
∫ t

0
f (s, ω)d0Wt − 1

2

∫ t

0
f 2(s, ω)ds,

we get the next equality for Zt = exp{Xt },

d Zt = Zt

{

f · d0Wt − 1

2
f 2dt

}

+ 1

2
Zt f 2dt = Zt f d0Wt

from which we see that Zt is an FW
t -martingale.

The extension of the result (Theorem2.3) to the case ofmulti-dimensional Itô process
can be given as follows.

Let Xt =t (X1
t , X2

t , . . . , X p
t ) be a p-dimensional stochastic process, each com-

ponent Xi
t of which is generated by the following rule:

d Xi
t = bi (t, ω)dt +

q∑

k=1

ai
k(t, ω)d0W k

t , 1 ≤ i ≤ p, (2.17)

where ai
j , bi (1 ≤ i ≤ p, 1 ≤ j ≤ q) are causal random functions and Wt =t

(W 1, W 2, . . . , W q) is the q-dimensional Brownian motion, namely the {W 1, W 2,

. . . , W q} are independent Brownian motions. The Itô formula is extended in the
following way.

Theorem 2.4 (Itô formula 2) Let F(t, x) (t ∈ R+, x =t (x1, x2, . . . , x p) ∈ Rp)

be a smooth function that is of C1-class in t and of C3-class in x with bounded
derivatives. Then for the p-dimensional Itô process Xt given in (2.17) above we
have the following equality:

d F(t, Xt ) = L1F(t, Xt )dt + L2F(t, Xt )d0Wt , (2.18)
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where

L1 = ∂

∂t
+

p∑

i=1

bi (t, ω)
∂

∂xi
+ 1

2

p∑

i, j=1

m∑

k=1

ai
ka j

k

∂2

∂xi∂x j
,

and

L2F(t, X)d0Wt =
m∑

k=1

p∑

i=1

bk
i (t, ω)

∂

∂xi
F(t, X)d0W k

t .

The demonstration of this statement is left to the reader.

Example 2.3 Apply the Itô formula (2.18) to the case where F(x, y) = xy, Xt =∫ t
0 f (s, ω)d0Ws and Yt = ∫ t

0 g(s, ω)d0Ws where f, g ∈ M, then we find the fol-
lowing equality:

∫ t

0
f (s, ω)d0Ws

∫ t

0
g(s, ω)d0Ws

=
∫ t

0
f (s, ω)d0Ws

∫ s

0
g(r.ω)d0Wr +

∫ t

0
g(s, ω)d0Ws

∫ s

0
f (r, ω)d0Wr (2.19)

+
∫ t

0
f (s, ω)g(s.ω)ds.

2.2.6 About the Martingale Zt(α)

Because of the remarkable property of the causal function

Zt = exp

{

It ( f ) − 1

2

∫ t

0
f 2(s, ω)ds

}

( f ∈ M),

we try to look at it from a different viewpoint.
Let f ∈ M be a real causal function such that

E

[

exp

{

α2
∫ 1

0
f 2dt

}]

< ∞ ∀α ∈ R,

and consider again the process Zt (α) introduced in Example 2.2:

Zt (α) := exp

{

α

∫ t

0
f (s, ω)d0Ws − α2

2

∫ t

0
f 2(s, ω)ds

}

.

We have seen that it is a square integrable FW
t -martingale such that

d Zt (α) = α f (t, ω)Zt (α)d0Wt , Z0(α) = 1. (2.20)
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In other words,

Zt (α) = 1 + α

∫ t

0
f (s, ω)Zs(α)d0Ws,

by which we find the following equality:

Zt (α) = 1 + α

∫ t

0
f (s, ω)

{

1 + α

∫ s

0
f (r, ω)Zr (α)d0Wr

}

d0Ws,

= 1 + α

∫ t

0
f (s1, ω)d0Ws1 + α2

∫ t

0
f (s1, ω)d0Ws1

(∫ s1

0
f (s2, ω)d0Ws2

)

.

By the formal repetitin of this procedure we would find the expression for Zt (α) as
follows;

Zt (α) =
∞∑

n=0

αn Zn(t), where Z0(t) = 1 and

Zn(t) =
∫ t

0
f (s1, ω)d0Ws1

∫ s1

0
f (s2, ω)d0Ws2 . . .

∫ sn−1

0
f (sn, ω)d0Wsn . (2.21)

In fact we can show the following statement:

Lemma 2.2 For any α the series
∑

n=0α
n Zn(t) in (2.21) almost surely converges

to Zt (α), uniformly in t on any compact interval.

To keep the size of this chapter compact we will give the proof of this statement in
Chap.10.

Let {hn(t, x), t > 0, x ∈ R} be the family of Hermite polynomials each element
of which is defined by the following formula:

hn(t, x) := (−1)n

n! exp

{
x2

2t

}
∂n

∂xn
exp

{

− x2

2t

}

(n ≥ 0).

