Chapter 2
Analytics Fundamentals

In this chapter, we are introducing the key methods of data analytics and describe
the underlying principles, assumptions, and the thought process behind applying
these methods in LTE performance and fault analysis. We start with the most basic
form of time-series analysis (statistical process control) and progress through the
mathematical concepts of outliers, queueing theory, system performance laws,
forecasting, regression, and clustering.

2.1 Statistical Process Control

Statistical process control (SPC) today is the hallmark of a mature technology.
When properly established, not only does it allow NOC operators to promptly
detect, quantify, scope, and analyze root causes of problems in the network, leading
to quickly solving the problems; it also makes forecasting easier and more intuitive.

A number of SPC techniques have been developed since the approach was first
introduced by Walter Shewhart of Bell Laboratories in the early 1920s. Shewhart
was one of the “early rejecters” of the approach to production process analysis from
the standpoint of “normal,” or Gaussian, distribution. We have to keep in mind that
in the 1920s, the Central Limit Theorem (CLT) was not yet as firmly established in
the world of probability and statistics as it is today.

2.1.1 Central Limit Theorem

Central Limit Theorem today serves as a convenient justification for treating any
random process as normally distributed, which ensures simplicity of mathematical
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analysis of data leading to actionable results. Indeed, if we assume normal distri-
bution of data, we can get away with using well-established simple methods
developed by William Gossett, Karl Pearson, and Ronald Fisher for statistical
hypothesis testing. CLT gives us a way to justify such assumption: If we have
“enough” independent samples that are “big enough,” then the means (arithmetic
averages) of these samples converge to a normal distribution with the mean equal to
the “mean of the means” and the variance computed as the sum of variances of the
samples.

N
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Lyapunov’s equation for the variance of the aggregate of independent samples
(sum of squares of variances) marked an important milestone in probability theory
and statistics: It allowed treating samples as dimensions of the process being
analyzed, as long as they were independent.

This simple construct enabled a number of breakthroughs in data science; most
importantly, it allowed engineers to quickly develop a number of statistically sound
robust “rule of thumb,” such as Western Electric Rules and Nelson Rules, for
statistical process control. It also allowed a delineation of long-term and short-term
process capability that has become one of the cornerstones of the Six Sigma
Methodology, which became the next breakthrough in statistical quality control
developed in the late 1980s and early 1990s and dovetailed into the concept of
Design for Six Sigma (DFSS), which is currently used by manufacturers of hi-tech
equipment all over the world.
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2.1.2 Applications of Central Limit Theorem: Bernoulli
Trials

Disclaimer: All charts and data in this chapter are produced by simulation and do
not reflect actual vendor data.

“Bernoulli trials” is a term in probability theory representing a scenario where a
definition of insanity falsely attributed to Einstein (“doing the same thing over and
over and expecting different results”) is challenged: Given a binary random variable
X (or a process that can be in one of two states, typically “success” and “failure,” or
0 and 1), we repeat the same action that produces and tallies the number of trials
and the number of times when X = 2.1. Then,

Nx—
Pr{X =1} = lim [ X—‘}
N—oo N
As the number of Bernoulli trials increases, the proportion of successful out-
comes in the total number of trials tends to the actual probability of success. But
this actually is the de Moivre’s form of Central Limit Theorem that he published in
1733!

2.1.3 Examples of SPC for Bernoulli Trials

Attempts to establish a connection can be modeled as Bernoulli trials: They can
either succeed or fail, and we are interested in the frequency (probability estimation)
of successful attempts.

If we assign p = Probability of success; N = number of trials, then, given
sufficient number of samples, CLT enables us to consider accessibility as a normally
distributed metric with

meangyccessful trials (n,P) =N=xp (213)

and

variancesuccessul trials ('lap) =Nx*px (1 _p)~ (214)

This will enable us to apply the SPC principles directly to attempts to establish
connection. Two types of SPC charts, the p-chart and the np-chart (Fig. 2.1), which
were originally proposed by Walter Shewhart and was named after him, are
specifically designed for this kind of metric.

Collecting data for daily attempts to establish a connection will yield an np-chart
like in Fig. 2.1.
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Fig. 2.1 Bernoulli trials: np-chart (simulated data)

Figure 2.1 shows the number of successfully established connections during
each hour of one week. The control level (CL) is calculated using Eq. (2.1.3), while
the Upper Control Limit and Lower Control Limit (UCL and LCL, respectively) are
computed using the “3-sigma” rule:

UCL=pu+3%0
ICL=u—-3%¢’

Here, 4 = N x p = mean; 6 = /N x p x (1 — p) = standard deviation.

Figure 2.2 shows the number of successful ERABs established during each hour
of one week. The control level (CL) is calculated using a form of Eq. (2.1.3) where
both sides of the equation are divided by the number of samples (N), while the
Upper Control Limit and Lower Control Limit (UCL and LCL, respectively) are
computed using the “3-sigma” rule:

UCL = u+3*o,
LCL=u—-3%0

Here, 4 = p = mean; o = w = standard deviation.

The np- and p-charts enable the user to easily detect events when the data was
out of control, e.g., the red data point at Group 87 (87th hour).

They also allow the analyst to find violations of the SPC rules of thumb, in
particular Western Electric Rules (http://en.wikipedia.org/wiki/Western_Electric_
rules) or Nelson Rules (http://en.wikipedia.org/wiki/Nelson_rules).


http://en.wikipedia.org/wiki/Western_Electric_rules
http://en.wikipedia.org/wiki/Western_Electric_rules
http://www.dictionary.com
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Fig. 2.2 Accessibility p-chart (simulated data)

Thus, the four yellow points in Figs. 2.1 and 2.2 correspond to violation of
Nelson Rule 6 (or its equivalent Western Electric Rule 3): 4 out of 5 points fall
outside the 1-standard-deviation band on the same side of the mean.

When the number of successful connections and the number of attempts is
known for every hour, the R code to produce this graph is very simple:

A R S S
## Plot the np-chart

it S
if (! require (“gcc”)) {install.packages (“qgcc”)}

library (qgcc)

npChart <- gcc (Cnx.Success, sizes = Attempts, type = “np”)
pChart <- gcc (Cnx.Success, sizes = Attempts, type = “p”)

2.2  Outliers

The “magic of LTE” involves a lot: A variety of users, sometimes with a number of
different user elements per user, are trying to get access to the data. Uploads,
downloads, VoIP communications, all requiring different connection times, differ-
ent QoS, and different packet sizes, happen at the same time, ensuring that there is
no limit to confusion and outliers.
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This section is not a diversion into sociology or social psychology; however, it is
important to note that despite the apparent chaos, there is a high degree of order and
predictability in LTE. Outliers have been usually given the role of a nuisance whose
only role is to annoy the engineers and throw off the beautiful developments that
would have been so much easier if only there were no outliers. In this section, we
will discuss outliers, their detection, and analysis in stationary (in the strict sense)
and non-stationary systems. We will also try to show that not all outliers are bad
and that they always carry useful actionable information, if only we can extract it.

2.2.1 QoS Outliers

The most common way to bring order out of chaos is to organize data in a manner
that makes sense to the analyst. Traditionally, all IT services have been organized
from the point of view of the quality of service, or QoS.

In LTE networks, there are nine QoS class indicators (QCIs), each with a
specification on a packet delay budget and error loss rate (see Chap. 1 and Fig. 2.3).

The predefined packet delay budgets for each QoS class mean that an outlier
may very well put a bearer into a lower-priority class, at least for the outlier. For
example, a Priority 1 (QCI = 5, delay = 100 ms) connection may too easily fall
into Priority 6 (QCI = 6, delay budget = 300 ms).

