Chapter 2
Preliminary — Causal Calculus

The theory of noncausal calculus is an alternative to the causal theory of It6 calculus
butis not quite independent of it. As we will see in the main part of this book that starts
from Chap. 3, our noncausal theory stands as a natural extension of the causal theory
of It6 calculus, to be more precise, the causal theory based on the stochastic integral
called symmetric integrals. We may emphasize that at this point our noncausal theory
keeps a large part of its raisons d’étre.

Hence as preliminaries for the study of our noncausal theory of stochastic calculus
we need to present in this chapter a necessary and minimum review on those materials
and related facts from the causal calculus such as Brownian motion, the It integral,
the symmetric integrals and the notion of the B-derivative of random functions. By
doing this we also intend to prepare the list of symbols and terminologies concerning
those materials that will be used throughout the book. We remark that what we intend
to show in this chapter is not a standard review of 1t6 calculus but just a small note
on it, thus for the details or further understanding of the causal calculus we would
refer the reader to other standard textbooks on Itd calculus and some of the author’s
articles (e.g. [20-25]).

The presentation of these materials is in the following order: Brownian motion
in Sect.2.1, the Itd integral and related statements in Sect.2.2, some elementary
but important results concerning the SDE (stochastic differential equation) will be
referred to in Sect. 2.3, while Sect.2.4 is devoted to the note on variants of the It
integral, where we repeat briefly the results concerning the B-derivative and the
symmetric integrals, especially the integral 11,,(f) that is introduced by the author
([20, 21]) and will be of frequent use in the discussions on our main theme. We
also refer to the integral of symmetric type called the Stratonovich-Fisk integral
([14, 55)).

Before entering into the discussion the author would like to have the reader’s
attention on the symbols for stochastic integrals. As we are going to deal with plural
stochastic integrals we need appropriate symbols to make clear distinctions between
them. In particular, for the It6 integral we would assign f f doW;, by putting “0”
at “dW?” to signify that the Itd integral is at the origin of the theory of stochastic
calculus.
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12 2 Preliminary — Causal Calculus

2.1 Brownian Motion

Definition 2.1 (1) A real-valued random variable X (w) defined on a probabil-
ity space (£2,.%, P) is called Gaussian if its characteristic function ¢x(0) :=
Elexp{i6 X}] is given in the following form:

2
Elexp{i0 X (w)}] := / exp{if X (w)}d P(w) = exp [ime — %92] Y0 e R,
2

where m and o > 0 are real constants.

(2) An n-tuple of real random variables X := (X, ..., X;;) € R" is called an R"-
valued (or n-dimensional) Gaussian random variable provided that any linear com-
bination Y = ZZ: | 1 Xk (w) with Y(t;,...,t,) € R"is areal Gaussian random vari-
able.

By definition (2) above we see that:

Proposition 2.1 The n components { Xy, k = 1, n} of the R"-valued Gaussian vari-
ableX = (X, ..., X,) areindependent provided that they are uncorrelated, namely,
Cov(X;, X;) = 0%i # j, where Cov(X;, X)) =E[(X;i — EX)(X; — EX;)]isthe
covariance of (X;, X ;).

Definition 2.2 (Gaussian process) A stochastic process X;(w), t € T C Riscalled
Gaussian provided that for any n € N and arbitrarily chosen n different points ¢#; €
T, 1 =1, ..., n, the n-dimensional random variable (X, (), ..., X; ) is Gaussian.

We know that every finite dimensional Gaussian distribution is determined by a
pair of parameters, namely, a mean vector m =’ (my, my,...,m,) € R" and an
n x n-real symmetric positive definite matrix I” called the covariance matrix, in the
following way:

1
exp{—z(rfl(x —m),x—m)}, x="(x,x2,...,%,) €R".

1
I = s

Thus we notice that a Gaussian process X, € T is completely determined by
the pair of a mean function m(¢) and a real kernel I'(s,t), s,t € T of positive
definite type. Notice also that a real Gaussian process X, determined by these has
the following properties:

m(r) = E[X;],
I'(s, 1) == Cov(Xy, X;) = E[(Xs —m(s))(X; —m(1))].

We introduce one of our principal materials, the Brownian motion (or the BM for
short), in the following:

Definition 2.3 (Brownian motion) (1) A real Gaussian process W.(w) defined on
(2, %, P) is called Brownian motion provided that:
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(b1) P{Wy=0}=1,
(b2) E[W,1=0, E[W,W,]=s At for ¥s,Yt > 0 where s At := min{s, t}.

(2) Let Wi(t), Wa(t), ..., W,(t) benindependent copies of the Brownian motion.
The R"-valued Gaussian process W (z) = (W (t), Wa(¢), ..., W,(t)) is called the
n-dimensional Brownian motion.

Example 2.1 The following processes X, are all Brownian motions, where c is a pos-
itive constant: (1) X, =W,..—W,, 2) X, = JLEWC,, 3) Xy =tWy, (¢ >0)
with convention Xy = 0.

A right continuous and increasing family {.%;, t > 0} of sub o -fields of .% is called
“filtration”:
F,CF CF s<t, and F = ﬂgmh.
h>0

For instance, %W =o{W|s <t}or %W Vv o {V} where V (w) is arandom variable
independent of Brownian motion are filtrations.

Definition 2.4 In this book, by natural filtration we understand a right continuous
and increasing family of sub o-fields {#, t > 0} such that

FV S gV v

and that forany s < ¢ increment W, — W; isindependent of %" . Here we understand
that every sub o-field .7, is completed with all P-null sets.

2.1.1 Some Properties of BM

The Brownian motion process, which is also called the Wiener process, was intro-
duced by N. Wiener in 1930. Being one of the most important materials in the theory
of stochastic processes, it has been studied extensively by many authors, and many
books have been published. We do not intend to repeat in detail, even some parts of,
its basic properties but we shall content ourselves in this subsection with listing only
some of its remarkable properties which cannot be missed for our present purpose:

(f1) From (b2) we see that E[(W, — W,)?] = |t — 5| and that the random variable
W, — W, follows the normal law, W, — W, ~ N(O, |t — s]).
(f2) The condition (b2) also implies that, forany 0 < s <t < u < v, we have

E[(Wv - Wu)(Wt - Ws)] = E[Wth - Wth - Wst + Wqu]
=t —1t—s +S = 0

By virtue of Proposition 2.1 we see from (f2) that Brownian motion is a process
of independent increments.



14 2 Preliminary — Causal Calculus

(f2)’ Or in other words, for any s < ¢ the increment A; ;W := W(t) — W(s) is
independent of the field 4.
This property implies that Brownian motion is a martingale along with the family
of sub o-fields {EZW}N), that is, for any ¢ > s the following holds:

EW,|9"1 =W, P—a.s.

(f3) Brownian motion W, is a martingale with respect to any natural filtration men-
tioned in Definition 2.4,

E[W,|F¥ =W, P—as."t>s.

(f4) For any fixed @ € R the process Z; = exp{a W, — “72’} becomes an %W-
martingale. In fact, for any r > s we have

20 —
E[Z|F¥1=E |:Zs exp ‘on, - yl IZW]

200
— Z,E [exp [a(W, —w,) — W] %w}

=7, P—a.s.

since

20s 204 _
E |:exp[a(W, — Wy) — a(tzs)} |5§.Wi| =F |:exp [aW[_S - a([zy)]:| =1.

(f5) The fact (f2) also implies that Brownian motion is a homogeneous Markov
process having the following kernel as transition probability density:

(tx.y) = — [ (y—x)z} €R, >0 2.1)
JX,Y) = ——expj———, X, , t>0. .

p y N p 2 y

Knowing the transition probability density we can construct the Markov process,
so we confirm the existence of BM.

Here are some important properties concerning the regularity of the sample path of
BM.
(f6) We notice the following property.

Proposition 2.2 Almost every sample path of BM is continuous but is not of bounded
variation on any finite interval.

For the verification of this statement we appeal to the following result called Kol-
mogorov’s test, whose proof is omitted.
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Theorem 2.1 Ifareal-valued stochastic process X; t € [0, T] satisfies the following
condition for some positive constants o, 3, C:

ENX, — X,|)1 < Clt —s|'""F ¥ 5,1 €10, T], (2.2)
then almost every sample function of X, is continuous.
Proof Now we verify the validity of Proposition 2.2. From the fact (f1) we have,
E[(W, — W' =3t —5)".
Hence we see the continuity of the sample function by virtue of Kolmogorov’s test

(Theorem 2.1) cited above.
For the verification of the second assertion, we put

(50 G

lim V, =00 P —a.s.

n—oo

n

Vi=>"

i=0

It suffices to show that

Notice that the condition (bl) together with (f1) and (f2) implies the following
inequality,

i

Ele™"] = M Ele” ™D~V = (Efe "Wy
[ ) (1) s ' (1) T

SE|1- W =)+ |W(-

n 2 n
= _ﬁ+2n —> 0, (asn — 0).