By this definition we see that the family of Hermite polynomials {hn(t, x)} has
exp{αx − α2t

2 } as its generating function, namely

exp

{

αx − α2t

2

}

=
∞∑

n=0

αnhn(t, x). (2.22)

Now by substituting
∫ t
0 f (s, ω)d0Ws and τ(t) = ∫ t

0 f 2(s, ω)ds for x and t respec-
tively in the equality (2.22) we get the following equality:

http://dx.doi.org/10.1007/978-4-431-56576-5_10
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Zt (α) = exp

{

α

∫ t

0
f (s, ω)d0Ws − α2

2

∫ t

0
f 2(s, ω)ds

}

=
∞∑

n=0

αnhn

(

τ(t),
∫ t

0
f (s, ω)d0Ws

)

.

Comparing this with the equality (2.21), we find the following expressions:

Lemma 2.3 For a real f ∈ M it holds that

Zn(t) =
∫ t

0
f (s1, ω)d0Ws1

∫ s1

0
f (s2, ω)d0Ws2 . . .

∫ sn−1

0
f (sn, ω)d0Wsn

= hn

(

τ(t),
∫ t

0
f (s, ω)d0Ws

)

.

Hermite polynomial hn(t, x) is a polynomial of x of degree n which is explicitly com-
puted by its definition. Therefore we find the formulamentioned in Lemma 2.3 useful

to compute or estimate the n-th moment of the Itô integral E
[(∫ t

0 f (s, ω)d0Ws

)n]
.

For instance:

Lemma 2.4 For an f ∈ M ∩ L4 the following estimate holds:

E

[(∫ t

0
f (s, ω)d0Ws

)4
]

≤ 36E

[(∫ t

0
f 2(s, ω)ds

)2
]

.

Proof We know that h4(t, x) = x4 − 6t x2 + 3t2. Since E[Z4(t)] = 0 we have
E[h4(τ (t),

∫ t
0 f (s, ω)d0Ws)] = 0, hence we find that

E[(
∫ t

0
f d0Ws)

4] = E

[

6
∫ t

0
f 2ds

(∫ t

0
f d0Ws)

2 − 3(
∫ t

0
f 2(s, ω)ds

)2
]

≤ 6E

[(∫ t

0
f d0Ws

)2 ∫ t

0
f 2(s, ω)ds

]

≤ 6

(

E

[(∫ t

0
f d0Ws

)4
])1/2 (

E

[(∫ t

0
f 2ds

)2
])1/2

.

From this we find the inequality. �
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2.3 Causal Variants of Itô Integral

2.3.1 Symmetric Integrals

As we have noticed in the preceding section, the Itô integral has such a remarkable
property that the process defined by the Itô integral Xt = ∫ t f (s, ω)doWs becomes a
martingale and this fact is granted by the causality condition on the integrand f (t, ω)

and by the particular form of Riemann sum. Hence any change in these situations
would cause the loss of that nice property.Neverthelesswemay think of the stochastic
integral for the causal function by a Riemann sum of different form as follows:

Rθ
Δ( f ) :=

n−1∑

i=0

f (ti + θΔi )Δi W, (2.23)

where θ is a constant such that θ ∈ [0, 1]. We are also interested in the following
Riemann sums:

Sθ
Δ( f ) :=

n−1∑

i=0

{ f (ti ) + θΔi f }Δi W Δi f = f (ti+1, ω) − f (ti , ω). (2.24)

Wemay see that theRiemann sum S1/2
Δ ( f ) is just a stochastic variant of the trapezoidal

formula in classic calculus. We are going to study the convergence of these Riemann
sums. For this purpose we need to introduce a kind of regularity of the random
function f (t, ω) with respect to the Brownian motion.

Let {Δn} be a sequence of partitions Δn = {0 = tn
0 < · · · < tn

s = 1} of [0, 1]. We
call the sequence regular provided that

Δn ⊂ Δn+1 and lim
n→∞ |Δn| = 0.

We say that a random function h(t, ω) is B-negligible if it exhibits the following
property (W):

(W) For each fixed t ∈ [0, 1] and for any regular sequence of
partitions {Δn} it holds that

lim
n→∞

∑

ti ∈Δn(t)

(Δi h) · (Δi W ) = 0 (in P), where Δn(t) := Δn ∪ {t}.

In particularwe call h(t, ω) strongly B-negligible if it satisfies the following condition
(WS):

(WS) For each fixed t ∈ [0, 1] and for any regular sequence of
partitions {Δn} it holds that
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lim
n→∞

∑

ti ∈Δn(t)

|Δi h · Δi W | = 0 (in P), where Δn(t) := Δn ∪ {t}.

Example 2.4 A random function h(t, ω) that satisfies the following condition, for
any regular sequence of partitions {Δn} of [0, 1], is strongly B-negligible:

lim
n→0

∑

ti ∈Δn

|Δi h|2 = 0 in P.

