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Abstract The momentum transfer characteristics of slip flow around an assem-
blage of spherical particles in a shear-thinning fluid (n = 0.6) is numerically studied.
At fluid-solid interface a linear slip velocity is applied. As the non-dimensional slip
number (λ) increases, the fluid slip becomes weaker i.e., λ = 0 represents fully slip
flow and λ = ∞ indicate no-slip velocity at the solid-fluid interface. A finite dif-
ference method based on SMAC semi-implicit algorithm is used in this work over
the range of conditions as: Reynolds number, Re = 100–200, power-law behavior
index, n = 0.6, volume fraction of slip spheres, Φ = 0.1, and dimensionless slip
parameter, λ = 0.01–100. Finally effects of these parameters on detailed flow
kinematics are discussed in details.
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Nomenclature
Cd Total drag coefficient
Cdf Friction drag coefficient
Cdp Pressure drag coefficient
Fd Drag force (N)
p Pressure
r Radial distance
R Sphere radius (m)
λ Slip number
Re Reynolds number
R∞ Cell boundary
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U Free stream velocity (m/s)
vr r-component of velocity
vθ θ-component of velocity

Greek Symbols
Φ Volume fraction of slip spheres
ε Rate of strain tensor
η Fluid viscosity
ρ Fluid density (kg/m3)
τ Extra stress tensor

1 Introduction

The solution of fluid flow past solid particles with no-slip boundary condition at the
fluid-solid interface is mostly used assumption in fluid mechanics. But the no-slip
condition is not valid in case of flow in micro/nano-channels, aerosol particles, flow
through porous media and variety of complex fluids such as polymer solution,
molten polymer, emulsion and foam [1–4]. Because of violation of no-slip
boundary condition, researchers have chosen the slip boundary condition due to its
range of applications in micro and nano-fluidic devices. However, fluid-slip at the
solid surface can occur even at macroscopic level especially in the case of polymer
extrusion, flow of non-Newtonian fluids through pipes/channels, etc. Further ade-
quate experimental evidence is available on Newtonian and non-Newtonian fluids
slip along the solid boundaries [6–10]. Excellent reviews are available which dis-
cussed Newtonian [11] and non-Newtonian fluid slip flow over solid surface [1, 5].
The fluid flow past single spherical particle with slip boundary condition at the
fluid-solid sphere interface has been studied analytically and numerically by several
researchers [12–17]. But occurrence of fluid flow over assemblages of particle such
as oil through porous material, catalytic cracking process in oil industries, filtration
of polymer solution and slurries, fluidization etc. is very common in many pro-
cessing industries. Because of wide range of applications, studies on flow past
assemblages of particles gain more attention using cell model. In particular, cell
model is mostly used to investigate the effect of volume fraction of particles on
overall fluid flow past assemblages of particles. In the cell model, an assemblage
can be uniformly divided into number of identical hypothetical envelopes of con-
tinuous fluid and every particle is surrounded by the hypothetical envelope of
continuous fluid. Thus a multiparticle system reduces to single particle system yet
counting for effect of volume fraction on the overall drag and heat/mass transfer
characteristics. Faltas and Saad [18] studied Stokes flow (Re→ 0) past assemblages
of slip spherical particles using free surface cell model [19] and zero vorticity cell
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model [20] with a linear slip boundary condition at the interface. In this work, a
shear-thinning power-law fluid (n = 0.6) flow past an assemblage of slip spheres (of
volume fraction Φ = 0.1) is numerically investigated using a combination of a linear
slip model and Happel’s free surface cell model in the range of Re = 100–200 and
slip number λ = 0.01–100.

2 Problem Statement

Flow of an incompressible shear thinning fluid through an assemblage of slip
spherical particles is considered as shown in Fig. 1. The flow is assumed to be
steady and axisymmetric; and the degree of slip at the solid—fluid interface for all
particles is constant. The effect of volume fraction of slip spheres on overall
momentum transfer characteristics are considered within the framework of free
surface cell model due to Happel [19]. To account the fluid-slip, a linear slip
boundary condition is applied at fluid-solid interface in which the slip velocity at
the solid surface is proportional to the shear stress. The governing conservation
equations of mass and momentum along with boundary conditions are converted to
non-dimensional form using the following scaling parameters. The radial distance is
scaled by radius of sphere “R”, velocity components are scaled using free stream
velocity U, pressure terms are scaled using {ρU2}, shear stress is normalized using
{m(U/R)n} and the non-Newtonian fluid viscosity is normalized by a reference (or
apparent) viscosity (ηref). The final dimensionless governing continuity and
momentum equations can be written as follows:

• Continuity equation
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• r—component of momentum equation
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• θ—component of momentum equation
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The Reynolds number for power-law liquids is defined as follows:

Re ¼ qUð2�nÞ 2Rð Þn
m

ð4Þ

For an incompressible liquid, components of extra stress tensor are related to the
rate of deformation tensor as follows:

sij ¼ 2geij; where i, j = r, h;/ ð5Þ

The power-law fluid viscosity is given by:

g ¼ Pe

2

� 	ðn�1Þ=2
ð6Þ

where Pe is the second invariant of rate of deformation tensor which can be
expressed in terms of derivatives of velocity components [21].