Hence we see that lim,_, ., V,, = oo almost surely and this implies the conclusion.
O

The properties (f7), (f8) below concern the regularity of sample paths of Brownian
motion. The proofs can be found in every standard textbook (cf. [15]) and are omitted
here for the sake of making the content of this chapter as compact as possible.

(f7) Almost every sample path of the BM is not differentiable at almost every ¢ €
[0, T].

(f8) As for the modulus of continuity of W, we have the following result due to
P. Lévy (cf. [15]):
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W) — W
Pl timsyp OZWOL_ 2.3)
0<s<r<1 /2hlogi}
h=t—s5]0

2.1.2 Construction of BM

We would like to finish this section with a note on the existence of the Brownian
motion, since we could find there a basic idea that leads us to the noncausal stochastic
integral. We have already mentioned in (f5) how the BM is constructed as a Markov
process. Here we shall show different ways for the construction.

1. Construction by a Fourier series.
Let {¢, (t)} be an orthonormal basis in L?(0, 1) and let {&,(w)} be an i.i.d. family
of random variables following the standard normal law N (0, 1). Given these,
consider a sequence {X,(#, )}, of random functions defined in the following

way:
n

nmm:Zaw/m®w
0

k=1

Notice that by Perseval’s equality we have

Z/wwm
k=1 170

and notice that this convergence is uniform in ¢ € [0, 1]. Hence,

2
2
= o,nOll. =1,

m,n— 00

1 1 n t
lim E[|X,,(t)—Xm(t)|2]dt=/ Z |/ or(s)ds|*dt = 0.
0 O k=m+1 70

In other words the sequence {X, (¢, w)}, converges in L?([0, 1] x £2) to a limit,
say X (t, w). We see that E[X (¢)] = lim, E[X,(#)] = 0 and that

Cov(X(s), X(1)) = lim Cov(X,(s), X, (1))
n— 00
n s t
= lim Z/ §0k(r)dr/ Prrar = (Ljo,51(4), Ljo,n () 2
n—00 —'Jo 0
=S AL,

which shows that the limit X is a Brownian motion.
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2. As for the convergence of the series X () we must refer to a much more general
result due to K. Itd and M. Nisio:

Theorem 2.2 (Itd and Nisio [12]) For an arbitrary orthonormal basis {@,(t)} in
L?(0, 1) the series

X(t.w) = ZEngﬁn(t), where ¢, (1) =/ n(s)ds 2.4)
- 0

converges uniformly in t over [0, 1] with probability one.
For the proof we would refer the reader to the article [12] cited above.

3. Instead we would like to show the result due to Ciesielski [1] which deals with
the series (2.4) for a special basis and can be verified in an elementary way:
Let {H,;, 0<i < 2=l _ 1, n € N U {0}} be the orthonormal system of Haar
functions, namely

Hyo(t) =1, te€][0,1],

-1
H, i (1) =277 {Lpp-nvijo-nt1 172y @) — Lp-ntii1/2) 2011y (D)}, (2.5)
n>10<i<2"!_—1,

where 14(-) is the indicator function of set A.
Given this we take a family of independent and identically distributed N (0, 1)
random variables { &y o, &,;; 0 <i <2" —1, n € N} and consider the random

series as follows:
00 2'—1

X(0) = Eoot + D D BniHyi(0), (2.6)

n=1 i=0

where .
H,i(t) = / H,(s)ds, tel0,1].
0

Proposition 2.3 (Ciesielski [1]) The series X (t, w) converges uniformly in t over
[0, 1] with probability one and the sum X is a Brownian motion:

n 2¢—1

P| lim sup | > > EiH0]=0]=1.
m,n—>00 ;0. 1] e
Proof Sketch of the proof:
oo
Put X (¢, w) := Eg ot + >_Y,(t), where

n=1

2"—1

Yolt, @) = D iy i), n> 1.
i=0
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o0
We are going to show that the series »_ Y, (#, w) converges uniformly in ¢ € [0, 1]
n=1
with probability one.
The functions H, ;(t) = fot .4 (s)ds are just the functions called the Schauder
basis, each of which has an equi-lateral triangular shape with height 27 2. Also we

notice that ~ ~
H, (t)H, ;j(t) =0 whenever k # j. 2.7)

Then by the property (2.7) we have the following estimate:

21

> (@) Hyi(1)

i=0

sup [¥,(1)] = 2=+ D72,

< m_ax IEn,i
tel0,1] i

Hence for an arbitrary positive o we get the inequality below:

P{sup |Y,(t)| > a/27" log 2"}
t
< P{max |5, 127" HD/2 > o /2= 1og 21}
< P{ max |&,;| > ay/2log2"} <2"P{|&y0| = a/2log2"}

0<i<2n—1

o0 —x2/2
< 2”2/ dx
ayInlog2 21

By the elementary inequality

© 2 1 2
/ eV < A2,
A A

we get the following estimate,

1 2
P Y )| > 2-n]og 2"} < 2(1701 )n'
{Supl (O] 2 ay/27"log2"} < |/ o 10g2 Tn

Since Z Lo0-eMn o0 whena > 1, we see by Borel-Cantelli’s first lemma that

P |: sup Y, (#)| < a/27"nlog?2 for all large enough ni| =1

te(0,1]

Since > /27"nlog2 < oo, we confirm that the series X (¢, w) converges uniformly

n
in ¢ € [0, 1] with probability one. It is immediate to see that the process X (¢, ») is
Gaussian and that.,
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E[X(1)] =0, Cov(X(s), X(t)) = sAt,

hence we get the conclusion. (]

2.2 Ito6 Integral with Respect to BM

Let W,(w) or W(t, w), (t = 1) be Brownian motion defined on a probability space
(2, 7,{FV}, P), where {ZV}is the natural filtration mentioned in Definition2.4.
We review in this section how the Itd integral with respect to Brownian motion, the
first stochastic integral, f f(t, w)dyW; is introduced for a certain class of random
functions.

2.2.1 C(lasses of Random Functions

We need to introduce some classes of random functions. First of all, by random
function we understand in this book a real or complex-valued function f (#, @) which
is defined on the complete measure spaces (R! x £, dt x d P) and is measurable in
(t, w) with respect to the product o-field B, x F, where Xy, is the Borel field
on R, = [0, o). For the simplicity of argument and notations we restrict ourselves
to the case of random functions f (¢, w) defined on the unit interval ¢ € [0, 1], but
depending on the subject this restriction will be changed in a customary way to a case
of random functions defined on a larger interval like functions on a finite interval
[0, T]oron R,.

Here is the list of symbols for classes of random functions which will be in frequent
use throughout the book.

e H: The totality of such random functions f (¢, ®) that verify the condition

1
P[/ |f(t, w)|*dt < oo} =1.
0

e M: Set of all such random functions f (¢, w) € H that are adapted to the filtration
{#V}:~0 and, more precisely, are progressively measurable in (¢, w) with respect
to the product field By ,; x %Y. We will call this constraint on the measurability
of random functions the causality condition and call the random function of this
class causal.

e Note: When we say that arandom function f (¢, w) is noncausal, it means that the
function is not assured to be causal, in other words it simply means that f € H.
This may be an abuse of the word noncausal: nevertheless the word has been in
use since the beginning of the theory, so also in this book we would like to follow
this custom and hope that the reader will not be confused.
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e M,: The set of all causal random functions f (¢, ) that satisfy the condition
E[fo1 | f(t, w)|*dt] < oo, ie. My =MN L%*([0, 1] x £2,dt x dP).

e M, : The subset of M, consisting of all elements that are uniformly continuous
in the mean sense, namely limy,_.qsup, E[| f(t +h) — f(t)]*] = 0.

e Sy: The totality of such a random function f (¢, w) whose sample path is almost
surely a step function in ¢ € [0, 1], that is, there exists a finite partition {0 = 7y <
) <---<t, =1} of [0, 1] and random variables {f;(w),0 <i <n — 1} such
that

ft, )= filw), telt,tiv1), i=0,...,n—1. (2.8)

The random function of this class is called simple.

e S: The set of all causal simple functions, that is, S = Sy N M. Being “simple and
causal” is equivalent to the fact that each random variable f;(w) (i =0,...,n — 1)
in the form (2.8) is measurable with respect to the o-field .7, .

e S;: The set of all simple and causal random functions which are square integrable
in (f, w), namely S; = Sy N M.

Itd’s stochastic integral of a causal random function f(t, ) € M with respect to
Brownian motion is introduced step by step in the following way.