Thus any function, almost every sample of which is of bounded variation, is strongly
B-negligible.

Definition 2.8 (B-derivative) A random function f (t, ω) ∈ H is called
B-differentiable (or strongly B-differentiable) if there exists a causal function g(t, ω)

∈ M such that the function h(t, ω) = f (t, ω) − ∫ t
0 g(s, ω)d0Ws is B-negligible

(or strongly B-neligible respectively). In this case the function g(t, ω) we call the
B-derivative of f (t, ω) and denote it by the symbol f̂ (t, ω) or by ∂

∂Wt
f (t, ω).

We see the uniqueness of the B-derivative in the following statement whose proof
will be given in the last chapter “Appendices 2”:

Proposition 2.10 The B-derivative of a B-differentiable function is uniquely deter-
mined.

Remark 2.3 (B-differentiability [21, 43]) The notion of B-differentiability was first
introduced in the study of the symmetric integral I1/2 andBPE (cf. [20–22]) where all
random functions f (t, ω) are supposed to be causal. That was given in the following
way.

A causal random function f ∈ M is called B-differentiable (or differentiable with
respect to Brownian motion) if there exists a causal random function, say f̂ (t, ω),
that satisfies the following condition:

lim
h↓0 sup

0≤t≤1−h

1

h
E

[∣
∣
∣
∣ f (t + h) − f (t) −

∫ t+h

t
f̂ (s)d0Ws

∣
∣
∣
∣

2
]

= 0.

It may be immediate to see that new definition of B-differentiablity is a refinement
of this classic one.

Example 2.5 Let Xt be a random function of the form

Xt = B(t, ω) +
∫ t

0
a(s, ω)d0Ws,

where a(t, ω) is a causal function of the class M2 and B(t, ω) a function which
is Hölder continuous in L2(Ω) sense, E[|B(t + h) − B(t)|2] = O(|h|α) (1 < α).
Then X is B-differentiable and ∂ X

∂Wt
= a(t, ω).
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In particular, every Itô process Xt ;d Xt = b(t, ω)dt + a(t.ω)d0Wt witha(t, ω) ∈ M,
is B-differentiable.

After the introduction of the notion of B-differentiablity we find it convenient to
denote by H1 the totality of all B-differentiable functions causal or not, and by M1

the set of all B-differentiable causal functions, i.e. M1 := H1 ∩ M.
We have the following result whose proof is given in Chap.10 (Appendices–2);

Theorem 2.5 ([21]) Let {Δn} be an arbitrary sequence of partitions in [0, 1] such
that, Δn ⊂ Δn+1 and limn→∞ ||Δn|| = 0. Then for every B-differentiable function
f ∈ M1 and a fixed θ ∈ [0, 1], the two sequences of Riemann sums Rθ

Δn
( f ), Sθ

Δn
( f )

converge in probability to the same limit Iθ ( f ) which we also denote by
∫ 1
0 f dθ Wt

and call the θ -integral. The integral Iθ ( f ) is related to the Itô integral I0( f ) in the
following form;

Iθ ( f ) = I0( f ) + θ

∫ 1

0
f̂ (t, ω)dt, f̂ = ∂ f

∂Wt
.

Among these integrals Iθ , the two I0 and I1/2 are of particular importance, the former
is of course the Itô integral and the latter we call the symmetric integral.

Example 2.6 (a formula concerning the white noise) Let Xt be a causal function
defined by the symmetric integral as follows:

Xt = X0 +
∫ t

0
f (s, ω)dWs, f (t, ω) ∈ M1

for some B-differentiable function f (t, ω).
Notice that we can verify the validity of the following expression in the sense of

L. Schwartz’s distribution:

Ẋt := d

dt
Xt = f (t, ω)Ẇ .

On the other hand, by Theorem 2.5 we see that

E[Xt ] = E

[
1

2

∫ t

0
f̂ (s, ω)ds

]

, ∀t.

We will often find it convenient to write this fact in the following form:

E[ f (t, ·)Ẇ ] = 1

2
E[ f̂ (t, ·)]. (2.25)

The importance of the symmetric integral is simply explained by the following fact.
For a semi-martingale Xt = at + bWt + c, (a,b,c: consts) and a smooth function

F(t, x), we have by the Itô formula

http://dx.doi.org/10.1007/978-4-431-56576-5_10
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dt F =
{

F ′
t + aF ′

x + b2

2
F ′′

xx

}

dt + bF ′
x d0Wt .

With the symmetric integral this equality is expressed in the more simple form

dt F = F ′
t dt + F ′

x {adt + bdWt } = F ′
t dt + F ′

x d Xt ,

since we have ∂
∂Wt

F ′
x (t, Xt ) = F ′′

xx b. In other words, with the symmetric integral
the differential formula in classic calculus is conserved. But the application of this
property to a more general case must be done with a special care to the notion of the
B-derivative as we see below.