The following dimensionless boundary conditions are found to be appropriate
for this slip flow problem:

• Along the surface of slip sphere (r = 1, θ = 0, π)

vr ¼ 0; srh ¼ k� vh ð7aÞ

• At the outer cell boundary (r = R∞, θ = 0, π)

vr ¼ � cos h ; srh ¼ 0 ð7bÞ
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• Along the axis of symmetry (θ = 0, π)

vh ¼ 0;
@vr
@h

¼ 0 ð7cÞ

The governing continuity and momentum equations subject to aforementioned
boundary conditions are numerically solved to obtain the fully converged velocity
and the pressure. From known velocity and pressure fields, the streamlines and
vorticity distributions, surface pressure, vorticity distributions and drag coefficients
can be evaluated. The total drag coefficient (Cd) is defined as:

Cd ¼ 2Fd

qU2AP
¼ Cdp þCdf ð8Þ

The pressure component (Cdp) is evaluated as:

Cdp ¼ 2
Zp

0

p sin 2h½ �r¼1dh ð9Þ

and the frictional component (Cdf) is evaluated as:

Cdf ¼ 2n þ 2
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The vorticity (ωrθ) and stream functions (ψ) in spherical coordinates can be
written as follows:
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3 Numerical Methodology

A finite difference method based semi-implicit simplified marker and cell (SMAC)
method is used to solve governing equations of continuity and momentum, i.e.
Eqs. (1)–(3) subjected to boundary conditions mentioned in Eq. (7a)–(7c). This
scheme is implemented on a staggered grid arrangement in spherical coordinates.
This algorithm is a simplified version of marker and cell (MAC) method introduced
by Harlow and Welch [22]. The diffusive and non-Newtonian terms of the
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momentum equation are discretized using second order central difference scheme
whereas convective terms are discretized using quadratic upstream interpolation for
convective kinematics (QUICK) scheme by Leonard [23]. The false-transient time
stepping method is used to obtain steady state solution, which is the reason for
retaining transient terms in the momentum equations.

3.1 Grid Independence Study

Table 1 shows the effect of grid size (in r and θ directions) for the case of slip flow
of a shear-thinning fluid of n = 0.6 over an assemblage of spherical particles of
hold-up Φ = 0.1 at Re = 200 for either extremes of slip number i.e., for λ = 0.01 and
λ = 100. It can be seen from this table that grids 60 × 60 and 90 × 60 produce almost
identical values; however the CPU time for convergence with the grid 90 × 60 is
three folds larger as compared to that of grid 60 × 60. Thus grid 60 × 60 has been
chosen for all other computations.

3.2 Validation

For n = 0.6 and Re = 1, in the limits of λ = 0.01 and λ = 1000, the present
predictions on drag coefficients of slip spheres are compared with existing literature
results for swarms of bubbles and assemblages of no-slip spheres, respectively and
presented in Table 2. It can be seen from this table that the agreement between two
values is within ±4–5 %.

Table 1 Effect of grid on drag of asssemblage of slip spheres (Φ = 0.1) in shear-thinning fluids of
n = 0.6 at Re = 200

Grid λ = 0.01 λ = 100

Cdp Cdf Cd Cdp Cdf Cd

30 × 30 0.1364 0.0746 0.2110 0.6421 0.2292 0.8713

60 × 30 0.1346 0.0745 0.2101 0.6548 0.2378 0.8926

60 × 60 0.1345 0.0760 0.2105 0.7431 0.2386 0.9817

90 × 60 0.1344 0.0762 0.2106 0.7465 0.2425 0.9890

Table 2 Comparison of present Cd values with previous literature values at Re = 1 and for n = 0.6
in either extrems of λ = 0.01 (fully slip bubbles) and λ = 1000 (no slip spheres)

Present Fully slip bubbles [24] Present No-slip solid spheres [25]

Φ = 0.1 Φ = 0.0001

21.611 21.264 29.865 30.9517
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4 Results and Discussion

4.1 Flow Patterns

Figure 2 shows streamlines (upper half) and iso-vorticity (lower half) contours for
the case of a shear-thinning fluid (n = 0.6) flow past an assemblage of holdup
Φ = 0.1 at Re = 100 (a–c) and 200 (d–f). For both values of the Reynolds number,
streamlines are showing fore and aft symmetry for full slip condition (λ = 0.01).
The motion of the fluid around sphere is smoother for both Reynolds numbers. The
amount of vorticity created increases with increasing slip number and the vorticity
carried along the flow direction. However, recirculation wake is observed at the rear
end of slip sphere for λ ≥ 10 and its size increases with increasing slip number. This
is due to the decrease of the fluid slip at the solid surface with increasing slip
number. Thus amount of vorticity that is created around the sphere is increased with
the slip number. The angle of flow separation increased with increasing slip number
for both values of Re.