2.2.2 Ito Integral for f € S

Let f (¢, w) be an S-class random function. By definition of the class, there exists
apartition {0 =12 <, <--- <t, =1} of [0, 1] and a family of random variables
{fi(w),0 <i <n — 1} such that

n—1

[t w)= Zﬁ(w)l[t,-,t;+|)(t)7 1 €0, 1], (2.9)

i=0
Notice that each f;(w) = f(#;, w) is 35;47 measurable.

Definition 2.5 For a causal simple function f (¢, w) of the form (2.9) we put

n—1

1(f) =D i@ AW, AW =W(ip) — W)
i=0

We call I(f) the Itd integral of f (€ S) with respect to Brownian motion and
denote itby [ f(1, @) doW,.

Here we notice that the representation form (2.9) of a simple function is not unique,
indeed it can be represented along a different partition, but the above definition of
the integral I (f) for f € S does not depend on those representation forms.
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For a sub-interval [a, b] C [0, 1], it is clear that the function 1y, () f (-, @)
belongs to the class S. Hence the stochastic integral on the sub-interval [a, b] is
well-defined in the following form:

b
/ Ft.)doW, = Iy () ().
We will denote the integral I (1jo, f) also by I, (f).
The stochastic integral I(f) defines an application from S to L°(£2, d P).
Proposition 2.4 The integral I (f) (defined on S) has the following properties:

(1) Linearity: The application I (f) is linear, that is, for any functions f, g € S
and constants o, B the following equality holds:

I(af +pg) = al(f)+ BI(g).

(2) Isometry: For a causal and square integrable simple function, f(t, ) € S,,
we have E[I(f)] = 0 and

1
E[I(NHIP]1= E[/0 |t o)A =11 f1120.11¢02)-

In other words, the It6 integral defines an isometry from S, (C L?([0, 1] x
£2,dt x dP)) to L*>(2,dP).

Proof Property (1) is evident. As for the second equality in (2), we have

ENINHPI=E | D Afifi + Ffd AW AW + " 1 /il (AW)?

i>j k
= D E[{fif; + Ly AW - E{AWIZ Y] + D E [ AP E(AW)* 1.7 )]
k

i>j

1
= S BRI -0 = B [ 1o,
& 0

and this implies the conclusion. (]

Proposition 2.5 Let f(t, w) be a causal simple function. Then the stochastic process
L(f) :==10,4C)f()) has the following properties:

(a) Almost all sample functions of I,(f) are continuous in t.

(b) The process I,(f) is an ZY - martingale.

(c) When f € S is real, the process Z, := exp{I,(f) — % Olfz(s)ds} is
a continuous 9,“/ martingale and E[Z,] = 1 "t.
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Proof (a) Let A be a partition associated to the simple function f (¢, ). Fixat €
(0, 1] and denote by [#, tx+1) the sub-interval that contains the ¢, then

k—1

L) =D @) AW + fillw){(W(t) — W ()}

i=0

which shows the continuity in # of the path of process I, (f).
(b) Lets,t € [0, 1] be such that t > > t; > s > t;_1. Then we have

i—1

LAY =D fir AW + fi(W, = W,)
k=0

j=2

= ka AW F fia Wy = W)+ fia (W = W)
k=0

+ D RAW + fi(W, — W),

k=j
Hence we get
j=2
ELL(NOIFYT =D fir AW + fia(Ws = W,,)
k=0

+E | fioa(Wy = W) + D fior AW + fi(W, — W) | F)Y
k=j

= L)+ E[fj1- EIW, — W,|Z}" ]

+ D KELANF 1+ [EIW, — W, 1.7 1|7
k=j

=L(f) P—a.s.
(c)Let s,tbesuchthatt >t > s > t;_1. We have

It(f) = Is(f) + fi—l(Wz,» - Ws) + fz(Wz - er-),

and

/ fArdr = / S fArydr + / l FA(rydr
0 0 K

=/O fArydr + f2 @t — )+ f2 (e —1).
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Combining these we get the following equality:

1 1
X exp [ﬁl(W,,. - W) — zf,il(ri — )+ fi(W, —W,) — zf,?a - r,»)] :

Hence

E(Z|F1=Z; x E [exp{ﬁwm - W) — %f,-{l(t,- -9}

x E[exp{fi(W, — W,) — %fﬁ(r - ti)}|<%rv]|jvwi| .
Since .
Elexp{fi(W, = W,) — 5ff(z —t))F =1 P—a.s.

we see that

E(Z| 7] = Z,E [eXp{fiﬂWz,- — W) — %fﬁl(h - s)|gst]

=Z, P—a.s.

This completes the proof of (c). ]

From property (c) in Proposition 2.5, we get the following result:

Proposition 2.6 Let f be a real and causal simple function. Then for any positive
constants a, b, we have the following inequality:

P |:sup{1,(f) - %/ (s, w)ds) > b} < e, (2.10)
t 0
Proof Forareal f € S, we put
1 t
Z(f) == exp{li(f) — 5/0 (s, w)ds}.

By property (c) we know that Z,(af) is an .%¥ -martingale. For the left-hand side
of the inequality in (2.10) we have the following expression:
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a t
P [sup{z,(f) -3 / Fs, 0)ds) > b]
t 0
a [t
=P [Sup{lr(af) - ?/ (s, w)ds} > ab:|
4 0
=P |:sup Z(af) > e"bi|
t

Hence by applying the submartingale inequality (Corollary 10.1 in Chap.9) to the
last term in the above inequality, we get

a [! _ _
P |:sup{1,(f) — E/ (s, w)ds) > b} <e PE[Zi(af)] = 7.
t 0

This completes the proof. O

2.2.3 Extensionto f € M

We have introduced the stochastic integral I (f) for the causal simple functions
f €S. We show that the domain of the integral is extended to the class M; the
integral /(f) thus introduced for f € M we call the It6 integral and denote by
[ [, w)doW,.

There are many ways to achieve this aim. Here we basically follow the argument
by H. McKean [15] which makes use of the exponential martingale Z,(f) (f € S).

Let us begin with the following lemma, the verification of which may be found
in every standard textbook on calculus and is left to the reader.

Lemma 2.1 Let f(t) be a deterministic function which is square integrable over
[0, 1]. We suppose that the function is extended over a larger interval in such way
that; f(t) = 0 outside of [0, 1], then we have the following equality:

1
]lir%/ |f(t+h) — f@©)|*dt =0.
n— 0
The next statement plays a key role in the discussion. The proof will be given in the
Appendices (see Chap. 10).

Proposition 2.7 The class S is dense in M, that is: for any f € M there exists a
sequence { f,,} in S such that

1
lim | |f(t,®) — fu(t,w)|*dt =0 P-a.s.
n—oo 0
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Now given a causal function f € M and a positive ¢ > 1, we consider a sequence
of causal simple functions { f,,} € S such that

! 1
P [/ |f(t, w) — fult, w)|?dt < o for any large enough n] =1. (2.11)
0 n=*

Notice that the existence of such a sequence is assured by Proposition 2.7, and that
the following equality holds:

: 2
P {/ | fo(t, @) — fo1(t, w)|dt < — for all large enough n] =1. (2.12)
0 n=

Let us consider the sequence of random functions {/,( f;;)} defined by the integrals
L(f)) = fot (s, w)dyW;, then we have the following statement.

Proposition 2.8 For the sequence {f,} € S satisfying the condition (2.11) the
sequence {I;(f,)} converges uniformly in t over [0, 1] with probability one, that
is,
P [ lim sup |L,(fy) — L, (fin)] =0] =1.
1

m,n—=>00 40 |

Proof We put g, = f, — fu,—1. For any fixed positive constants a, b, we have from
Proposition 2.6 the following estimate:

t
P |:sup{1,(gn) — %/ gﬁ(s, w)ds} > bi| <e .
1 0
Now fix another constant ¢ > 1 and choose a, b in the above inequality in the fol-

lowing way:
a=n%/logn, b= i\/logn,
nC{
then we get the following estimate:

1

t
p [ sup {/;(gn) — g/ g,,(s)zds} > b] < g Clogn —
1€[0,1] 2 Jo ne

Since > nlr < 00, by Borel-Cantelli’s first lemma we get the following equality:

t
P |: sup {I,(g,) — c—l/ gn(s)*ds} < b for large enough n] =1,
1€[0,1] 2 Jo

which together with the estimate (2.12) implies that
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1
1=P [ sup I;(g,) <b+ %/ gf(s)ds for large enough n]
0

tel0,1]
2/logn
nll

<P |:sup I, (gy) < for all large enough ni| .
t

Repeating the same argument with —g,, instead of the g,,, we find that

2/logn

na

P [SUP 11 (gn)| < for all large enough ni| =1.
t

Since > —Vlrf’ag" < oo and since [;(g,) = I,(f,) — I;(fu—1), we confirm that the

n
sequence {/;( f,)} almost surely converges in uniform topology. Hence we are done.
0

We remark at this stage that the lim, 7/ (f,) does not depend on the choice of the
approximating sequence { f,,}(€ S), hence we arrive at the following definition of
the Itd integral.