While packet error loss rate may be approximated as a normal distribution (see
discussion in Sect. 2.1), packet delays are strongly right-skewed: Their distribution
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Fig. 2.3 LTE QoS class indicators (QClIs) defined by loss and delay specifications
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has a long tail to the right. This phenomenon is often approximated by an expo-
nential distribution. This makes the packet delay extremely sensitive to outliers.

Before we take a deeper dive into the topic, it is important to note that the
concepts of outliers and of SLA (QoS) violations are, generally speaking, inde-
pendent: Not all outliers are in violation of SLA and not all events of SLA violation
are outliers.

2.2.2 Outliers: What Are They?

According to www.dictionary.com, an outlier in its statistical sense is

. an observation that is well outside of the expected range of values in a study or
experiment, and which is often discarded from the data set...

And here lies one of the most common temptations that we face when dealing
with real-world data: The dictionary merely states it, but all too often we tend to
discard outliers, even though more often than not, they are “in the eyes of the
beholder.”

Sometimes outliers do represent bad data collections, mangled data points, and
simply unreliable data. However, when we know that the data is good, outliers
become are important observations that can give us an advanced warning that the
system’s performance is beginning to degrade.

When the number of outliers for a KPI reaches an alarming level (again, “in the
eyes of the beholder,” but at least it can be quantified and parameterized), we want
to continue monitoring the KPI specifically for the relative and absolute growth in
outlier count and magnitude, to be able to predict when the performance will
degrade if the system is left alone and to take appropriate corrective action.

Usually, the beholder—a subject-matter expert (SME)—knows what percentage
of outliers in a sample the system can handle. Such knowledge is often guarded by
the SME and eventually becomes “tribal knowledge” in the organization.

When dealing with thousands of objects providing data, the beholder’s eyes
become too strained and the beholder too bored analyzing each and every data set
for outliers. In other words, an automatic outlier detection tool has to be imple-
mented. Such tools are wusually based on proven quantitative analysis
(QA) techniques, which we shall consider here.

2.2.3 Outlier Detection: The Basic Approach

The SPC (see Sect. 2.1) represents outlier detection by applying the
density-function method. As we discussed in Sect. 2.1, the mathematically simplest
way to detect outliers is by using the mean (average) and standard deviation of the
data. We then apply a multiplier to the standard deviation and get the confidence
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Fig. 2.4 A simulated right-skewed data set—representative of a typical latency (packet delay)
observed on an LTE network—and its 0, 1, 2, and 3 standard deviations

interval and state that points outside such confidence interval (usually 3 standard
deviations) are outliers. This is known as the “3-sigma rule.”
Figure 2.4 shows a set of simulation data that we built to illustrate the concept.
This view of the data allows us to identify outliers at different confidence levels:

+lxo 68.2%
+2x0 95%
+3%0 99.7%

In other words, if a data point falls outside the 1 * ¢ range, we say with 68.2%
confidence that this data point is an outlier. If another data point falls outside the
3 % ¢ range, that means that we are 99.7% certain that this data point is an outlier.

The code implementing these principles is here:

### S R R S S S
## Returns outlier indices in vector X corresponding to Z*StDev
i R S
GetZRangeOutlierIndices = function(X, Z = 3, Upper = TRUE, Lower = TRUE) {

# Upper = TRUE; Lower = TRUE ### for debugging

Mean <- mean (mydata); SD <- sd (mydata)

upper <- Mean + Z * SD

lower <- Mean - Z * SD

UpperOLindices <- which (Upper & X > upper)

LowerOLindices <- which (Lower & X < lower)

Outliers <- c(LowerOLindices, UpperOLindices)

Outliers
}
i R R S R S
## Generate 1000 samples of gamma-distributed “packet delay” data:
mydata <- rgamma (1000, shape = 1.7, rate = 10)
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#i# R S S
## Get outlier indices in mydata corresponding to 1, 2, and 3 StDev
it S S
zZOLs.1l <- GetZRangeOutlierIndices (mydata, Z = 1)
ZOLs .2 <- GetZRangeOutlierIndices (mydata, Z = 2)
ZOLs .3 <- GetZRangeOutlierIndices (mydata, Z = 3)

We intentionally did not show the left side of the standard-deviation bands: The
data is right-skewed, and for this particular analysis, we are not interested in low
outliers.

Advantages of this approach are obvious:

1. It is mathematically simple.
2. It is fast.
3. Measures (mean and standard deviation) can be computed recursively, hence

(a) Simple data storage, regardless of size.
(b) Simple computations, regardless of size.

4. It makes sense statistically, giving answers in terms of confidence intervals.
5. It makes sense philosophically: Everybody knows what confidence is.

Disadvantages are fewer, but they can overwhelm the advantages:

. Assumptions have to be made about the distribution.
. The method will not work when these assumptions are wrong.

DN =

2.2.4 Advanced Methods of Outlier Detection

Section 2.6.2 discusses advanced methods of outlier detection and demonstrates an
example of using information from in network performance analysis.

2.3 A Few Words About Queueing Systems

An illustration of a basic queueing system is shown in Fig. 2.5. The number of
queueing circuits available is defined by the spectrum range and number of chan-
nels occupied at any given time (Bandwidth Efficiency).

Fig. 2.5 A simple queueing
system representing a A
EUTRAN channel

—_—

Queue Server rate = 1
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In this section, we will demonstrate why Central Limit Theorem is a hindrance,
rather than help, in network performance analysis. When we are dealing with
samples and sample averages, we will see them in data as normally distributed and
apply statistical methods that will potentially lead us to wrong conclusions.

Indeed, for a queueing system with a single server (channel) and a buffering
queue, the reason why we can describe the entire process easily via two variables,
A = rate,yivas and { = rategeryver = %, is the assumption that they are not normally
distributed (T = average service time).

Moreover, assumption of normal distribution would lead to unintended conse-
quences. For example, a normally distributed service time (latency for a network)
would have allowed negative latencies (Fig. 2.6).

In addition, even if the likelihood of negative latencies allowed by a specific
normal distribution was negligibly small, the workload on the network element
[measured as number of packets in flight and expressed as W = AT = 1/u]
would come out skewed (Fig. 2.7).
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Fig. 2.7 An illustration of the skew in the product of two normal distributions: The gap between
the purple (mean) and the black (median) vertical lines indicates that the distribution is skewed.
For more information on skewness, see other literature
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2.3.1 “True” Process Distributions for LTE Network
Components

As Agner K. Erlang demonstrated in the 1920s, memoryless processes (where time
intervals between adjacent events are independent of previous events) provide a
very adequate representation of a queueing system. The only memoryless distri-
bution known today is the exponential, and if we model network latencies using
exponential distribution, we will have an adequate representation of the behavior of
a network, including LTE network.

In order for event inter arrival times to be exponentially distributed, arrival
process has to be Poisson.

Figure 2.8 illustrates these concepts in light of Little’s Law.

This leads to workload distributions being non-normal as well.

This observation has two very important consequences: (1) if processes in an
LTE link are memoryless, then Erlang models can be used to predict packet loss
due to link overloads; (2) we cannot use any statistical methods created with the
assumption of Gaussian (normal) distribution of underlying data.

Long story short, traffic metrics (throughput, latency, and workload) of a
queueing system are not normally distributed.

2.3.2 Little’s Law: The “Big Three” of Queueing Dynamics

A queueing-system dynamics can be fully characterized by three variables: (i) ar-
rival rates, (ii) service rates, and (iii) workload. These are the “Big Three” of
queueing dynamics.

arrivals (Poisson; rate = 100) service_time (Exponential; rate = 80) workload = arrivals * service_time
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Fig. 2.8 The (throughput, latency, workload) tuple describing a queueing system
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Packet Arrivals
Arrival rate is the characteristic of the demand on the queueing system.

