Chapter 2
Linear Connections and Riemannian
Geometry

In Sects.2.1 and 2.2, we present the general theory of linear connections together
with the reduction theory of the underlying frame bundle to some Lie subgroup of the
general linear group. These reductions are usually referred to as H-structures.! They
lead to a unified view on possible geometric structures manifolds may be endowed
with. Using this framework, we discuss almost complex, pseudo-Riemannian, con-
formal, almost Hermitean and almost symplectic structures including a discussion
of the corresponding compatible connections. Thus, from the perspective of H-
structures, Riemannian geometry is an important special example. In Sects. 2.3 and
2.5, we continue to study H -structures by investigating torsion-free compatible con-
nections. We ask which holonomy groups may occur for such connections. This
fundamental question has been first systematically studied by Berger. In this delicate
analysis, the central object to be studied is the curvature mapping of the connection
under consideration. In Sect. 2.3, we study the class of connections which are not
locally symmetric with emphasis on the metric case, where the H-structure defines
a pseudo-Riemannian manifold. For that case, we formulate the classification result
of Berger without giving a proof. We also comment on the classification in the non-
metric case. In Sect. 2.5, we study the case of locally symmetric connections. This
leads us to the theory of symmetric spaces. We present the basics of this theory in a
fairly consistent manner including a number of important classes of examples. Next,
in Sect. 2.6, we extend our discussion of compatible connections to vector bundles
with emphasis on Hermitean bundles and holomorphic structures. In Sect.2.7, we
present the basics of Hodge Theory” including a detailed study of Weitzenboeck-
type formulae. Finally, in Sect.2.8, we discuss properties of Riemannian manifolds
which are special in dimension four.

I Also called G-structures in the older literature.
ZBut, the proof of the Hodge Decomposition Theorem is postponed to Chap. 5.
© Springer Science+Business Media Dordrecht 2017 93

G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics, DOI 10.1007/978-94-024-0959-8_2


http://dx.doi.org/10.1007/978-94-024-0959-8_5

94 2 Linear Connections and Riemannian Geometry

2.1 Linear Connections

Let M be an n-dimensional differentiable manifold and let L (M) be its bundle of
linear frames, cf. Example 1.1.14. Recall that a linear frame at m € M is an ordered
basisu = (uy,...,u,)inT,,M and thatw : L(M) - M, n(u) = m, is a principal
GL(n, R)-bundle. The free right action of GL(n, R) on L(M) is given by

L(M) x GL(1, R) — L(M), (u,a) — ua. @2.1.1)
Here, ua = (u;a'y, ..., u;a'y).

In the sequel, the basic representation of GL(#, R) given by matrix multiplication
of elements of R” from the left will be denoted by ¢°. Thus, 0%(a)x = ax.

Definition 2.1.1 A principal connection I" on the frame bundle L(M) will be
referred to as a linear connection on M.

Given a linear connection on M, it induces connections on all tensor bundles over
M . To see this, it is enough to show that all tensor bundles over M are vector bundles
associated with L(M). For the proof, take the basic representation o,? of GL(n, R)
and the corresponding associated bundle E := L(M) XgLx,r) R". Define

0: E—>TM, o(u,x)]) :=x"u;, (2.1.2)

where x’ are the components of x € R” in the standard basis {e;} of R". It is easy to
show that ¢ is an isomorphism of vector bundles (Exercise 2.1.1). Thus,

™ = L(M) XGL(n,R) R™. (213)
Via the dual of the basic representation, this induces an isomorphism
T"M = L(M) XgLn.r) (R™)* (2.1.4)

and, thus,
T¢M = L(M) XGLpgr) TF R, (2.1.5)

Remark 2.1.2 Often, a frame u € L(M) will be viewed as an isomorphism
u:R" - TropyM, ux):= xtu; .

By (2.1.2), we have
pol, =1u. (2.1.6)

¢

3As in the general theory, I is a horizontal distribution on L(M). Below, it will become clear why
it is reasonable to speak of a connection on the base manifold M.
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Now we can start discussing the theory of linear connections. First, we exhibit a
structure which distinguishes frame bundles from general principal fibre bundles.

Definition 2.1.3 The differential form 6 € 2'(L(M), R") defined by
0(X) :=u"'#'(X)), XeT,LM), 2.1.7)

is called the canonical R"-valued 1-form on L(M), or, the soldering form.

Proposition 2.1.4 The soldering form 6 is a horizontal 1-form of type o,

U'9=a'060, aeGL@n,R).

a

Proof By definition, 0 is horizontal. Let u € L(M) and a € GL(n, R). If we view u
as a mapping R" — Ty, M, then to ¥, (u) there corresponds the mapping

uoa: R" S R* S TrwyM .
Thus, for any X € T,L(M),

(W0)u(X) = O, ) (¥, X)
= (Wo(u))~ (7' 0 ¥, (X))
=@oa) ' (n'(X))
=a'6,(X). m

Remark 2.1.5 By Proposition 1.2.12, via the isomorphism (2.1.2), to 6 there corre-
sponds a unique 1-form 6 € 2'(M, TM) given by

Op(X) =uob(X*) =uou'on'(X*) =X,

where (u) =m,X € T,,M and X* € T,,L(M) fulfillingz'(X*) = X. Thus, é(X) =
X. That is why 6 is usually called the tautological 1-form. ¢

Now, let I" be a linear connection on M and let w be its connection form on L (M).
Then, any x € R” defines a I"-horizontal vector field B(x) on L (M) by assigning to
u € L(M) the unique I"-horizontal lift of u(x) € T, M to the point u .

Definition 2.1.6 The vector field B(x) is called the horizontal standard vector field
defined by x € R".

Proposition 2.1.7 For any x € R”, the horizontal standard vector field fulfils
1. 6(B(x)) =X,

2. ¥,,B(x) = B(a"'x), a € GL(n, R),

3. ifx # 0, then B(x) vanishes nowhere.
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Proof 1. We calculate
6. (B(x)) = u~" (' (B(x),)) = u" (u(x)) =x.
2. By Proposition 2.1.4 and point 1, we have
0 (P B(x)) = ¥ 0(B(x)) =a”'0(B(x)) = a”'x,

and, thus, 7' (¥, B(x)) = u(a~'x). Since ¥, B(x) is horizontal, the assertion fol-
lows from the uniqueness of the horizontal lift.

3. Clearly, B(x), =0 iff u(x) =0 and, thus, iff x =0, because u : R" —
T, w)M is a vector space isomorphism. u

Remark 2.1.8 Let {e;} be the standard basis in R”. Then, the horizontal standard
vector fields B; = B(e;) span the horizontal distribution defined by I". Moreover,
B(x) is uniquely determined by the conditions

0(B(x)) =x, w(B(x)=0. (2.1.8)

¢

Lemma 2.1.9 Let A, be the Killing vector field on L(M) generated by A € gl(n, R)
and let x € R". Then,
[A, B(x)] = B(AX). (2.1.9)

Proof Let a, = exp(tA). Using point 2 of Proposition 2.1.7, we obtain

d d
(A BOOL = (L4, BOO = 3o ((#0),B00) = g B@ = BAX),

0 u

Definition 2.1.10 Let I be a linear connection on M and let w be its connection
form. The 2-form @ € 2%(L(M), R") defined by

O := D0 (2.1.10)

is called the torsion form of I".

Clearly, @ is a horizontal 2-form of type .. The Structure Equation (1.4.9) for the
curvature of a linear connection is supplemented by a structure equation involving
the torsion form.

Proposition 2.1.11 (Structure Equations) Let w, §2 and ® be, respectively, the
connection, curvature and torsion forms of a linear connection I' on M. Then, for
any X’ Y e TuL(M)r
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do(X,Y) = —[w(X), o(Y)] + 2(X, Y), 2.1.11)
dO(X,Y) = —(@(X)0(Y) — 0(Y)O(X)) + O(X, ). (2.1.12)

Proof Equation (2.1.11) coincides with the Structure Equation (1.4.9) of the general
theory. Since 6 is a horizontal form, (2.1.12) follows immediately from formula
(1.4.1), with o being the basic representation. |

Remark 2.1.12 Using
o ANO(X,Y)=w(X)0(Y) —w(Y)I(X),
the Structure Equations may be rewritten as follows:
do=—-wArw+2, dd=—-wA0+6. (2.1.13)

If we decompose the above forms with respect to the standard bases {e;} in R” and
{E';}in gl(n, R),

0=0¢, O©=0%, w=0E,;, £2=0E,, (2.1.14)

then we obtain the Structure Equations in the form
do'; = -0’y A &f;+ 27, d0' = -, A0+ 6. (2.1.15)
¢

The Bianchi identity for the curvature has a counterpart for the torsion.

Proposition 2.1.13 (Bianchi Identities) Ler w, §2 and ® be, respectively, the con-
nection, curvature and torsion forms of a linear connection I' on M. Then,

D,$2 =0, (2.1.16)
D,® =2 N0. (2.1.17)

Proof Equation (2.1.16) coincides with the Bianchi Identity (1.4.10) of the general

theory. Equation (2.1.17) is an immediate consequence of Proposition 1.4.12, with

— 50
o =o0,. u

Alternatively, (2.1.17) may be checked by direct inspection. It is obtained by differ-
entiating the first of the two equations in (2.1.15) and by using both of these equations
thereafter (Exercise 2.1.5).

Remark 2.1.14

1. The 1-forms w and 6 may be combined to the joint object

w+0 e 2ULM), gl(n,R) dR").


http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1

98

2 Linear Connections and Riemannian Geometry

Clearly, gl(n, R) @ R" is the Lie algebra of the affine group on R”. Its com-
mutation relations are obtained by supplementing the commutation relations of
gl(n, R) by

[A,x] = —[x,A] = Ax, [x,y]=0, Aecgln R),x,yeR".

Accordingly, we may pass from the bundle L(M) of linear frames to the bun-
dle A(M) of affine frames. Clearly, @ + 6 defines a connection form on A (M)
which is called the affine connection form induced by w. This explains why lin-
ear connection and affine connection are often used as synonyms in the literature.
Obviously,

1
Duo(@+6) = d@+6) + Slo+60,0+6]=2+06,

that is, curvature and torsion constitute a joint object on A(M), namely the cur-
vature of w + 6.

Let {e;} and {E/;} be the standard bases of R" and gl(n, R), respectively. Let
B; be the horizontal standard vector field with respect to a chosen connection I”
generated by e; and let E/;,, be the Killing vector field generated by E/;. Since the
E/,, span the vertical subspace V,, C T,L(M), for every u € L(M), and since
the { B;} span the (complementary) I"-horizontal subspace I, these n*> + n vector
fields provide a global frame in the tangent bundle TL (M) which is, therefore,
trivial. One says that the manifold L (M) admits a global parallelism given by
the vector fields B;, E/;,. Moreover, the vector fields B;, E/;, are dual to the
1-forms 6, o' ;,

0% (B)) =8, ONE‘;)=0,

‘ ‘ ) v oo (2.1.18)
o (B) =0, o (E,)=258:0.

Thus, T*L(M) is trivial, too, and the 1-forms 6', '; provide a global frame

of T*L(M), or, in more abstract terms, the affine connection w + 6 induces an

absolute parallelism on A(M). As a consequence, every horizontal k-form o on

L(M) may be expanded with respect to the 1-forms ¢,

1 , .
o = Eai,..,z‘kG” A AGR (2.1.19)
In particular, . ' _ o
Q' =32,,;,0"r0", O =1601607 Ao (2.1.20)

¢

Since both £2 and @ are horizontal 2-forms on L(M) of type Ad, respectively, they
uniquely correspond to 2-forms on M with values in certain associated vector bun-
dles. By Proposition 1.2.12 and by the isomorphism (2.1.3),to ® € 22(L(M), R™)
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there corresponds an element T € 2%(M, TM) defined by
Th(X,Y) =u(®,(X*,Y"), (2.1.21)

where X,Y € T,M, n(u) = m and X*, Y* € T, L(M) fulfilling =’ (X*) = X and
7'(Y*) = Y.* By Remark 1.4.7, to 2 there corresponds a 2-form on M with values
in the adjoint bundle Ad(L(M)). Since the differential of the basic representation
U,? identifies gl(n, R) naturally with End(R"), this 2-form may be identified with the
curvature endomorphism form R € £2%(M, End(TM)),

Rn(X,Y)=uo 2,(X* Y)ou ", (2.1.22)

cf. (1.5.13). Since R takes values in End(T M), we may apply it to any tangent vector
ZeT,M:
R (X, Y)Z:u(Qu(X*,Y*)(u_'Z)). (2.1.23)

Definition 2.1.15 Let I" be a linear connection on L(M) and let ® and £2 be its
curvature and torsion forms. The 2-forms T and R defined by (2.1.21) and (2.1.22)
are called the torsion tensor field associated with & and the curvature tensor field
associated with £2, respectively.

Remark 2.1.16 Since, for any u € L(M), the assignment R” — I,, X — B(X), is
an isomorphism of vector spaces, we have an induced isomorphism

b) : N’R* = AL, bu)(XAY) = B(X)y A B(Y), .

Using this, we get yet another presentation of curvature and torsion, which will turn
out to be useful. We define mappings

Z:LM) - N*RY* @gl(n,R), T :L(M)— \NR")* @R"

by
R(u) = 2, 0bu), Tu):=06,o0bu). (2.1.24)

In the sequel, Z and .7 will be referred to as the curvature and the torsion mappings,
respectively. Using that £2 and © are horizontal forms of type Ad and o, respectively,
together with (1.2.3), one finds:

B, (w) (X, y) = Ad(a™") o (Z(u)(ax, ay)) , (2.1.25)
T W) (x,y) = a~' o (T (w)(ax, ay)). (2.1.26)

By Proposition 1.2.6, to #Z and .7, there correspond unique sections of the associated
bundles

4Clearly, for X* and Y* we may take the horizontal lifts of X and ¥ with respect to I".
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LM) X6Lmm) (NRD* @ gl(n, B)),  LM) X6Lmr (A RD*@R"),
respectively. By (2.1.24), they are given by
mi—>uoZu)ou ' =R, o0 /\zu, m—uoJw)=T,o0 /\zu, (2.1.27)

where /\Zu RPAR" = TroyM A TroyM and m = 7 (u). ¢

Next, we discuss the covariant derivative of tensor fields and apply the Koszul
calculus developed in Sect. 1.5 to the case under consideration. By Definition 1.5.2,
the covariant derivative

on an associated bundle £ = P X F, induced from a connection form w, is given
by
(V@) (X) =1p0 (chﬁ)p(X*), (2.1.28)

with w(p) = m and X* € T, P fulfilling 7' (X*) = X. Applying this to a section ¥
of TM = L(M) XgLx,r) R", that is, to a vector field on M, we read off

(VY)(X) =uo (DY), (X", 7wu)=m, (2.1.29)

where Y € Homgp (o) (L(M),R") is given by Y(m) =uo Y (u). According to
(1.5.10), we have an associated operator

V¢ M®(TM) — I'*°(TM), V3Y :=(V°Y)(X). (2.1.30)

In the sequel, we assume that a connection has been chosen and, for simplicity, we
write V instead of V.

Remark 2.1.17
1. By (1.5.3), formula (2.1.29) may be rewritten as (VxY)(m) = u(Xjf(f’)), where
X* is the horizontal lift of X. Thus, using

0, ¥ =u'lox'¥Y=u'Y,=7Y,,

we obtain
(VxY)(m) = u(X;(0(Y"))). (2.1.31)

2. Clearly, the covariant derivative Vy given by (2.1.30) has all the properties listed in
Proposition 1.5.8. Moreover, it induces covariant derivatives in all tensor bundles
over M. A general formula is easily derived from (1.4.2) by taking for o the tensor
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product representation of p copies of 0,? and g copies of its dual, cf. Exercise
2.1.2. If not otherwise stated, by V we mean the covariant derivative in TM. ¢

The proof of the following proposition is left to the reader (Exercise 2.1.3). It provides
an axiomatic characterization of the covariant derivative of a tensor field.

Proposition 2.1.18 Let I" be a linear connection on a manifold M and let V be its
covariant derivative in TM. Then, the covariant derivative

Vy: T(TIM) — I(T'M)

acting on tensor fields of type (r, s) is uniquely determined by the following proper-
ties.

1. Vxf =X(f), for f € C®(M).
2. Vx is a derivation of the tensor algebra.
3. Vx commutes with any contraction.

‘We express the curvature and torsion tensor fields in terms of the covariant derivative.

Proposition 2.1.19 Let V be the covariant derivative of a linear connection I" on
M. Then, the curvature and the torsion tensor fields of I' are given by

R(X,Y) =[Vx, Vvl = Vix.r], (2.1.32)
T(X.Y) = Vy¥ — VyX — [X. Y], (2.1.33)

Proof Formula (2.1.32) follows from Proposition 1.5.11 as a special case. To prove
formula (2.1.33), let X*, Y* be the horizontal lifts of X and Y. Then, ®(X*, Y*) =
do(X*, Y*). Using this, together with (2.1.31) and 7' ([ X*, Y*]) = [X, Y], we obtain

T(X, Y)(m) = u(0,(X*, ¥Y™)
= u(X,(0(Y") — Y (0(X") — 0u(IX", Y*]))
=(VxY = Vy X —[X,Y])(m).

Finally, we carry over the concept of parallel transport and holonomy as devel-
oped in Sect. 1.7 to the case of linear connections on M. In this way, for a given
connection, we obtain the operation of parallel transport along curves in M both for
the frame bundle L (M) and for any associated tensor bundle T; M. Correspondingly,
we obtain holonomy groups in all associated tensor bundles. As in the general theory,
there is a deep relation between holonomy and curvature, provided by the Ambrose-
Singer Theorem 1.7.15. This has tremendous consequences for the structure theory
of (pseudo-)Riemannian manifolds, see Sect.2.3.

Clearly, comparing with the general theory, the situation here is special in so
far as the parallel transport operators apply to geometric objects living on the base
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manifold M. Related to this fact, there is a special class of curves which we discuss
next. Applying the theory to the tangent bundle, for any curve y : I — M, we obtain
aunique parallel transport of tangent vectors along y . In the sequel, let / C R denote
an open interval containing 0. Let y be the tangent vector field of . By Example

I/1.5.5, it is given by
. A d
t) = — s
o=y (dt r,)
d

where 3 denotes the unit vector field on /. Applying the notions developed in
Sect. 1.7, a vector field X on M is parallel (with respect to a connection I") along a
curve y if
Vi X=0. (2.1.34)
dr
Here, V7 is the covariant derivative along the mapping y and X must be viewed as
a section of TM along y . In particular, since y is certainly a section of TM along

y, we may consider the equation
Viy=0 (2.1.35)
dr

and we may ask whether it admits solutions.

Definition 2.1.20 Let I" be a linear connection. Acurvey : [ — M, t — y(t),1is
called a geodesic with respect to I" if it fulfils equation (2.1.35).

The following proposition is left as an exercise to the reader (Exercise 2.1.4).

Proposition 2.1.21 Ifa curve y : I — M is a geodesic, then for any o, B € R the
curvet — y(a -t + B) is a geodesic, too. |

Proposition 2.1.22 Let I' be a linear connection on M. Then, the projection under
7w L(M) - M of any integral curve of a horizontal standard vector field is a
geodesic. Conversely, every geodesic is obtained in this way.

Proof Let x € R". By definition, B(x), is the unique I"-horizontal lift of u(x) €
TrwyMtou € L(M).Lett — y(z) be anintegral curve of B(x). Define y :=m o y.
Then, using the natural identification (2.1.2) and omitting ¢,

y() =7 o p(t) = 7' (BX)j) = 7(OX = (7 (1),
where y(¢) : R" — T, )M as usual. Thus, by (1.7.13) and (1.3.4), we have
Viy = o (L7 @) =0.

Conversely, lety : I — M be a geodesic. Letuy € L(M) be such that w (1) = ¥ (0)
and let x := u(;l()}(O)) € R". Let t — y(t) be the horizontal lift of y through u.

SThat is, more precisely, we should write X o y instead of X.
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If x = 0, we are done. Thus, let x # 0. Then, there exists a curve t — o (¢) in L(M)
such that y (t) = o (t)(x) . Hence,

i-(,)_ H10)
dty =1,0(1).

Since y is a geodesic, that is, £y (t) € I'™ C T(TM), this formula implies that
t +— o (t) is horizontal in L(M). Since 0 (0) = up and w o 0 = y, uniqueness of the

horizontal lift implies ¢ = y. Thus, y (t) = y(¢)(x) and, since y is horizontal,
0G0 =70 @' GN) =707 G®) =x.

Thus, t — y(¢) is an integral curve of B(x). |

Corollary 2.1.23 Let I" be a connection on M. For every m € M and every X €
T,. M, there exists a unique geodesic y : I — M with initial conditions (m, X), that
is, y(0) =mand y (0) = X. |

We say that a linear connection I" on M is complete if every geodesic of I" may
be extended to / = R. Then, we have another corollary following immediately from
Proposition 2.1.22.