Definition 2.6 (/16 integral) For the sequence {I(f,)} constructed in Proposition
2.8 we call the lim,, 1 (f,,) the Itd integral of the causal random function f € M and

denote itby [ f(t, w)doW;.

Remark 2.1 (Integration over a general interval) It is only for the simplicity of the
argument that we have limited our discussion to the integration over the interval
[0, 1]. We clearly see that our argument works for the case of any finite interval
[0, T] T < oco. Extension to the integration over the infinite interval [0, o) can be
carried out in a similar way.

For a causal random function f (¢, ) such that fooc| f(t, w)|?dt < ooP-a.s. Since
lima_, o f:o | f(t, w)|*dt =0 (P-a.s.), we choose an increasing sequence of real
numbers {c,} in the following way:

= 1
P [/ |f(t, w)|*dt < T3 for large enough n] =1,
[o n-%

and we put f, (¢, @) = 1jo,,1(¢) f (¢, w). Then we see that for each n the It6 integral
I1(f,) = OC” f(t, w)dyW, is well-defined and that

°° 1
P [/ |f(t, ®) — fu(t, w)|*dt < o for large enough n} =1.
0 n<

Now following a similar argument given in the proof of Proposition 2.8 we would
confirm that the sequence {/ (f,)} almost surely converges as n tends to infinity. We
define the stochastic integral of f (¢, @) over [0, co) by its limit:
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/ f(t, 0)doW, = 1im/ £(t, 0)doW,.
0 n—0o0 0

Here are some basic properties of the Itd integral 1 (f) (f € M), most of which
can be verified by checking the limit procedure for the corresponding equalities given
in Propositions 2.4 and 2.5.

Proposition 2.9 The stochastic integral 1 (f) defined for f € M has the following
properties:

(I-1) Linearity: 1(f) defines a linear application from M to L°(2, d P), that is,
forany f, g € Mand any a, B € C the next relation holds:

I(af + Bg) = al (f) + BI(g).

(I-2)  Isometry: For f € My we have E[I(f)] =0 and ||I(f)||i2(dP) =
E[I(H)*] = ||f||iz(dlxdp). But for the function f € M we only have the inequality

1
HMfmiwmilﬂ/‘f%thﬂ(S&&
0
(I-3) Continuity: Almost every sample of I,(f) = I (1j0.5 f) is continuous in t.
(I-4) Martingale property:

(i) For f € M, the process 1,(f) is an Z," -martingale.
(ii) Let f(t, w) be in M. Take an arbitrary positive number A and let T4(w) =
max{t > 0, fot | £ (s, w)|?ds < A). Then Liipey (f) is an ﬁ,w-martingale.

Proof The property (I-1) is evident from definition of the integral. For the verification
of the first part of (I-2), we fix an f (¢, w) in M, and take a sequence { f,,} in S that
converges to f in M, namely,

y&EA\ﬂnm—ﬂmwwmzo
We know from (2) in Proposition 2.4 that
E[1(f)] = 0andE[|I (£,)I’] = || £u117(10, 1] x £2).
Letting n — oo on both sides of these equalities we see that E[I(f)] =0,

Now suppose that f € M and {f,} € S is such that

1
lim / Lf(t) — fu(®)]?dt =0 P-as.
n—o0 ()
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Then we have
ENI(H)I*] = Elliminf|I(£,)*] < liminfE[|1(f,)]*]
1 1 1
— Gim E[ [ 1f,Pdr] < E[hm/ (e = E[/ |F1d11.
n—oo 0 n—oo 0 0

Hence we see the validity of property (I-2).
The property (I-3) being also immediate from the argument given in the proof of
Proposition 2.8, we are going to verify the property (I-4).

(i) Let f € M, then we can choose a sequence { f,,} in S, such that E[ fol | f(t, w) —
£, (t, w)|>dt] = 0. For instance we may take

k k k+1
fut, w) = f(n,(t), ) where n,() = — for t € [—, + )
n n n
For each f, the I,(f,) being an ytw—martingale, we know that forany ¢t > s > 0,
the following holds:

ELL (I F = I(f,)  P-as. (2.13)

Fix an .7 ¥ -measurable random variable X in an arbitrary way, then we have
from (2.13) the equality

E[X - I,(f)] = EIX - E{L(f)| 7" }] = EIX - L(fu)].

Letting n — oo on both sides of the above equality, we get the equality E[X -
I,(f)] = E[X - I,(f)], which states that the I,(f) is an L%W—martingale.

(ii)) Notice that t4(w) is an %W-Stopping time and that the function
1<, () f (¢, ®) belongs to the class M. Since Iiar, (f) = I (A{. <¢,y - f) we
confirm the validity of the statement.

O

2.2.4 Linearity in Strong Sense

We have seen how the Itd integral is introduced for causal functions in H and we
have listed some of its basic properties. In the following sections we are going to
show how the stochastic calculus based on the It integral works. Before that we
like to close this section with the note on a remarkable character of the Itd integral,
which is often missed in standard textbooks.

e It is said that the Itd integral is a Riemann-type integral in the sense that the Itd
integral can be defined as a limit of Riemann sums as follows:
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Given a finite partition A={0=f <t <th <---<t; <---1, =1} on the
interval, that is [0, 1] in our present set-up, we consider the sum

Ra(f) =D [t @) AW, where AW = W(ti11) — W (&),

eA

and say that folf(t, w)doW, = limjaoRA(f), where |A| = max{tiy1 —t;; t; €
A}

By looking at the proof of Proposition 2.7 we are sure that this is true at least for
any f € M.. Remember that any f € M, is approximated by the sequence of
causal simple functions f, as follows:

fa(t.0) = f(a(t), ), where na(t) = D tiljy ().
k
We are also sure that

1
/ ft, w)doW; = \Bmo RA(f) in the mean
O —

when f € M, ., i.e. when f is causal and continuous in the mean,

lim sup E|f(t+h)— f@) =0.
h=0e[0,1]

In fact, we have

=l gy
1= Rath =3 [ 1O = F@ldu,
i=0 1
hence
tim ENICH) ~ Ra(HPT = tim S [ Ellf0) = faPlar = o
i=0 /i

1t6 calculus was introduced for the theory of SDEs (stochastic differential equa-
tions) whose solutions in most cases belong to those classes cited above, hence
the slogan saying “the It0 integral is a Riemann integral” has caused no problem.
e Anyhow, the fact that the Itd integral 7 ( f) for f € M is defined along the sequence
of approximate causal simple functions is important. Let f (¢, w) be a function in
M and let «(w) be an arbitrary random variable. Then we see that the function
g(t, w) ;= a(w) f (¢, w) is no more causal and is excluded from the class M. But
it does not prevent us from defining the It integral of a noncausal function of
this particular form. In fact, let { f;,} be a sequence of causal simple functions that
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converges to f (¢, w), and let g, (¢, w) := a(w) f,,(t, ). Then g, (¢, w) is simple
but not causal, but still the sequence {g,} converges to g(¢, w) in H P-a.s. By the
definition of the It6 integral for simple functions we have

1(gn) = a(o) 1 (fy),

hence we see that {7 (g,)} converges to «(w) I (f), namely we confirm that g(z, »)
is Itd integrable.

e Generally speaking, once an integral is defined for functions in some subspace 2
of a function space, it defines at the same time an application from that domain
2 to a set in a metric space. In the case of the It6 integral the application I (f)
is a mapping from M to L°(£2, d P). On the other hand, in analysis it is widely
believed that any application induced by an integral is linear. This is true for all
stochastic integrals that we treat in this book, but the mappings, say 7' (f) for the
moment, induced by the Itd integral or by the noncausal integral of the author (see
Chap. 3) exhibit more strong linearity as follows:

T'(a(@)f + B@)g) = a(@)T(f) + p(@)T(g),

for any random variables «(w), B(w). This property we like to call the strong
linearity.

2.2.5 Ito Formula

Let X, be a stochastic process that accepts the following representation:

t t
X, =&(w) +/ b(s, w)ds +/ a(s, w)dyW; (2.14)
0 0
where £(w) is a random variable independent of the Brownian motion W., and
a(-), b(-) are causal functions.

Definition 2.7 Every causal stochastic process X; of the form (2.14) is called an It6
process and the totality of all such processes will be denoted by M;. In other words
the It6 process is a special type of the Brownian semi-martingale.