Most commonly used models for sizing queuing systems today (Erlang models)
rely on the assumption of certain prescribed distributions of arrival and service
rates; in particular, that arrivals should be a Markov process, i.e., that job (packet)
arrival rates should follow Poisson distribution.

For a long time, network engineering world has been rejecting the models
derived for telephony on the grounds that Poisson distribution does not apply to
network traffic, which is bursty and unpredictable. However, as our understanding
of network, and in general IT traffic grew, so did our understanding that bursts
could be modeled as Poisson arrivals of “trains” of packets, whose size (number of
packets per “train”) could be modeled as a Markov process. This opened an
understanding of nested Markov arrival processes [[PPM2014], as well as made it
possible to apply a quasi-Erlang model, approximating the nested Poisson distri-
bution with a geometric distribution [FERR2014].

Modern methods of operations research (e.g., Monte Carlo analysis) open new
opportunities for creating network analytical systems for LTE where traffic mixes
with a variety of arrival processes can be analyzed from the perspective of the
probability of delay and/or probability of blocking.

Service Process

Little’s Law (Eq. 2.3.1) is a universal law of nature. It ties together the concurrency
(number of units of work, e.g. jobs, queries, and packets) that are in the system at
any given moment in time) with arrival rate and waiting time:

Wt st (2.3.1)
u

In turn, waiting time can be represented as the sum of the time in and the time in
service:

T =Tw+Ts, (2.3.2)
From Eqgs. (2.3.1) and (2.3.2), we get:

In turn, Tw is a function of the size of the queue (measured in units of work) and
the arrival rate:

Tw =

Q
= (2.3.4)
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Ts is the inverse of service rate:

Ts = — 2.3.5
5= (2.3.5)

One very important property of service time for a network is that it depends on
the packet size. In other words, while the bit processing rate is a constant for any
network element, the number of packets that it can turn out varies:

BW |bits per second]
S [bytes per packet]

Up [packets per second] = 8 (2.3.6)

The bandwidth of a network element is a critical parameter defining the packet
service time!

Putting it All Together
Putting (2.3.3)—(2.3.6) together, we have an expression for the number of con-
current packets in the network element:

S byt ket
W [packets| = A [packets per second] * {Tw + [bytes per packet] }

8 «* BW [bits per second]
(2.3.7)

This can be translated into:

S [bytes per packet]

8% A [bits per second] (238)
8 x BW [bits per second] o

Wbits| = T
[bits] S [bytes per packet] * { W

Generally speaking, the packet size, S [bytes per packet], is not the same for
arriving packets as it is for the packets already in flight (in service). Simple algebra
leads to:

Vi € {incoming packet types}:

8 x A; [packets per second]

W [bits] = —
7 [bits] S [bytes per packet]
T S [bytes per packet] (2.39)
*Q Tw + -
Fe(packet types in flight) 8 « BW [bits per second]
In Eq. (2.3.9),
Sin size of packet type i

wSs number of packets in flight of type i

1
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J; [packets per second] arrival rate of packets of type i
Sf”‘ size of packets in flight of type f

BW bandwidth of the network element

And total concurrency (number of bits in flight) will be:

W [bits] = > W# [bits] (2.3.10)

i€ {incoming packet types}

Equations (2.3.9) and (2.3.10) are very important: They allow us to compute the
packet delay. Indeed, simple algebra yields:

W? [bits] * Si [bytes per packet]
8 x A; [packets per second]

Ty =

i€{incoming packet types}
2.3.11
S [bytes per packet] ( )

8 «* BW [bits per second]

f€{packet types in flight}

Equation (2.3.11) is the general form of the waiting (queueing) time, which is
the main component of packet delay. If we tie it back with Little’s Law, it becomes
mathematically obvious how to compute the buffer for packet delay.

2.3.3 System Performance Laws

Some LTE behavior patterns are unique to LTE. Others follow well-established
laws of IT systems, many of them derived from queueing-system considerations.

2.3.3.1 Amdahl’s Law

In 1967, Gene Amdahl formulated the argument against putting too much trust into
parallel computing. According to this argument, which later became known as
Amdahl’s Law, there is a limit to the speedup that a computing system can obtain as
a result of massive parallelization. This limit is controlled by the relationship
between the number of parallel processors and the amount of serial processing in
the program as percentage of total processing:

1

Speedup= —
P = s i =)

(2.3.12)

In Eq. (2.3.12), The S and the N are the fraction of processing that is strictly
serial and the number of parallel servers, respectively.
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2.3.3.2 Universal Scalability Law

In 1993, Neil Gunther formulated the Universal Scalability Law (aka USL), which
took Amdahl’s Law one step further and generalized it to the case of processors
communicating within each other. For more details, we highly recommend
[GUNT2007]. Gunther formulated the relationship between the system throughput
and the number of concurrent users in the system:

C= N
Il4ox(N=1)+xk*xNx(N—1)

(2.3.13)

In (2.3.13), the C is the system throughput (capacity); ¢ and the x are parameters
describing contention for resource and incoherency (lack of communication) during
the job execution, respectively.

Figure 2.9 shows how the USL curve changes with different USL parameters.

Depending on the system’s performance parameters (contention and inco-
herency), the USL curve will grow more or less steep, level off at some number of
concurrent users, or peak and start going down having reached the maximum
number of users it can handle.

In the recent years, there have been a number of improvements to USL and its
“cousin,” the Superserial Scalability Law (SSL); in particular, [CHDY2014] sug-
gested a third parameter, f§, to account for queueing:

N
C = 2.3.13a
I+ox(N—1)+k*NFs«(N—1) ( )
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Fig. 2.9 Universal scalability law examples
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Fig. 2.10 Different versions of USL and SSL and real-world data (reproduced from [CHDY2014]
with author’s permission)

The Choudhury’s AISSL (Asymptotically Improved SSL) form better fits
real-world data by smoothing the sharp drop predicted by USL in Fig. 2.9f (Fig. 2.10).

2.3.4 Conclusion

In this section, we have covered queueing process distributions, Little’s Law, and
scalability laws (Amdahl’s and the USL family) and described the packet delay due
to retransmissions.

In the following three sections, we will cover forecasting, regression, and
clustering, which are the three data-analytical techniques that must be in the toolbox
of the LTE data analyst.

2.4 Forecasting

Forecasting is an important analytical technique that is especially useful in capacity
planning and business analytics. There are a number of forecasting methods, and
each of them deserves a separate book in its own right. In this book, we will only
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cover forecasting techniques formulated for time-series analysis (TSA). However,
in Sect. 2.5, we will discuss regression and its use in forecasting.

2.4.1 Time Series: Definition and Assumptions

A time series is a set of system metric measurements sampled in constant time
intervals and arranged in the order of the time stamps. In TSA, assumptions are
made that there are no missed data and that each metric’s time series can be viewed
as independent of other metrics.

In TSA forecasting, the additional assumption is made that the system’s behavior
in the past will continue into the future. While the first to assumptions can be
justified or enforced, this last one is not as trivial.

Consider the system in Fig. 2.11. It can be any MISO system, e.g., two big
groups of users as the input and SINR as the output.

Note that while Fig. 2.11 shows a dependency between the inputs and the output
of the system, and the two inputs most likely are interacting (e.g., multiplexing), as
long as the processes described by the system are stationary, assumption of inde-
pendence will hold true for all 3 signals. This can be confirmed by running a
number of statistical tests, from correlation tests to ANOVA. For more details, see
earlier sections of this chapter, as well as other literature. As long as it is the case,
we can apply the forecasting techniques that we are introducing in this section to
predict future behaviors of X1, X2, and Y.