Corollary 2.1.24 A linear connection on M is complete iff every horizontal standard
vector field on L(M) is complete. |

If M is endowed with a complete linear connection I”, we may define the following
mapping. For every m € M and every X € T,,M, we take the unique geodesic y
with initial conditions (y (0) = m, y(0) = X) and put

exp: TM - M, exp(X):=y(l). (2.1.36)

This mapping is called the exponential mapping of I".

Remark 2.1.25 1f I is not complete, then exp may still be defined. In this case, one
defines exp on a neighbourhood of the zero section in TM. This way, one obtains
a smooth mapping which, for every m € M, yields a local diffeomorphism from
a neighbourhood of the origin in T,, M onto a neighbourhood U,, of m in M, see
Fig.2.1. For details, we refer to Propositions 8.1 and 8.2 in Chap. III of [381]. ¢

In the remainder of this section, we describe the above structures locally. Thus,
let
m > e(m) = (e(m), ..., e,(m))
be a local section of L (M), that is, a local frame of TM, and let

m— ¥ (m) = (9 (m), ...0"(m))

be its dual coframe. Recall that e(m)(e;) = ¢; (m) for the standard basis {e;} of R”".
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Fig. 2.1 Exponential mapping

Lemma 2.1.26 For any local frame e,
=0 ®e. (2.1.37)
Proof For any X € T,,M, we calculate
(€0)n (X) = Oeiny (¢'(X)) = (e(m)) ™ (" 0 ¢'(X)) = (e(m)) "' (X) .
Thus, decomposing X = X'e; (m) and using e(m)(e;) = e; (m), we obtain
(€0)n(X) = X' (m)e; = 0,,(X)e; . ]
Thus, for the components of 6 with respect to the decomposition (2.1.14),
0l =0, (2.1.38)

Next, the local representative .« = ¢*w of a linear connection I" with connection
form w is a 1-form on M with values in gl(n, R). Thus, it may be written as

o =dVEY =T 1 97 @ EX,. (2.1.39)
The coefficient functions I"' ;; are called the Christoffel symbols of I” in the local

frame e.

Remark 2.1.27 Consider a change ¢ — ¢ of the local frame.® Using (1.3.15), we
obtain the following induced transformation formula for the Christoffel symbols
(Exercise 2.1.6)

’

I =T pl o™+ 070 (3 070) (0715 (2.1.40)

¢

6We emphasize the passive interpretation here, but formula (2.1.40) may also be interpreted actively.
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Let us calculate the local representatives of curvature and torsion. For that purpose,
we take the pullback of (2.1.20) under e,

Q' =12 v A, O = 3(F %) 0 ADE, (2.1.41)
and denote the local coefficient functions as follows:
Rij =" 2y, Tj=¢0).

To calculate them, we use the Structure Equations in the form given by (2.1.15).
Taking the pullback of the first equation yields

IR Ao =de’; + ' N
Inserting (2.1.39) into this equation, we obtain (Exercise 2.1.7)
Riu=e(IMy)—ex(I ) + Tl ju — T Ty — C" 3T, (2.1.42)
where the C' 4 are the structure functions of the local frame e defined by
lej, ex] = C'jre; . (2.1.43)
In the same way, taking the pullback of the second equation in (2.1.15), we read off
Tu=T"j—T"G—Ci. (2.1.44)

Next, by Proposition 1.5.3, the local version of the Koszul calculus is based upon
the following formula. For a local frame ¢, we have

Ve, =I*0" e . (2.1.45)

Correspondingly,
Veej =Tk e. (2.1.46)

Next, acting with V,, on the pairing ¥/ (e;) = 8/, and using that the covariant deriv-
ative is a derivation of the tensor algebra, we obtain

V0 = - 0k, (2.1.47)

Thus, ' ' '
Vo) = T o0 @ 9k, (2.1.48)

Now, decomposing an arbitrary tensor field with respect to a local frame ¢ and its
dual coframe ¢ and using (2.1.46) and (2.1.47), together with the properties of the
covariant derivative, one can derive a local formula for the covariant derivative of
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any tensor field, see Exercise 2.1.7. In particular, for a vector field X and a 1-form «
we obtain

Ve X = (e;(X") + I'";; X )ex (2.1.49)
Voo = (ei(a)) — I oy )0 . (2.1.50)

Using (1.5.8), we get VX = ¥ ® V,. X and Va = # ® V,, a. Clearly, the covariant
derivative of any tensor field # may also be decomposed in this way,

Vi=9'®V,t, (2.1.51)

in accordance with the fact that V¢ € 2'(M, T{‘ (M)).

Remark 2.1.28 By point 2 of Remark 1.2.15, it is clear that the local representatives
of £2 and R, as well as the local representatives of @ and T, coincide. Thus,

Rej.e)er =R juei, T(eje) =T jee;. (2.1.52)

This can also be checked by direct inspection, inserting (2.1.46) into (2.1.32) and
(2.1.33) and comparing with (2.1.42) and (2.1.44) (Exercise 2.1.8). ¢

Remark 2.1.29 (Holonomic frame) Let (U, ) be a local chart of M and let x’ be
the corresponding local coordinates. Then, {0;} is a local frame of TM, called the
induced holonomic frame of TM and {dx/} is the dual coframe of T*M. The name
holonomic refers to the fact that [9;, ;] = 0, that is, the structure functions of a
holonomic frame vanish. In such a frame, the formulae (2.1.39), (2.1.42), (2.1.44)
and (2.1.45) take the following form:

o =T dx! @ EF;, (2.1.53)
Ry =0 M=o L' ji+ Tyl j — T i T (2.1.54)
T;k =T —T'y, (2.1.55)
Vo = Ik de' @ . (2.1.56)

The change from one holonomic frame to another one is described by the Jacobi
matrix of the coordinate transformation. Thus, here, the transition function is

Ax’
X plx) = (m)

and the transformation formula (2.1.40) reads

[ ax/ axk  ax” N 9%xt ax" 2.1.57)
mn — jkax/m ax"m  oxi xMmaxm 9xi . ..

¢
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It remains to analyze Eqgs. (2.1.34) and (2.1.35) in local coordinates. Then, y is given
by t — x’(¢) and, correspondingly, X = X'9; and y = x9;. Using points 3 and 4
of Proposition 1.5.8 we calculate:

Vy X = Vi, (X79;) = (' X/T%; + 9; (XM)A') 8,

that is, Eq. (2.1.34) reads
ax* oo
— + X' X) =0. (2.1.58)
dt
This is a system of first order ordinary differential equations, which according to
standard theorems admits unique local solutions depending smoothly on the initial
values (#p, X (tp)). The solution # — X (¢) provides the parallel transport

Prom(): TyooyM — T, yM . (2.1.59)
Inserting X' = % into (2.1.58), we obtain the local form of the geodesic equation:

dx*

?+F ijXx'x) =0. (2.1.60)
This is a system of second order ordinary differential equations, which admits unique
local solutions depending smoothly on the initial conditions (ty, x (fo), X (o).

Remark 2.1.30

1. Consider the exponential mapping of a linear connection I" on M, cf. equation
(2.1.36) and Remark 2.1.25. Via the exponential mapping, any frame u : R* —
T,uM at m € M provides a local chart on T,, M:

¢ :=expou:R" - U,.

This is a local diffeomorphism from a neighborhood of 0 in R” onto a neighbour-
hood U,, C M of m. Taking « := q)’l we obtain a local chart (U, k) centered at
m which will be referred to as a local geodesic chart. The local coordinates x’
of that chart mapping will be called normal coordinates at m. In normal coordi-
nates, any geodesic takes the form x’(¢) = a’ - t. Thus, at m, we obviously have
I'*;; + I'*;; = 0. That is, for vanishing torsion, the Christoffel symbols vanish
at m (Exercise 2.1.9).

2. The parallel transport of a tangent vector along a closed curve yields a geometric
interpretation of curvature. Note that this is in accordance with the Ambrose-
Singer Theorem 1.7.15. We have (Exercise 2.1.9)

i 1 I rjk
AX' =5 RuX' - f, (2.1.61)

where f/¥ is a bivector field characterizing the plane enclosed by y .
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3. The quantity ' '
; d%x! ; dx/ dx*
a'i=— + I jp— —

dr? dr dr

is the natural generalization of the notion of acceleration of a point particle to
curved space. For a’ = 0, the particle moves on a geodesic. This occurs if the
particle is not acted upon by additional (non-gravitational) external forces. ¢

Exercises

2.1.1 Prove that the mapping ¢ defined by (2.1.2) is an isomorphism of vector
bundles.

2.1.2 Derive from (1.4.2) a formula for the covariant derivative of a tensor field ¢
of type (r, s) by taking for o the tensor product representation of s copies of o-¥ and
r copies of its dual.

2.1.3 Prove Proposition 2.1.18.

2.1.4 Prove Proposition 2.1.21.

2.1.5 Prove equation (2.1.17) by a direct calculation using the Structure Equations.
2.1.6 Prove formula (2.1.40).

2.1.7 Prove the local formulae (2.1.42), (2.1.44), (2.1.49) and (2.1.50). Derive a
local formula for the covariant derivative of an arbitrary tensor field 7, cf. Exercise
2.1.2. Conclude that, in particular, in local coordinates the covariant derivative of ¢
is given by

Jteedr Jteedr km® ji...jr - kji* i ji=m..jr

Vak ti]...i; — 3k tlllT + Zl-vil tl'v]-..ilzmu.ilv Fmtilmix
1 !

2.1.8 Prove the statement of Remark 2.1.28.

2.1.9 Prove the statements of points 1 and 2 of Remark 2.1.30.

2.2 H-Structures and Compatible Connections

In the sequel, we will meet reductions of the frame bundle L(M) to various Lie
subgroups of GL(n, R). The following concept allows for a unified treatment of all
of them.
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Definition 2.2.1 (H-structure) Let M be a smooth manifold.

1. A reduction P of the frame bundle L(M) to a Lie subgroup H C GL(n, R) is
called an H -structure on M.

2. An H-structure P is called integrable if for every pointm € M there exists a local
chart (U, ) with local coordinates x/ such that the induced holonomic frame {9 i}
is a local section of P. Such local coordinates are called admissible.

3. Let ¢ : M — M be a diffeomorphism. If ¢’ : TM — TM leaves P invariant,
then ¢ is called an automorphism of the H-structure.

Clearly, the automorphisms of an H-structure form a group. By Corollary 1.6.5,
reductions of L(M) to a Lie subgroup H C GL(n, R) are in one-to-one correspon-
dence with smooth sections of the associated bundle

L(M) XGL(H,R) (GL(I’l, R)/H) . (221)

or, equivalently, with elements of Homgy () (L (M), GL(n, R)/H). Thus, the exis-
tence of an H-structure on a manifold M is a topological problem which can be
dealt with by applying methods of obstruction theory. In particular, if GL(n, R)/H
is contractible, then an H-structure certainly exists. Note that, geometrically, an
H -structure should be viewed as a bundle of distinguished frames on M.

Recall from Definition 1.6.11 the general notion of compatible connection.

Definition 2.2.2 A linear connection on M is called compatible with the H -structure
P if it is reducible to P.

Next, recall Proposition 1.6.10 characterizing the reducibility of connections on
principal bundles in terms of G-homomorphisms.

Proposition 2.2.3 Let P be an H-structure on M and let

@ : L(M)— GL(n,R)/H
be the GL(n, R)-equivariant mapping defining P. Assume that GL(n, R)/H embeds
into a GL(n, R)-modul:e F. Then, a linear connection w on L(M) is compatible with
the H-structure P iff @ is parallel with respect to w, that is, iff

D,®=0.

Proof By the proof of Proposition 1.6.2, P = {u e L(M) : @(u) = []l]}. Thus, the

restriction of qus = 0to P reads
o' (w)[1]1=0,

which holds iff @ restricted to P takes values in the Lie algebra of H. This is
equivalent to being reducible to P. |
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Clearly, for a given H-structure P we may restrict the soldering form 6 of L(M)
to P and, thus, for any connection w on P we have a torsion 2-form & on P defined
by (2.1.10). One says that w is torsion-free if & vanishes.

Proposition 2.2.4 If P is an integrable H -structure on M, then it admits a torsion-
free connection.

Proof Let m : P — M be the canonical projection. Let s be an integrable local
section of P over U C M. Taking the tangent bundle of the graph of s and extending
itusing the right H -action to a distribution on P, we obtain a connectionon ~! (U) C
P. Then, integrability implies s*d6 = 0 (Exercise 2.2.1) and, thus, vanishing of the
torsion. Next, we patch together these local connections to a connection on P using
a partition of unity. Since torsion is additive this yields the assertion. |

Since any other connection ' on P differs from w by a horizontal 1-form « on P
with values in the Lie algebra § of H,

O'=0+ant.
By Remark 2.1.16, ® and o may be identified with H-equivariant functions
T:P—> NRYQR", @:P— R Qb,
respectively. Since H C GL(n, R), we have a natural inclusion
tp: h— EndR") = (R")* QR".

Thus, under the above identification, A 0 is a function on P with values in
/\2(R")* ® R". We claim that it coincides with the image of & under the mapping

5 R ®h— AN’RN*®R", §:=(a®idp)o (idgy ®up),  (2.2.2)

where a : (R")* ® (R")* — /\Z(R")* is the anti-symmetrization mapping. Indeed,
using & (u)(x) = Ol(B(X)), we calculate

(@ A0)u(BX), BY) = (@@ X))y — (@@)y)x = (8 0 &) (x,y) .

As aresult,
T =T +8a). 2.2.3)

Let
pri A*(R")* @ R" — coker(8) = (/\Z(R”)* ® R”) /im(8)
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be the natural projection.” Then, the mapping
7: P — coker(d), t(u):=pr(J (), 2.2.4)

does not depend on the choice of the connection. This motivates the following defi-
nition.

Definition 2.2.5 The mapping 7 is called the intrinsic torsion of the H-structure P.
Moreover, P is called torsion-free if T vanishes.

Clearly, t yields the obstruction to the existence of a torsion-free connection on P.
Proposition 2.2.6 Let P be an H-structure. Then, the following hold.

1. If w and o' are torsion-free connections on P and o' = w + o, then &(u) € ker §
for everyu € P. In particular, if ker(8) = O, then P admits at most one torsion-
free connection.

2. P has a torsion-free connection iff it is torsion-free.

Proof The first assertion follows immediately from (2.2.3). For the second one, if P
has a torsion-free connection, then it is clearly torsion-free. We prove the converse:
let w be a connection with (non-vanishing) torsion &. By assumption, v = 0. Thus,
T (u) € im(3) for every u € P. That is, there exists an equivariant mapping & :
P — (R")* ® b such that .7 = §(&). Let @ be the unique horizontal 1-form on P
corresponding to &. Then, @' = w — « is a torsion-free connection. ]

In particular, as an immediate consequence, we obtain
Corollary 2.2.7 If$ is bijective, then P admits a unique torsion-free connection. i

Next, let us discuss a number of relevant examples.

Example 2.2.8 (Orientation) We take H = GL (n, R). Then, GL(n, R)/H = Z,.
According to Example 1.6.6, a section of the associated bundle (2.2.1) exists iff the
manifold is orientable, that is, iff the first Stiefel-Whitney class® of M vanishes.
In this case, the H-structure consists of those frames which are compatible with a
chosen orientation. Note that this H -structure is integrable. Also note that automor-
phisms of this H-structure are exactly the orientation-preserving diffeomorphisms
of M. ¢

Example 2.2.9 (Volume form) We consider H = SL(n, R). The basic representation
of GL(n, R) on R” induces the following GL(n, R)-action on A" (R")*:

GL(n, R) x \"RD* —> A"(RM)*, (a,v) > det(a) - V.

7The mapping § and its cokernel have an interpretation in terms of Spencer cohomology of  which
we suppress here. For details, see e.g. [569].

8See Sect.4.2.
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Restricted to /A" (R™)* \ {0}, this action is transitive and has the common stabilizer
SL(n, R). Thus,
GL(n,R)/SL(n, R) = A\"(R")*\ {0}.

Via the natural isomorphism A"T*M = L(M) XgLn.k) A" (R")*, the sections of
the associated bundle (2.2.1) are in one-to-one correspondence with volume forms
on M. The SL(n, R)-structure corresponding to a given volume form v consists of
those frames u fulfilling

v=vgo A\"u,

where vy is the canonical volume form on R”. Since GL(n, R)/SL(n, R) is homo-
topy equivalent to GL(n, R)/GL(n, R), M admits an SL(n, R)-structure iff M is
orientable. Moreover, it is easy to show that any SL(n, R)-structure is integrable
(Exercise 2.2.2). Finally, note that the automorphisms of this H-structure are the
volume-preserving diffeomorphisms of M. ¢

Example 2.2.10 (Almost complex structure) Take H = GL(n, C) canonically
embedded in GL(2n, R) via

a+ib|—>|:b u

“ _b} , a,beGL(n,R), (2.2.5)
and consider the canonical complex structure on R>" given by

0-1
Jo = []l 0 } . (2.2.6)

Since End(R?") = (R?")* ® R*", the basic representation of GL(2n, R) induces a
GL(2n, R)-module structure on End(IR?") given by

GL(2n,R) x End(R*") — End(R*"), (g, A) — g 'Ag.
Since End(R?") is the Lie algebra of GL(2#n, R), this is merely the adjoint represen-

tation. Now, by Proposition 1/7.1.2, the induced action of GL(2n, R) on the subset
of endomorphisms fulfilling A> = — id is transitive and the stabilizer of Jy is

Hy, = [[ 4 ﬂ ca,b e GL(n,R)] = GL(n, C). (2.2.7)

Thus,
GL(2n,R)/GL(n, C) = {A € End(R™) : A = —id} .

Thus, by (2.2.1), GL(n, C)-structures are in one-to-one correspondence with sections
J of End(TM) fulfilling Ji = —id for every m € M. A GL(n, C)-structure will be
referred to as an almost complex structure on M and (M, J) will be called an almost
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complex manifold. Since End(R?") = (R?")* ® R?", J may be viewed as a tensor
field on M of type (1, 1). The GL(n, C)-structure defined by J will be denoted by
C (M, J) and will be referred to as the bundle of complex linear frames. Note that it
consists of frames fulfilling

uodp=dJ,ou, (2.2.8)

where u : R* — T,, M as usual. It is easy to show that every almost complex mani-
fold is orientable (Exercise 2.2.4). For a discussion of the obstructions to the existence
of almost complex structures we refer to [431].

Next, let us discuss integrability. By (2.2.8), an almost complex structure (M, J)
is integrable if M has the structure of a complex manifold such that for any system
of admissible local coordinates (x', ..., x", y',..., y") we have

NEA A AN
axk ) ayk’ ayk ) axk
Then, z* := x* 4 iy* provide M with a local chart of complex coordinates. Con-
versely, we have

Proposition 2.2.11 Viewed as a real C*°-manifold, every complex manifold M car-
ries a natural induced integrable almost complex structure.

Proof Let {(U;, «;)} be a holomorphic atlas of M consisting of charts «; : U; — C".
For every i, we define an associated mapping ; : U; — R?" given by

Ki(m) := (Re(k1(m)), ..., Re(k, (m)), Im(ki (m)), ..., Im(k, (m)))

which clearly provides a C*°-chart on U;. Thus, {(U;, k;)} endows M with the
structure of a real C®°-manifold. Next, consider R¥* with the global coordinates

xl, ...,x”,yl, ...y". Then,

NEA VRN EA Y.
axk ) T ayk’ ayk ) T axk’

clearly defines a complex structure on R?*. We transport this complex structure to
M, viewed as a real manifold, via the local charts &;. The almost complex structure
defined in this way is independent of the choice of the atlas, because the transition
mappings are holomorphic and a mapping of an open subset of C" to C" leaves an
almost complex structure on C” invariant iff it is holomorphic (Exercise 2.2.3). By
construction, the above almost complex structure is integrable. Indeed,

a a a d
(x,y)r—)(—l,..., _1_)
ax ax" dy ay"

provides a local section of the GL (n, C)-structure defined by J. ]
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To summarize, an almost complex structure is integrable iff it is induced from a
complex structure. The following notion provides a criterion for integrability.

Definition 2.2.12 Let (M, J) be an almost complex manifold. The Nijenhuis tensor
of (M, J) is the tensor field N € F“(T%(M)) defined by

N(X,Y):=[UX,JY]-[X, Y] - J(X,JY]D) —J([UX, YD), X,Y eX(M).

The following deep theorem holds, see [485].