2.3.2 Anti-Causal Function and Backward Itô Integral

This and the following Sects. 2.3.2 and 2.3.3, treat some special subjects which will
be related only to a problem discussed in Chap. 7. Hence an impatient reader can
skip these two subsections.

Looking back to the definition of the Itô integral I ( f ), f ∈ S, we recognize that
the causality condition together with the employment of the special form of Riemann
sum

RΔ( f ) :=
∑

ti ∈Δ

f (ti )Δi W, Δ = {0 ≤ t1 < t2 < · · · < tn ≤ T }

is essential in endowing the martingale property to the stochastic process It ( f ) =∫ t
0 f (s, ω)d0Ws defined by the Itô integral. A similar result might occur in a retro-

grade situation as we see below.
Let G t := σ {Wv − Wu : t ≤ u ≤ v} and letF t be a decreasing family of σ -fields

such that

• F t ⊃ G t ,
• F t is independent of Gt := σ {Wv − Wu : u ≤ v ≤ t}.

The σ -field F t presents the future behaviour of the Brownian motion after time
t , and we call the random function f (t, ω) ∈ H anti-causal when it is adapted to
the filtration {F t }t . We will denote by M the totality of anti-causal random func-
tions, namely M := { f ∈ H : f (t, ω) is anti-causal}, and by M2 its subset M ∩
L2([0, 1] × Ω, dt × d P).Wewill also denote byM2,c the subset ofM2 consisting of
all elements which are continuous in the mean, limh→0 E[| f (t + h) − f (t)|2] = 0.

Given an anti-causal function f (t, ω) and a partition Δ = {0 = t0 < t1 < · · · <

tn = 1} of [0, 1], we consider a retrograde Riemann sum

RΔ( f ) :=
n−1∑

i=0

f (ti+1, ω)Δi W, where Δi W = W (ti+1) − W (ti ). (2.26)

http://dx.doi.org/10.1007/978-4-431-56576-5_7
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We notice that for a causal function f ∈ M this is just the Riemann sum which leads
to the integral I1( f ) as |Δ| → 0. But in the present case we consider the sum for an
anti-causal function. If we write

f Δ(t, ω) := f (ηΔ(t), ω), where ηΔ(t) = ti+1 when t ∈ (ti , ti+1],

then f Δ(t, ω) is a simple anti-causal function and the retrograde Riemann sum in
(2.26) is expressed in the I1-integral form;

RΔ( f ) = I1( f Δ).

The sum has the following property the verification of which is almost immediate
and is omitted.

Proposition 2.11 When f ∈ M2, we have E[RΔ( f )] = 0 and

E[RΔ( f )2] =
n−1∑

i=0

E[ f 2(ti+1, ω)](ti+1 − ti ) = E[
∫ 1

0
| f Δ(t, ω)|2dt]. (2.27)

Now let {Δn} be an increasing family of partitions such that, Δn ⊂ Δn+1 (as sets)
and limn→∞|Δn| = 0. Given this and an anti-causal random function f (t, ω) ∈ M2

we put
fn(t, ω) := f Δn (t, ω), n ∈ N.

Notice that for each n, fn(t, ω) ∈ M2. We have the following statement.

Proposition 2.12 For an f (t, ω) ∈ M2,c, the sequence {I1( fn)} converges in the
mean sense.

Proof By the continuity of f (t, ω) we see that limn→∞ ‖ f − fn‖2 = 0. On the
other hand, by the isometry property (2.27), we find that

lim
m,n→∞ E[|I1( fm) − I1( fm)|2] = lim

m,n→∞ ‖ fn − fm‖2 = 0.

This completes the proof. �

Definition 2.9 For an anti-causal function f ∈ M2,c, the limit in the mean
limn→∞ I1( fn) of the sequence {I1( fn)} in Proposition 2.12, we denote by I1( f )

or by
∫ 1
0 f d1Wt , and call it the backward Itô integral.

Remark 2.4 The same symbol
∫ 1
0 f (t, ω)d1Wt is used for the different cases, namely

for the causal or noncausal functions. They are quite different from each other; for
the causal function it means the sum of the Itô integral with the additional term,

I1( f ) = I0( f ) +
∫ 1

0
f̂ (t, ω)dt,
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where f̂ (t, ω) = ∂
∂Wt

f , while for the anti-causal function f (t, ω) the integral
∫ 1
0 f d1Wt is just the backward Itô integral. Hence when we see this notation we
must be careful on the causality of the integrand.

Let [a, b] be a sub-interval in [0, 1] and Δ = {0 = t0 < · · · < tn = 1} be a parti-
tion of [0, 1]. For an anti-causal function f ∈ M2c we observe that gΔ(t, ω) =
1[a,b](t) f Δ(t, ω) is a simple anti-causal function and its backward Itô integral is
well-defined as follows:

I1(g
Δ) = f (t�){W (t�) − W (a)} +

r−1∑

i=�

f (ti+1)Δi W + f (tr+1){W (b) − W (tr )},

where
t� = min{ti ≥ a; ti ∈ Δ}, tr = max{ti ≤ b; ti ∈ Δ}.