The expression (2.14) is also denoted by the following differential form:
dX, =b(t,w)dt +a(t, w)dyW;, Xo=E&w).
Remark 2.2 As a variant of this, the process of the following form (2.15) is called a

quasi martingale:
dX, =dB(t, )+ a(t, w)dyW,, (2.15)
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when a(t, w) € M and b(¢, w) is a process, causal or not, almost every sample
of which is of bounded variation on [0, 1]. We will denote the totality of quasi-
martingales by M. The semi-martingale is the name for a causal quasi-martingale.

Let X, be an It6 process and let F (¢, x) be a real-valued function that is defined on
R, x R! and is of C'-class in ¢ and of C3-class in x with bounded derivatives.

Theorem 2.3 (Itd formula) The stochastic process F (t, X,) satisfies the following
equality:

dF(t, X;)
1
= {F;(t, X¢) + FL(t, X0)b(t, w) + 5F)g/x(t, X)b2(t, w) | di + FL(t, Xp)a(t, w)do Wy,

where F| = 0,F, F. = 0,F, F/', = 02F. (2.16)

This equality is called the It6 formula.

Proof Fix t and set 1 = ¢, k=0,...,n.
Then by the mean value theorem in calculus we have the following equality:

n—1
F(t, X,) — F(0, Xo) = Z{F(t}fﬂ» X)) — F@, X))}
k=0
n—1
= Z{F(II?H, Xt ) — F@, X () + F@, X () — F@!, X ()}
k=0
n—1

= > {Fla + 0, A]. Xt/ )AL + F(t), X (1)) AL X

k=0
1
+ S P X @) + 64X (4 X)?),
where Gk], 9,3 (k=0,...,n— 1) are constants in (0, 1) and

Ay =t — 8, AX =X, — X(@).
By virtue of the smoothness of F/, F and the continuity of the sample of X (¢, w),
we see that

n—1

t
lim > F;(t,ﬁ+9,jA,f,X(t,ﬁ+l))A;=/ F/(s, X(s))ds, P-as.
n—o00 O
k=0
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and
n—1 1
lim D (FL(t¢, XN A} X + S FLL (6, X (1) + 0 A X) (AL X))
n— 00 = 2
! 1
= /0 Fl(s, X(s)) [b(s, w)ds + a(s, X (s))doW, + EF;/X(S, X(s))bz(s)ds},
P-a.s.
This completes the proof. (]

‘We know that It6 formula (2.16) is valid for a function F (¢, x) with aless restrictive
condition on regularity, but we do not enter into the details since we need not do so
for our discussion in later chapters.

Example 2.2 Applying the formula (2.16) to the case where

t 1 t
F(x) = exv Xl‘ =/ f(S, w)dOWl - 5/ fz(s’ a))ds,
0 0
we get the next equality for Z, = exp{X,},
12 1 2
dzZ, =7, f~d0Wt—§fdt +§thdt=Z,fd0Wl

from which we see that Z, is an .#, -martingale.

The extension of the result (Theorem 2.3) to the case of multi-dimensional It6 process
can be given as follows.

Let X, =" (X!, X? ..., X!) be a p-dimensional stochastic process, each com-
ponent X! of which is generated by the following rule:

q
dX! =b'(t, w)dt + Y _aj(t, 0)doW[, 1<i<p, (2.17)
k=1

where aj, bi(l<ic< p, 1 <j <gq) are causal random functions and W, =’
(W', W2, ..., W%) is the g-dimensional Brownian motion, namely the {W', W2,
..., W9} are independent Brownian motions. The Itd formula is extended in the
following way.

Theorem 2.4 (It6 formula 2) Let F(r,X) (f € Ry, x =" (x1,x2,...,x,) € RP)
be a smooth function that is of C'-class in t and of C3-class in X with bounded
derivatives. Then for the p-dimensional Ito process X, given in (2.17) above we
have the following equality:

dF(t,X,) = L\ F(t,X,)dt + Lo F(t, X,)doW,, (2.18)
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where
RN I R
Li=— b (t, w)— + = fa] ——,
: 3t+§ ( w)axiJrziJZ::l;akakaxiaxj
and
m P a
LoF (8, X)doW, = D~ D" bf(t, 0) = F (1, X)do W'
k=1 i=1 9x;

The demonstration of this statement is left to the reader.

Example 2.3 Apply the Itd formula (2.18) to the case where F(x,y) =xy, X; =
fot f(s,w)doWs and Y, = fot g(s, w)dyW; where f, g € M, then we find the fol-
lowing equality:

/f(s,w)doWs/ g(s, w)doW;

0 0

=/ f(s,w)doWs/sg(r-w)doWHr/ g(s,w)doWs/sf(r, w)doW, (2.19)
0 0 0 0

+/ f(s, w)g(s.w)ds.
0

2.2.6 About the Martingale Z;(o)
Because of the remarkable property of the causal function
1 t
Z; =exp [Iz(f) - 5/ £, w)dS] (f eM),
0

we try to look at it from a different viewpoint.
Let f € M be a real causal function such that

1
E |:exp [az/ fzdt” < oo Ya eR,
0

and consider again the process Z;(«) introduced in Example 2.2:

t 2 t
Zi(a) = exp[(x/ £ (s, w)do Wy — %/ fz(s,a))ds}.
0 0

We have seen that it is a square integrable .7," -martingale such that

dZ,(@) = af (t, ®)Z,(@)doW,,  Zo(a) = 1. (2.20)
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In other words,

Zi(a) =1 +0l/ f (s, w)Zs(e)do W,
0

by which we find the following equality:

Zi@) =1 +a/ (5. 0) [1 +a/s . w)zr«x)dowr] do W,
0 0
=1+a/ f(sl,w>dows,+a2/ Flst, 0)doW, (/]f(sz,w)doWsz)-
0 0 0

By the formal repetitin of this procedure we would find the expression for Z,(«) as
follows;

o0
Z.(a) = Za”Zn(t), where Zo(t) = 1 and
n=0

Zn(t)Z/ f(Suw)doWn/ f(Sz,w)doWsZ---/k f (s, w)do W, (2.21)
0 0 0

In fact we can show the following statement:

Lemma 2.2 For any o the series Y, _oot" Z,(t) in (2.21) almost surely converges
to Z,(), uniformly in t on any compact interval.

To keep the size of this chapter compact we will give the proof of this statement in
Chap. 10.

Let {h,(t, x), t > 0, x € R} be the family of Hermite polynomials each element
of which is defined by the following formula:

(_l)n x2 " X2
h,(t,x) = m exp o axnexp 5 (n>0).

By this definition we see that the family of Hermite polynomials {%,(z, x)} has
exp{ax — "‘th} as its generating function, namely

a’t =
exp [ax - 7] = Z;a (2, X). (2.22)

Now by substituting fot f(s, w)doW; and t(1) = fot f%(s, w)ds for x and t respec-
tively in the equality (2.22) we get the following equality:
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t 2 1
Z,(oz):expioz/ f(s,w)dOWs—%/ fz(s,a))ds]
0 0

o0

=>a"h, (r(t),/tf(s,a))doWS).
0

n=0
Comparing this with the equality (2.21), we find the following expressions:

Lemma 2.3 Forareal f € M it holds that

Sn—1

Z,(1) = / (51, 0)do W, / CfenodoWy . [ fse 0)doW,
0 0

0
=h, (r(t),/ f(s,a))doWs).
0

Hermite polynomial £, (¢, x) is a polynomial of x of degree n which is explicitly com-
puted by its definition. Therefore we find the formula mentioned in Lemma 2.3 useful

n
to compute or estimate the n-th moment of the It6 integral £ [( fot f(s, w)dy WS) ]
For instance:

Lemma 2.4 Foran f € M N L* the following estimate holds:

t 4 ¢ 2
E [(/0 G, w)dows> } < 36E [(/0 s, w)ds) } .

Proof We know that hu(t, x) = x* — 6tx> + 3¢2. Since E[Z4(t)] = 0 we have
Elha(t(t), [, f (s, @)doW;)] = 0, hence we find that

t t t t 2
EL( / fdoWs)4]=E|:6 / f2ds ( / FdoW,)* — 3( / f2(s,w)ds)}
0 0 0 0
t 2 ot
<6E [(/ fdows) / fz(s,a))dsi|
0 0

(L)) GO ])

From this we find the inequality. (]
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2.3 Causal Variants of It6 Integral

2.3.1 Symmetric Integrals

As we have noticed in the preceding section, the 1t6 integral has such a remarkable
property that the process defined by the It integral X, = [ " f(s, w)d, W, becomes a
martingale and this fact is granted by the causality condition on the integrand f (¢, w)
and by the particular form of Riemann sum. Hence any change in these situations
would cause the loss of that nice property. Nevertheless we may think of the stochastic
integral for the causal function by a Riemann sum of different form as follows:

n—1

ROCS) =D [l +0A) AW, (2.23)
i=0

where 6 is a constant such that 6 € [0, 1]. We are also interested in the following
Riemann sums:

n—1
SA) =D AW +OMFIAW Aif = fti,0) — f(t o). (224)

i=0

‘We may see that the Riemann sum SX 2 (f)isjustastochastic variant of the trapezoidal
formula in classic calculus. We are going to study the convergence of these Riemann
sums. For this purpose we need to introduce a kind of regularity of the random
function f (¢, w) with respect to the Brownian motion.