Theorem 2.2.13 (Newlander—Nirenberg) An almost complex structure J is inte-
grable iff the Nijenhuis tensor of J vanishes. |

Next, we show that J implies a natural splitting of tensor bundles over M. In par-
ticular, this will imply a variety of equivalent criteria for integrability. From now on,
let T = R?" denote the basic GL(2n, R)-module, let T* be the dual (contragredient)
module and let Tc and Tg be the complexifications of T and T*, respectively. We
extend Jy to a C-linear mapping of T¢ and decompose T¢ into eigenspaces T'° and
T%! corresponding to the eigenvalues i and —i of Jo:

Tc=T""a® T%!. (2.2.9)
Then,
T = (X —idoX:XeT}, T ={X+iJgX:XeT}. (2.2.10)

On the other hand, recall from Sect. 7.5 of Part I that Jy endows T with the structure
of a complex vector space, denoted by V, via

(@a+ib)X :==aX +bJoX, a,beR, XeT. (2.2.11)

Clearly, V = C" carries the basic GL(n, C)-module structure. Let ¢ be the natural
embedding of V into T¢. Via this mapping, a chosen basis (e, ..., e,) in V induces
a basis (e, Joey, . .., €,, Jpe,) in Tc. By (2.2.11), for Z = (X* 4+ iY*)e; we have

1(Z) = X*er + Y*:Joey . (2.2.12)

Note that ¢ is not complex linear. Next, let pr':* : Tc — T"? and pr®! : T¢ — TO!
be the canonical projections. Then,

prl’o ol:V — TI’O, prO’1 or:V — TO!

m

(2.2.13)

are C-linear and C-anti-linear vector space isomorphisms, respectively (Exercise
2.2.6). Next, recall the embedding GL(n, C) - GL(2n, R) given by (2.2.5). It
extends to T¢ by
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p:GL(n,C) x Tc — Tc, p(g) [};} = |:Z _ab] [))f] = [Zi((;zﬁ} '

One easily checks (Exercise 2.2.6) that forany Z € V,
priop(g)o(Z) = (a+ib)Z, pr*lop(g)ot(Z) =(a—ib)Z. (2.2.14)

On the other hand, the subspaces T!:? and T%! are invariant under the GL(n, C)-action
and, by (2.2.5), they carry the basic representation of GL(n, C) and its conjugate,
respectively. It follows that V and T"-° are isomorphic as GL(n, C)-modules.

Next, note that, by duality, the decomposition (2.2.9) implies a decomposition

T*c = T 0!, (2.2.15)

where T*!% and T**! are the annihilators of T%! and T'?, respectively. Thus, they
carry the dual of the basic and the basic representation of GL(n, C), respectively.
This decomposition induces the following decompositions:

ANTc= @ A A" = AT ATTO (2.2.16)

ptq=k
Clearly, in analogy to (2.2.9) and (2.2.15), J induces decompositions
TM=T""MadT"'"M, T*M=T""MeT"'M. (2.2.17)

Note that, as a complex vector bundle, TM is C-linearly isomorphic to T"*M via
(2.2.13). Corresponding to (2.2.16), we have

NTeM= @ A"M. NM=N T M \NTT' M. (22.18)
p+q=k

The spaces of sections of A*T*cM and A\?*Y M will be denoted by 2K(M) and by
£279(M), respectively. Elements of £27-9(M) are called differential forms of type
(p, q). Let us denote the projection to §27°9(M) by I17-4. Extending the exterior
differential C-linearly, we may define mappings 9 : 274 (M) — 2PT19(M) and
3 : RPI(M) —> QPITYM) via

9:=M""0d, 9:=MP"""0d. (2.2.19)
Proposition 2.2.14 For an almost complex manifold, the following conditions are

equivalent:

1. N(X,Y)=0 forall X,Y € X(M).
2. T"OM is involutive.
3. d(2M0wn) c 2¥0M) & 2U1(M).
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4. Foranya € SZ(E(M), we have da = do + dar.

Proof Recall that, as a real vector space, T¢ decomposes as T¢ = T + iT. Cor-
respondingly, we have real linear projections Re, Im : Tc — T defined by W =
Re(W) + ilm(W) for all W € T¢. Now, for any X, Y € X (M), we calculate

N(X,Y) = [JX,JY]— [X, Y] = J(X,JY]) — J([UX, Y]
= —Re([X —iJX,Y —iJY] +iJ[X —iJX, Y —iJY])
= —8Re([X"°, Y01%1).

Since for elements W € T%! we have Im(W) = J(Re(W)), points 1 and 2 are equiv-
alent. For o € 2'"9(M) and X, Y € I'™*(T"M),

da(X,Y) = X(@(Y)) - Y(@(X)) —a([X,Y]) = —a([X,Y]),

where @ € 2% (M) defined by @(W) = a(W) with W denoting the conjugation in
Tc. This implies the equivalence of points 2 and 3. Clearly, point 4 implies point
3. Thus, it remains to prove the converse. We note that d = 9 + 9 holds iff do €
Qrha(My @ 2791 (M) for any o € 279(M). Locally,

a=fONN. L AOP AP AL Al 95 e 2Y0M), o' € Q%Y (M)

Wehaved f € 210(M) @ Q01 (M), dd* € 220(M) & 21(M). Since 210(M) =
Q%1(M), point 3 implies d¢’ € 21 (M) ® 2°%2(M) and the assertion follows. W

Corollary 2.2.15 If an almost complex structure J is integrable, then

=0, 39=0, 30d+009=0. (2.2.20)

Conversely, if 3= 0, then J is integrable.’

Proof The first assertion is an immediate consequence of d> = 0. The second asser-
tion is left to the reader, see Exercise 2.2.7. |

Let z¥ be local coordinates on a complex manifold M. Then, any « € £25(M) locally

reads!® o = a;;dz! A dz’ and
0 — 0
da = S a4k Adz! AdZ!, Fa = Szt Adz! AdZ
azk 07

9Using the operator 3, one can build a cohomology theory for complex manifolds, called the
Dolbeault cohomology, see [336].

10We use the notation of Sect.4.1 of Part L.
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Finally, we note that a diffeomorphism ¢ : M — M is an automorphism of an
almost complex structure J iff ¢’ o J = J o ¢'. If J is integrable, then this means that
@ is holomorphic. ¢
The following example is closely related to Example 1.6.6.

Example 2.2.16 (Pseudo-Riemannian metric) Denote the vector space of symmetric
covariant tensors of second rank on R” by S?’R". Endow R”" with a pseudo-Euclidean
metric n € SR with signature (k, /) where n = k + [. The basic representation of
GL(n, R) induces a GL(n, R)-module structure on S’R" given by

o :GL(#n,R) > Aut(S’R"), o@) =@ H' @@ HT. (2.2.21)

As already noted under point 2 of Example 1.6.6, by the Sylvester Theorem, GL (n, R)
acts transitively on the subspace S(Zk, HR" C S2R" consisting of elements with fixed
signature, and the stabilizer of n is O(k, [), that is,

GL(n,R)/O(k, 1) = S§ ,R".

Thus, by (2.2.1), O(k, I)-structures are in one-to-one correspondence with pseudo-
Riemannian metrics g on M and the O(k, [)-structure corresponding to g coincides
with the bundle O (M) of frames which are orthonormal with respect to g. If (M, g)
is oriented, then O (M) further reduces to a principal SO(k, [)-bundle, denoted by
O, (M). Note that GL(n, R)/O(n) is contractible. Thus, an O(n)-structure, that is,
a Riemannian metric, always exists. On the contrary, for an arbitrary signature,
O(k, I)-structures may not exist. E.g. the obstruction to the existence of a Lorentz-
structure'! on a 4-dimensional oriented manifold is given by the Euler class of the
tangent bundle. Thus, for a non-compact M, there is no obstruction. Below, we will
see that associated with a pseudo-Riemannian structure, there is a unique torsion-
free connection. Then, point 1 of Remark 1.4.7 implies that an O(k, [)-structure
is integrable iff the curvature of this connection vanishes. Equivalently, a pseudo-
Riemannian structure is integrable iff it is locally flat, that is, if for every point of M
there exists a neighbourhood on which g is given by the Euclidean metric.

Clearly, adiffeomorphism¢ : M — M is anautomorphism of an O(k, [)-structure
iff ¢ is an isometry of the corresponding pseudo-Riemannian metric g, that is,
©*g = g. It can be shown, see Theorem 3.4 in Chap. VI of [381], that the group
of isometries carries a Lie group structure with respect to the compact-open topol-
ogy. This Lie group will be denoted by I (M). ¢

Example 2.2.17 (Conformal structure) For n > 3, consider the Lie subgroup
CO(n) := {a e GL(n, R) ca'la=cl,ceR,c> O} .

Clearly, CO(n) = Ry x O(n). By the previous example, GL(n, R) acts transi-
tively on the space S(zk’ pR". Thus, it also acts transitively on the set of conformal

1A pseudo-Riemannian structure with signature (4, —, —, —).
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equivalence classes of elements of S(zky ;R" defined by the relation n ~ n iffn’ =cn
for some positive real number c. Clearly, the stabilizer of an element [] is CO(n).
Thus, CO(n)-structures are in one-to-one correspondence with conformal equiva-
lence classes [g] of metrics on M, with the equivalence defined as follows: two
metrics g; and g, are conformally equivalent iff they differ by a positive function.
The CO(n)-structure corresponding to class [g] is denoted by CO (M) and is referred
to as the bundle of conformal frames.

Since CO(n) = Ry x O(n), the representation theory of CO(n) is essentially
obtained as an extension of the representation theory of the orthogonal group O(n).
The irreducible representations of R on R are labeled by real numbers » € R and
are given by

Ry xR—>R, (tx)—t'x.

The number r is called the conformal weight of the representation under considera-
tion. Let us denote the corresponding representation space by L" (a copy of R). Then,
a typical CO-module is a tensor product of an O(n)-module with L”. Note that, with
respect to the conformal structure [g], the tangent and the cotangent bundles can
no longer be identified, because they correspond to representations containing the
factors L™ and L™", respectively. Clearly, on the level of vector bundles over M, the
additional factors L" corresponds to building the tensor product with an associated
line bundle characterized by r.

In close relation to the previous example, one can show that a conformal structure
isintegrableiff itis locally conformally flat, that is, iff for every point of M there exists
a neighbourhood on which the metric is given by g = f2g,, where g, is the (flat)
Euclidean metric and f is a nowhere vanishing function on that neighbourhood.
If this condition holds globally, then one says that (M, g) is conformally flat or,
equivalently, that (M, [g]) is flat.

A diffeomorphism ¢ : M — M is an automorphism of a CO(n)-structure iff there
exists a nowhere vanishing function f € C*(M) such that ¢*g = f>g, where g
is some representative of this structure. The automorphism group of a conformal
structure (M, [g]) is called the conformal group of (M, [g]). It will be denoted by
C(M, [g]). The following classical theorem may be found in [381].'

Theorem 2.2.18 Let (M, g) be a connected n-dimensional Riemannian manifold
withn > 3. Then, its conformal group C(M, [g]) is a Lie group of dimension at most
10+ D(n +2). u

For a systematic study of conformal geometry, we refer to [61, 119, 382, 492, 686,
608]. ¢

Example 2.2.19 (Almost Hermitean structure) Recall from Example 1/7.5.5 that, in
the standard embedding (2.2.6) of GL(n, C) — GL(2n, R), we have

U(n) = SO(2n) NGL(n, C). (2.2.22)

12The authors of [381] outline a proof based upon results of Eisenhardt [183] and Palais [499].
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Explicitly,

Un) = [[“ _ab} caa" +bbT =1, ab" —ba" =0, a,b € GL(n, R) | .

b
(2.2.23)
This shows that we may combine an almost complex structure C(M) with the
SO(2n)-structure O, (M) of a 2n-dimensional (oriented) Riemannian manifold by
intersecting them. On the algebraic level, JgnJO = 1. Thus, if we assume that J is an

isometry, that is,
gUX,JY)=9(X,Y), X,Y eX(M), (2.2.24)

then the intersection
UM):=CM)Nn O0.(M) (2.2.25)

is a U(n)-structure.'” It is called the bundle of unitary frames. If (2.2.24) is fulfilled,
we say that g is a Hermitean metric with respect to J. The triple (M, g, J) is called an
almost Hermitean manifold. If, additionally, J is integrable, then (M, g, J) is called
a Hermitean manifold. Note that

B(X,Y) :=9(X,JY) (2.2.26)

is a non-degenerate 2-form on M. Thus, 8" is a nowhere vanishing 2n-form,
that is, an orientation of M. This shows that every almost Hermitean manifold is
endowed with a canonical volume form. Existence and integrability criteria of almost
Hermitean structures are obtained from Examples 2.2.10 and 2.2.16 above. Clearly,
a diffeomorphism ¢ : M — M is an automorphism of a U(n)-structure iff it is an
automorphism of the GL(n, C)- and of the SO(2n)-structure.

We give an equivalent description of an almost Hermitean manifold (M, g, J).
Viewing its tangent bundle TM as a complex vector bundle, each of its fibres carries
a Hermitean scalar product, given by'#

h(X,Y) :=9(X,Y)+ig(X,JY). (2.2.27)

Equivalently, by (2.2.26),
h(X,Y)=9(X,Y)+iB(X,Y) =X, Y)+iB(X,Y). (2.2.28)
Note that h is linear in the first and anti-linear in the second entry (Exercise 2.2.8).

Thus, (TM, h) is a Hermitean vector bundle, cf. Definition 1.1.16. As usual, let
h, g and J be the equivariant mappings corresponding to h, g and J, respectively.

131t suffices to assume that C (M) and O, (M) have a nonempty intersection over every point of M.

14See Sect. 7.5 of Part I. Note that we have changed conventions in order to be compatible with the
standard literature.
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Restricted to U (M), § and J coincide with the Euclidean metric # and the standard
complex structure Jy, respectively. Let hy be the Hermitean form defined by n and
Jo via (2.2.27). Since n is SO(2n)-invariant and since Jy commutes with the U(n)-
action, hg is U(n)-invariant. This yields the following.

Proposition 2.2.20 Relative to a given almost complex structure J on M, U(n)-
structures on M are in one-to-one correspondence with Hermitean fibre metrics on

™. " ]

Finally, we give a characterization of the above objects in terms of the decompositions
(2.2.9), (2.2.15) and (2.2.16). Here, T may be viewed as the basic SO(2n)-module
and, by (2.2.22), the subspaces T!:* and T%! carry the basic representation of U(n)
and its conjugate, respectively. Thus, V and T' are isomorphic as U(n)-modules.
For k = 2, the decomposition (2.2.16) takes the form

/\ZT*C — /\2,0 D /\],l ey /\0,2 ) (2229)

By standard representation theory, the adjoint representation of U(n) is given by the
tensor product of the basic representation and its dual. Thus, after intersecting with
the real exterior product /\ZT*, formula (2.2.29) corresponds to the decomposition
0(2n) = u(n) ® u(n)*, where

um = A" AT, um)t = (/\2’0 o /\"’2) N AT*. (2.2.30)

For a given basis (e, Jey, ..., e,,Je,) of T, let (8!, ¢!, ..., 8", ¢") be the dual
basis in T*. Clearly, the latter yields the bases

kA, (A}, (WA, k<I, ki=1,...n,

in, respectively, /\2‘0, /\1’l and /\0’2; In particular, for (ey, ..., e,) we may choose
the standard basis in V = C". Since h takes values in the space of bilinear forms on
T, we obtain (Exercise 2.2.9)

hw) =D 0" @ 0" +¢" @) —i D 0" Ayt (2.2.31)
k=1 k=1
for any u € U(M). From (2.2.28), we read off
§u) => v+ @¢h). Buy=-> 0" rgt. (2.2.32)
k=1 k=1

To summarize, for u € U (M),

15Clearly, this is consistent with Example 1.1.18, where we considered the orthonormal frame
bundle of an arbitrary vector bundle carrying a fibre metric.
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hay e A §w) e (/\2*0 ® /\“) NS2T*, B e AM N AT .

(2.2.33)
Note that B(u) € u(n) is U(n)-invariant. Thus, it spans a 1-dimensional invariant
subspace in u(n) and gives rise to the decomposition u(n) = su(n) @ iR. ¢

Example 2.2.21 (Almost symplectic structure) Consider H = Sp(n, R). Recall that
this is the group of linear transformations of R?* leaving the standard symplectic form
(2.2.6) invariant.'® Thus, Sp(n, R)-structures are in one-to-one correspondence with
2-forms on M of maximal rank. Such structures are called almost symplectic. By
the previous example, each almost Hermitean structure defines such a 2-form 8. By
Proposition 1/7.5.3,

Sp(n, R) N GL(n, C) = U(n) = SO(2n) N Sp(n, R),

and, thus, each pair built from the triple (g, J, 8) yields the same U(n)-structure.
Moreover, since Sp(n, R) and GL(n, C) contain U(n) as their maximal compact
subgroup, M admits an almost symplectic structure iff it admits an almost complex
structure. Clearly, by the Darboux Theorem 1/8.1.5, an almost symplectic structure
is integrable iff dB = 0. Then (M, B) is called a symplectic manifold. A Hermitean
manifold (M, g, J) such that the 2-form B defined by (2.2.26) is closed is called
Kaihler. For the discussion of existence, see Remark 1/8.1.4.

Clearly, a diffeomorphism ¢ : M — M is an automorphism of an Sp(n, R)-
structure iff * 8 = B.If (M, B) is symplectic, then ¢ is called a symplectomorphism.
For the study of the group of symplectomorphisms see Sect. 8.8 in Part I. ¢

In the remainder of this section, we discuss compatible connections.

Example 2.2.22 (Metric connection) By Example 2.2.16, pseudo-Riemannian man-
ifolds are in one-to-one correspondence with O(k, I)-structures. Thus, let (M, g) be
a pseudo-Riemannian manifold and let O (M) be its O(k, [)-structure. In terms of
the corresponding equivariant mapping g,

OM) = {u € L(M): §(u) =1}, (2.2.34)

where 7 is the standard inner product on R" with signature (k, /). By Proposition
2.2.3, a linear connection w on M is compatible with the O(k, [)-structure iff g is
parallel with respect to w. A linear connection fulfilling this condition is called metric.
By (2.2.21), the metricity condition Dg = dg + ¢’(w)g = 0 reads

dg— (0" ®1+1®w") (@ =0. (2.2.35)
More explicitly, decomposing @ with respect to the basis {E£/;} in gl(n, R) and §

with respect to the basis in S?R” induced from the standard basis of R”, (2.2.35)
takes the form

16Note the double role of Jg.
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5 = 0 =]
gk — Gp@'x = Gue'j = 0. (2.2.36)

But, on O (M) we have g;; = ny and, thus, dgjk = 0. This shows that w is metric iff
its reduction to O (M) fulfils
wjk +awr =0,

that is, iff this reduction takes values in the Lie algebra o(k, [), indeed. Equivalently,
the metricity condition is given by Vg = 0. Since Vy is a derivation of the tensor
algebra, the latter is equivalent to

X, 2) =9(VxY,Z2)+9(Y,VxZ), (2.2.37)

forany X, Y, Z € X(M).

Remark 2.2.23 Let (V, q) be a quadratic vector space over K. Assume that K is R
or C and that q is non-degenerate. Recall from Example 1/5.2.6 that the Lie algebra
o(V, q) of the orthogonal group O(V, q) coincides with those endomorphisms of V
which are anti-symmetric with respect to the symmetric bilinear form 7 of q. In the
context of Clifford algebras, see Sect.5.2, we will see that the following canonical
isomorphism of Lie algebras holds:

. 2 1 , —1,9i
kio(V.q) = ATV, k(4) = JAG) AnT (), (2.2.38)

where {e;} is a g-orthogonal basis in V and {9/} is the dual basis. Denoting A;; =
g(er, Ae), we obtain

1 .. 1 ..
k(A) = ZT]”A(C,‘) Nej = ZA”ei Nej. (2.2.39)

¢
Proposition 2.2.24 Any O(k, l)-structure has a unique torsion-free connection.

Proof By Corollary 2.2.7, it is enough to show that the mapping § given by (2.2.2) is
bijective. In the case under consideration, h = o(k, [) = /\ZR" = /\Z(R")*. Thus,

R ® N RY > AR QR
Leta € RM)*® /\Z(R”)* and let o;jx be the components of « in the basis induced
from the standard basis of R". Then, ;jx = —a;x; and the components of §(«) are
given by %(a,-jk — ojir). Assume §(a) = 0. Then,

Qijk = Wjik = —Wjki = —kji = Okij = Qikj = —ijk

that is ker(8) = 0. Now, bijectivity follows from dimension counting. |
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A classical proof of Proposition 2.2.24 is obtained by using (2.2.37) and (2.1.33),

X@gY,2)=9(VxY,2)+9(Y,VxZ), 0=VxY —-VyX —[X,Y].
Then, by direct inspection (Exercise 2.2.10),

29(VxY, Z2) = XY, 2)) + Y (9(X, Z)) — Z(9(X, Y))
+9(X. Y], 2) +9(Z, X].Y) +9([Z, Y], X). (2.2.40)

One easily checks that this equation defines a torsion-free connection. In the sequel,
the unique torsion-free connection defined by g will be called the Levi-Civita con-
nection.