We see by this formula that

E
[|I1(1[a,b] · f Δ)|2] = E

[∫ b

a
| f Δ(t)|2dt

]

,

consequently the convergence in the mean of the sequence {I1(1[a,b] · f Δ)} as n →
∞, the limit we denote by

∫ b
a f (t, ω)d1Wt . In particular for the case [a, b] =

[t, 1] (0 ≤ t ≤ 1) we have

∫ 1

t
f Δ(s, ω)d1Ws

= f (tn){W (tn) − W (tn−1)} +
n−1∑

i=�+1

f (ti )Δi W + f (t�){W (t�) − W (t)},

by which we see that the function (t, ω) → ∫ 1
t f Δ(s, ω)d1Ws is adapted to the

decreasing family of σ -fields {F t }t and that the equality

E[
∫ 1

t
f (r, ω)d1Wr | F s] =

∫ 1

s
f (r, ω)d1Wr , P − a.s. (2.28)

holds for any 0 ≤ t ≤ s.
The integral I1( f ) having been defined as the limit in the mean of the sequence

of retrograde Riemann sums {R1
Δn

( f )}, we have reached the following statement:

Proposition 2.13 For an anti-causal function f ∈ M2,c, the function defined by the
retrograde Itô integral,

∫ 1
t f d1Wr exhibits the martingale property of retrograde

type (2.28).

Remark 2.5 Let f ∈ M2,c and let Zt ( f ) be an anti-causal process defined by
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Zt ( f ) = exp{
∫ 1

t
f (r, ω)d1Wr − 1

2

∫ 1

t
f 2(r, ω)dr}.

Then by a similar argumentwemay confirm that the equality E[Zt ( f )|F s] = Zs( f )

holds P-a.s. for any t ≤ s.

For the later discussion we prepare an Itô formula of backward type. Let X1
t , X2

t be
anti-causal Itô processes defined by

Xi
t =

∫ 1

t
fi (s, ω)d1Ws +

∫ 1

t
gi (s, ω)ds, i = 1, 2,

where fi , gi (i = 1, 2) are anti-causal functions belonging to the class M2,c.
Then following the same argument as in the case of causal calculus it is almost

immediate to establish the next result.

Proposition 2.14 (backward Itô formula) For a smooth function F(x, y) and an
interval [a, b] ⊂ [0, 1], the next equality holds:

F(X1
b, X2

b) − F(X1
a, X2

a)

= −
∫ b

a
{Fx d1X1

t + Fyd1X2
t } − 1

2

∫ b

a
{Fxx f 21 + Fyy f 22 + 2Fxy f1 f2}dt .

Example 2.7 Let X1
t = ∫ 1

t f d1Ws and X2
t = ∫ 1

t gd1Ws , then noting X1
1 = X2

1 = 0
we have

X1
t X2

t =
∫ 1

t
{ f (s)

∫ 1

s
g(r)d1Wr + g(s)

∫ 1

s
f (r)d1Wr }d1Ws +

∫ 1

t
f (s)g(s)ds.

2.3.3 The Symmetric Integral for Anti-Causal Functions

For an anti-causal function X (t, ω) its symmetric integral (of backward type) can be
defined similarly to the case of causal functions. Given a partition Δ = {0 = t0 <

t1 < · · · < tn−1 < tn = 1} we consider for a fixed θ ∈ [0, 1] the Riemann sum as
follows:

Rθ
Δ( f ) :=

n∑

k=1

X (tk + θΔk)Δk W, (2.29)

where, Δk = tk+1 − tk, Δk W = W (tk+1) − W (tk).
We know that the sequence R1

Δ( f ) converges as |Δ| → 0, and to assure the
convergence for the case θ < 1 we need some assumption on the regularity of the
integrand Xt , namely a kind of B-differentiability. But for the simplicity of discussion
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we suppose that the anti-causal function Xt is given in the formula of the backward
Itô integral,

Xt =
∫ 1

t
f (s, ω)d1Ws +

∫ 1

t
g(s, ω)ds f, g ∈ M2,c.

We may call such a process the backward Itô process.

Proposition 2.15 Let {Δn} be an increasing family of partitions of [0, 1]. Then for
each fixed θ ∈ [0, 1] the sequence of retrograde Riemann sums {Rθ

Δn
( f )} converges

in the mean as |Δn| → 0, and the limit which we denote by
∫ 1
0 Xsdθ Ws is expressed

in the following form:

∫ 1

0
Xs dθ Ws =

∫ 1

0
Xs d1Ws + θ

∫ 1

0
f (s, ω)ds. (2.30)

Proof Let us write Rn(θ) = Rθ
Δn

( f ) and tk(θ) = tk + θΔk , then we have

Rn(θ) − Rn(1) =
n∑

k=1

{X (tk + θΔk) − X (tk+1)}Δk W

=
n−1∑

k=0

∫ tk+1

tk (θ)

f (s, ω)d1Ws · Δk W.