Let {A,} be a sequence of partitions A, = {0 =15 < --- <! =1} of [0, 1]. We
call the sequence regular provided that

A, C Ayyq and lim |A,| = 0.
We say that a random function ki (¢, w) is B-negligible if it exhibits the following
property (W):

(W) For each fixed ¢ € [0, 1] and for any regular sequence of
partitions {A,} it holds that

lim > (Aih) - (A;W) =0 (in P), where A,(1) := 4, U {z}.
n—oo tieA” (,)

In particular we call i (¢, w) strongly B-negligible if it satisfies the following condition
(WS):

(WS) For each fixed ¢ € [0, 1] and for any regular sequence of
partitions {A,} it holds that
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lim Z |Aih - A;W| =0 (in P), where A,(t) := A, U{r}.
€A, (1)

Example 2.4 A random function A(t, w) that satisfies the following condition, for
any regular sequence of partitions {4, } of [0, 1], is strongly B-negligible:

li Ah)>=0 inP.
nﬂ%Z' =0 in

HEA,

Thus any function, almost every sample of which is of bounded variation, is strongly
B-negligible.

Definition 2.8 (B-derivative) A random function f(t,w) € H is called
B-differentiable (or strongly B-differentiable) if there exists a causal function g (¢, w)
€ M such that the function Ah(t, w) = f(t, w) — fol g(s, w)dyW; is B-negligible
(or strongly B-neligible respectively). In this case the function g(¢, w) we call the
B-derivative of f (¢, w) and denote it by the symbol f (t, w) or by SLW, ft, w).

We see the uniqueness of the B-derivative in the following statement whose proof
will be given in the last chapter “Appendices 2"

Proposition 2.10 The B-derivative of a B-differentiable function is uniquely deter-
mined.

Remark 2.3 (B-differentiability [21, 43]) The notion of B-differentiability was first
introduced in the study of the symmetric integral I; , and BPE (cf. [20-22]) where all
random functions f (¢, ®) are supposed to be causal. That was given in the following
way.

A causal random function f* € Mis called B-differentiable (or differentiable with
respect to Brownian motion) if there exists a causal random function, say f (¢, w),
that satisfies the following condition:

2
} o

It may be immediate to see that new definition of B-differentiablity is a refinement
of this classic one.

t+h
lim sup %E Uf(t+h) —f@ —/ F($)doW,

h{0 0<t<l—h

Example 2.5 Let X; be a random function of the form
t
X, = Bt,w)+ [ ats. o),
0

where a(t, w) is a causal function of the class M, and B(¢, w) a function which
is Holder continuous in L?(£2) sense, E[|B(t +h) — B(t)|*]1 = O(|h|%) (1 < ).
Then X is B-differentiable and aa_v)é, =a(t, w).
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Inparticular, every Itd process X;; d X; = b(t, w)dt + a(t.w)dyW; witha(t, ) € M,
is B-differentiable.

After the introduction of the notion of B-differentiablity we find it convenient to
denote by H! the totality of all B-differentiable functions causal or not, and by M!
the set of all B-differentiable causal functions, i.e. M! := H' N M.

We have the following result whose proof is given in Chap. 10 (Appendices-2);

Theorem 2.5 ([21]) Let {A,} be an arbitrary sequence of partitions in [0, 1] such
that, A, C Apqy and lim,_,  ||A, || = 0. Then for every B-differentiable function
f e M! and afixed 6 € [0, 1], the two sequences of Riemann sums RZ" ), Sin f)
converge in probability to the same limit 1o(f) which we also denote by fol f dg W,
and call the 0-integral. The integral Iy(f) is related to the Ito integral Iy(f) in the
following form;

f
8W,

19<f>—10(f>+9/ Ft oy, f=

Among these integrals Iy, the two Iy and I}, are of particular importance, the former
is of course the It6 integral and the latter we call the symmetric integral.

Example 2.6 (a formula concerning the white noise) Let X, be a causal function

defined by the symmetric integral as follows:

Xt=Xo+/ Fs.0)dW,,  f(t,w) €M
0

for some B-differentiable function f (¢, w).
Notice that we can verify the validity of the following expression in the sense of
L. Schwartz’s distribution:

. d .
X; = EX, = f@t, w)W.

On the other hand, by Theorem 2.5 we see that

E[X,]=E |:/f(s a))dsi| vt.

We will often find it convenient to write this fact in the following form:

. 1 .
ELf(t,)W]= EE[f(t, )] (2.25)

The importance of the symmetric integral is simply explained by the following fact.
For a semi-martingale X, = at + bW, + ¢, (a,b,c: consts) and a smooth function
F(t, x), we have by the 1t6 formula
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/ / b2 " /
d,F = [Ft +aF, + 7Fxx] dt +bF.doW;.

With the symmetric integral this equality is expressed in the more simple form
d,F = F/dt + F{adt + bdW,} = F/dt + F.dX,,

since we have dLW,F)é (t, X;) = F/ b. In other words, with the symmetric integral
the differential formula in classic calculus is conserved. But the application of this
property to a more general case must be done with a special care to the notion of the

B-derivative as we see below.

2.3.2 Anti-Causal Function and Backward Ito Integral

This and the following Sects.2.3.2 and 2.3.3, treat some special subjects which will
be related only to a problem discussed in Chap.7. Hence an impatient reader can
skip these two subsections.

Looking back to the definition of the It6 integral I (f), f € S, we recognize that
the causality condition together with the employment of the special form of Riemann
sum

Ra(f) =D f)AW, A={0<ti<ty<- <1, <T)

ieA

is essential in endowing the martingale property to the stochastic process I,(f) =
fol f (s, w)dyW, defined by the It6 integral. A similar result might occur in a retro-
grade situation as we see below.

Let9" .= o{W, — W, : t <u < v}andlet.#' be adecreasing family of o -fields
such that

e 7' DY,
e Z!isindependent of 4, :=c{W, — W, : u <v <t}.

The o-field .#' presents the future behaviour of the Brownian motion after time
t, and we call the random function f (¢, w) € H anti-causal when it is adapted to
the filtration {.#'},;. We will denote by M the totality of anti-causal random func-
tions, namely M= {f e H: f(t, ) is anti-causal}, and by Mz its subset M N
L?([0, 1] x £2, dt x d P). We will also denote by ngc the subset of M, consisting of
all elements which are continuous in the mean, lim,_q E[| f(t +h) — f(t)|*] = 0.

Given an anti-causal function f (¢, w) and a partition A = {0 =# <, <--- <
t, = 1} of [0, 1], we consider a retrograde Riemann sum

n—1

RA(f) = Z f(ti+17 w)A;W, where A;W = W(Z‘H_]) — W(). (2.26)
i=0
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We notice that for a causal function f € M this is just the Riemann sum which leads
to the integral I;(f) as |A| — 0. But in the present case we consider the sum for an
anti-causal function. If we write

fA@t, o) = f(? (1), w), where n?(t) = t;1; whent € (&;, tir1],

then f4(t, w) is a simple anti-causal function and the retrograde Riemann sum in
(2.26) is expressed in the I;-integral form;

RA(f) = Li(fY).

The sum has the following property the verification of which is almost immediate
and is omitted.

Proposition 2.11 When f € My, we have E[R*(f)] =0 and

n—1

1
Euﬂpﬂﬁ::§:Ewﬁm+hwnawl—n)=ﬁyé |fA@, w)Pdr]. (2.27)

i=0

Now let {A,} be an increasing family of partitions such that, A, C A, (as sets)
and lim,_,»|A,| = 0. Given this and an anti-causal random function f (z, ) € M,
we put

fult, ) = f2(t,w), neN.

Notice that for each n, f,(t,w) € M,. We have the following statement.

Proposition 2.12 For an f(t,w) € szc, the sequence {I,(f,)} converges in the
mean sense.

Proof By the continuity of f(z, w) we see that lim,_ || f — fu||> =0. On the
other hand, by the isometry property (2.27), we find that

m || fu — full* = 0.

li
,h—>00

im  E[L(fu) = L)1 =

This completes the proof. O

Definition 2.9 For an anti-causal function f € Mz,c, the limit in the mean
lim,_, » I;(f,) of the sequence {I;(f,)} in Proposition 2.12, we denote by I;(f)
or by fol f diW;, and call it the backward It6 integral.