Finally, we derive local formulae for the Levi-Civita connection. In contrast to
general linear connections, here we have two natural types of local frames:

(a) local holonomic frames {0;} induced from arbitrary local charts (U;, «;),
(b) local frames {e;} which are orthonormal with respect to g.

Since the formulae (2.1.42), (2.1.44), (1.5.8) and (2.1.46)—(2.1.50) hold true for any
local frame, they clearly apply here. Let ¢ be an arbitrary local frame. By (2.2.40),

20(Veej, ex) = €i(90) + €;(9i) — ex(@i;) + Clijgu + C'iagy; + CliiQ »

where 9ij = g(e;, e;). Thus,

1
;= Eg’"" (ei(90) + € (i) — ex(@;)))

+ = (C™ +9"9;Cl ki + 99, Clyy) - (2.2.41)

1
2
For the case (a), we have g;j = 909, 9;) and C;k = 0. Thus,

1
;= zgmk(gjk,i + 0k — Q) Tiyy=1"ji. (2.2.42)

For the case (b), we have g; ;= ij and, therefore,

1
2

== (C"; 40" Cli + 1" niClyy) (2.2.43)
Thus, Iij = neI™"ij = %(Ck[j + Cjii + Cixj) and, consequently, for case (b) we
have

Lij=—Tj. T'fu=0. (2.2.44)

Using (2.1.46) and (2.2.43), we obtain
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dd'(ej, er) = =0 (lej,ex]) =T'o; — I ji

and, thus, ' ' '
do' = —I'" o Aok, (2.2.45)

Comparing with (2.1.46), we read off
' =0/ AV, D (2.2.46)
This implies the following useful formula (Exercise2.2.11). For any o € (M),
do =0/ AV, 0. (2.2.47)

Since the operator d is intrinsically defined, this formula does not depend on the
choice of the frame. It can be rewritten as

da(eg, ..., e) = Z(—l)j (Ve].oz) (eo, i, ek)) . (2.2.48)

J

By the locality property of V and by the multilinearity of «, we conclude
. J
dar(Xo. ... X)) = D (=1 (Vx,a) (Xo..7.. X0)) . (2.2.49)
J

for any set of vector fields Xy, ..., X; on M. ¢

Example 2.2.25 (Almost complex connection) By Example 2.2.10, GL(n, C)-
structures on a manifold M are in one-to-one correspondence with sections J of
End(TM) fulfilling J,zn = —1id for every m € M. By Proposition 2.2.3, a linear con-
nection w on M is compatible with a GL(n, C)-structure iff J is parallel with respect
to w. A linear connection fulfilling this condition is called almost complex. Recall
that the obstruction to integrability of an almost complex structure is given by the
Nijenhuis tensor N.

Proposition 2.2.26 An almost complex manifold (M, J) admits a torsion-free almost
complex linear connection iff J is integrable.

Proof We show that the intrinsic torsion vanishes iff J is integrable. Here, the map-
ping (2.2.2) takes the form

§: (R** @ gl(n, C) > N*R¥)* @ R .
We pass to the complexifications of both the domain and the target space of § and

use the decompositions (2.2.9), (2.2.15) and (2.2.29), together with the embedding
(2.2.5). Then, the target space reads
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(/\2TZE) ® Te = (/\2,0 o /\1,1 o /\0.2) ® (Tlﬁo 69To,l)
— (/\2,0 ® Tl,o) o (/\1,1 ®Tl,o) o (/\0,2 ®T1‘0)
@ (/\2,0 ®T0’1) @ (/\1,1 ®T0’1) @ (/\0,2 ®T°*1) ’

and for the image of § we get

im(8) = ((/\"l @ /\0'2) ®T°’1) @ ((/\2'0 @ /\"‘) ®T”’) . (2250)

The latter is obtained by a straightforward calculation, see Exercise 2.2.5. Thus, the
intrinsic torsion takes values in

coker(d) = (A* @ T @ (A** @ T*!).

We give the argument for the first component. Lete = (ey, ..., e,) be a holomorphic
frame and let (9, ..., ©") be the dual coframe. Taking the pullback under e of the
Structure Equation for the torsion, cf. (2.1.15), we obtain

T =do' + o' A9 .

Evaluating the (1, 0)-component of this equation on X, X, € I'**(T"' M), we
obtain ' '
T (X1, X2) = =0 ([ X1, X2]) .

We get the same equation for the (0, 1)-component evaluated on a pair of vector
fields of type (1, 0). Thus, the intrinsic torsion vanishes iff T"°M and T%!'M are
involutive. Now, point 2 of Proposition 2.2.14 yields the assertion. |

By the above proof and point 1 of Proposition 2.2.14, the Nijenhuis tensor measures
the torsion of an almost complex linear connection, see also Theorem 3.4 in Chap.
IX of [381] for a classical proof. ¢

Example 2.2.27 (Unitary connection) Here, we take up Example 2.2.19. Thus, let
U (M) be a U(n)-structure and let (M, g, J) be the corresponding 2n-dimensional
almost Hermitean manifold. Clearly, by Proposition 2.2.3, a linear connection w on
M is compatible with the U(n)-structure iff both g and J are parallel with respect to
. Such a connection will be called unitary.

Assume that there exists a torsion-free unitary connection w on M. Since U (M) =
C(M) N O4+(M) and since the Levi-Civita connection of g is the unique torsion-free
connection on O (M), w is necessarily obtained as a reduction of the Levi-Civita
connection to U (M). Thus, if it exists, it is necessarily unique.

Proposition 2.2.28 Let U(M) be a U(n)-structure, let (M, g, J) be the correspond-
ing almost Hermitean manifold and let B be the almost symplectic form defined
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by the pair (9, J). Then, the Levi-Civita connection w of g is compatible with the
U(n)-structure iff J is integrable and B is symplectic.

Proof Assume that w is U(n)-compatible. Then, both g and J are w-parallel and,
by Proposition 2.2.26, since w is torsion-free and since J is parallel, J is integrable.
Moreover, the parallelity of g and J imply the parallelity of 8. Then, (2.2.49) yields
dB = 0. The converse statement follows immediately from the identity

29((Vxd)Y, Z2) =dB(X,JY,JZ) —dB(X, Y, Z) + g(N(Y, Z),JX), (2.2.51)

where V is the covariant derivative of w and X,Y,Z € X(M), see Exer-
cise 2.2.12. |

Thus, w is compatible with the U(n)-structure iff (M, g, J) is Kihler. For a detailed
description of Kihler structures in terms of local coordinates we refer to Sects. 4 and
5 of Chap. IX in [381].

Finally, by the discussion in Example 2.2.19, we obtain a characterization of
unitary connections in terms of the Hermitean fibre metric h defined by g and J.

Proposition 2.2.29 A linear connection w on a Hermitean manifold (M, g, J) is
unitary iff the Hermitean fibre metric h defined by g and J is parallel with respect to
.

According to (2.2.33), h(u) € /\1’1. Explicitly, the U(n)-module structure of /\l’1
is given by

o :Um — Aut(AM) . o@=(g") e @"". (2.2.52)

Thus, the metricity condition D h = dh + ¢/(w)h = 0 restricted to U (M) implies
0'®1+1Qwl =0. (2.2.53)

Analyzing (2.2.53) in the standard basis as in Example 2.2.22, we obtain o™ + w = 0,
that is,  takes values in the Lie algebra u(n), indeed. ¢

Exercises
2.2.1 Show that integrability of a section s in an H-structure P implies s*d6 = 0.
2.2.2 Prove that any SL(n, R)-structure is integrable.

2.2.3 Prove that a mapping of an open subset of C" to C” is compatible with the
natural almost complex structures iff it is holomorphic.

2.2.4 Prove that every almost complex manifold is orientable.

2.2.5 Prove formula (2.2.50). Hint. Let& € (R*)*anda € gl(n,C) = (CH*C".
To calculate §(§ ® a), decompose both elements with respect to bases
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adapted to the decompositions (2.2.9) and (2.2.15) and calculate the image explicitly
using (2.2.5)."7

2.2.6 Prove that the mappings pr':* or and pr®! o1, defined by (2.2.13), are C-linear
and C-anti-linear, respectively. Show that (2.2.14) holds.

2.2.7 Provethe second assertion in Corollary 2.2.15. Hint. Use point 2 of Proposition
2.2.14.

2.2.8 Prove that h defined by (2.2.27) is linear in the first and anti-linear in the
second entry.

2.2.9 Prove formula (2.2.31).
2.2.10 Give an alternative proof of Proposition 2.2.24 by using (2.2.37) and (2.1.33).
2.2.11 Prove formula (2.2.47).

2.2.12 Prove formula (2.2.51). Hint. Prove that g((VxJ)Y, Z) = g(Vx(JY), Z) +
9(VxY, JZ) and rewrite the terms on the right hand side according to (2.2.40). Use
formula 1/4.1.6. Alternatively, the proof can be found in [381], see Proposition 4.2
in Chap. IX.

2.2.13 Prove that for H = Sp(n, R), the cokernel of the mapping (2.2.2) is isomor-
phic to A3(R2”)*. Show that the corresponding intrinsic torsion coincides with the
exterior derivative of the almost symplectic form, cf. Example 2.2.21.

2.3 Curvature and Holonomy

In this section, we continue the discussion of connections compatible with H-
structures. Here, we consider exclusively torsion-free connections and ask which
holonomy groups may occur for such a connection. This question has first been
studied systematically by Berger, see [68, 69].

At this point, the reader may wish to recall the basic notions from the general
holonomy theory as presented in Sect. 1.7. For a linear connection I" in L(M), let
P,,(I") be the holonomy bundle of I" with base point uy € L(M). By Proposition
1.7.12, I is reducible to P,,(I") and thus, for any u € P, (I"), the curvature §2 of I"
takes values in the Lie algebra b, (I") of the holonomy group %, (I") C GL(n, R).
By the Ambrose-Singer Theorem 1.7.15, we have

buy (") = span {£2,(X,Y) :u € P, (I'), X,Y € I} . (2.3.1)

It is the condition of torsion-freeness which makes the above question nontrivial. If
we drop this assumption, then any closed Lie subgroup H C GL(n, R) may occur

17Cf. also Example 2.2.19.
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as the holonomy group of a linear connection on some n-dimensional manifold M,
see [283]. However, in general, such a connection will have a nontrivial torsion. By
the Bianchi identity (2.1.17), vanishing of the torsion implies

Q2A0=0, (2.3.2)

and, by the Ambrose-Singer Theorem, this yields a nontrivial restriction on the
holonomy. Now, let P C L(M) be an H-structure on an n-dimensional manifold
M, let w be an H-compatible connection and let §2 be its curvature. For simplicity,
let us denote R” = V. By Remark 2.1.16, we may represent §2 equivalently by the
curvature mapping

Z:P—> N'V*®h (2.3.3)
fulfilling the equivariance condition (2.1.25) with respect to the natural representation
o:H — Aut (/\ZV* ® l’)) given by

0u(EATI®A):=(@HEA @) ) ®Ad@A. (2.3.4)

Since the exterior products of the components 8% of 8 span the spaces of horizontal
forms, (2.3.2) implies that Z takes values in the kernel K(h) of the mapping

S:AVIRh—> A'VERV, §=(@®id) o (id®u), (2.3.5)
where a is the anti-symmetrization mapping, cf. (2.2.2). Clearly,
A = [F e /\ZV*®b F(x,y)z+ F(y,z)x+ F(z,x)y =0, X,y,Z¢€ V] .
The space £(h) is called the space of curvature mappings.
Lemma 2.3.1 The subspace
h:=span{F(x,y) € h: F € R(H), x,ye V} (2.3.6)

is an ideal of b.
Proof Let F(x,y) € handlet A € h C End(V). Then, we may write
[F(x,y), Al = F(x,y) = F(AX,y) — F(x, Ay) ,

where 5
F(x,y) =[F(x,y), Al + F(AX,y) + F(x, Ay).

One checks by direct inspection that F' € £(h). ]
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Note that F corresponds exactly to the action of A on F obtained by differentiating
the equivariance condition (2.1.25).'® Thus, by the Ambrose-Singer Theorem, for
the Lie algebra §,,(I") of the holonomy group of a torsion-free connection I", we
have

Duy (") = buy (I7) -

We conclude that a Lie subalgebra i) C gl(n, R) can occur as the Lie algebra of the
holonomy group of a torsion-free connection only if it coincides with the ideal f. This
is commonly referred to as the first criterion of Berger. It yields a necessary condition
for a Lie subalgebra to be the holonomy Lie algebra of a torsion-free connection.
Next, let us analyze the Bianchi identity (2.1.16) in terms of &. The covariant
derivative DZ = dZ + o' (w)Z is a horizontal 1-form on P with values in £(b).

Definition 2.3.2 A torsion-free connection fulfilling DZ = 0 is called locally sym-
metric.

Decomposing D% with respect to the horizontal frame {'}, we obtain a function
DZ : P — V*® RA(h). Using the fact that the commutators of horizontal standard
vector fields corresponding to a torsion-free connection are vertical (Exercise 2.3.1),
we calculate

D2(B(x), B(y), B(z)) = d§2(B(x), B(y), B(z))
= B(x) (Q(B(Y), B(Z)) — 2([B(x), B(y)], B(z)) + cycl.
=dZ(B(x))(y Az) + cycl.
= DZ(x)(y Az) + cycl. .

Thus, by the Bianchi identity D£2 = 0, we conclude that the function DZ takes
values in the kernel of the mapping

8§V R®0H) > NVEeb, (2.3.7)
defined as the composition
V@AM - VRNV Rh—> ATV e
of the inclusion and the anti-symmetrization mappings. Clearly, the kernel of §’ is
/1) = [P eVFQAM : 2X)(y,2) + P(Y)(z,x) +P@)(X,y) =0, X,y,z€ V}.
Thus, if h is the holonomy Lie algebra of a torsion-free linear connection that is

not locally symmetric, then necessarily &' (h) # 0. This is usually referred to as the
second Berger criterion.

18Clearly, this is the action of the Killing vector field generated by A.
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Definition 2.3.3 A Lie subalgebra h) C End(V) is called a Berger algebra if h = b.
A Berger algebra is called symmetric if &' (h) = 0 and non-symmetric otherwise.
Correspondingly, a Lie subgroup H C Aut(V) is referred to as a (symmetric or non-
symmetric) Berger group if its Lie algebra is a (symmetric or non-symmetric) Berger
algebra.

By the above discussion, we have the following.
Proposition 2.3.4 (Berger) Let h C End(V) be a Lie subalgebra. Then,

1. Ifhisthe Lie algebra of the holonomy group of a torsion-free connection on some
manifold, then Yy is a Berger algebra.

2. If R'(h) = 0, then any torsion-free connection on a manifold whose holonomy
Lie algebra is contained in Yy must be locally symmetric.

Based upon these criteria, Berger started to tackle the above classification problem.
It is natural to distinguish between the following two classes:

(a) Lie subalgebras b lying in some o(n), where 1 is some non-degenerate bilinear
form on V. In this case, the associated H -structure defines a pseudo-Riemannian
manifold. Therefore, this is called the metric case.

(b) Lie subalgebras which are not contained in any orthogonal Lie algebra. This is
called the non-metric case.

Within this general analysis, Berger obtained a list of candidates for Lie subalgebras
of type (a) and also an (incomplete) list for type (b).'” These lists where refined and
completed by the work of Alekseevski [14], Bryant [108, 109], Chi [132], Merkulov
and Schwachhofer [569]. The final full classification of irreducible holonomies
of torsion-free affine connections was obtained by Merkulov and Schwachhofer
[441]. For an exhaustive discussion, we refer to the reviews of Bryant [110] and
Schwachhofer [570] and to the textbooks of Besse [76], Joyce [353] and Salamon
[555]. In [110], the reader can find the complete classification list (divided into four
parts) together with a lot of information on methods for proving that a given group
in the list really occurs as a holonomy. It turns out that every such group is realized
at least locally.?”

In the remainder of this section, we exclusively consider the metric case. That
is, we consider (pseudo-)Riemannian manifolds (M, g), endowed with their unique
torsion-free metric connection (the Levi-Civita connection). Under this assumption,
the frame bundle reduces to the orthonormal frame bundle O (M) and the whole
theory may be described in terms of objects living on O (M). Consequently, in the
case under consideration, the holonomy group is a subgroup of the structure group
O(k, ). If the Levi-Civita connection is locally symmetric, we call (M, g) locally
symmetric.

19The list provided by Theorem 2.3.19 below is included in type (a).

20The appropriate method working for three of the above mentioned four tables is to describe
torsion-free connections with a given holonomy as solutions to an exterior differential system and
to apply Cartan’s existence theorem.
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Definition 2.3.5 Let (M, g) be a pseudo-Riemannian manifold. The curvature map-
ping
Z:OM) — NV*Qo(k,1)

of the Levi-Civita connection of g is called the Riemann curvature mapping. Corre-
spondingly, the curvature tensor R is called the Riemann curvature of (M, g).

Comparing with the general case, % has some additional properties coming from the
fact that we may use the metric 1 to identify V with V*.In particular, o(k, /) = A 2y,
and thus

Rw) e NV N*V*, (2.3.8)

for every u € O(M).

Proposition 2.3.6 The Riemann curvature mapping % of a pseudo-Riemannian
manifold has the following algebraic properties. For any X,y,zZ, w € V,

R(x,y) = —Z£(y,X), (2.3.9)

N(Z (X, y)z, W) = —n(Z(X, Y)W, z), (2.3.10)

N(Z (X, y)z, W) = 1n(Z(z, W)X, y), (2.3.11)

R, y)z+ Z(y, )X + XZ(z,X)y = 0. (2.3.12)

Proof Formulae (2.3.9) and (2.3.10) follow immediately from (2.3.8) and formula
(2.3.12) is a direct consequence of the fact that % takes values in the kernel K(h) of
the mapping (2.3.5). It remains to prove (2.3.11). For that purpose, we write down
the following four versions of (2.3.12).

0 =n(Z(x,y)z, W) + n(Z(y, )X, W) + n(Z£(z, X)y, W),
0 =n(Z(y, )W, x) + n(%(z, Wy, x) + n(Z(W,y)z,X),
0=—n(Z(@z, W)X,y) — N((Z(W,X)z,y) — n(Z(X, )W, y),
0= —n(ZW,x)y,z) — n(Z(X, Y)W, 2) — n(Z(y, W)X, Z) .

Summation of these equations and using (2.3.9) and (2.3.10) yields the
assertion. m

Remark 2.3.7

1. By Proposition 2.3.6,
Z:O0M) — S (/\ZV*) , (2.3.13)

where §2 (/\ZV*) = N\*V* ® A?V* is the symmetrized tensor product. By
(2.1.25), Z has the following equivariance property, see Exercise 2.3.2,

AW, () (X,y,u,v) = Zu)(ax, ay, au, av) , (2.3.14)
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fora € O(k,l) and x,y,u,ve V.

2. By (2.1.27), the Riemann curvature R fulfils identities corresponding to (2.3.9)—
(2.3.12) with x,y, z, w € V replacedby X, Y, Z, W € T,, M and n replaced by g.
Thus, in particular, R € FOO(SZ(/\ZT*M)). For a local frame {e;}, using (2.1.52)
we write

Riji = 9(R(ei, ej)ex, e1) = R"ijx 9y -

In this notation, the algebraic properties (2.3.9)—(2.3.12) read

Rijit = —Rjir» Rijuw = —Rijie,  Rijw = Ruij (2.3.15)
Rijke + Rjkit + Riiji = 0 (2.3.16)
¢

Using the above properties, the space of Riemann curvature mappings K(o(k, [))
may be characterized as follows. By standard representation theory of the group
O(k, 1), forn > 4, one obtains the following decompositions into O(k, /)-irreducible
modules [76, 555]:

ANVvievi=AVe AV eU, (2.3.17)
% (/\2v*) —ReZoN'V' oW, (2.3.18)
where X stands for the space of traceless endomorphisms of R" (viewed as sym-

metric 2-tensors) and where U and W are orthogonal complements. By dimension
counting, U and W are not isomorphic.

Proposition 2.3.8 The space of Riemann curvature mappings is given by
ROk, 1) = kerg N 2 (/\2\/*) : (2.3.19)

where
0 N VERNVE > ANV pEQT)i=EAT. (2.3.20)

Proof Under the identifications o(k, [) = /\ZV* and V = V*, R(o(k,[)) coincides
with the kernel of the mapping x : A*V* ® A*V* — A’V* ® V* given by

X@@UEAD)) =@A)RT—(@AT)®.