4.2 Surface Vorticity

Figure 3 shows the effect of slip number on the vorticity distribution along the
surface of slip spheres in an assemblage of slip spheres of holdup Φ = 0.1 in a
power-law shear thinning fluid of n = 0.6 at Re = 100 and 200. The surface vorticity
is zero at the front stagnation point and increases while traversing from front

Fig. 2 Streamlines (upper half) and vorticity (lower half) contours in an assemblage of slip
spheres of holdup Φ = 0.1 in shear-thinning fluid (n = 0.6) at Re = 100 (a–c) and Re = 200 (d–f)
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stagnation point to around θ * 60o, and gradually decreases while traversing
toward rear stagnant point. For two values of Reynolds number, in the rear end of
sphere a secondary wake is observed for λ ≥ 10 which is because of formation of
recirculation wake. The surface vorticity magnitude increases with increasing slip
number at around θ * 60o and this magnitude increases with increasing Reynolds
numbers. The surface vorticity is minimum for λ = 0.01 and maximum for λ = 100
around θ * 60o. For intermediate values of the slip number, surface vorticity
magnitude lies between vorticity magnitude for λ = 0.01 and 100.

4.3 Surface Pressure Coefficient

Figure 4 shows the effect of slip numbers on pressure coefficient distribution along
the surface of slip spheres in an assemblage of slip spheres of holdup Φ = 0.1 in a
power-law shear thinning fluid of n = 0.6 at Re = 100 and 200. For both values of
Re, the surface pressure coefficient decreases while traversing from front stagnant
point to around equator and it increases while traversing from around equator to
rear stagnation point. This trend is similar for all slip numbers. The pressure
recovery in rear half of spherical particle increases with decreasing slip number, i.e.,
the recovery of the pressure is large in the case of full slip λ = 0.01 and it is poor in
the case of large slip number. As the slip number increases from λ = 0.01 to 100, the
surface pressure coefficient increases at the front stagnant point and it decreases at
around equator θ = 90o for both Re = 100 and 200. The value of the surface pressure
coefficient is minimum for slip number λ = 0.01 and maximum for λ = 100, whereas
for intermediate slip numbers pressure coefficient lies between these two limiting
values from the front stagnation point to equator; however, opposite trend observed
from θ ≈ 110–120o to rear stagnant point.

Fig. 3 Surface vorticity distribution on the surface of slip sphere in an assemblage of holdup
Φ = 0.1 in a shear thinning fluid of n = 0.6. a Re = 100. b Re = 200
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Fig. 4 Surface pressure coefficient on the surface of slip sphere in an assemblage of holdup
Φ = 0.1 in a shear thinning fluid of n = 0.6. a Re = 100. b Re = 200

Fig. 5 Drag coefficients and drag ratio of an assemblage of slip sphere of holdup Φ = 0.1 in a
shear thinning fluid of n = 0.6
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4.4 Drag Coefficient

Figure 5 shows the effect of different slip at Reynolds numbers Re = 100 and 200 on
the drag coefficients and drag ratio (between pressure drag to friction drag) of
assemblage of slip spheres of holdup Φ = 0.1 in a shear thinning fluid of n = 0.6.
The force exerted by fluid on the surface of spherical particles contains pressure
drag and viscous drag. The total drag coefficient is the combination of pressure drag
coefficient and friction drag coefficient. The total drag coefficients decreases and
drag ratios increases with increasing Reynolds numbers from Re = 100 to 200. The
individual and total drag coefficients increase with increasing slip number up to
λ = 50, after that they remain almost constant with increasing slip number for both
Re = 100 and 200. Therefore, it can be concluded that the individual and total drag
coefficients of assemblages of slip spheres decreases with decreasing λ and/or with
increasing Re.

5 Conclusion

Slip flow of a shear thinning fluid (n = 0.6) past an assemblage of Φ = 0.1 of slip
spheres at Re = 100 and 200 is numerically studied. For small values of slip
number, the flow is attached to the slip spheres whereas for large values of the slip
number, a small recirculation wake has been observed. The angle of separation and
wake length decreases with decreasing slip number. The surface pressure and
surface vorticity distributions are found be significantly affected by the slip
boundary condition. The individual and total drag coefficients are found to decrease
with the decreasing slip number and/or with the increasing Reynolds number.
However, the ratio between the pressure and friction drag coefficients increases with
the increasing Reynolds number.
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