By the formula in Example 2.7 we find

∫ tk+1

tk (θ)

f (s, ω)d1Ws · Δk W

=
∫ tk+1

tk (θ)

f (s, ω){W (tk+1) − W (s)}d1Ws +
∫ tk+1

tk

Xsd1Ws +
∫ tk+1

tk (θ)

f (s.ω)ds}
= T1(k) + T2(k),

where

T1(k) =
∫ tk+1

tk (θ)

f (s, ω){W (tk+1) − W (s)}d1Ws +
∫ tk+1

tk

Xsd1Ws,

T2(k) =
∫ tk+1

tk (θ)

f (s.ω)ds.

It is routine to verify that

lim
n→∞

n−1∑

k=0

T1(k) = 0 in L2(Ω, d P)
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and that

lim
n→∞

n∑

k−1

T2(k) = θ

∫ 1

0
f (s, ω)ds.

Since limn→∞ Rn(1) = ∫ 1
0 Xs d1Ws , this completes the proof. �

2.4 SDE

A stochastic functional equation for an unknown process Xt as follows is called a
stochastic integral equation,

Xt = x0 +
∫ t

0
b(s, Xs)ds +

∫ t

0
a(s, Xs)d0Ws, 0 ≤ t ≤ T, (2.31)

where x0 ∈ R and a(t, x), b(t, x) are real functions measurable in (t, x). In the
condition that the unknown process X (t, ω) is limited to be causal (with respect to
the filtration {FW

t }) the equation becomes meaningful in the framework of the Itô
integral. It is customary to represent this Eq. (2.31) by the following symbolic form
which is called the stochastic differential equation (or SDE for short) of Itô type:

d Xt = b(t, Xt )dt + a(t, Xt )d0Wt , X0 = x0. (2.32)

The discussion on SDEs based on Itô calculus is not our principal subject in this
book. So we do not give here a detailed review about it, but we intend to give only
some elementary results for the reference in later chapters.

2.4.1 Strong Solution

Definition 2.10 A continuous stochastic process Xt (ω), (t ≥ 0), defined on the
same probability space (Ω,F , P) as Brownian motion Wt (ω) and adapted to the
filtration {FW

t , t ≥ 0}, is called the strong solution of the SDE (2.32) provided that
the couple (W, X) satisfies the Eq. (2.31) with probability one for all t ∈ [0, T ].
As for the fundamental properties of the strong solution we have the following
statement.

Theorem 2.6 Let a(t, x), b(t, x) be real and smooth functions with bounded deriv-
atives in x, i.e. |∂x b(t, x)|, |∂x a(t, x)| <∃ L0

∀(t, x). We suppose that the initial
data X0(ω) is independent of the Brownian motion and E[X2

0] < ∞. Then the
Cauchy problem (2.32) for SDE, or equivalently the SIE (2.31) has the unique strong
solution Xt .
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Proof Put L = max{L0, supt∈[0,T ] |b(t, 0)|, supt∈[0,1] |a(t, 0)|}, then by the assump-
tion on the coefficients a(t, x), b(t, x), we notice that they satisfy the following
conditions:

|b(t, x) − b(t, y)| < L|x − y|, |a(t, x) − a(t, y)| < L|x − y| and
|a(t, x)|, |b(t, x)| < L

√
1 + x2 for any x . (2.33)

We are going to prove the statement by the standardmethod of Picard. Sowe construct
a sequence of random functions {Xn(t)} in the following way:

X0(t, ω) = X0(ω)

Xn+1(t, ω) = X0(ω) +
∫ t

0
b(s, Xn(s))ds +

∫ t

0
a(s, Xn(s))d0Ws, for n ≥ 1.

(2.34)

First of all we notice that the assumption E[X0(t, ω)2] < ∞ implies by the second
condition in (2.33) that X1(t, ω) ∈ M2, hence by induction we notice that every Xn

is well-defined as an element of M2.
From definition (2.34) we have

Xn(t) − Xn−1(t) =
∫ t

0
αn−1(s, ω)ds +

∫ t

0
βn−1(s, ω)d0Ws, n ≥ 1, (2.35)

where

αn(s, ω) = b(s, Xn(s)) − b(s, Xn−1(s)), βn(s, ω) = a(s, Xn(s)) − a(s, Xn−1(s)).