Now, consider the decompositions (2.3.17) and (2.3.18). Viewing x as an O(k, [)-
intertwining mapping and using Schur’s Lemma, together with the fact that x is
surjective, we conclude that x must be zero on the irreducible subspaces R, X2
and W. By dimension counting, these subspaces span the kernel of x. Moreover,
restricted to S2(A\*V*), x maps onto A*V* and coincides with ¢. [ |
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Combining (2.3.19) and (2.3.18), for n > 4, we obtain?!
Rk, D) =R IO W. (2.3.21)

This yields a decomposition of the Riemann curvature into its irreducible compo-
nents with respect to the action of O(k, /). The component Eg corresponds to the
contraction to V* ® V* defined by taking the trace of the mapping z — Z(z, X)y
and restricting it to S2(V*).

Definition 2.3.9 (Ricci tensor) Let (M, g) be a pseudo-Riemannian manifold and
let Z be its Riemann curvature mapping. The mapping

Ric: O(M) — S*(V*), Ricw)(x,y):=tr{z—> Zu)(z,x)y}  (2.3.22)
is called the Ricci curvature mapping. Correspondingly,
Ric: T, M xT,M - R, Ric(X,Y):=tr{Z+— R(Z, X)Y} (2.3.23)

is called the Ricci tensor of (M, g).

Note that Ric is of the same geometric type as the metric. Thus, viewing it as a
mapping T,,M — T} M andusingg™! : T* M — T,, M, we can define a scalaron M.

Definition 2.3.10 (Scalar curvature) Let (M, g) be a pseudo-Riemannian manifold
and let Ric be its Ricci tensor. The function

Sc: M — R, Sc(m):=tr(g~" o Ric)(m) (2.3.24)

is called the scalar curvature of (M, g). The corresponding equivariant function
Sc: O(M) — R is called the scalar curvature mapping.

The scalar curvature corresponds to the first component in the decomposition
(2.3.21). The component corresponding to the third summand is called the Weyl
tensor. In Sect. 2.8, the above decomposition will be discussed in detail for the case
n=4.

Remark 2.3.11 Denoting R;; = Ric(e;, ej) , we obtain the following local expres-
sions for the Ricci tensor and the scalar curvature,

Rij = gkl Rkijl , Sc = gij Rij . (2325)
In particular, for a holonomic frame, we obtain

Rj=0 1" ;=8 y+ Ty —Tl™ (2.3.26)

2lFor k + I = 3, one obtains Kok, ) =R Eg. For k 4 | = 4, this result belongs to Singer and
Thorpe [592].
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For an orthonormal local frame, we have R;; = n* Ryiji. This yields the following
useful formula

Ric(X,Y) = nMg(R(ex, X)Y,e)), X,Y € X(M). (2.3.27)

¢

There is an important special class of Riemannian manifolds characterized by the
fact that their curvature has a trivial Z’g—component in the decomposition (2.3.21).

Definition 2.3.12 (Einstein manifold) A (pseudo-)Riemannian manifold (M, g) is
called Einstein if its Ricci tensor is a constant multiple of the metric at each point of
M.

Note that for an n-dimensional Einstein space (M, g) we have

s
Ric= —Cg, (2.3.28)
n

where Sc is constant. In Sect. 2.5, we will see a large class of Einstein manifolds.
In the next step, we show which impact the above additional structures have on

the analysis of the Berger criteria in the metric case. For a chosen orthonormal frame

uy € P, (I"), let us consider the holonomy bundle P,,(I") C O(M). Let us denote

H=7,(I"), b=byI).

On P,,(I"), the curvature takes valuesin ) C o(k,[) = /\2(V*). This fact, together
with (2.3.19), implies the following.

Proposition 2.3.13 Foranypointu € P, (I"), the Riemann curvature % (u) belongs
to the space
R =kerg N S%(h). (2.3.29)

It turns out that for many subgroups H C O(k, [), the restriction of ¢ to S2(b) is
injective. This implies K(h) = 0 and, thus, f = 0. Then, the first Berger criterion
implies that, in this case, H cannot occur as a holonomy group.

In the same way, the covariant derivative DZ may be dealt with. By the above
discussion, we have the following.

Proposition 2.3.14 For any point u € P, (I"), the covariant derivative of % (u)
takes values in

&'(h) =kers' N (V* ® &(W)), (2.3.30)

where 8’ : V* @ 81 (o(k, 1)) — /\3V* x o(k, 1), cf. formula (2.3.7). |
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As already mentioned above, the condition &' (h) = 0 distinguishes a special class
of possible candidates. By Proposition 2.3.4, in this case the Riemannian manifold is
necessarily locally symmetric. We exclude this class of spaces for a while, postponing
its presentation to Sect.2.5.

Finally, we show that we may limit our attention to the case where the repre-
sentation of the holonomy group H on V = R” is irreducible. We consider the
Riemannian metric case and comment on the pseudo-Riemannian case at the end.
Under this assumption, the holonomy group is a subgroup of O(n). Let us assume,
on the contrary, that the representation of H is reducible, that is, there exists a proper
subspace W C V invariant under H. Since we assume that n be definite, there exists
an invariant orthogonal complement W+ C V. Proceeding further in this manner,
we obtain an invariant orthogonal decomposition

V=WdW ®...0 W, (2.3.31)

with W, carrying the trivial representation’ (acting as the identity) and W, carry-
ing nontrivial irreducible representations of H for all kK > 1. The following theorem
belongs to de Rham [150]. It simplifies the holonomy classification problem essen-
tially.

Theorem 2.3.15 (de Rham Splitting Theorem) Let (M, g) be a Riemannian man-
ifold. If the holonomy group H acts reducibly on R", then the restricted holonomy
group® H° of (M, ) is isomorphic to a product,

H ={e} x Hy x ... x Hy,
and M is locally isomorphic to a product of Riemannian manifolds,
My x My x ... x My,

with My being flat.

Proof By the above discussion, Z : O(M) — /\ZV* ® o(n) and Z(u)(x,y) takes
valuesin b = b,,(I"),foranyu € P, (") andanyx, y € V. Since the decomposition
(2.3.31) is invariant, we have

Zw)X, Vw, =0, Zw)X, y)w, CW;, (2.3.32)

for 1 <i < k. We decompose x = >_x; and y = > y; with respect to (2.3.31) and
insert this decomposition into % (u)(x, y). This yields

RW)(x,y) = D RW)(xi,y) + D RU) (X, ¥,).
i i#]

22(learly, Wy may be zero.
23By Theorem 1.7.9, this is the identity connected component of H.
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By (2.3.12) and (2.3.32), we have Z(u)(W;, W;)W; =0 for i, j and k pairwise
distinct. Next, consider the case i = j # k. Then, again by (2.3.12),

R X, Yz =0, Z)(yi, z)X; = — X (u)(Z, X;)Yi -

The first of these equations implies Z (1) (W;, W;) W, = 0 fori # k. Using (2.3.11),
from the second equation we obtain

(2 W) (2, X1)Yi. Xi) = (B W) (2, yi)Xi, X;) = (B W) (Xi, X2, ¥i) »

and the anti-symmetry of % implies Z (1) (Wy, W;)W; = 0 for i # k. We conclude

Rw)(x,y) = D RW) (X, ¥i) -

Now, according to the equivariance of %, as u ranges over 7 ' m) N P,,(I") and
x, y over V, for every i, the mappings % (u)(X;, y;) span an ideal h; (m) C End(W;)
of h. Finally, varying m yields ideals h; and, by (2.3.1), the decomposition

hzbl@...@f)k.

This proves the first assertion. To prove the second assertion, first note that the
splitting (2.3.31) induces a splitting of the horizontal distribution I" on P, (I"),

r=n®..eoL, I:=nNo"'W).

By H-equivariance, this splitting induces a family of distributions D; = 7/(I}) on
M such that
TM =D &...8 Dy

Moreover, corresponding to (2.3.31), let us decompose
0=60+...46r, wo=w1+...+wr, 2=821+...+8,

with 6, € 2! (Pyy(I') @ W; and w; , $2; € 2*(P,,(I")) ® b;. We define the distri-
butions .
I=reVv

on P, (I"), with V; being the vertical distribution spanned by the Killing vector fields
generated from elements of by, . Clearly, I; is spanned by the horizontal standard vector
fields generated by any basis of W;. Thus, I annihilates both 6 i, wj,and §2; for any
J # i and, by point 2 of Remark 2.1.14 and (1.4.5), for every i the distribution I is
involutive. Consequently, by the Frobenius Theorem, it is integrable and, for every
i, we have


http://dx.doi.org/10.1007/978-94-024-0959-8_1

2.3 Curvature and Holonomy 137
1
do; +w; AN6; =0, £2; =dw; + z[a),', w;]. (2.3.33)

Let P, C P,,(I") be an integral manifold of IA“, Integrability of ﬁ, clearly induces
integrability of D; and the integral manifolds U; of D; fulfil U; = n(P;) C M. More-
over, for every i, the restriction 7r; : P; — U; of w defines a principal H;-bundle and,
by (2.3.33), w; is a torsion-free connection on P; with restricted holonomy group H;.

To summarize, for every m € M, there exists a neighbourhood U = U; x ... X
Ui of m in M, with the U; being integral manifolds of D;, and the Levi-Civita
connection restricted to U being a product of the Levi-Civita connections on the
components U;. ]

Definition 2.3.16 A Riemannian manifold (M, g) which is locally isomorphic to a
product of Riemannian manifolds is called locally reducible. It is called irreducible
if it is not locally reducible.

Clearly, by Theorem 2.3.15, if (M, g) is irreducible, then the restricted holonomy
group necessarily acts irreducibly. Under additional assumptions, de Rham [150]
was able to prove the following global version of Theorem 2.3.15.

Theorem 2.3.17 (Global de Rham Splitting Theorem) Let (M, Q) be a geodesically
complete simply connected Riemannian manifold and assume that the holonomy
group* of the Levi-Civita connection acts reducibly. Then, (M, g) is the direct prod-
uct of geodesically complete simply connected irreducible Riemannian manifolds
(M;, 9)),

(M, g) = (Mo, gp) X (M1,91) X ... x (Mg, g).

Here, (My, 9y) is a Euclidean vector space whose dimension is possibly zero. |

Remark 2.3.18 Both versions of the de Rham Splitting Theorem have been extended
to the case of an indefinite metric by Wu [682, 683]. ¢

Summarizing our discussion, for finding the possible holonomy groups of a Rie-
mannian manifold (M, @), it is reasonable to make the following assumptions:

(a) M is simply connected. This ensures that the holonomy group is connected and
that it coincides with the restricted holonomy group.

(b) (M, g) is irreducible. This implies that the holonomy group acts irreducibly.

(c) (M, g) is not locally symmetric. This requires &' () # 0.

Under these assumptions, for the Riemannian case, Berger obtained the following.

Theorem 2.3.19 (Berger) Let (M, g) be an n-dimensional simply connected irre-
ducible Riemannian manifold which is not locally symmetric. Then, its holonomy
group H belongs to one of the following classes:

24By Remark 1.7.11, if M is simply connected, then the holonomy group and the restricted holonomy
group coincide.
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H = S0O(n), n > 2, (generic Riemannian manifold)

H =U(m), n =2m > 4, (generic Kihler manifold)

H = SU(@m), n = 2m > 4, (special Kihler manifold)

H = Sp(m) - Sp(1), n = 4m > 8, (quaternionic Kdhler manifold)
H = Sp(m), n = 4m > 8, (Hyper-Kdihler manifold)

H = Gy, n =1, (special holonomy)

N s DD =

H = Spin(7), n = 8§, (special holonomy). |
For the proof, which is beyond the scope of this book, we refer to [68, 69, 555].
Remark 2.3.20

1. An elegant proof of Theorem 2.3.19 is obtained from the following result of
Simons [591]: if M is irreducible, then either the holonomy group H acts tran-
sitively on S"~! or its identity component acts trivially on the space of curvature
tensors K(f). Then, Theorem 2.3.19 is obtained by using the classification of
simple Lie algebras and their representations.

2. According to Examples 2.2.22 and 2.2.27, it was clear from the beginning
that the groups SO(n) and U(n) must occur in the above list. For a detailed
discussion of examples for all the groups occuring in Theorem 2.3.19, we refer
to [555]. ¢

Exercises

2.3.1 Show that the commutators of horizontal standard vector fields corresponding
to a torsion-free connection are vertical.

2.3.2 Confirm the equivariance property (2.3.14). Hint: Under the identification
o(n) = (R"M)* A (R")*, the adjoint representation is mapped onto the second exterior
power of the dual of the basic representation.

2.3.3 Show that, in terms of the Riemann curvature R, the Bianchi identity (2.1.16)
reads
(VxR)(Y, Z2) + (VyR)(Z, X) + (VZR)(X,Y) =0. (2.3.34)

2.4 Sectional Curvature

In this section, we discuss a generalization of the classical Gaussian curvature of
surfaces in R3. It reduces the study of the Riemann curvature to the study of real
valued functions. Let (M, g) be a pseudo-Riemannian manifold. Let X, C T,,M
be a 2-dimensional subspace such that g5, is non-degenerate. Let {X, Y} be an
arbitrary basis of X,,. We put

K(E,) (R(X, Y)Y, X)

= , (2.4.1)
I X 121 Y I —(X,Y)?
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where || - ||? and (-, -) are the quadratic form and the bilinear form, respectively,

induced from g. It can be easily shown that K(X',) is well defined, that is,

(a) the right hand side of (2.4.1) does not depend on the choice of the basis. This is a
simple consequence of the symmetry properties of R given by point 2 of Remark
2.3.7 and is, thus, left to the reader (Exercise 2.4.1).

(b) X, is non-degenerate iff | X ||?|| Y ||> —(X, Y)? # 0, (Exercise 2.4.2).

Note that K may be viewed as a mapping from the GraBmann manifold G,(T,, M)
to R. Let Gg(TmM ) C G,(T,; M) be the subset of non-degenerate subspaces.

Definition 2.4.1 The mapping K : G(T,,M) — R given by (2.4.1) is called the
sectional curvature of the pseudo-Riemannian manifold at m € M.

Clearly, in the Riemannian case, every 2-dimensional subspace of T,,M is non-
degenerate.

Proposition 2.4.2 The curvature tensor R is completely determined by the sectional
curvature. If the mapping K is constant, that is, K(X,,) = k(m) for every X, €
GY(T,,M), then

R (X, Y)Z:k(m)((Y, Z)X — (X, Z)Y). 2.4.2)

Conversely, if (2.4.2) is fulfilled, then all non-degenerate planes have sectional cur-
vature k(m).

Proof The proof of the first assertion is the consequence of the following simple
polarization argument. Denote « (X, Y) := (R(X,Y)X,Y), for any X,Y € T,,M.
Then, by direct inspection,

—6(RX,V)Z,W)=a(X+W,Y+2Z)—a(X+W,Y)—a(X + W, Z)
—a(X,Y+2Z)—a(W,Y + Z)+a(X, Z) +a(W, Y)
—a(Y+ W, X+Z)+a(Y + W, X) +a(Y + W, Z)
+a(V, X+ Z)+a(W,X+2Z) —a(Y,Z) —a(W, X),

showing that R is determined by « and, thus, by K. We prove the second statement.
For that purpose, denote

Ry X, Z:=(Y,Z)X — (X, Z)Y.
Note that Ry shares the symmetry properties (2.3.9), (2.3.10) and (2.3.12) of R.°
Assume that K(X,,) = k(m) for all non-degenerate planes. If X,Y span a non-

degenerate plane, then by (2.4.1),

(RX, V)Y, X) =k(m)((Y, V)X — (X, Y)Y) = (k(m)Ro(X, V)Y, X).

231t also shares the symmetry property (2.3.11), but this is not needed here.
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Thus, the tensor R := R — k(m)Ry has the above symmetry properties and fulfils
(R(X,Y)Y,X)=0. (2.4.3)

If X and Y span a degenerate plane, we can choose sequences X, - Xand Y, — Y
of tangent vectors such that X, and Y, span non-degenerate planes for each n.2°
Then, (ﬁ(Xn, Y)Y, X,,) = 0 for all n and, thus, (2.4.3) holds for degenerate planes
as well. Finally, note that this equation is also true for pairs X, Y which are linearly
dependent. We conclude that (2.4.3) holds for all X, Y € T,, M. Now, the assertion
is a consequence of the following simple algebraic fact (Exercise 2.4.3): If

R:T,M x T,M x T,M x T,M —> R

is a quadrilinear mapping sharing the symmetry properties (2.3.9), (2.3.10) and
(2.3.12) of R, then (R(X, Y)Y, X) = 0 implies R = 0.
The converse statement is trivial. ]

Proposition 2.4.2 leads us to an important class of pseudo-Riemannian manifolds.

Definition 2.4.3 If K(X,,) = k(m) for every X, € Gg(TmM ), then we say that
(M, g) is a space of constant curvature at m. Let k be a real number. We say that
(M, g) is a space of constant curvature k if K(X,,) = k at every pointm € M.

Remark 2.4.4

1. By the proof of Proposition 2.4.2, for a space of constant curvature, we have
RX,Y)Z=k({(Y,Z)X —(X,Z)Y), keR. (2.4.4)

2. By atheorem of Schur, see Theorem 2.2. in Chap. V of [381], if (M, g) is a space
of constant curvature at every point of M and dim M > 3, then M is a space of
constant curvature, that is, the mapping m — k(m) is constant.

3. It is not hard to construct models of spaces of constant curvature. The simplest
Riemannian example is the n-sphere of radius r embedded in the standard way
in R"*!, This is a space of constant curvature equal to rlz The simplest pseudo-
Riemannian model is the pseudo-Euclidean space (R}, g7) with the signature
(n — s, s). It is easy to show that this is a space of constant curvature equal to
0. In Sect.2.5, we will see a large class of spaces of constant curvature. For an
exhaustive presentation of this subject we refer to [676].

4. In the indefinite case, there is a lot of subtleties and there is quite a number of
classical papers on that subject, see [63, 145, 257, 395, 490] and further references
therein. ¢

26By property (b) above, in any fixed basis of T,, M, || X 121 Y 1?2 —(X,Y)?isa polynomial in the
components of X and Y whose zero set does not contain any open subset.
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Exercises
2.4.1 Prove that (2.4.1) does not depend on the choice of the basis.

2.4.2 Show that the restriction of a pseudo-Riemannian metric to a 2-dimensional
subspace %,, C T,,M is non-degenerate iff | X ||>| ¥ ||> —=(X,Y)? #0.

2.4.3 Prove the following. If R: TyM xT,yM xT,M x T,M — Ris a quadri-
linear Inapping sharing the symmetry properties (2.3.9), (2.3.10) and (2.3.12) of R,
then (R(X, Y)Y, X) = 0 implies R = 0.

2.5 Symmetric Spaces

In this section, we take up the discussion from Sect. 2.3. We analyze the special case
£1(h) = 0, that is, we analyze the condition

D# =0, (2.5.1)

defining locally symmetric manifolds, cf. Definition 2.3.2. Thus, we give up assump-
tion (c) prior to Theorem 2.3.19, but we keep on assuming the following.

(a) M is simply connected, which ensures that the holonomy group H is connected
and that it coincides with the restricted holonomy group.
(b) (M, g) is irreducible, which implies that H acts irreducibly.

Moreover, as above, we limit our attention to the Riemannian metric case, that is,
H C O(n) is a compact Lie subgroup acting irreducibly on V = R”". Then, by the
Holonomy Principle, cf. Proposition 1.7.20, the space of parallel sections of

E = O(M) xoum S (/\Zv*)

is in one-to-one correspondence with the space of holonomy-invariant vectors in
52 ( /\ZV*) as follows. Any Z satisfying (2.5.1) is constant on P, (I") and, restricted

to P,,(I"), it takes values in K(f) given by (2.3.29). Thus, the Holonomy Principle
assigns to Z the H-invariant element

F:=2%u) € &®W), wue P, I). (2.5.2)

Lemma 2.5.1 Let H C O(n) be a closed subgroup and let F € K(h) be an H-
invariant element. Then, g = b @ V carries the structure of a Lie algebra given
by

[A,x] =—[x, A] = Ax, [x,y]=-F(x,y), Ach,x,yeV.
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Proof Bilinearity and anti-symmetry are obvious. We prove that the Jacobi identity
holds. For that purpose, we have to consider three cases:
(a) Letx,y,z € V. Since F(x,y) € hh C End(V), the definition of K(h) implies
[[x.y]. 2] + [ly, z]. x] + [[z, x], y] = 0.
(b) Letx, y € V. By the H-invariance of F, cf. (2.1.25), we have
F(x,y) = Ad(a ") o F(ax,ay), ae€ H C O@n).
Differentiating this equation, we obtain
[F(x,y), Al + F(AX,y) + F(x, Ay) =0

for any A € §j. This implies

[[x,y], Al +[ly, AL, x] + [[A,x],y] = 0.

(c)Letx € V and A, B € b. Then, by definition of the Lie bracket of h C End(V),
[A, B](x) = A(Bx) — B(Ax).