However, if a user control is introduced (Fig. 2.12), the situation will change.

Fig. 2.11 A system with 2
incoming and one outgoing Xi(t)
signals
Y(t)
XZ{U /
Fig. 2.12 The same system | Tuning
with 2 incoming and one |
outgoing signals
Xi(t)
Y(t)
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Now, we have introduced a tuning parameter, e.g., the azimuth of the tower’s
antenna. Now, the SINR has changed, and the predictions made for Y(¢) based on
previous behavior will not be adequate anymore.

2.4.2 Filling in the Gaps in Data

2421 Why?

All TSA techniques are based on having constant time intervals between sequential
measurements and the data being ordered by time stamps. On the most basic level, a
gap in data means that we have no knowledge about what was happening to the
system during this time interval.

2.4.2.2 Methods: Extension

The most primitive method for filling in the gaps in data is extension of the last
point’s value that preceded the gap, aka LOCF—Last Observation Carried Forward.
It is very effective and “unassuming” when it comes to small gaps that need to be
filled. The downside is that the value changes in a step function (see the step at
X =30 in Fig. 2.13), which sometimes may mean an actual level shift and
sometimes a gap filled by extension.

2.4.2.3 Methods: Interpolation

The most basic method of filling in the gaps is interpolation. The technique has been
known since the times of Pythagoras, but we will start with it.

Fig. 2.13 Interpolation
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Fig. 2.14 Multi-point inter- and extrapolation

If Y is the value of the dependent variable that we need to find given X—the
value of the independent variable, and we are given (Xj,Y;), (X2, Y2) pairs, then:

Y, —Y;

Y=Y X—X —_
1+ 1)*X2_X1

(2.4.1)

Naturally, the formula (2.4.1) works just as well for multiple values of X and
even for points outside the initial [X;,X,] range in which case it is known as
extrapolation (Fig. 2.14).

If we are dealing with a time series, interpolation gives us a simple tool to deal
with missing data: If X is the point ID (or time stamp), and Y is the value we have
measured on the system, and some X values do not have a corresponding Y, we can
use interpolation to estimate the missing values (Fig. 2.15).
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@ @, e =
el
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Fig. 2.15 Time series with extension and interpolation of missing data
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2.4.3 Moving Averages

The moving average is one of the most important techniques used in the analysis of
time series. An illustration of what moving average does is provided in Fig. 2.16.

One common thing among all MA methods is that they work as filters, greatly
reducing the variability of the data. This makes them invaluable in outlier detection:
look at the residuals between the filter and the data and identify outliers using any
outlier detection method that we discussed in the earlier sections of this chapter, and
we are done.

The main principle in applying moving-average filter techniques is in computing
the average of N (usually called the filter’s period) points near the current point. It
may be N points behind, N points centered on the current point, or N points in front
of it. In TSA forecasting, it is usually N points behind.

To improve the performance of the MA filter, each point is endowed with a
weight, with the idea that the points far in the history should have relatively little
say in the behavior of the filtered data, whereas more recent data points should carry
a lot more weight.

The techniques produce different curves. Closest to the data line (¥ in Fig. 2.16)
are typically SMA (simple moving average) and WMA (weighted moving average).
The SMA in time-series analysis is also known as “random walk,” because of its
sensitivity to the stochastic component of the data. The most sensitive to trending
and periodic patterns in data is the EWMA, aka EMA (exponentially weighted
moving average), aka exponential smoothing. The LWMA (linearly weighted
moving average) is in between these two.

Different ways of computing moving averages

100

walue

T8

Fig. 2.16 An illustration of different ways of computing moving average
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2.44 EWMA

The word “exponential” in “exponential smoothing” causes a lot of confusion
outside the data-analytical community. It has nothing to do with the trend being
exponential, linear, or even flat. The EWMA model computes the next value based
on weighted previous data points in a manner that can be recursively written as
shown in Eq. (2.4.2):

=X
Yo =70 (2.4.2)
vi=oaxx+ (1 —o)*xy_y, Vi>1
In Eq. (2.4.2),
x the time series;
y the fitted model;
O<a<l.
Equation (2.4.2) can be rewritten as:
V= o [xt+ (1—0)sx1+ (1 —0) x5+ - +(1 —a) 'xx
+(I—OC)I*X(), Ve > 1
Or in a more compact form:
! .
yt:oc*Z(l—oc)t_l*xi—&—(l—oc)t*xo, V> 1 (2.4.3)

i=0

It is because of the exponential form of the (1 — a) weights that the method is
called exponentially weighted moving average.

2.4.5 EWMA Forecasting

The only limitation on the 7 in Eq. (2.4.3) is that it should be greater than 1. This
means that we can extend the series using EWMA forecasting to any point in the
future.

An illustration is shown in Fig. 2.17.

Prediction Interval

The two nested gray envelopes around the blue line in Figs. 2.17 and 2.18 are
measures of forecast precision. They outline the zones where 60% (dark gray) and
90% (light gray) of the data will likely fall for each time stamp in the forecast
horizon.
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Fig. 2.17 EWMA forecast of the time series shown in Fig. 2.16
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Fig. 2.18 A time series with a runaway prediction interval: a the four moving-average filters
applied to the time series, b the EWMA forecast

In Sect. 2.1, when we discussed SPC, we talked about confidence intervals. For
forecasts, the term “confidence interval” is replaced by “prediction interval.” It is
computed based on the model residuals (for a more in-depth discussion of model
residuals, reader is referred to Sect. 2.5).

The “any point in the future” should be taken with a grain of salt: Forecasting a
time series into a horizon bigger than the size of the historical data set is ill-advised.
Typical forecast horizons are usually between half and 90% of the length of the
historical data.

Consider the time series in Fig. 2.19.

Here, the forecast prediction interval is growing as we are moving farther away
from the last historical data point, and by the time the forecast horizon (42 points) is
reached, the upper 95th percentile of the prediction interval is already in the low
600 s, while the lower 95th percentile is still in the low 140 and even below the
value of the time series at the last historical data point.
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Fig. 2.19 Histogram of the Histogram of fc.resid
EWMA forecast residuals 7
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About Point Forecasts and Model Residuals

A point forecast is a prediction of the value being forecasted that does not have a
prediction interval associated with it: Each time stamp of the forecast horizon is a
single point. In Figs. 2.17 and 2.18, it is represented by the blue line.

It is important to remember that regardless of what shape the forecasted line
takes, it is not meaningful to talk about a point forecast: Data volatility necessitates
ranges of uncertainty around the centerline of the forecast.

Forecast residuals are computed as

resid = data — forecast

Their values are an important measure of how well the model fit the data. For the
forecast shown in Fig. 2.18, the histogram of the residuals is shown in Fig. 2.19.

We see from the histogram that (i) the distribution of the residuals is not normal
(it is compressed on both sides); (ii) there is a big bulge in the distribution where the
tail usually is; and (iii) the forecasting model was anchored to the median (the red
vertical line is zero) and not to the mean of the data.

Boxplot (see details in Sect. 2.2) reveals that we have outliers, and plotting the
residuals as a time series and drawing the outlier boundary lines (“whiskers”) will
help us identify them (see details in Sect. 2.1). These concepts are illustrated in
Fig. 2.20.