As for these we notice that

|αn(s, ω)|, |βn(s, ω)| ≤ L|Xn(s) − Xn−1(s)| for all (s, ω). (2.36)

We put dn(t) = E[|Xn(t) − Xn−1(t)|2] and we claim that

dn(t) ≤ C1
(C2t)n

n! for some constants C1, C2. (2.37)

For n = 1 we have

X1(t) − X0(t) =
∫ t

0
b(s, X0(ω))ds +

∫ t

0
a(s, X0(ω))d0Ws,

from which we easily find that

d1(t) ≤ C1C2t where C1 = 1 + E[|X0|2], C2 = 2(T + 1)L2. (2.38)
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For the case n ≥ 2, with the help of the condition (2.36) and Schwarz inequality, we
get from (2.34) the following inequality:

dn(t) = E[|Xn(t) − Xn−1(t)|2]

≤ 2E

[(∫ t

0
αn−1(s, ω)ds

)2

+ (βn−1(s, ω)d0Ws)
2

]

≤ 2L2

[

T
∫ t

0
E[|Xn−1(s) − Xn−1(s)|2]ds +

∫ t

0
E[|Xn−1(s) − Xn−2(s)|2]ds

]

= 2(T + 1)L2
∫ t

0
dn−1(s)ds.

Namely we find

dn(t) ≤ C2

∫ t

0
dn−1(s)ds.

By induction from this integral inequality, together with the estimate (2.38), we get
the desired estimate (2.37).

Next we show the uniform convergence of the sequence {Xn(t)}. Again from the
equality (2.34), we have

max
t∈[0,T ] |Xn+1(t) − Xn(t)| ≤ max

t∈[0,T ]

{

|
∫ t

0
αn(s)ds| + |

∫ t

0
βn(s)d0Ws |

}

.

Thus for any fixed M > 0, we have the following inequality:

P{ max
t∈[0,T ]

|Xn+1(t) − Xn(t)| > 2M}

≤ P

{

max
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
αn(s)ds

∣
∣
∣
∣ > M

}

+ P

{

max
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
βn(s)d0Ws

∣
∣
∣
∣ > M

}

. (2.39)

As for the first term on the right hand side, we have

P

{

max
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
αn(s)ds

∣
∣
∣
∣ > M

}

≤ P

{

T
∫ T

0
α2

n(s)ds > M2

}

≤ L2T

M2
E
∫ T

0
dn−1(s)ds ≤ C3

(C1T )n

n!M2
,

where C3 = C2L2T
C1

.
As for the second term, by applying Doob’s submartingale inequality (see

Theorem10.2 in Appendices) we get the following estimate:

http://dx.doi.org/10.1007/978-4-431-56576-5_10
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P

{

max
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
βn(s)d0Ws

∣
∣
∣
∣ ≥ M

}

≤ 1

M2
E

[(∫ T

0
βn(s)d0Ws

)2
]

≤ L2

M2

∫ T

0
dn−1(s)ds ≤ C4

(C1T )n

n!M2
,

where C4 = max{C3, (C2L2/C1)}.
Combining these two estimates with the inequality (2.39) and putting M = 1

4
√

n! ,
we find

P

[

max
t∈[0,T ] |Xn+1(t) − Xn(t)| >

2
4
√

n!
]

≤ 2C4
(C1T )n

√
n! .

The series
∑

n
(C1T )n√

n! being convergent, by virtue of Borel- Cantelli’s first lemma we
get from the above inequality the following result:

P

[

max
t∈[0,T ] |Xn+1(t) − Xn(t)| ≤ 2

4
√

n! for large enough n

]

= 1.

This implies that the sequence {Xn(t, ω)} converges to a limit X∞(t) almost surely
and uniformly in t ∈ [0, T ]. Now letting n → ∞ on both sides of the equation (2.34)
we confirm that the limit X∞(t) solves the SDE.

What is left is the verification of the uniqueness of strong solution. So let Y (t, ω)

be another strong solution of the SDE, for which we have the following equality:

X (t) − Y (t)=
∫ t

0
{b(s, X (s)) − b(s, Y (s))}ds+

∫ t

0
{a(s, X (s)) − a(s, Y (s))}d0Ws .

Put d(t) = E[|X (t) − Y (t)|2] then, following the same argument as we have done,
we find that

d(t) ≤ 2L2(1 + T )

∫ t

0
d(s)ds.

Since d(0) = 0 the application of Gronwall’s inequality (see the subject in Chap. 10)
shows us that d(t) = 0 for any t , hence

P{X (t) = Y (t)} = 1 for any t.

This completes the proof. �

Remark 2.6 The solutions X (t), Y (t) being continuous, we see by separability of
those processes that P{X (t) = Y (t) ∀t ∈ [0, T ]} = 1.

http://dx.doi.org/10.1007/978-4-431-56576-5_10
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2.4.2 Law of the Solution of SDE

We have shown a statement on the existence and uniqueness of the strong solution
of the Cauchy problem for the SDE (2.32). It would be intuitively clear that this
solution Xt is a Markov process, for the following two reasons: (1) Because of the
uniqueness as the solution of the SDE, the value of the process after “t” {Xu, u ≥ t}
depends only on the final data “Xt” and the increments {Wu − Wt , u ≥ t} of the
driving force W.; besides (2) the increments {Wu − Wt , u ≥ t} are independent of
the past historyFW

t−.
Hence we are interested in the transition probability of the solution X of the SDE,

P(s, x, t, dy) = P{Xt ∈ dy|Xs = x}, s ≤ t, x ∈ R1.