This proves the third case. ]

To make contact with the standard notation, we denote V = m. Then,
g=bom (2.5.3)
and the commutation relations of g fulfil:
[b.b1Ch, [bom]Cm, [mm]Ch. (2.5.49)
Moreover, by the Ambrose-Singer Theorem,
[m,m]=75. (2.5.5)
Associated with the decomposition (2.5.3), there is a linear mapping
Arg—>g, AMAX):=(A,—Xx), Aeh,xem. (2.5.6)

By (2.5.4), A is an involutive Lie algebra homomorphism (Exercise 2.5.1). Con-
versely, we have the following.

Lemma 2.5.2 Any involutive Lie algebra homomorphism ) of a Lie algebra g
induces a decomposition g = ) @ m fulfilling (2.5.4).
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Proof Since A* =id, A is diagonalizable and we may decompose g into the
eigenspaces h and m of A corresponding to the eigenvalues +1 and —1, respec-
tively. Now, the first relation in (2.5.4) is obvious. To check the remaining two, we
calculate

A([Ax]) = [AM(A), Ax®)] = —[A,x], Aeh,xem,

that is, [A, x] € m. Similarly, A([x, y]) = [X,y] € h forany X,y € m. [ |

Definition 2.5.3 Let g be a Lie algebra and let A be an involutive automorphism of
g. Then, the pair (g, A) is called a symmetric Lie algebra. In addition,

1. if the set of fixed points b of A is a compactly embedded Lie subalgebra®’ of g,
then (g, ) is called an orthogonal symmetric Lie algebra,

2. if h N3 = {0}, where j is the center of g, then (g, A) is called effective.

3. if (g, 1) is effective and ad([m, m]) acts irreducibly on m, then (g, A) is called
irreducible.

Proposition 2.5.4 The Lie algebra g constructed in Lemma 2.5. 1, endowed with the
involutive automorphism X given by (2.5.6), is an irreducible orthogonal symmetric
Lie algebra.

Proof By construction, (g, A) is symmetric. Since, by assumption, H C O(n) is a
compact Lie subgroup acting faithfully on R”, ad(h) is compact and, thus, (g, 1) is
orthogonal. Suppose A € h N 3. Then,

Ax =[A,x] =0

for every x € m and, thus, A = 0. Thus, (g, A) is effective. Finally, by assumption,
H acts irreducibly on m. Thus, ad(h) acts irreducibly on m, too. This, together with
(2.5.5) implies that (g, A) is irreducible. |

In the sequel, the pair (g, A) constructed above will be called the canonical symmetric

Lie algebra associated with the locally symmetric Riemannian manifold we started

with. The decomposition (2.5.3) will be called the canonical decomposition of (g, ).
The following proposition characterizes irreducible symmetric Lie algebras.

Proposition 2.5.5 Let (g, A) be an irreducible symmetric Lie algebra and let g =
h @ m be the decomposition induced by M. Then, one of the following cases occurs:

1. gis a simple Lie algebra.

2. g =g g with g simple, fulfilling h = {(A, A):Ae ﬁ} and AM(A, B) = (B, A)
forany A, B € g.

3. [m,m] =0.

For the proof we refer the reader to [38 1].28

2T That is, the group of transformations of g generated by ad(h) is compact.
28Cf. Proposition 7.5 in Vol. 2, Chap. XI of [381].
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Remark 2.5.6

1. Assume that either point 1 or point 2 of Proposition2.5.5 holds. Then, since
[m, m] @ m is an ideal in g, we have h = [m, m]. Thus, an effective symmetric
Lie algebra is irreducible iff h = [m, m], that is, iff g is of the form described
either by point 1 or by point 2. In particular, if (g, 1) is irreducible, then g is
semisimple.

2. Conversely, if (g, 1) is an orthogonal symmetric Lie algebra and g is simple, then
ad(h) acts irreducibly on m, see Proposition 7.4in Vol. 2, Chap. XI of [381]. ¢

Proposition2.5.5 and property (2.5.5) imply that the canonical symmetric Lie algebra
(g, 1) is semisimple. Consequently, by Proposition 1/5.4.10, the Killing form

k:gxg—R, k(X,Y)=tr(ad(X)ad(Y)),

of g is non-degenerate. Moreover, the relations (2.5.4) imply that the decomposition
(2.5.3) is orthogonal with respect to k (Exercise 2.5.2). Equivalently, k is A-invariant.
This implies that the restrictions k” and k™ of k to h and m, respectively, are both
non-degenerate and A-invariant, too. Moreover, they have the following properties:

(a) By Corollary 1/5.5.8, Kb is negative semidefinite and, since (g, 1) is effective, it
is negative definite.

(b) Since ad(h) acts irreducibly on m and since both k™ and the scalar product 1 on
m induced from the metric g are ad(h)-invariant, by Schur’s Lemma, they must
be proportional to each other,

nx,z) = —ck™x,z), x,zem,ceR,c#0. 2.5.7)

Thus, since 7 is positive definite, k™ is either positive or negative definite.

Definition 2.5.7 An effective orthogonal symmetric Lie algebra (g, 1) with g semi-
simple is said to be of compact or of non-compact type, if the restriction of the Killing
form of g to m is, respectively, negative definite or positive definite.

Remark 2.5.8 Combining Proposition 2.5.5 with Propositions 7.4 and 7.5in in Vol.
2, Chap. XI of [381], one can show that any irreducible orthogonal symmetric Lie
algebra is either of compact or of non-compact type. ¢

Next, we show that, given an irreducible orthogonal symmetric Lie algebra (g, A),
one can construct a special type of homogeneous Riemannian manifold.

Let g = h @ m be the decomposition induced from A. Let G be the connected
simply connected Lie group with Lie algebra g and let H be the connected Lie
subgroup corresponding to f. Then, the space of left cosets M := G / Hisa simply
connected manifold endowed with the natural left G-action given by left translations.
Let

Z:{ge@:g(m):m for all meM}
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be the kernel of this action. Since, by assumption, (g, A) is effective, 7 must be
discrete. Thus, M is an almost effective G-manifold. We pass to an effective action
by setting G := G/Z and H = I:I/Z. Then, M = G/H, G and H are connected,
and we have the natural left effective action

8:GxG/H— G/H, (a,[g])r> d.,(g]) :=lag].

By point 4 of Example 1.1.4, the natural projection ¥ : G — M endows G with
the structure of a principal H-bundle P and the tangent mapping 7’ identifies m and
T13M as vector spaces. Under this identification, the isotropy representation

H — Aut(T[l]M) s h— (8’1)/]1 s
is given by Ad(H) acting on m, cf. point 1 of Remark 1/6.2.10. Correspondingly,
G xpamym—TM, [(a,x)]— [L,(¥)], (2.5.8)

is an isomorphism. Since (g, A) is orthogonal and irreducible, there exists an Ad(H )-
invariant scalar product 7 on m which is unique up to a positive factor. Clearly, n
induces an H -invariant scalar product on Ty} M which, using the left G-action §, can
be extended to a G-invariant Riemannian metric g on M. To summarize, we have
constructed a simply connected transitive and effective G-manifold (M, g) with G
acting by isometries.

Consider the bundle of orthonormal frames O (M) of (M, g). Note that any 7-
orthonormal basis (ey, .. ., €,) of minduces viaw" a g-orthonormal frame (ey, .. ., e,)
at [1] € M and, thus, an injective bundle morphism

9:P— OM), da):=@.e)....5 ), (2.5.9)

projecting onto the identical diffeomorphism of M. The corresponding Lie group
homomorphism 7 : H — O(n) C GL(n, R) = Aut(T,,M) is given by the adjoint
action of H on m = Ty M. To summarize, P is a subbundle of O (M).

Now, decompose the Maurer—Cartan form ¢ € 2'(G, g) with respect to (2.5.3):

0° = 0 + O .

By Example 1.3.19, 6 coincides with the canonical G-invariant connection® »° on
P. Recall that the corresponding horizontal distribution is generated by m, that is,
by left invariant vector fields a +— (x,), = L/ (x) withx € m.

Lemma 2.5.9 Under the morphism (9, 1), 6, corresponds to the soldering form 0
on O (M), that is, 90 = Oy,.

29Note that this is a special case of the canonical invariant connection defined in point 2 of Remark
1.9.14. It is obtained by setting G = H and A = id there.
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Proof By m-valuedness of 6y, and horizontality of 8, both #*6 and 0,, vanish on the
left invariant vector fields generated by elements of h. Thus, let x,. be generated by
x € m. Then, clearly 6, (x,) = X. On the other hand,

(70, (x) = 0(8) ' (p' 0 ¥'(x)) = D(9) ' (7' (%) = ¥(8) ™' (8, 0 7' (X)) =X,
where p : O(M) — M is the canonical projection. |

Proposition 2.5.10 The Riemannian manifold (M, Q) has the following properties:

1. Under the morphism (9, t), the Levi-Civita connection o° of (M, g) corresponds
to the canonical connection °, that is, ¥*° = °.
2. The Riemann curvature of (M, Q) is constant and given by the linear mapping

F:Nm—bh, Fxy =-[xyl. (2.5.10)

3. The holonomy group based at ¥ (1) of ©° is H and the holonomy bundle coincides
with P.

4. The Riemann curvature of (M, Q) is parallel, that is, (M, Q) is locally symmetric.

5. Forany x € m, t — m (L, exp(tX)) is a geodesic through [g] € M. Conversely,
every geodesic through [g] is of this form. In particular, M is geodesically com-
plete.

Proof 1. We decompose the commutator [0€, 0] € 22(G, g) with respect to
(2.5.3). By (2.5.4),

[09,0Ty = [65, 051 + [Om, O], [0°,0%m = 2[64, O] (2.5.11)

Since the Levi-Civita connection is uniquely characterized by its covariant derivative
Do on TM, it is enough to show that the covariant derivative D, induced by
via the isomorphism (2.5.8) coincides with D,o. This is done by showing that the
extension of @° to O(M) is metric and torsionless. By Proposition 1.2.6, we may
view any vector field X on M as an H-equivariant mapping X : G — m and, thus,

Dy X = dX 4 ad(w°) o X = dX + [0y, X],

cf. Eq. (1.4.2). Let n be the (unique up to a positive factor) Ad(H )-invariant scalar
product on m. By Ad(H )-invariance, we obtain

N(Dwe X, Y) +1(X, Dy V) = d(n(X, 1))

This shows that the extension of w® to O (M) is metric. It remains to show that
this extension is torsionless: restricting the Maurer—Cartan equation to m and using
(2.5.11) we get

DO = dOn + [0y, 0] =0.
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But, by Lemma 2.5.9, ¢¥*60 = 6,, and, thus, ¥*® = 0. By uniqueness of the
Levi-Civita connection, the assertion follows.
2. By the Structure Equation, the curvature form of w° is given by’

2 = Lo, 0

By point 1, 9*2° = £2°¢. These two facts immediately imply (2.5.10).

3. By point 2 and by the Ambrose-Singer Theorem, the Lie algebra of the
holonomy group of @? is [m, m]. By point 1 of Remark 2.5.6, [m, m] = § and, thus,
the Lie algebra of the holonomy group of »° coincides with h. Since, by construction,
M is simply connected, the holonomy group of w° is connected and coincides with
the restricted holonomy group. On the other hand, since H is connected, too, we
obtain the assertion. It follows that P coincides with the holonomy bundle of °.

4. Since the curvature is constant on P and, thus, H-invariant, the Holonomy
Principle 1.7.20 implies the assertion.

5. By Proposition 2.1.22, the geodesics of (M, g) are given by the projections
of integral curves of horizontal standard vector fields on L(M). Since they are hor-
izontal, these curves may be chosen to lie in P. The restriction of B(y), y € R",
to P is given by the left-invariant vector field generated by x = y’e; € m, where
{e;} is a basis in m. Thus, here, the geodesics are given as projections of (global)
one-parameter subgroups ¢ — exp(#x) and their left translates by arbitrary group
elements g € G. |

By point 3 of Proposition 2.5.10, the irreducibility of (g, 1) implies that (M, g) is
irreducible. Together with points 4 and 5, this yields the following.

Corollary 2.5.11 (M, g) is a complete irreducible locally symmetric Riemannian
manifold. |

Next, we show that the involutive automorphism X induces a special symmetry for
any point m € M. Since any automorphism of a Lie algebra is the differential of a
unique automorphism of the corresponding simply connected Lie group,’! A induces
a unique automorphism o of G. By (2.5.6), it fulfils O'(H )= H. Thus, o descends
to an involutive diffeomorphism s : M — M. By construction,

SEM . T[H]M — T[H]M s S[/]l](X) =-X. (2512)

Thus, under the identification Tj;jM = m, we have s{;; = Ajm

Lemma 2.5.12 The origin [1] of M is an isolated fixed point of s. Moreover; s is an
isometry of the Riemannian metric Q.

30Since w* is a G-invariant connection, this is a special case of point 4 of Remark 1.9.14.
31 For a proof, see e.g. Theorem 3.27 in [652].
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Proof The proof of the first assertion is left to the reader (Exercise 2.5.4). To prove
the second statement, we have to show that the mapping

syt TyM — Ty M

is isometric. For the point m = [1], this follows immediately from (2.5.12), because
at the origin g coincides with 7 and the latter is A-invariant. To prove the invariance
for an arbitrary point m = [g], note that for any g, h € G,

s(8g[h]) = s([gh]) = [0(8)o (h)] = 85(g)[o (M)] = 80g)s([R])

thatis, s 0 §, = 8,(¢) o 5. Differentiation of this identity yields

/ / / /
Sig) © By = (Bo(e))a) © 811y -

By construction, g is G-invariant and, thus, (88)[1” and (8"(8))E]1] leave g invariant.
This yields the assertion. n

Remark 2.5.13 Forevery g € Z, wehave (0(g))(m) = s 0 g o s(m) = s2(m) = m.

Hence, U(Z) = 7 and o descends to an automorphism of G, denoted by the same
symbol. One has o (H) = H. ¢

Next, for any m = [g] € M, we define??
SmiM—> M, s, :=08;0508,1. (2.5.13)

Differentiating (2.5.13), we obtain s/, = 6; o8y © 8;,1 for any m = [g] € M. Thus,
by Lemma 2.5.12, by formula (2.5.12) and by the G-invariance of g, forany m € M,
sy 1s an involutive isometry of g fulfilling (Exercise 2.5.5)

Sm(m) =m, (sp),, =—id. (2.5.14)

The following remark yields a geometric interpretation of the symmetry s,,,.

Remark 2.5.14 Let t — y(t) be a geodesic of (M, g) with y(0) = m. Since an
isometry transforms geodesics to geodesics, ¢ > t(t) := s, (y(¢)) is a geodesic,
too. By (2.5.14), its tangent vector at ¢ = 0 satisfies

7(0) = (sw),, ¥ (0) = =y (0). (2.5.15)

Now, the uniqueness property of geodesics, see Corollary 2.1.23, implies t(¢) =
y(—t). Thus, forany m € M,

32Clearly, this definition does not depend on the choice of the representative.
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sm(y (@) =y(=1), (2.5.16)

that is, s,, reverses the geodesics through m. ¢

Definition 2.5.15 (Riemannian globally symmetric space) A Riemannian manifold
(M, g) is called globally symmetric if for each m € M there exists an involutive
isometry s, : M — M such that m is an isolated fixed point of s,,. The mapping s,
is called the symmetry of (M, g) at m.

Taking into account that, in the above construction of (M, g), the scalar product on
m is unique up to a positive constant and that a change of this constant implies a
conformal transformation of g, we obtain the following.

Proposition 2.5.16 To any irreducible® orthogonal symmetric Lie algebra (g, A)
there corresponds a unique homothetic equivalence class (M, [g]) of simply con-
nected irreducible Riemannian globally symmetric spaces. |

It should be clear that the locally symmetric Riemannian manifold we started with
and the Riemannian globally symmetric space constructed here are deeply related.
Indeed, let (M, g) be alocally symmetric space. Let (g, A) be its canonical symmetric
Lie algebra with canonical decomposition g = h @ m. Let n € S?>(m*) be the scalar
product on m defined by g and let F € K(h) C /\Zm* ® b be the Riemann curvature
of (M, g). Let G/H be the Riemannian globally symmetric space constructed from
(g, 1). Then, for any chosen point m € M, via

TmM Em= T[l]G/H

we obtain an isometric isomorphism between T,,M and T|;;G/H and, by point 2
of Proposition 2.5.10, M and G/H have the same Riemann curvature given by the
mapping F. By standard arguments, this implies the following.

Corollary 2.5.17 Every point of a locally symmetric space (M, Q) admits a neigh-
bourhood isometric to a neighbourhood of the origin of the Riemannian globally
symmetric space constructed from the canonical symmetric Lie algebra of (M, Q).

Note, however, that not every locally symmetric space is a Riemannian globally
symmetric space. It is even not necessarily homogeneous. As an example,® let M
be a compact Riemann surface with genus >2, equipped with a Riemannian metric
of constant curvature equal to —1. Then, the isometry group of M is finite and, thus,
M is not homogeneous and, consequently, also not globally symmetric.

As an immediate consequence of the existence of the symmetries s,,, we obtain

Proposition 2.5.18 Any Riemannian globally symmetric space (M, Q) is complete.

33Remember that irreducibility includes effectiveness, cf. Definition 2.5.3.
34See Theorem 7.4 in Chap. VI of [381].
35This example is taken from [73].
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Proof Consider any geodesic ¢t — y(t) defined on the interval [0, tp[. Apply the

Ssymmetry s, ,—¢) to y with some ¢ fulfilling 0 < ¢ < %’ By (2.5.16), this opera-
tion extends the domain of y to [0, 2¢) — 2¢[. Continuing this procedure, we obtain

completeness of (M, g). |

Next, given a Riemannian globally symmetric space (M, g), for every geodesic
t — y(t) we consider the family of isometries

Tty = Sy(é) O Sy (0) » (2517)

called the transvections along y. The following properties are immediate conse-
quences of (2.5.15) and (2.5.16) and are, therefore, left to the reader (Exercise 2.5.3).

Proposition 2.5.19 Let (M, g) be a Riemannian globally symmetric space and let
t — y(t) be a geodesic. Then,

1. T acts on y by translations, that is, T (y (s)) = y (¢ + s).
2. (T,y);,(s) acts by parallel translation from y (s) to y (t + s) along y, that is, for
any parallel vector field X along vy,

(1)), (X (7 () = X(y (& +9)) .

3. {1}, g is a 1-parameter group of isometries, that is, T = T/ o T} [ |

Recall from Example 2.2.16 that the isometry group I (M) of a Riemannian manifold
M is a Lie group. Let us denote its identity component by Io(M). By point 3 of
Proposition 2.5.19, for any geodesic y, the transvections 7, form a subgroup (called
the transvection group) of Io(M). On the other hand, by a classical theorem of Hopf
and Rinow,® any two points of a complete Riemannian manifold may be joined by
a geodesic. Using these two facts, we obtain the following.

Corollary 2.5.20 Let (M, g) be a Riemannian globally symmetric space. Then,

1. Geodesics in M are images of 1-parameter groups of isometries.
2. The identity component lo(M) acts transitively on M. |

Proposition 2.5.21 Let (M, g) be an irreducible Riemannian globally symmetric
space and let G be a Lie group acting transitively and isometrically on M. If G acts
effectively, then G coincides with Io(M).

Proof Clearly, IH(M) is the largest connected group of isometries of (M, g). Denote
G’ = IH(M) and let ¢’ be its Lie algebra. Conjugation by s defines an automorphism
o’ of G’ which clearly restricts to the automorphism o of G, cf. Remark 2.5.13. The
canonical decompositions g = h @& m and g’ = §’ @ m’ necessarily fulfil m’ = m.
Here by’ is the Lie algebra of the stabilizer of the chosen point on M under G’. Thus,
by Remark 2.5.6,

365ee, e.g. [352].



2.5 Symmetric Spaces 151
h=[mm]=[m, m]=h".

This implies g’ = g and, thus, G’ = G. |

Thus, in the construction leading to Proposition 2.5.16, the Lie group G actually
coincides with Io(M). Now, we are able to prove the converse of Proposition 2.5.16.

Proposition 2.5.22 To any simply connected irreducible Riemannian globally sym-
metric space there corresponds a unique irreducible orthogonal symmetric Lie alge-
bra.

Proof Let (M, g) be a simply connected irreducible Riemannian globally symmetric
space. By Corollary 2.5.20, G = Iy(M) acts transitively and effectively on M. Let
H be the isotropy group of this Lie group action at a chosen point 0 € M. By the
homotopy sequence of the fibration H — G — G/ H, the simply-connectedness of
G/H and the connectedness of G imply that H is connected. Moreover, by Theo-
rem 3.4 in Chap. VI of [381], the isotropy subgroup I (M),, at any point m € M is
compact. Hence, H = G N I (M), is compact, too. Thus, M = G/H and, by stan-
dard arguments, 7 : G — M is a submersion. In particular, 7’ : TG — T, M is an
H -equivariant surjective linear mapping whose kernel coincides with T; H.