Measures of Forecast Model Quality

A number of measures of model quality have been developed over the years that
EWMA forecasting has been in operation. Any forecasting tool can be tuned to
optimize any of these statistics, reducing the error margins. The forecast we ana-
lyzed has been anchored to the median, but it could have been anchored to the mean
of the historical data.
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Fig. 2.20 Forecast residuals time series and boxplot

Seasonality and Trend
The same EWMA forecasting Eq. (2.4.3) can be, and have been, generalized to
forecast trend and seasonality. The idea is the same: adding exponentially weighted
values of the historical time series to calculate the trend and the seasonality at each
point of the horizon (the so-called additive trend and additive seasonality).
Moreover, they can be, and have been, modified by replacing “+” with a “*” to
implement multiplicative seasonality and trend in EWMA forecasting.
Seasonality in time-series analysis is not necessarily tied into the four seasons.
Any periodic pattern in a time series is called seasonality. It can be annual, semi-
annual, quarterly, monthly, weekly, diurnal, and even hourly, but these are abso-
lutely not the only periodic patterns that can be observed in the data. Seasonality in
time-series data reveals a great deal of critical information about the dynamics of
the processes that the data was collected from and can help control these processes.
If the magnitude of the seasonal changes does not increase or decrease in time,
such seasonality is called additive, and Eq. (2.4.3) can be used with it “as is.” When
the magnitude of seasonal changes increases or decreases consistently, then it is
called multiplicative seasonality, and the modified form of Eq. (2.4.3) needs to be
applied to such data.

Seasonality and Trend Detection

It is not the purpose of this book to focus on seasonality and trend detection
methods, but cluster-based seasonality analysis [GILG2010(1)], Fourier analysis,
autocorrelation, and other techniques have proven themselves to be very useful in
the field, leading to great improvements in the quality of the forecasts. This area, as
well as its cousin change-point detection, is very rapidly growing areas in statistics,
and one should always keep an eye on new developments there.
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2.4.6 ARIMA Forecasting

“ARIMA” stands for “AutoRegressive Integrated Moving Average.” It too is a
moving-average technique, where the seasonality and the trend are detected auto-
matically via time-series analysis. It is also known in time-series analysis as the
Box-Jenkins forecasting method.

“AR”

Instead of applying an exponentially changing weight to the data points, ARIMA
seeks to build a linear regression of each point’s value to all of its predecessors and
uses the coefficient of such model as the weights applied to each data point:

P
Yi=c+ Zgoi * X,
—

1

The p is the number of degrees of freedom for the “AR” element of the ARIMA.

“I”

One problem with autoregressive models is they require the time series to be
stationary (mean and variance to be “close enough” to constant). In the real world, it
is not the case. One way to deal with it is to “difference” the time series:

X =Xit1—Xi

The number of times it takes to make a time series stationary is usually desig-
nated as d and is the parameter of the “I” part of ARIMA.

“MA”

The “MA” (moving average) part works the same way as the already described
SMA. Its parameter is usually designated as g and implies the width of the
moving-average window.

Putting It All Together for ARIMA
When we apply ARIMA to the time series we have been examining in this section
(Fig. 2.16), we have to be careful as to what values for (p, d, ¢) parameters we use.
The parameters for most forecasting problems stay within the range of [0...2]
(Fig. 2.21).

Let us explore the variety of ARIMA forecasts with different parameters.

2.4.7 Selection of Forecasting Model

The best overview of methods used in selecting a forecasting model is in
[MAKR1998].

The model is usually selected based on how well it fits the data. The most
common general strategy is similar to the approach used in the well-known, yet
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Fig. 2.21 ARIMA forecasts with different parameters

little understood, R?> metric: compare model prediction with the data in every point
of historical data and formulate the metric based on this comparison. Other
approaches, such as out-of-sample testing, are used as well.

One of the problems is the variety of model quality evaluation methods, and
finding ways to deal with it is one of the frontiers in TSA.

A weighted-sum synthetic approach to formulating the TSA model score has
been successfully implemented, e.g., by [GILG2010(2)].

Regardless of what is chosen to be the model quality metric, two basic
approaches are now in use in the predictive-analytics world: (i) select the model that
fits best and (ii) use a so-called ensemble method. The latter relies on a Delphi
approach, where several models are applied, analyzed, and scored, and then, their
predictions are averaged with weights assigned based on their scores.

2.5 Regression

.. all models are wrong, but some are useful.

—G.E.P. Box

Regression is another important tool in the network analyst’s toolbox. It is the
link between exploratory and predictive data analytics. As part of the exploratory
data analysis (EDA), we always want to see whether we can find any correlations
among the variables.
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For example, if we see diurnal variations in throughput, we have an under-
standing that it is most likely driven by the number of user elements and their
demand on the network.

This leads to several interesting observations: (i) We can forecast throughput
using TSA techniques; (ii) we can also forecast throughput using business metrics
(UE count and per-user throughput); (iii) if indeed there is a correlation between
these two business metrics, it becomes a function of two variables: user count and
per-user throughput.

In turn, total throughput is a nonlinear function of the number of users (see
Sect. 2.3, Queueing Theory), which makes a seemingly simple task of predicting
total throughput on a network a daunting one, due to all the interdependencies.

2.5.1 A Few Words on Terminology

The term “linear” is overloaded when it comes to regression. Indeed, there is an
“official” mathematical definition of the term: http://en.wikipedia.org/wiki/Linearity,
but this definition implies that an equation of the form

y=ax*xx+b, (2.5.1)

(a, b = parameters;x, y = variables) is already nonlinear: the Homogeneity of
Degree 1 is not true, unless b = 0:

mx(oxx)+b=oxm*xx+bFAo*x(mxx+b)=axmxx+ox*xb

Nevertheless, when describing a regression line of the form (2.5.1), we call it
linear, the reason being that its right-hand side is a linear polynome in parameters.
By this definition, a quadratic, cubic, and any higher-degree polynomial function of
x of the form y = ag +ay x x+a, *x x> + - -- +a, * x" will be linear for all intents
and purposes of regression: Each parameter ag,ay, ..., a, is entered in this poly-
nomial as linear elements.

2.5.2 Linearizable Relationships

The “Big 6” of most commonly used linearizable relationships are as follows:

1. Straight-line relationship: y = ap +a; * x

2. Quadratic relationship: y = ag+a; * x+ap * x
3. Exponential relationship: y = ap % ™™

4. Logarithmic relationship: y = ag +a; * In(x)

2
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5. Power relationship: y = ag * x¥
6. Hyperbolic relationship: y =

Ao
ay +ax*xx

(Polynomials of higher degree than quadratic are very rarely used in regression
analysis: Occam’s razor demands that models should be as simple as possible, and
cubic parabola and above rarely meet that requirement.)

We call these 6 linearizable because by simple substitution, we can convert them
to linear:

1. Straight-line relationship: y = ag + a1 * x:

(a) no need to change anything

2. Quadratic relationship: y = ag + a; * x + ay * x°:

(a) Substitute x; = x;xp = x>
b)) y=ap+a; xx1+a; *xx;

3. Exponential relationship: y = ap * e™*™:

(a) Take In of both sides
(b) Substitute y; = In(y)
(©) y1 =1In(ag *x ™) =1In(ap) + In(e”™) = by +ay *x
i. bo = ln(ao)
4. Logarithmic relationship: y = ag + a; * In(x):
(a) Take exp of both sides
(b) Substitute y; = ¢’
© y1=er W = gy +a xx

5. Power relationship: y = ag * x¥:

(a) Take In of both sides
(b) Substitute y; = In(y);x; = In(x)
(©) In(y) =In(ag) +al xIn(x) < y; = bo+ay *x;

i. bo = ll‘l(ao)

ay
ay +ax*x

6. Hyperbolic relationship: y =

(a) Divide numerator and denominator by ag: y =
(b) Take the inverse of both sides: )l =bi+byxx
(c) Substitute y; = {

(d) Finally, yj = by + by xx

1 .
by +byxx ®
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2.5.3 The Main Idea Behind Regression

In Fig. 2.22, we see a scatter plot around the line y =5+ 1.5 % x.