Suppose for the simplicity of discussion that the transition kernel has the density
P(s, x, t, dy) = p(s, x, t, y)dt . Now fix a smooth function f (x) ∈ C2

b with finite
support and consider the expectation

E[ f (Xt )|Xs = x] =
∫

R1
f (y)p(s, x, t, y)dy.

By the Itô formula we have the equality

f (Xt ) = f (x) +
∫ t

s
f ′(Xr ){b(r, Xr )ds + a(r, Xr )d0Wr } + 1

2

∫ t

0
f ′′(Xr )b2(r, Xr )ds,

from which we see that,

E[ f (Xt )|Xs = x] = f (x) + E

[∫ t

s
{ f ′(Xr )b(r, Xr ) + 1

2
f ′′(Xr )b

2(r, Xr )}ds

]

.

By changing the order of integrations we find the following equality:

∫

R1
f (y)p(s, x, t, y)dy

= f (x) +
∫ t

s
dr

∫

R1
p(s, x, t, y)dy{ f ′(y)b(r, y) + 1

2
f ′′(y)b2(r, y)}.

Thus by taking into account the fact that f (x) is of compact support and by applying
the integration by parts formula to this, we get the following:

∫

R1
f (y)dy

∫ t

s
dr

[
∂r p(s, x, r, y) + ∂y{b(r, y)p(s, x, r, y)}

− 1

2
∂2

y {b2(r, y)p(s, x, r, y)}
]

= 0.
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The test function f (x) being arbitrary, by virtue of Weyl’s lemma (see for example
[15]) we get from this equality the equation for u(t, x) := p(0, x0, t, x) as follows:

∂

∂t
u(t, x) = − ∂

∂x
{b(t, x)u(t, x)} + 1

2

∂2

∂x2
{b2(t, x)u(t, x)},

u(0, x) = δx0(x). (2.40)

This is the so-called Kolmogorov forward equation.
The backward equation can be obtained by taking u(t, x) = E[ f (XT )|Xt = x]

and applying a similar argument based on the Itô formula, which would read as
follows:

∂

∂t
u(t, x) + b(t, x)

∂

∂x
u(t, x) + b2(t, x)

2

∂2

∂x2
u(t, x) = 0, t ≤ T,

u(T, x) = f (x). (2.41)

In terms of the transition probability density p(t, x, T, y) the function u(t, x) is writ-
ten as u(t, x) = ∫

R1 f (y)p(t, x, T, y)dy, hence again by applying Weyl’s lemma
we see that from equations in (2.41) the following equations hold:

{ ∂

∂t
+ b(t, x)

∂

∂x
+ b2(t, x)

2

∂2

∂x2
}p(t, x, T, y) = 0, t ≤ T,

p(T, x, T, y) = δy(x).

2.4.3 Martingale Zt and Girsanov’s Theorem

For a nice real function f (t, ω) belonging to the class M, we have introduced the
causal function Zt by the following form:

Zt = exp

{∫ t

0
f (s, ω)d0Ws − 1

2

∫ t

0
f 2(s, ω)ds

}

.

We have seen that this positive function is the unique strong solution of the Itô SDE

d Zt = f (t, ω)Zt d0Wt , Z0 = 1.

By this fact we notice that the Zt is an FW
t -martingale with E[Zt ] = E[Z0] = 1.

Moreover since Zt > 0 we see that d Q = Zt d P becomes another probability on
the same measurable space (Ω,F ). We denote the expectation with respect to this
new probability by E Q[·]. It is interesting to ask how the Brownian motion Wt looks
like under new probability d Q. For this aim we consider a stochastic process Yt as
follows: dYt = dWt − f (t, ω)dt.
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Then by Itô formula we obtain the equality,

d(Yt Zt ) = Zt {d0Wt − f (t, ω)dt} + Yt f (t, ω)Zt d0Wt + Zt f (t, ω)dt

= Zt {1 + Yt f (t, ω)}d0Wt ,

which shows that Yt Zt is anFW
t -martingale under the original measure d P . Hence

for an arbitrary event A ∈ FW
s , we have,

E Q[1AYt ] = E[1AYt Zt ] = E[1A E[Yt Zt |FW
s ]] = E[1AYs Zs] = E Q[1AYs],

in other words, E Q[Yt |FW
s ] = Ys Q-a.s.. This means that Yt is an FW

t -martingale
under the measure d Q.

On the other hand, we easily see that the quadratic variation of Yt is d[Y ]t = dt .
Consequently by Lemma9.3 we get the following result:

Proposition 2.16 (Girsanov’s Theorem) Under the measure d Q = Zt d P the
process Yt ; dYt = dWt − f (t, ω)dt becomes a Brownian motion.

http://dx.doi.org/10.1007/978-4-431-56576-5_9
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