Let s be the symmetry at o. Since s is an involutive diffeomorphism, the mapping
g > 0(g) := s o g o s~! defines an involutive automorphism of G. Let g and b be the
Lie algebras of G and H, respectively. Clearly, A := ¢’ is an involutive automorphism
of g. Let m be the eigenspace of A corresponding to the eigenvalue —1. By (2.5.14),
7' (m) = T, M. We prove that ) is the eigenspace of A corresponding to the eigenvalue
+1: let

G’ :={geG:0(g) =g}

be the fixed point set of 0. By (2.5.14), 5/ commutes with the isotropy representation
of H at o and, thus, H is contained in G°. Conversely, if g € G, then it commutes
with s and, thus, for any 1-parameter subgroup ¢ — g, of G,

sog0)=g os(0) =g/ ),

that is, the orbit g, (o) is left invariant pointwise by s. Now, by Lemma 2.5.12, 0 is an
isolated fixed point. Thus, g,(0) must coincide with o. But, g,(0) = o implies that
the 1-parameter subgroup ¢ — g, is contained in H. Since a connected Lie group is
generated by its 1-parameter subgroups, we have (G°)° C H. Thus,

(GYCcHCG”.

This relation implies that h coincides with the (+1)-eigenspace of A, indeed. To
summarize, the decomposition g = ) @ m is canonical with respect to A, that is,
(g, 1) isasymmetric Lie algebra. Since H is compact, ad(f)) is acompactly embedded
Lie subalgebra of g, that is, (g, A) is orthogonal. It remains to prove that (g, A) is
irreducible. Since g is G-invariant, we are in the situation described by Proposition
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2.5.10. By this proposition, H coincides with the holonomy group of the Levi-Civita
connection of g. Thus, the irreducibility of (M, g), together with the effectiveness
of the action of G on M, implies the irreducibility of (g, A). ]

Remark 2.5.23 1In the course of the above proof, we have found the following struc-
ture: a triple (G, H, o) fulfilling

1. G is a connected Lie group and H is a closed subgroup,
2. o is an involutive automorphism of G such that (G°)° ¢ H C G°,
3. Ad(H) is compact,

is called a Riemannian symmetric pair. This notion clearly constitutes a link between
symmetric spaces and symmetric Lie algebras. ¢

Combining Proposition 2.5.16 with Proposition 2.5.22, we obtain the following.

Theorem 2.5.24 The homothetic equivalence classes of simply connected irre-
ducible Riemannian globally symmetric spaces are in one-to-one correspondence
with the irreducible orthogonal symmetric Lie algebras. |

This theorem reduces the classification of symmetric spaces of the above type to the
classification of irreducible symmetric Lie algebras of compact or of non-compact
type. According to a beautiful duality,’” the problem further reduces to the classi-
fication of irreducible symmetric Lie algebras of the non-compact type. The latter
can be shown to be in one-to-one correspondence with the real simple Lie algebras
of non-compact type. If the complexification of such a Lie algebra is simple as a
complex Lie algebra, then M is said to be of type III, otherwise M is said to be
of type IV. The corresponding compact irreducible symmetric spaces are obtained
by duality and are referred to as of type I and II, respectively. The complete list of
simply connected irreducible symmetric spaces with symmetry group being a clas-
sical Lie group is given in Tables 2.1 and 2.2.3 Here, SOy(p, ¢) denotes the identity
component of SO(p, ¢) and SO*(2n) is the subgroup of SO(2n, C) satisfying

gTJ()g:JO’ ng = 1y,.

For the corresponding list with exceptional Lie groups we refer to the textbook
of Helgason [293]. As already mentioned, there the reader may find an exhaustive
presentation of the whole subject.

Remark 2.5.25 Note that in our considerations, we have excluded the class of sym-
metric Lie algebras fulfilling [m, m] = 0, cf. case 3 in Proposition 2.5.5. Symmetric
Lie algebras with this property are said to be of Euclidean type. By point 2 of Proposi-
tion 2.5.10, they are necessarily flat. One can show that if G/H is simply connected,

37See Sect. 8 of Chap. XI in [381] or Sect.2 of Chap. V in [293].

38By definition, the rank is the dimension of some maximal Abelian subspace of m. Any two
maximal Abelian subspaces of m are Ad(H )-conjugate.
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Table 2.1 Classical symmetric spaces of types I and III

Type 1 Type 11 Dimension Rank
SU(n)/SO(n) SL(n, R)/SO(n) m—1Dm+2)/2 n—-1
SU(2n)/Sp(n) SL(n, H)/Sp(n) m-0D2n+1) |n—1
SU(p +4¢)/SU(p) x U(g)) | SU(p,¢q)/SU(p) x U(q)) 2pq min(p, q)
SO(p + ¢)/(SO(p) x SO(g)) | SOu(p,q)/(SO(p) x SO(g)) | pq min(p, q)
SO(2n)/U(n) SO*(2n)/U(n) nn—1) [n/2]
Sp(n)/U(n) Sp(n, R)/U(n) n(n+ 1) n

Sp(p +q)/(Sp(p) x Sp(g)) | Sp(p.q)/Sp(p) x Sp(¢)) 4pq min(p, q)

Table 2.2 Classical symmetric spaces of types II and IV. For type I, see Proposition X.1.2 and

Sect. IV.6 in [293]

Type II Type IV Dimension Rank
SU(n+1) SL(n+1,C)/SUMn + 1) n(n+2) n
Spin(2n + 1) SO(2n+1,C)/SOR2n + 1) |n(2n+ 1) n
Sp(n) Sp(n, C)/Sp(n) n(2n+1) n
Spin(2n) SO(2n, C)/SO(2n) n2n — 1) n

then a symmetric space of this type is isometric to some Euclidean space R". Clearly,
R" itself provides the simplest example, with the symmetry at the origin given by
s X—> —X. ¢

Next, we show that Riemannian symmetric spaces provide Riemannian manifolds
of certain types met before. Recall that if (g, 1) is irreducible, then g is necessarily
semisimple and thus, the Killing form k is non-degenerate. As already noted, this
implies
n(x,z) = —ck™(x,z), X,z€m, (2.5.18)
for some ¢ € R, ¢ # 0, cf. (2.5.7). Recall from point 2 of Proposition 2.5.10 that the
curvature mapping & is given by the mapping F, cf. formula (2.5.10). Substituting
x = F(u, v)w into (2.5.18) and using the ad(f)-invariance of k, we obtain
n(F @, v)w,z) = ck™([[u, v], W], z) = ck"([u, v], [w, z]) . (2.5.19)
Settingx =u =zandy = v = win (2.5.19), we immediately obtain the following
formula for the sectional curvature:

n(F(x,y)y,x) = —ck?([x, y], [x, y]) - (2.5.20)
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This yields useful formulae for the Ricci tensor and for the scalar curvature. For
any orthonormal basis {e;} of m,

Ric(e;, e)) = — > n(lle, eil. e;1.e0), Sc=— > nller, el e/l e).
k k.l
(2.5.21)

Proposition 2.5.26 Let (M, Q) be an irreducible Riemannian globally symmetric
space and let (g, A) be the corresponding irreducible orthogonal symmetric Lie
algebra.

1. If (g, A) is of compact type, then (M, Q) is a compact Einstein manifold with
non-negative sectional curvature and positive definite Ricci tensor.

2. If (g, A) is of non-compact type, then (M, Q) is a simply connected Einstein man-
ifold with non-positive sectional curvature and negative definite Ricci tensor.
Moreover, M is diffeomorphic to a Euclidean space.

Proof Let g = b @ m be the canonical decomposition. By Theorem 2.5.24, G =
Io(M) acts transitively and effectively on M and g is G-invariant. Since k" is negative
definite, the statements about the sectional curvature K follow immediately from
(2.5.20). Since the Ricci tensor Ric is a symmetric ad())-invariant bilinear form on
m and since ad(h) acts irreducibly on m, Ric must be proportional to the metric, that
is, (M, g) is an Einstein space.

1. Let (g, 1) be of compact type. Then, K is non-negative and, thus, Ric is semi-
positive definite. Since M is Einstein, Ric is either positive definite or zero. But if
Ric is zero, then (2.3.27) implies that K must also be zero, which contradicts the non-
degeneracy of k and, thus, the irreducibility of (g, A). Finally, since k™ is negative
definite, k is negative definite and, since g is semisimple, G is compact. Thus, M is
compact.

2. Let (g, 1) be of non-compact type. Then, by similar arguments, M is Einstein
with negative definite Ricci tensor. The remaining statement follows from Theorem
8.3 in Chap. VIII of [381]. |

In the remainder of this section, we present the symmetric space structure of a few
of the types in Table?2.1 explicitly. By Theorem 2.5.24, it is enough to exhibit the
corresponding symmetric Lie algebra structure. For a much more detailed discussion
of examples we refer to Chap. XI of [381] and to [692]. We leave it to the reader to
check the statements below (Exercise 2.5.6).

Example 2.5.27

1. Consider type I in lines 3, 4, and 7 of Table2.1. Lines 3 and 7 correspond to the
Graflmann manifolds

G (k,n) = Ug()/(Ug(n — k) x Ux(k)), K=CH,
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and line 4 corresponds to the GraBmann manifold of oriented subspaces of R?+4 .3
The corresponding symmetric Lie algebra is given by

ug(p +q) = (ux(p) ® ux(q)) ®m,

where
A0
ug(p) ® ux(q) = [[0 B} cug(p+q):Acux(p), B e uK(q)] ,

_xt
m:“:; é(}euK(vaq):XeL(KP,K‘l)].

The action of Ad(H) on m is given by
X+ hXk™', heUk(g), k€ Uk(p),
and the involutive automorphism A acts via
[A —X*] . [ A X?] .
X B -X B
The corresponding involutive automorphism o is given by conjugation with

1,,= [_(])LP fq] . (2.5.22)
2. Consider the special case p = n and g = 1 for type I in line 4 of Table2.1:
S" =Sr(l,n+1) =SO(n + 1)/SO) .
The underlying symmetric Lie algebra is given by
on+1)=o0n) Gm, (2.5.23)

where
o(n) = [[82} €on+1):Ae 0(”)} ;

m:[[o_gT}eo(n—kl):xe]R”}.

X

Then, Ad(SO(n)) gets identified with the basic representation of SO(n) on R”
and, under the identification m = R", the Euclidean scalar product on R” yields

39Cf. Example 1/7.5.6.
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a scalar product on m which coincides with the restriction of the Killing form on
o(n + 1) to m up to the factor —2(n — 1). The involutive automorphisms are read
off from the previous point.

3. Consider type I in line 5 of Table 2.1. One easily shows that SO(2r)/U(n) is the
space of orthogonal complex structures on the 2n-dimensional Euclidean space.*’
Here we decompose*!

o(2n) =u(n) dm,

with

u(n) = [[_XY )ﬂ co2n): X, Y egln,R), X = —XT, Y:YT} ,

m=[[§ _YX] €o(2n): X,Y e gl(n,R), X = —X", Y:—YT} :

The involutive automorphism X : 0(2n) — 0(2n) corresponding to this decom-
position is given by conjugation with the matrix

0-1
J() = |:1 0 i| .

4. Considertypelinline 1 of Table2.1. Recall from Sect. 7.6 of PartI that U(n) /O(n)
is the space of Lagrangian subspaces of R?* endowed with its canonical sym-
plectic structure. Correspondingly, SU(n)/SO(n) is called the space of special
Lagrangian subspaces. Here, we decompose

su(n) =o(n) ®m,

with
o(n) = [[)g 2} esun): X e gl(n,R), X =—XT, trX:O} ,
m= [[_OY g] esun):Y eglin,R), Y:yT] .

Here, we have used the embedding u(n) C o(2n) from the previous point. Under
this embedding, the involutive automorphism A : su(n) — su(n) is given by

FHE L

40Cf, Example I/7.5.5.
41Cf. Example 2.2.19.
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5. Consider type Il in line 4 of Table 2.1 with p = 1, thatis, M = SOq(1, n)/SO(n).
On the level of Lie algebras, we have to consider the pseudo-Euclidean space
(R, n) with n = 1, given by (2.5.22). Then,

on,D)={Xegln+1,R): X"1;, +1;,X =0} .

Embedding o(n) C o(1,n) via Y +— [(1) gi|, we obtain the canonical decompo-
sition

Ou' "
o(l,n)=o(n)dm, m= u 0 eo(l,n): ueR"} .

It is obvious that M may be identified with the hypersurface H,(1,n) C R

defined by

nwu)=—-1, u®>1.

Therefore, M is referred to as the hyperbolic space form of (R, ). ¢

Remark 2.5.28 Consider the example of the n-sphere above. By Example 1.1.18,
under the identification m = R”, the bundle of orthonormal frames O (S") coincides
with the principal SO(n)-bundle SO(n 4+ 1) — SO(n + 1)/SO(n) and, by Propo-
sition 2.5.10, the Levi-Civita connection on S"” with respect to the natural metric
coincides with the SO(n 4 1)-invariant canonical connection on this bundle. The
curvature (2.5.10) reads F'(x,y) = x A y. Comparing with (2.4.2), this shows that
S” has a constant sectional curvature equal to 1. ¢

For applications of the theory of symmetric spaces in this book, see Sects. 6.8 and 7.9.

Exercises
2.5.1 Prove that A defined by (2.5.1) is an involutive Lie algebra homomorphism.

2.5.2 Prove that the decomposition (2.5.3) is orthogonal with respect to the Killing
form.

2.5.3 Prove Proposition 2.5.3.
2.5.4 Prove Lemma 2.5.12.

2.5.5 Prove the following. For an involutive isometry s with isolated fixed point m,
one has s, = —id. Hint. Use the eigenspace decomposition of s/, .

2.5.6 Check the statements in Example 2.5.27.
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2.6 Compatible Connections on Vector Bundles

Here, we take up the discussion of Sect.2.2. We consider real or complex vector
bundles endowed with a fibre metric h and an h-compatible connection V. Such a
structure will be denoted by (E, h, V). In the first part, we will collect what we know
already for the case of real (pseudo-)Riemannian base manifolds (M, g), and in the
second part we will pass to complex base manifolds and Hermitean vector bundles
endowed additionally with a holomorphic structure.

First, recall Examples 2.2.19 and 2.2.27.
(a) O(k, I)-structures are in one-to-one correspondence with pseudo-Riemannian
manifolds (M, g) of dimension (k + [), where the O(k, [)-structure coincides with the
bundle O (M) of frames which are orthonormal with respect to g. A linear connection
w on M is compatible with the O(k, /)-structure iff g is parallel with respect to w.
Such a connection is called metric.
(b) U(n)-structures are in one-to-one correspondence with 2n-dimensional almost
Hermitean manifolds (M, g, J) or, equivalently, with Hermitean fibre metrics on
TM relative to a given J. A linear connection w on M is compatible with the U(n)-
structure iff both g and J are parallel with respect to w. Such a connection is called
unitary. Equivalently,  is unitary iff the Hermitean fibre metric h in TM defined by
g and J is parallel with respect to w.

More generally, as we know from Examples 1.6.6 and 1.6.12, a connection V on
a real or complex vector bundle (E, h) is compatible with h iff

Vh =0, (2.6.1)
which is equivalent to
X (h(sy, 52)) = h(Vysy, s2) + h(sy, Vxsz), (2.6.2)

for any X € X(M) and sy, s, € I'*°(E). Since h may be viewed as a section of the
associated bundle L(E) XgLu.k) -#, where % denotes the space of fibre metrics,
(2.6.1) is equivalent to

D,h=0, (2.6.3)

where o is the connection formon L(E) andh : L(E) — .Z isthe G-homomorphism
corresponding to V and h, respectively. The metric h defines a reduction to the
subbundle of orthonormal frames

O(E) = {u € L(E) : h(u) = ho} ,

where hg = 1, , in the real and hg = 1 in the complex case. By compatibility, w
is reducible to O(E). In the (pseudo-)Riemannian case, the restriction of equation
(2.6.3) to O(E) reads

(@"®1+1®w")(h) =0
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and in the Hermitean case, we obtain
(@'®1+1®wl)(hy) =0.

Thus, V is h-compatible iff w is metric or unitary for K = R or C, respectively.

Remark 2.6.1

1. By Proposition 1.3.7, O(E) admits a connection. Thus, every (pseudo-)
Riemannian or Hermitean vector bundle admits a compatible connection.
2. Using the isomorphisms given by (1.2.4) and by Proposition 1.6.7, we have

E = L(E) xgLax) K = O(E) x6 K*,

where G = O(p, ¢q) in the (pseudo-)Riemannian and G = U (k) in the Hermitean
case. Since h is constant on O(E), without loss of generality, we can limit our
attention to the following setting. Let P(M, G) be a principal G-bundle over
an oriented (pseudo-)Riemannian manifold (M, g) and let E = P x¢ F be an
associated vector bundle such that (F, G, o) is a finite-dimensional representation
space carrying a o-invariant inner product (-, -)r. Then, (-, -)r induces a fibre
metric on E via

h(er, e2) := (f1, f2)F (2.6.4)

withe; = [(p, fi)] and e; = [(p, f>)]. By G-invariance of (-, -) r, this definition
does not depend on the choice of representatives. ¢

For the remainder, let us assume that M is a complex manifold. Recall that a com-
plex manifold of dimension # is a real manifold of dimension 2n endowed with an
equivalence class of holomorphic atlases.

Definition 2.6.2 A complex vector bundle E over a complex manifold M is called
holomorphic if E admits a system of local trivializations whose transition functions
are holomorphic.

Note that such a system of trivializations turns E into a complex manifold such that
the projection 7 : E — M is holomorphic. Also note that, since the composition of
anti-holomorphic mappings need not be anti-holomorphic, there is no notion of an
anti-holomorphic vector bundle.

Remark 2.6.3

1. For a complex manifold of complex dimension 7, one can define the principal
GL(n, C)-bundle C(M) of complex linear frames in the same way as in the real
case, cf. Example 2.2.10. Correspondingly, any holomorphic vector bundle E of
rank k over M may be viewed as associated with its complex linear frame bundle
C(E), thatis, E = C(E) xgLx.c) Cr.
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2. As in the C*-case, any functorial construction in linear algebra gives rise to
holomorphic vector bundles. In particular, one can build the dual bundle, direct
sums and tensor products, see [336] for details. ¢

The basic example of a holomorphic vector bundle is provided by the holomorphic
tangent bundle of a complex manifold M. Let (U;, ¢;);c; be a holomorphic atlas of
M with transition mappings ¢;; and let z' be the complex coordinates corresponding
to ¢;. Consider the Jacobian

k

3%‘]‘
F (i) (@) = 8—Z,(<ﬂj (@)

of the transition mappings.

Definition 2.6.4 (Holomorphic tangent bundle) The holomorphic tangent bundle
of a complex manifold M of dimension n is the holomorphic vector bundle .7 M
over M of rank n given by the transition functions v;;(z) = _Z (¢;;)(¢;(2)).

The dual J*M of .7 M is called the holomorphic cotangent bundle. Clearly, {387}
and {dz*} provide local frames in .7 M and .7*M, respectively.

Let J be the natural almost complex structure of the complex manifold M, cf.
Proposition 2.2.11. Consider the decomposition (2.2.17) defined by J. It is easy
to see that T"°M has the same transition functions as .7 M (Exercise 2.6.1). This
implies the following.

Proposition 2.6.5 If M is a complex manifold, then T'°M is naturally isomorphic
to the holomorphic tangent bundle M. |

Note that the induced tensor bundles ®” T'"°M and /\le*OM are holomorphic,
whereas /\kTO’lM is not holomorphic.

Next, recall the decomposition (2.2.18). For a complex vector bundle E over a
complex manifold M, let 279(M, E) be the space of E-valued (p, g)-forms on M.

Proposition 2.6.6 Let 7w : E — M be a holomorphic vector bundle. Then, there
exists a C-linear differential operator 9 : 271(M, E) — QP97 Y(M, E) fulfilling
=2 -

9, = 0 and the Leibniz rule

Op(fa)=3(f) Aa+ fip(a),
for any function f on M and any o € 271 (M, E).
Proof Let (ey, ..., e;) be a local holomorphic frame*? in E over U C M. Then,

locally, any o € £279(M, E) may be writtenas« = Zi o; ® e;,witha; € 2P9(M).
We define

“2That is, every ¢; : U — E is a holomorphic mapping.
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5505 = 25(0@) Re;.

This definition is independent of the choice of frame. Indeed, lete; = g/;e; be another
holomorphic frame. Then, the g/; are holomorphic functions on M and

- o . _ . _ _
Tpa=0g(D aj®@glie;) =D daj@glie; =D g/ i) ®ej =D de) Dej.
i i i i
Thus, 5/Eoz = 3. The remaining statements are now obvious. |

The mapping 9z is called the Dolbeault operator. It gives rise to a cohomology theory,
see Example 5.7.25 and [336] for much more material.*> Now, let

V:I'®(E)— (M, E)
be aconnection on E. Taking the complexification of T* M, we extend it to an operator
V:I™(E) — QL(M,E).
According to (2.2.18), the latter decomposes as follows:
vV =vi04yol, (2.6.5)
Definition 2.6.7 A connection V on a holomorphic vector bundle E is called com-

patible with the holomorphic structure if V%! = 3 on I'®(E).