The scatter (jitter/noise) around the solid black line is the stochastic (i.e., ran-
dom) component of the data. In the real world, we usually know the nature of the
relationship between the X and the Y, but do not know the equation of the solid
black line; so we try to approximate (infer) it from the data. We want to draw a line
that will minimize the error of such approximation.

Several measures of error have been proposed, the most prominent one, and the
oldest one of all, being the sum of squared errors. We draw a line

Y =ap+a *x: (ap,a;) = argmin [Z (y— y’)z} (2.5.2)

In Eq. (2.5.2), ¥ = fitted data; y = measured data.

This form of regression has got the name of Least-Squares regression; some-
times, it is called Ordinary Least-Squares (OLS) Regression and is what is com-
monly referred to as linear regression.

By applying the transformations outlined in Sect. 2.5.2, and expanding it to a
multivariate form (hint: the quadratic relationship has been converted to a bivariate
form), we can model a wide class of relationships between the X and the Y.

The X and the Y are usually referred to as independent and dependent variables,
respectively. Often in multivariate problems, the Xs are called “covariates,” and in
machine-learning applications, the Xs are usually referred to as “features.”

Equation: Y=5+15*X

o
=) =] -’
8 - %[
oqq;od o %o
o2 ©
o a
o & 1\ °OE a
7 Sof 17 1M°
> & @ o] 9o
4!
Oooocg‘l‘ro 000
8 - foé’df'f °
e Po o ©
o L+ Oou&%? o
oo l:;,

o0
(=2 )

T T T T T T

0 20 40 60 80 100

X

Fig. 2.22 Main idea behind regression
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2.5.4 Solving Eq. (2.5.2)

To solve Eq. (2.5.2) is to fit a regression line into the data. Mathematically, it is
done by solving a linear matrix equation which is outside the scope of this book.
Interested readers are referred to any text in basic statistics. We are focused on the
applied aspects of regression.

For the scenario shown in Fig. 2.22, the best fit we could get with OLS
regression is shown in Fig. 2.23.

We see that the equation is off.

The intercept for the best-fitted model is ap = 2.69, while the coefficient is
a; = 1.53. To verify that this error is induced by the noise, we can fit a regression
line into the data produced by simply generating the data using the equation
Y =54 1.5% X, and such regression’s parameters will be exactly ap = 5.00 and
a) = 1.50.

This error is what forces the fitted line (the red dashed line in Fig. 2.23) to be off
the black solid line there.

Caution

Do not try to predict the line in the reverse order: A regression built for Y (X) will
not necessarily work to predict X(Y), even with the algebra done correctly. The
reason for that is in the way OLS parameters are computed and is a consequence of
the laws of matrix multiplication.

Equation: Y=5+15*X
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Fig. 2.23 Regression line (red) drawn through the data
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2.5.5 Goodness of Fit

R-Squared

The most familiar to all goodness-of-fit estimator is the R>. Created as a nonneg-
ative version of p-Pearson’s correlation factor, R* represents the proportion of the
data variance that has been explained by the model. For more mathematical details,
interested readers are referred to, e.g., [MILT2002]. Being a square of Pearson’s
correlation factor, it has some properties that make it preferred over the p. Namely,
Pearson’s p is formulated so as to indicate the directionality of the correlation
(p > 0 if Y increases with X, and p < 0 if ¥ decreases as X grows). The R” elim-
inates this issue, making it better suited as a metric of model quality.

One of the less known properties of R* is that it is a central measure of a random
variable that is not normally distributed. Ronald Fisher, however, developed a
transformation, which he called the z-transform, which allowed comparing models
by creating a normally distributed random variable with mean and variance defined
by the R? and the number of data points that were used in the regression. Most of
the standard (parametric) statistical tests are designed for normal variables, which
allows one to compare models based on the z-transform R>.

Information Criteria

In the 1950s, information theory was on the rise. The concept of entropy as the
measure of chaos was adopted from physics and finally put to good use by Claude
Shannon, John Von Neumann, and Norbert Wiener. The approach to measurement
of goodness of fit from the information-theory side is beautiful: to view regression
from the standpoint of its contribution to the reduction in the chaos of our per-
ception of the world.

From this approach, the Akaike and the Bayesian Information Criteria (AIC and
BIC, respectively) emerged. A model is an approximation, and therefore, it is
guaranteed to lose some information (see Fig. 2.24) about the world it describes. If
we have two models, A and B, then the AIC and the BIC measure how much more
information is lost by applying model A than by applying model B. Consequently,
we choose the model that loses less information. The difference is in the way they
account for the number of points in the independent variable that are used in
building the regression.

2.5.6 Model Competition

By using the goodness-of-fit criteria and/or their combination (e.g., [GILG2010]),
we can identify the model that would be the best fit for the data.

For example, consider the data shown in Fig. 2.24.

We have a quadratic relationship between the two data sets (Y, and X). We will
compare two regression lines: a straight line and quadratic parabola.

First, let us look at the straight line (Fig. 2.25).
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Equation: Yq=5+1.5X+0.25*X*X
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Fig. 2.24 An illustration

Equation: Yq=5+1.5X+0.25*X* X
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Fig. 2.25 Linear model

This line does show the direction of the correlation and fits the data fairly well;
however, the R> = 0.87—not a very good fit (could be better); 13% of the variance
has remained unexplained. The AIC for this model is 1420.

Next, we apply the quadratic model (Fig. 2.26).

The blue line seems to follow the data much closer. The R*> = 0.93—a better fit
is confirmed; only 7% of the variance has remained unexplained. The AIC for this
model is 1367.

In this particular case, the R* and the AIC concur that the quadratic model does
indeed provide a better fit to the data.
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Equation: Yq=5+1.5*X+0.25*X* X
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Fig. 2.26 Linear (red) and quadratic (blue) models

2.5.7 Analysis of Residuals

Visual

100

47

The goal of Least-Squares regression is to draw a line through the data, such that
the residuals (observed—predicted) are random, with the distribution centered at

Z€10.

In Fig. 2.26, we see that the quadratic line is a better fit than the straight line. Its
residuals look as shown in Fig. 2.27a. Residuals from the straight-line regression

are shown in Fig. 2.27b.
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Fig. 2.27 Residuals from quadratic (a) and straight-line (b) regression



48 2 Analytics Fundamentals

We see from Fig. 2.27 that the distribution of residuals, in and of itself, is not a
sufficient signal on the quality of the regression. Other parameters need to be con-
sidered as well, such as latent correlation of residuals with independent variable(s).

Correlation Test

Correlation between residuals and the independent variable(s) can be performed via
(i) the standard Pearson’s correlation coefficient, which answers the question
whether there is a linear relationship between the two data sets, (ii) the Spearman’s
correlation parameter, which answers the question whether there is any monotonic
(going only up or going only down) relationship between the two data sets, or
(iii) the Kendall’s correlation parameter, which is not really applicable to analysis of
residuals.

Sadly, neither one of the two will be adequate for answering the question
whether Fig. 2.27b shows a residual correlation with the independent variable: This
relationship is neither linear nor monotonic.

Yet we need to know whether the model is bad.

One way to do it is to check the correlation of the first derivative (AR%)‘?U"‘]S)
with the independent variable. If the line is quadratic, then the first derivative will
be a straight line, and we will accurately capture the correlation if it is present.