Remark 2.4 The same symbol fol f(t, w)d, W, is used for the different cases, namely

for the causal or noncausal functions. They are quite different from each other; for
the causal function it means the sum of the It integral with the additional term,

1
hU)=hU)+A.ﬂLMM,
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where f (t,w) = aim f, while for the anti-causal function f (¢, ) the integral
fol f diW; is just the backward 1td integral. Hence when we see this notation we
must be careful on the causality of the integrand.

Let [a, b] be a sub-interval in [0, 1] and A ={0=1 < --- <, = 1} be a parti-
tion of [0, 1]. For an anti-causal function f € M,, we observe that gt w) =
114.(t) f2(t, ) is a simple anti-causal function and its backward It integral is
well-defined as follows:

r—1

Li(g?) = fu){W () — W(a)} + Zf(ti+1)AiW + f@G DWW (D) — W)},

i=t

where
ty=min{t; > a; t;, € A}, t. =max{t; <b; t; € A}.

We see by this formula that

b
E[ILQap - fHP]=E [ / IfA(t)Izdt} :

consequently the convergence in the mean of the sequence {1 (1j,51 - f2)} asn —

0o, the limit we denote by fa b S, w)diW,. In particular for the case [a, b] =
[£,1] (0 < < 1) we have

1
/ (s, w)d W,

n—1
= fE{W @) — W(ta-1)} + Z F@)AW + feo){W (@) — WD)},

i=0+1

by which we see that the function (¢, w) — ftl fA(s, w)d, W, is adapted to the
decreasing family of o-fields {.%'}, and that the equality

1 1
E[/ fr,o)di W, | Z7] =/ f(r,w)diW,, P—a.s. (2.28)

holds for any 0 <t < s.
The integral I, (f) having been defined as the limit in the mean of the sequence
of retrograde Riemann sums {RlA” (f)}, we have reached the following statement:

Proposition 2.13 For an anti-causal function f € Mz,c, the function defined by the

retrograde Ito integral, ftl f d\W, exhibits the martingale property of retrograde
type (2.28).

Remark 2.5 Let f € My, and let Z,(f) be an anti-causal process defined by
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1 1 1
Z,(f) = expl / F W, — 5 / P2, w)dr).

Then by a similar argument we may confirm that the equality E[Z,(f)|-#*] = Z;(f)
holds P-a.s. for any ¢ < s.

For the later discussion we prepare an Itd formula of backward type. Let X!, X? be
anti-causal It6 processes defined by

1 1
X;’:/ ﬁ(s,w)dIWx—i—/ gi(s,w)ds, i=1,2,
t t

where f;, g (i = 1, 2) are anti-causal functions belonging to the class Mz_c.
Then following the same argument as in the case of causal calculus it is almost
immediate to establish the next result.

Proposition 2.14 (backward Itd formula) For a smooth function F(x,y) and an
interval [a, b] C [0, 1], the next equality holds:

F(X), X} — F(X!, X2

b b
1
= _/ (Fdi X} + Fyd X7} — 5/ (Fu f2+ Fyy f3 +2F fi fo)dt.

Example 2.7 Let X! = [' fd\W, and X2 = [ gd\ W, then noting X! = X2 =0
we have

1 1 1 1
X X? = / (f(s) / g W, + g(s) / FI W, )W, + / F()g(s)ds.

2.3.3 The Symmetric Integral for Anti-Causal Functions

For an anti-causal function X (¢, w) its symmetric integral (of backward type) can be
defined similarly to the case of causal functions. Given a partition A = {0 =1, <
Hh<---<t,_1 <t, =1} we consider for a fixed 9 € [0, 1] the Riemann sum as
follows:

RO(f) := Z X(te + 0 A) AW, (2.29)
k=1

where, Ay = terl — ey, AW = W(tey) — W(t).

We know that the sequence R (f) converges as |A| — 0, and to assure the
convergence for the case 6 < 1 we need some assumption on the regularity of the
integrand X, namely a kind of B-differentiability. But for the simplicity of discussion
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we suppose that the anti-causal function X, is given in the formula of the backward
1t6 integral,

1 1
X; :/ f(s, w)d; W, +/ g(s, w)ds S g €My,
t t

‘We may call such a process the backward Itd process.

Proposition 2.15 Let { A, } be an increasing family of partitions of [0, 1]. Then for
each fixed 0 € [0, 1] the sequence of retrograde Riemann sums {RZ" (f)} converges

in the mean as |A,| — 0, and the limit which we denote by fol X dyg Wy is expressed
in the following form:

1 1 1
/ X, dgW, = / X, d\W, + 6 / f(s, w)ds. (2.30)
0 0 0

Proof Letus write R,(0) = R"A” (f) and %.(0) = t, + 0 Ay, then we have

Ry(0) — Ry(1) = D (Xt + 0 M) — X (1)} AW
k=1
=l e
= Z f(s, 0)d\ Wy - At W.
k=0 tk(e)

By the formula in Example 2.7 we find

Tiet1
f(S, a))d| Ws . AkW
1% (0)
tht1 /38|

/381
— [ fs o)W te) — W)W, + / XdiW,+ | fls.)ds)
179 A )

= Ti(k) + Tr(k),

where
th1 Tkt
L0 = [ s o) (Wts) — W)W, + / Xodi W,
1% (0) Iy
Tkt
TIh(k) = f(s.w)ds.

%(0)
It is routine to verify that

n—1

lim 2 Ty(k) =0 in L*($2,dP)
n—oQ
k=0
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and that . ]
lim " Ty (k) = 9/ f(s, w)ds.
n—0o0 0
k—1
Since lim,_, o R,(1) = fol X, d; Wy, this completes the proof. O
24 SDE

A stochastic functional equation for an unknown process X, as follows is called a
stochastic integral equation,

t t
X =xo +/ b(s, Xy)ds +/ a(s, X,)doWs, 0<t<T, (2.31)
0 0

where xg € R and a(t, x), b(t, x) are real functions measurable in (z, x). In the
condition that the unknown process X (¢, w) is limited to be causal (with respect to
the filtration {.#'}) the equation becomes meaningful in the framework of the Ito
integral. It is customary to represent this Eq. (2.31) by the following symbolic form
which is called the stochastic differential equation (or SDE for short) of Itd type:

dX; =b(t, Xy)dt +a(t, X;)doW;, Xo = xo. (2.32)

The discussion on SDEs based on Itd calculus is not our principal subject in this
book. So we do not give here a detailed review about it, but we intend to give only
some elementary results for the reference in later chapters.

2.4.1 Strong Solution

Definition 2.10 A continuous stochastic process X;(w), (¢ > 0), defined on the
same probability space (§2, .#, P) as Brownian motion W, (w) and adapted to the
filtration {Q‘IW, t > 0}, is called the strong solution of the SDE (2.32) provided that
the couple (W, X) satisfies the Eq.(2.31) with probability one for all ¢ € [0, T].

As for the fundamental properties of the strong solution we have the following
statement.

Theorem 2.6 Letal(t, x), b(t, x) be real and smooth functions with bounded deriv-
atives in x, i.e. 9,b(t,x)|, |8ca(t,x)| <3 Ly Y(t, x). We suppose that the initial
data Xo(w) is independent of the Brownian motion and E [Xé] < 00. Then the
Cauchy problem (2.32) for SDE, or equivalently the SIE (2.31) has the unique strong
solution X,.
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Proof Put L = max{Lg, sup,¢[o ] |b(t, 0)], sup,¢[o 1) la(#, 0)[}, then by the assump-
tion on the coefficients a(t, x), b(t, x), we notice that they satisfy the following
conditions:

|b(¢, x) — b(t, )| < LIx =y, la(t,x) —a(t, y)| < L|x — y|land
la(t, x)|, |b(t, x)| < Lv/1 4 x2 for any x. (2.33)

We are going to prove the statement by the standard method of Picard. So we construct
a sequence of random functions {X,,(¢)} in the following way:

Xo(t, w) = Xo(w)

t t
Xoun1(1.0) = Xo(@) + [ b6, X, s + [ as. X, 6DdaWe. for n = 1.
0 0
(2.34)
First of all we notice that the assumption E[X(?, w)?] < 00 implies by the second
condition in (2.33) that X (¢, w) € M», hence by induction we notice that every X,

is well-defined as an element of M.
From definition (2.34) we have

Xp(t) = Xp1 (1) = /Otan1(s, w)ds +/0t Pn-1(s, w)doWs,n =1, (2.35)
where
(s, w) = b(s, Xy (s)) = b(s, Xp—1(5)),  Bn(s, ) = a(s, X,(s)) — a(s, Xp—1(5)).
As for these we notice that
lan (s, @), |Bu(s, w)| = L|X,(s) — Xu—1(s)| forall (s, w). (2.36)

We put d,(t) = E[|X,,(t) — X1 (1)]?] and we claim that

(Can)"

n!

dn (t) = Cl

for some constants Cy, C,. (2.37)
For n = 1 we have
t t
X1(1) — Xo(#) = / b(s, Xo(w))ds +/ a(s, Xo(w))do Wy,
0 0

from which we easily find that

di(t) < C;Cyt where C; =1+ E[|X0|2], C, =2(T + 1)L2. (2.38)
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For the case n > 2, with the help of the condition (2.36) and Schwarz inequality, we
get from (2.34) the following inequality:

dy(1) = E[1X, (1) = X, -1 ()]

t 2
S 2E |:(/ Op—1 (S, a))ds) + (,Bn—l (sa w)d0W€)2:|
0

szﬁfﬁ/ﬁﬂmlmy—mlmst+/zmxnwn—xnxmmw}
0 0
=2(T + 1)L2/ d,_1(s)ds.

0

Namely we find
t
40 =C: [ da)is
0

By induction from this integral inequality, together with the estimate (2.38), we get
the desired estimate (2.37).

Next we show the uniform convergence of the sequence {X,,(#)}. Again from the
equality (2.34), we have

t t

Xnr1(t) — X, ()| < a(s)d 2 ($)doWo| 1.

max (X1 0) m_ﬂ%blamﬂ+%ﬂmmyd
Thus for any fixed M > 0, we have the following inequality:

P{max [X,1(r) — X,(t)| > 2M}
1€[0.7]

/ o, (s)ds
0

As for the first term on the right hand side, we have
t T
P[max / o, (s)ds >M] SPIT/ ozi(s)ds>M2]
t€0,TT | /o 0
LT (C\T)"

T
< WE/O dy—1(s)ds < C3W’

§P[max

t€[0,T] 1€[0,T]

>M]+P[max

/ B (s)do W
0

> M]. (2.39)

2
where C3; = GLT

As for the second term, by applying Doob’s submartingale inequality (see
Theorem 10.2 in Appendices) we get the following estimate:
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o ([ osn)]

L2 T (C]T)n
< W/o di(s)ds < €L

/ Bn(s)do W

max
t€[0,T]

where C4 = max{Cs, (C,L?/C))}.
Combining these two estimates with the inequality (2.39) and putting M =

2 (ClT)"
2C.
] ¢ vn!

we find

P Xnp1(t) — X, (2
[,E.la" X (0 = Xa 0] > —=
The series >, % being convergent, by virtue of Borel- Cantelli’s first lemma we
get from the above inequality the following result:

P |:rnax | Xne1 (1) — X, ()] < for large enough ni| =1.
1€[0,T]

f

This implies that the sequence {X,, (¢, w)} converges to a limit X, (¢) almost surely
and uniformly in ¢ € [0, T']. Now letting n — oo on both sides of the equation (2.34)
we confirm that the limit X, (¢) solves the SDE.

What is left is the verification of the uniqueness of strong solution. So let Y (¢, )
be another strong solution of the SDE, for which we have the following equality:

t t
X@)—-Y@® =/ {b(s, X(s)) — b(s, Y(s))}ds+/ {a(s, X (s)) — a(s, Y (s))}doWs.
0 0

Put d(¢) = E[|X(t) — Y (¢)|?] then, following the same argument as we have done,
we find that

dt) <2L*( + T)/ d(s)ds.
0

Since d(0) = 0 the application of Gronwall’s inequality (see the subject in Chap. 10)
shows us that d(¢) = 0 for any ¢, hence

P{X(t) =Y(t)} =1 foranyzt.

This completes the proof. (]

Remark 2.6 The solutions X (¢), Y (¢) being continuous, we see by separability of
those processes that P{X (1) = Y(¢) Yt € [0, T]} = 1.
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2.4.2 Law of the Solution of SDE

We have shown a statement on the existence and uniqueness of the strong solution
of the Cauchy problem for the SDE (2.32). It would be intuitively clear that this
solution X; is a Markov process, for the following two reasons: (1) Because of the
uniqueness as the solution of the SDE, the value of the process after “¢” {X,,, u > t}
depends only on the final data “X,” and the increments {W, — W,, u > t} of the
driving force W.; besides (2) the increments {W,, — W,, u > t} are independent of
the past history .7,

Hence we are interested in the transition probability of the solution X of the SDE,

P(s,x,t,dy) = P{X, edy|X, =x}, s<t, x €R.

Suppose for the simplicity of discussion that the transition kernel has the density
P(s,x,t,dy) = p(s, x,t, y)dt. Now fix a smooth function f(x) € C,f with finite
support and consider the expectation

E[f(X)IXs =x]= /Rl Fp(s, x, 1, y)dy.
By the Itd6 formula we have the equality
fXy) = fx) +/st ' (Xtb(r, Xp)ds +a(r, Xp)doWr} + %/01 f(Xp)b?(r, Xy )ds,
from which we see that,
E[f(X)|X;=x]=f(x)+E [ / (7 XbG, X)) + %f”(xrw%r, x,)}ds} :
By changing the order of integrations we find the following equality:
/le(y)p(s, x, 1, y)dy
= f()+ /St dr /R] p(s, x,t, »)dy{f' (Mb(r, y) + %f”(y)bz(r, »}

Thus by taking into account the fact that f (x) is of compact support and by applying
the integration by parts formula to this, we get the following:

/Rl f(y)dy/ dr [arp(s,x, r,y) 4+ 0,{b(r, y)p(s, x, 7, y)}

1 2b2 =0
_zay{ (VvY)P(S’XaV’)’)} — Y.
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The test function f(x) being arbitrary, by virtue of Weyl’s lemma (see for example
[15]) we get from this equality the equation for u(z, x) := p(0, xo, ¢, x) as follows:

i t)——EWt)(t}+13;#0 1,x))
8tu(,x =5 (t, x)u(t, x) 2 9x2 , x)u(t, x)},

u(0, x) = 8y, (x). (2.40)

This is the so-called Kolmogorov forward equation.

The backward equation can be obtained by taking u(t, x) = E[f(X7)|X; = x]
and applying a similar argument based on the It formula, which would read as
follows:

D )+ b0 Lu+ EED 0 i <T
TR P 2 gtV Th =D

u(T,x) = f(x). (2.41)

In terms of the transition probability density p(¢, x, T, y) the function u(¢, x) is writ-
ten as u(t,x) = fR, fO)p(, x, T, y)dy, hence again by applying Weyl’s lemma
we see that from equations in (2.41) the following equations hold:

b2t x) 92
2 @}P(I,X, T,y)=0,t<T,

{a+b(t )8+
- LX) —
ot dax

p(T.x,T,y) =8y(x).

2.4.3 Martingale Z; and Girsanov’s Theorem

For a nice real function f (¢, w) belonging to the class M, we have introduced the
causal function Z, by the following form:

t 1 t
Z, = exp [/ f(s, w)dyW, — 5/ fz(s, a))ds] .
0 0
We have seen that this positive function is the unique strong solution of the Itd SDE
dZ, = f(t, w)Z;doW;, Zy = 1.

By this fact we notice that the Z, is an %W-martingale with E[Z;] = E[Zy] = 1.
Moreover since Z, > 0 we see that dQ = Z,d P becomes another probability on
the same measurable space (§2, .%). We denote the expectation with respect to this
new probability by E2[-]. It is interesting to ask how the Brownian motion W, looks
like under new probability d Q. For this aim we consider a stochastic process Y; as
follows: dY, =dW, — f(t, w)dt.
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Then by It6 formula we obtain the equality,

d(Y,Z) = Z{doW, — f(t, w)dt} + Y, [ (t, ) Z,do W, + Z, f (1, w)dt
=Z {1+ Y, f@t, 0)}doW,,

which shows that ¥, Z, is an . -martingale under the original measure d P. Hence
for an arbitrary event A € ySW’ we have,

E9[1,Y,]1 = E[1,Y,Z,] = E(14E[Y, Z,|.Z 1] = E[1,Y,Z,] = E9[1,Y,],

in other words, E2[Y, L?SW] = Y, Q-a.s.. This means that Y; is an ﬂtW-martingale
under the measure d Q.

On the other hand, we easily see that the quadratic variation of Y; is d[Y], = dt.
Consequently by Lemma9.3 we get the following result:

Proposition 2.16 (Girsanov’s Theorem) Under the measure dQ = Z;dP the
process Y;; dY, = dW, — f(t, w)dt becomes a Brownian motion.
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