This does look like a flat line; however, the formal correlation test tells us that
we are still not out of the woods, the reason being the variance in the data: The
signal-to-noise ratio is too low.

The other method involves splitting the independent variable into halves and
running the Spearman’s correlation test on both sides. If one is going up, while the
other is going down, it means that residuals have a unimodal correlation.

In the scenario we are considering (Fig. 2.28), this method turned out to be
beneficial. Correlation test for the first half returned.

d(LM.I$resid)idX
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c(0, dResid | by .dX)
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Fig. 2.28 First derivative of the residuals from straight-line regression
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Resource Utilization as a function of user demand
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Fig. 2.29 Resource utilization is typically characterized by the sigmoid curve

> cor.test (first.half, X1, method = “spearman”)
Spearman’s rank correlation rho

data: first.half and X1

S =33668, p-value =3.174e-06

alternative hypothesis: true rho is not equal to 0

sample estimates:
rho

-0.6167107

For the second half:

> cor.test (second.half, X2, method = “spearman”)
Spearman’s rank correlation rho

data: second.half and X2

S =7212, p-value = 1.779e-07

alternative hypothesis: true rho is not equal to 0

sample estimates:
rho

0.6736652

The product of the two correlation coefficients is p; * p, = —0.6167
x0.6737 = —0.4161 <O0.

We have correctly captured the fact that the residuals hit a low point near the
middle of the range of the independent variable. By contrast, for the quadratic line,
not only are the correlations not very likely (the p-values are high), but also the
correlation parameters for both halves of the range of the independent variable are
on the same side of zero:
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> cor.test (first.half.q, X1, method = “spearman”)
Spearman’s rank correlation rho

data: first.half.q and X1

S =20302, p-value = 0.8623

alternative hypothesis: true rho is not equal to 0

sample estimates:
rho

0.02511405

> cor.test (second.half.q, X2, method = “spearman”)
Spearman’s rank correlation rho

data: second.half.q and X2

S =21068, p-value = 0.7442

alternative hypothesis: true rho is not equal to 0

sample estimates:
rho

0.04669683

> cor (first.half.qg, X1) * cor (second.half.qg, X2)
[1] 0.001776423

Based on this analysis, despite the preference we should always give to the more
simple models, given the choice between straight-line and quadratic relationships,
we choose the quadratic model for the data in Fig. 2.27.

2.5.8 Advanced Regression Methods

Detailed coverage of advanced topics on regression is outside the scope of this
book. Interested readers are referred to specialized texts covering in detail nonlinear
regression; logistic regression; the general linear model (GLM), and other methods
of regression. Majority of statistical and data mining software products have
libraries that implement such methods. However, we will say a few words here
about each of them.

Nonlinear Regression

Nonlinear regression is used when we know the form of the equation, and it is not
one of the “Big 6.” In such cases, iterative methods are used to compute the
coefficients.
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Generalized Linear Model (GLM)

The GLM is used for a wide variety of scenarios where the distribution of the
residuals cannot be normal (Gaussian). In such cases, the GLM still tries to draw a
line through the mean of the distribution; however, the mean will not necessarily
correspond to the central point in the distribution.

Logistic Regression

A very special, and widely used, case of GLM is the logistic regression. It is so
prominent in predictive analytics that most statistical software products have it
implemented as a separate method. Logistic regression is used when we want to
determine the probability [or any other variable bound between two hard limits
(typically 0 and 1, but that can be scaled to any other pair of limits) as a function of
some independent variable(s)]. In the IT world in general, and in LTE networks
in particular, utilization (e.g., CPU, memory, bandwidth) falls into that category:
it can be viewed as the probability that at any moment in time the system will be
in the busy state, which makes it important to discuss logistic regression in this
book.

We will also use it to illustrate the need to reverse all transformations and
substitutions that were done when linearizing the regression equations.

Utilization of a live (operational) resource can never be greater than 1 and less
than 0, but it can approach these limits asymptotically. This imposes a very distinct
shape on the curve expressing utilization as the function of, e.g., user demand
(Fig. 2.26).

The sigmoid (aka logistic) curve is the 7th of the “Big 6 linearizable curves.
Indeed, if we consider that utilization is probability of being busy, we can compute
the odds of being busy:

Util

OddSbusy = m

(2.5.3)

That, however, will result in an exponential-looking curve (Fig. 2.30).

odds vs. user demand
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Fig. 2.30 Odds of seeing the resource in a busy state as a function of user demand
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log-odds vs. user demand
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Fig. 2.31 Log-Odds of seeing the resource in a busy state as a function of user demand

One final operation—taking the natural logarithm of the odds—will result in a
straight line (Fig. 2.31):

Util

- 254
"= Ual (2.5.4)

log-Odds,g, = In(Oddspusy) = 1

One final step is to reverse the calculations to go from linear model prediction
for log-Oddsy,, to Util in Fig. 2.29.
elogfoddsbusy

1+ elogfoddsbuSy (255)

p rObbusy =

Equation (2.5.5.) was derived from Eq. (2.5.4) by simple algebraic transfor-
mations (Fig. 2.32).
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Fig. 2.32 The final regression fit



2.5 Regression 53

In performance and fault analysis, sometimes the prediction line ends up above
the data. This happens as an artifact of applying Eq. (2.5.5): In effect, we are scaling
the range of utilization to the [0, 1] range. If it happens, it is a strong indicator of
hidden saturation (congestion) on a related resource.

Quantile Regression

The quantile regression [KNKR2001] approach is relatively new. It was first for-
mulated in 1987; however, the computing power was not up to par, making the
software implementing QR sluggish at best. Fifteen years later, the quantreg
package was implemented for R, and another few years after that, quantile
regression was implemented in SAS. Today, it is widely used everywhere, espe-
cially in social sciences, where families in the socioeconomic standings react dif-
ferently to different stimuli. It is useful in building predictive models for LTE
networks, e.g., where technically different user elements share a bandwidth. This
will lead to a variety of usage patterns, some of which can even be used to identify
the user’s equipment.

Quantile regression is highly efficient when we do not know, and cannot guess,
the type of distribution of the dependent variable.

It can also be used to dynamically detect outliers in correlated data: Indeed, if we
can draw regression lines through the 25th and 75th percentiles (first and third
quartiles) of the dependent variable, compute the IQR (see section on Outliers in
this chapter) at every “vertical” slice and compute the trajectories of high and low
whiskers (high and low outlier boundaries).

Other examples of using quantile regression include capacity planning,
busy-hour-traffic analysis, and Predictive SPC [FERR2014].

2.5.9 Do We Have to Compete?

Sometimes, it is hard to choose the “right” model, even when formally the
parameters are pointing at one. When formal competition yields a tie, it becomes
even more complicated. When that happens, we need to either choose the model
based on some heuristics or use the so-called ensemble approach.

With ensemble, or Delphi (in honor of the Delphi Oracle in Ancient Greece)
approach, we combine predictions of two or more models into one. For some
models, it can be easily done by simple formulae; for others, more advance tech-
niques, such as bootstrapping and jackknifing, have to be used.

Ordinary Least-Squares (OLS) Regression

As we discussed, OLS regression’s residuals are expected to be normally dis-
tributed and centered at zero. This provides an easy way to compute the distribution
of the ensemble. Indeed, since all models in the ensemble are independent, and so
are their predictions, we can compute the mean at all values of independent variable
(s) as the sum of means, and the variances of the ensemble prediction as the sum of
variances, of the models that were used in the ensemble:
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M
VX: oy = (ix),, (2.5.6a)
m=1
And
M
VX: Vary = (Vary), (2.5.6b)
m=1
In Egs. (2.5.6a) and (2.5.6b),
X is the independent variable (or a combination of covariates)
M is the number of models in the ensemble

Vary = ¢2 is the variance of residuals predicted at X

Because (see Section 2.5.7) we do not want to use a model that leaves residuals
cor-related with X; Eq. (2.5.6b) can be simplified to:

M
VX: Vary = ZVarm (2.5.6¢)

m=1

Note: Model predictions will appear to be correlated. This is expected: We are
modeling the same process using different models. However, the models are
independent; therefore, Eqgs. (2.5.3a—) will work.

Non-OLS Regression

For non-OLS regression, when the distribution of residuals is generally non-normal
(see Sects. 2.1-2.3), ensemble methods will involve more complicated statistical
techniques, falling under the general classification as Monte Carlo analysis. They
are outside the scope of this book. A simple, down-to-earth, technique that allows
the analyst to avoid using Monte Carlo and yet get decent results involves
resampling. The idea is to fulfill the requirements of the Central Limit Theorem:
take multiple independent samples at random from the values predicted by each
model. If enough such samples are taken, their means will converge to a normal
distribution, and then, Egs. (2.5.6a)—(2.5.6¢c) will be usable for computing the
ensemble prediction.

2.6 Clustering

In LTE analytics, it is often important to break data into natural groups.

One of the most immediate use cases involves bundling curves into clusters.
Another use case is dealing with geographic clustering (e.g., identifying natural
groupings of UEs to determine RAN metro boundaries).
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‘We shall start with the first use case, as it builds on the material we introduced in
this chapter in Sects. 2.4 and 2.5.

2.6.1 Bundling the Curves

In Fig. 2.33, we show a group of data simulated to reflect 500 days of bandwidth
utilization data for five network links.

We see interesting patterns in data: In the early days (May through August,
2010), the five links were ramping up together, reached what appears like saturation
at ~90%. This was followed by a drop in utilization of L4 and L2 (perhaps they
were taken out of traffic for a few months). The other three links (LO, L1, and L3)
saw a sharp drop in utilization around the same time. Such drops are usually
associated with an increase in capacity.

L1 started ramping up gradually, while the other two (L1 and L3) stayed at the
same level of utilization to which they came after the drop.

Finally, in February 2011, links L2 and L4 were put back into operation.

This is all a very basic analysis that can be performed visually, but when dealing
with hundreds, even thousands, of links, we want an automatic system to perform it
for us. We need a mathematically soun way to automatically group data into
bundles.

K-means

The K-means method of clustering is the simplest yet surprisingly powerful.
K “Centers” are put at random on the field (y-axis), and all data points are assigned
to each of the K clusters so as to minimize their distance to the center. The new

Maximum Daily Bandwidth Utilization for 5 links
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Fig. 2.33 Maximum bandwidth utilization for a group of 5 links in a WAN region
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centroid (mean) is calculated for each cluster, and the data points are reassigned.
The iterations continue until no more improvements to the distances to the centroids
can be made. Due to the way distances are calculated (typically sum of squares of
Euclidean distances), this method is equivalent to moving K variable-width
Gaussian bell curves (surfaces if the clustering is multi-dimensional) until the
narrowest possible bell curves are achieved.

Applied to the data shown in Fig. 2.33, K-means clustering produces decent
results, which, however, fail to detect the patterns in data trajectories.

Advantages of K-means Clustering
It is simple, powerful, and versatile.

Downsides of K-means
K-means method groups data based on their value, without consideration for
trending and other patterns in data. Consequently, cluster overlaps are to be
expected when this method is applied to time-series data. We see these overlaps in
Fig. 2.34.

The clustering shown in Fig. 2.34 better reflects what we think we see from the
data, but both groupings are wrong, and both groupings are right.

Model-Based Clustering

Model-based clustering (commonly abbreviated as MBC) is an extension of
K-means for multivariate clustering, where the bell surfaces (Gaussian clouds) are
extended along the primary axes of the data. For technical details, please see
[FRAF2002] and [FRMS2012].

It is a highly sophisticated algorithm, fitting different shapes of Gaussian clouds
into data and using the BIC (see Sect. 2.5) to decide when to stop adding clusters
(detect the point of diminishing returns in information gain).

The particular data set that we have been looking at is too big for MBC on a
regular laptop, even with 8 GB of memory, however. The algorithm is very
memory-intensive. To alleviate the problem, we are going to aggregate the data for

. L 3 cluster 3
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Fig. 2.34 K-means clustering at K = 5
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Fig. 2.35 Clustering by model-based method

each set into weekly averages. The reason we choose averages is because MBC
relies on a Gaussian Mix Model; so using averages actually helps in this case by
fulfilling the conditions of the Central Limit Theorem. Doing so also reduces the
data by a factor of 7. It still takes a couple of minutes, but the result is very
informative (Fig. 2.35).

The ellipses that MBC method has added show the Gaussian kernels that
characterize the clusters. The colors correspond to the clusters. We see how dif-
ferent sets from Fig. 2.33 group naturally with other sets at different times, which
allows us to see the dynamics of the data. This allows us to build an automatic
performance monitoring system that will answer important performance-related
questions.

The classification uncertainty plot (Fig. 2.36) allows the analyst to see regions
where the model-based classifier had higher and lower confidence of the cluster
assignment.
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Fig. 2.36 Classification uncertainty chart
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Here, point size and darkness indicate the degree of uncertainty in grouping the
data the way MBC did.

2.6.2 Geographic Clustering

With geographic clustering, the same approaches apply. Figure 2.37 shows a dis-
tribution of population in 3 urban centers.

The model-based clustering will provide the following plots.

The plots shown in Fig. 2.38 show the natural patterns in data, the overlap
between the Gaussian kernels (uncertainty), and a contour plot showing the data
density distribution. The cluster assignment (count and shape) is optimized based
on the Bayesian Information Criterion (BIC). The process is illustrated in Fig. 2.39.

Here, the 3-letter combinations correspond to the shapes of the cluster kernels,
and the term “components” corresponds to the clusters into which the data is
grouped. For more details, please refer to the literature provided below.

2.6.3 Geographic Clustering of Signal

The method we have illustrated here assigns clusters based on the density of the
points on the map (see Fig. 2.39). When we are dealing with signal distribution
within each cluster, a different method has to be used, the DBSCAN. Its biggest
advantage over the K-means and the MBC methods is that it allows identifying
groupings of data with nonlinear separation boundaries. Its discussion is outside the
scope of this chapter. R, python, SAS, SPSS, and other statistical tools all have

Geographical Clusters. Simulated Data
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Fig. 2.37 The three urban centers
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Fig. 2.38 The three plots provided by the model-based clustering

-26000

== ——p—t

-30000
1

BIC

ER < EVE
AWMVl #+ VEE
¢ EEl 4 WE
% VEI ® EEV
¢ EVl B VEV
oWV B EW
= EEE O VWV
T T T T T T
4 5 6 T 8 9

Number of components

-34000
1

Fig. 2.39 An illustration of the cluster assignment process

implementations of K-means, MBC, DBSCAN, and other separation methods
shipped either as part of the standard distributions or as additional libraries.

We have only touched upon the most basic use cases and tools for clustering.
For more information, techniques, and tools, please see the literature referenced in
this book.
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2.7 Conclusion

We have covered the basics of machine learning and applied data analytics, with
some examples from the LTE networking world. In Chap. 6, after the reader gets
introduced to the key elements comprising the LTE network—EUTRAN, EPC, IP
Backhaul, Metro, and Core, we revisit the topic, describing why advanced tech-
niques are needed to adequately analyze LTE network performance as a whole and
introducing such techniques for statistical process control, outlier detection, and
queueing-system analysis.
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