Note that for a compatible connection, the following are equivalent: for any local
section ¢ of E, V%!¢ = 0 iff ¢ is holomorphic.

Proposition 2.6.8 Let (E, h) be a holomorphic Hermitean vector bundle over the
complex manifold M. Then, there exists a unique connection V on E which is com-
patible both with the holomorphic and with the Hermitean structure.

Proof Let V be a connection fulfilling the compatibility assumptions and let w be its
connection form. Let ¢ = (eq, ..., ¢) be a local holomorphic frame, let &7 = ¢*w
be the local representative of w and let H be the matrix of h with respect to ¢, that
is, H;j = h(e;, e;). Taking the pullback of the compatibility condition (2.6.2) under
¢, we obtain

dH = «&/"H+ H < . (2.6.6)

To analyze the compatibility of V with the holomorphic structure, we act with V on
a local holomorphic section ¢. Then,

0=V"lo=08p+a"¢.

43Note that there is no analogue of the d-operator.
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Thus, /%! = 0, that is, <7 is of type (1, 0). Now, decomposing both sides of (2.6.6)
into their (1, 0) and (0, 1)-parts, we read off 9 H = o/ TH and 9 H = H </ and, thus,
o =H 0H.

This formula defines unique compatible connections on each open subset belonging
to a system of local trivializations. It is easy to check that, by passing to another local
holomorphic frame, these local 1-forms transform properly. Thus, using a partition
of unity, they may be glued together to a compatible connection on C(M). |

Definition 2.6.9 The unique connection given by Proposition 2.6.8 is called the
Chern connection, or the canonical connection, of the holomorphic Hermitean vector
bundle (E, h).

Corollary 2.6.10 Let (E, h) be a holomorphic Hermitean vector bundle, let V be
its Chern connection and let w and §2 be the connection and curvature form of V,
respectively. Let &/ = ¢*w and F = ¢*$2 be the local representatives with respect
to a local holomorphic frame ¢ and let H be the matrix of h with respect to ¢e. Then,

o =H 9H., F =03, 2.6.7)

that is, < is of type (1, 0) and % is of type (1, 1).

Proof The first assertion follows from the proof of Proposition 2.6.8. We show the
second one: using the explicit expression for .27, together with 9> = 0 and dH ! =
—H'.9H - H!, we obtain 87 = —of A <7. Then,

F=dd + I NA =3 .

Since o is of type (1, 0), .Z is of type (1, 1). |

Example 2.6.11 In particular, we may consider the holomorphic tangent bundle .7 M
of a complex manifold M endowed with its Chern connection. According to (2.2.13),
TM viewed as a complex vector bundle is C-linearly isomorphic to T!:*M. On the
other hand, by Proposition 2.6.5, T!"*M is naturally isomorphic to .7 M. Thus, we
have a vector bundle isomorphism @ : TM — .7 M which can be used to transport
the Chern connection to TM. The image can be compared with the Levi-Civita
connection, see the Appendix to Chap. 4 in [336] for details. In particular, if (M, g) is
Kihler, then under @, the Chern connection and the Levi-Civita connection coincide.

¢

The following theorem states a converse of Proposition 2.6.8. Our proof is along the
lines of [384], cf. Proposition 1.3.7 there.

Theorem 2.6.12 Let (E, h) be a Hermitean vector bundle over a complex manifold
M and let V be a Hermitean connection on E such that its curvature S2 is of type
(1, 1), that is, 2 € 2" (M, End(E)). Then, there exists a holomorphic structure on
E such that V is the canonical connection with respect to this structure.
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Proof Let C(E) be the principal GL(k, C)-bundle of complex linear frames asso-
ciated with E, that is, E = C(E) XgL*.C) C*. Clearly, we may view GL(k, C) as
a complex manifold. Let Jy; and Jg be the almost complex structures on M and
GL(k, C), respectively, defined by the complex manifold structures. Let w be the
connection form on C(E) corresponding to V and let I C T(C(E)) be its horizon-
tal distribution. Then, we have a unique almost complex structure on C(E) defined
by w, Jy and Jg as follows: Take the splitting T(C(E)) = V & I, lift Jpy from TM
to I' and define J on T(C(E)) as the direct sum of this lift and of J;. By construc-
tion, J is invariant under the right GL(k, C)-action. Thus, J and the natural almost
complex structure of C¥ combine to an almost complex structure on E denoted by
the same symbol.

We prove that 2 € 2" (M, End(E)) implies that J is integrable. It is enough
to give the proof in a local trivialization of E. For a chosen local trivialization
7 ' U) = U x Cklet (7, ..., z") be complex local coordinates on U C M and let
(w', ..., w) be the complex coordinates on C* with respect to the standard basis.
Let o be the local representative of w on U and let 27“g be its components with
respect to the standard basis {E « ,g} of the Lie algebra gl(k, C). We decompose <7
with respect to Jyy,

o ="+

Then, {%} locally span F°°(T0’1M ) and, thus, F°°(T0’1F) is locally spanned by

the following vector fields**:

[i— ALY (i)(Eﬂa)*] , k=1,....n, a,.p=1,...k,

37" 9z*
where (E#,), is the Killing vector field generated by E?,. Now, the horizontal
distribution on E corresponding to I is given by (1.3.4). Here, since C* is the basic
GL(k, C)-module,
U(Aw) =u(Az), zeC*, ueC(E), Acglk,C).

Thus, "> (T*'E) is locally spanned by

0 0 0 0
— — ("N — )P —, — | .
[az" () ’S(azk)w e I

Consequently, its annihilator £2'°(E) is locally spanned by {dz’, 9*}, where

9% = dw* + (%0’1)aﬁw’3.

44Recall that the horizontal component of a vector field X on a principal G-bundle is given by
X — 11/; (w(X)), cf. formula (1.3.7).
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Now, using £2 € 2"!(M, End(E)), we calculate

do* = whd(*") s — (%) A dw?
()= () (07 = () )
PO(%) s+ (2%)75) = (%) 5 A0

() — ()5 07

o
T = =

that is, d9® € 21 (E). By Proposition 2.2.14, this is equivalent to the vanishing of
the Nijenhuis tensor and, thus, the Newlander—Nirenberg Theorem 2.2.13 implies
that J is integrable.

It remains to prove that, with respect to the holomorphic structure defined by J,
V coincides with the Chern connection. That is, we have to prove that a local section
¢ : U — E fulfilling V®'¢p = 0 is holomorphic. For that purpose, it is enough to
show that any ¢ fulfilling this condition pulls back every (1, 0)-form on E to a
(1, 0)-form on M.* In the above notation, V0,1¢ = 0 reads

3% + (°1) 5 =0.
Using this, we calculate ¢*(dz") = dzF and
0" (%) = dg® + (do,l)“ﬁ(pﬂ = 9¢® .
|

For a more general integrability theorem containing Theorem 2.6.12 as a special
case, we refer to [35].

Exercises

2.6.1 Prove Proposition 2.6.5.

2.7 Hodge Theory. The Weitzenboeck Formula

Let us recall some basic notions from Sects.4.4 and 4.5 of Part I. Consider an n-
dimensional oriented pseudo-Riemannian manifold (M, g) with signature (r, s). The
metric g yields a distinguished volume form vg, cf. Definition 1/4.4.4., and a mapping

x: QK M) — 2" M), xa = (-1’7 (@) Jvg, (2.7.1)

called the Hodge star operator, cf. Definition 1/4.5.1. We immediately read off

4SRecall Exercise 2.2.3.
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*¥1 = (—l)xvg, *vg=1. (2.7.2)

We have the following further basic properties: for any «, 8 € 2%(M),

sk = (=g (2.7.3)
9 ' (xa, %B) = (=1)'g (@, B), (2.7.4)
a Axp = (—=1)*g (a, Bvg, (2.7.5)

cf. Proposition 1/4.5.3. Let {e;} be an orthonormal local frame on M and let {}} be
the dual coframe. Then, locally, we have

Vg = (=)o, (2.7.6)

I c
x«0! =n''e; 9" = sign (J ;C)n” AR 2.7.7)

Using (2.7.7), for any a € 2%(M), one easily shows the following:

() (Xist - XuWVg =@ AQ(Xps1) A .. AG(X,) . (2.7.8)
This implies

Xixa=x@ArgX)), 2.7.9)

g '(B)axa=x@@Ap), (2.7.10)

for any a € 2*(M), B € 2'(M) and X € X(M) (Exercise 2.7.1). The metric
induces a natural fibre metric on E = /\kT*M via

(@, B) == (=1)’g" (@, B),

which gives rise to an L2-inner product on the space of square-integrable k-forms:
(o, B)p2 :=/ (a, B)vg =/ an*B. (2.7.11)
M M

Using this inner product, one defines the Hodge dual d* : 2¥(M) — ¥ 1(M) of
the exterior derivative by
(d*a, )12 == (e, dB) 12, (2.7.12)

forall B € 2% 1(M). For o € £2%(M), one has

d*a = (= )" ydxa . (2.7.13)
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Given the exterior derivative and its Hodge dual, we build the Hodge-Laplace oper-
ator of (M, g):

O: M) - XMy, O:=dd* +d*d. (2.7.14)
Clearly,
(Oo, a)r2 = (da, da) 2 + (d*a, d*a);2 . (2.7.15)
Moreover,
dO=0d, d"O=0d", «O0=0x. (2.7.16)

Finally, we note that [J is symmetric:
(Oa, B) 12 = (o, OB) 12 . (2.7.17)

The proof of these elementary properties is left to the reader (Exercise 2.7.2).

Remark 2.7.1 (Hodge decomposition) In this Remark, we assume that (M, g) is a
compact oriented n-dimensional Riemannian manifold.

Since g is Riemannian, the inner product (2.7.11) is positive definite. Then,
(2.7.15) implies that [J is positive definite and that

Oou =0 iff de =0 and d*a« =0. (2.7.18)
Since 0 = (d 4+ d*)?, we also have
ker(J) = ker(d +d*). (2.7.19)

A k-form ¢ fulfilling o = 01is called harmonic. We conclude that the only harmonic
functions on a compact connected oriented Riemannian manifold are the constant
functions. This in turn implies that if, additionally, the first de Rham cohomology of
M is trivial, then there does not exist any nontrivial harmonic 1-form on M (Exercise
2.7.3). The space of harmonic k-forms is denoted by

ANM) = {a € 2¥(M) : O =0} .

In Sect.5.7 we will see that the Hodge—Laplace operator on a compact oriented
Riemannian manifold is elliptic. The theory of elliptic operators implies that, for
any k, 5% (M) is finite-dimensional. Moreover, the following orthogonal direct sum
decomposition, called Hodge decomposition, holds.*®

Theorem 2.7.2 (Hodge Decomposition Theorem)

KMy = %M & O(R2%(M)) . (2.7.20)

46Clearly, by the elementary properties of (] proved above, the second summand can be decomposed
further, (2K (M)) = (2%~ (M) @ d* (2% (M)).
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The proof will be given in a more general context in Chap.5, see Theorem 5.7.18.
The Hodge decomposition has the following immediate consequences:

1. The natural mapping
F:"(M) - HRM), o o,

is an isomorphism, that is, every de Rham cohomology class contains a unique
harmonic form. To prove injectivity of F, take two harmonic k-forms « and S
belonging to the same cohomology class. Then, there exists a (k — 1)-form t
such that « — 8 = dr. Then,

=B l7.=(a—B,dr)pe = (d*e —d*B, 7). =0,

and thus o = B. To prove surjectivity, take an arbitrary class [«] € Hé‘R (M) and
represent it by some closed forma € Z¥(M). Then, by the Hodge decomposition
(2.7.20), there exists an element w € % (M) and a k-form 8 such that

o =ow+0g.
Since dw = 0, we have 0 = do = dd*dp and thus
(d*dB, d*dB);> = (dB,dd*dB);> = 0.

This implies d*d8 = 0 and thus ¢ = w + dd* B, showing that [w] = [«].
2. The natural pairing

Hi (M) x Hj (M) > R, ([a],[ﬁ])n—>/ anp,
M

defines an isomorphism (Poincaré duality) of Hig k(M) with the dual space of
Hig (M), ) o
Hig (M) = (Hi(M))" . (2.7.21)

To prove this, given a nonzero cohomology class [«] € HA‘R(M ), we must find
a cohomology class [8] € Hjg k(M) such that /, u @ A B # 0. For that purpose,
we choose a Riemannian metric g on M. By point 1, we may choose a harmonic
representative « of [o] which, of course, cannot vanish identically. Then, by the
third identity in (2.7.16), *« is also harmonic and thus, by (2.7.18), it is closed.
This means that x« represents a cohomology class in Hjg K(M). Pairing this
element with [«] yields

([ee], [*a]) / aAsa =]l a|?#£0.
M
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Thus, the above pairing defines an isomorphism of Hjz*(M) and (Hf(M))",
indeed. ¢

Below, we wish to prove the Weitzenboeck Formula which, combined with the the-
ory of harmonic forms, yields deep insight into the relation between curvature and
topology. It compares the Hodge—Laplace operator of (M, g) to the Bochner—Laplace
operator built from the Levi-Civita connection V of g. The basic object relating these
two quantities is the Weitzenboeck curvature operator built from the curvature endo-
morphism of V. In order to accomplish this goal, we need a unified treatment of
these objects in terms of the Koszul calculus. Thus, we consider the vector bundle
E = /\kT*M endowed with its natural fibre metric (-, -) defined above and with the
natural connection induced from the Levi-Civita connection,*” which we also denote
by V. Clearly, V is compatible with (-, -). Then, we proceed as follows:

(a) We express the Hodge dual operator d* in terms of V. Recall that d has been
already calculated in terms of V, cf. formula (2.2.49).

(b) We define the Bochner-Laplace operator and calculate it in terms of V. Since
this can be done without any modifications for an arbitrary Riemannian (or
Hermitean) vector bundle endowed with a compatible connection, we present it
for this general case. This will also be useful later on.

(c) We define the Weitzenboeck curvature operator and derive the Weitzenboeck
Formula.

(a) Let w be the connection form of V. Let e = {e;} be a local frame and let {¥/}
be its dual coframe. By (2.1.39), the local representative of w with respect to e is
given by e*o'y = I' 49/, where I'' j; are the Christoffel symbols with respect to e.

Lemma 2.7.3 Forany X € X(M) and a € 2*(M),
vag =0 s VX ko = *Vx()l . (2722)

Proof As an immediate consequence of (2.7.6), (2.1.47) and (2.2.44), for any ortho-
normal frame {e;}, we have

VeVg= (=D D Iiypt A A9 =0.

J

This proves the first assertion. To prove the second one, we act with Vx on equation
(2.7.5). Using Vxvg = 0, Vxg = 0 and once again (2.7.5), we obtain

Vxa A*B+a AVyx B = (=1 (g7 (Vxa, B) + 9 (e, VxB))vg
= VXot/\*IB—G—O[/\*VX'B,

for arbitrary forms « and 8. From this we read off the second assertion. |

47Cft. Exercise 2.1.7.
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Lemma 2.7.4 Let (M, g) be a pseudo-Riemannian manifold and let o € 2K(M).
Let {e;} be a local frame and let {$'} be its dual coframe. Then,

d*a = —g7' ®).V,a. (2.7.23)
Proof Leta € 2KM). Using (2.2.47), Lemma 2.7.3 and (2.7.10), we calculate

wdx o = (9 AV, *a)
= (D" x (%(Ve,0) A D)
= (D" (g7 @) V,,@)
_ (_1)(n7k)(k+1)+s (g—l(ﬁj)Jveja) _

Comparison with (2.7.13) yields the assertion. ]

Remark 2.7.5 Since the operator d* is intrinsically defined, formula (2.7.23) does
not depend on the choice of the frame. Using g~ (/) = g/*e, it reads

(o) (X2, ..., Xo) = —¢" (Ve, @) (e1, X2, ..., X). (2.7.24)
For some purposes, it is useful to rewrite this as
(d* ) (Xa, ..., Xp) = — (},(Va)) (X2, ..., Xp). (2.7.25)

Here, Va € I'*(T*M ® /\]‘T*M ) and tr}, means contracting the first two tensor
indices of Va with g. The quantity tr?z(V(x) is called the divergence of o and is
denoted by div3«. In this terminology, we have

d*a = —divia . (2.7.26)
In particular, for a 1-form o € 1(M), we obtain (Exercise 2.7.4)
div9(a) vg = d(g*l (a)avg) . (2.7.27)

¢

(b) Next, instead of ( /\kT*M , (-, -), V), consider any Riemannian or Hermitean
vector bundle E with a fibre metric (-, -) and a compatible connection V over a
pseudo-Riemannian manifold (M, g). As in the above special case, (-, -) and g induce
a natural L2-inner product on I"*°(E) via

(51, $2) 12 1=/ (51, 52)Vg . (2.7.28)
M

If we endow T*M with the natural fibre metric given by g~!, then we may extend
(-, -)12 to an inner product on I"*°(T*M ® E’) which we denote by the same symbol.
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We define the formal adjoint V* : I'**(T*M ® E) — I'*°(E) of V by
(s, V)12 = (Vs, 9) 12,

foranys € ’'*(E)and ¢ € I'*(T*M ® E).
Proposition 2.7.6 Forany ¢ € I'°(T*"M ® E),

Vo = —t$, (Vo).
Proof Lets € ' (E).Fora givenlocal frame {e; } and its dual coframe {%'}, decom-
pose . '
Vs =9'"QV,s, ¢=1'Qple),
and calculate
(Vs, 9) = (0" ® Vois, 07 ® 9(e))) = 97 (V5. 9(e))) .
Since V is compatible with the fibre metric, (2.6.2) implies
ei((s, p(ej)) = (Ves, 0(e))) + (s, Ve, (p(e))))

and, thus,

(Vs, 0) =" (e (s, p(e;)) — (s, Ve, ((e))))
= g" (e:({s, 9(e/)) — (s, @(Ve,e))) — (s, (Ve,0)(e))) -

Defining a 1-form 8 € 2'(M) by B(X) := (s, (X)), where X € X(M), we obtain
g” (ei((s. p(e))) — (5. 9(Ve,e))) = g7 (Ve, B)(e) = divip.
Then, (2.7.27) implies
(Vs, ) = d(@™ (B)svg) — g7 (s. (Vo))
Integrating this identity with vq and using Stokes’ Theorem, we find
(Vs, @) = — (5.9 (Va@)(e))r2 = (5, 1}, (Vo)) 12

Remark 2.7.7 By Proposition 2.7.6, V*¢ = —g'/ (Ve,¢)(e;) for any local frame {e;}
and, thus, -
Vi = g7 (¢(Vee) = Ve (9(e)))) - (2.7.29)

¢
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Definition 2.7.8 (Bochner—Laplace operator) The mapping
V*V : I'°(E) - I'™°(E)

is called the Bochner-Laplace operator.*®
By Proposition 2.7.6, we have

V*Vs = —tr},(VVs), se I'™(E), (2.7.30)

and, by (2.7.29), -
V*Vs = —g" (Vei Ve, s — Vve‘_e].s) . (2.7.31)

Moreover, since (V*Vsy, s2)12 = (Vsy, Vsa) 2 = (s, V*Vs,) 2, the Bochner—
Laplace operator is formally self-adjoint.

(c) It is convenient to consider /\kT*M as associated with the reduced bundle of
orthonormal frames O (M). Then, o is induced from the basic representation of the

orthogonal group O(r, s) of the pseudo-Euclidean metric n on R”. It acts on /\k (R™)*
via

T T
a(a)(él/\.../\sk)z((a‘l) 51)/\§2A...A.§k+...+§1A...Aék_l/\((a‘l) ék).

Identifying A*(R")* = A*R" via the metric, we obtain the representation o’ of the
Lie algebra o(r, 5) on /\k(R”)*:

I (A)E A AE)=(AEDAE A AN+ .. FE A NG A (AE),
(2.7.32)
thatis, A € o(r, s) acts as a derivation on /\k (R™)*. Accordingly, the curvature endo-
morphism form
Ry(X.Y) =1,00"(2,(X", Y"))our}!

of V is a 2-form on M with values in End( /\kT*M ) acting as a derivation. For the
convenience of the reader, we recall the following.

Remark 2.7.9 (Contraction and exterior multiplication) Let V be areal vector space
endowed with a metric n = (-, -). The contraction mapping ¢ : V* — End(A V) is
defined by ¢(£)1 = 0 and

k

LEWI A AV =D (DT E IV A LD A,

i=1

where £ € V*and vy, ..., v € V. We will also write ((§) = & . Since

LEWE) +LDuE) =0

48Some authors call it the rough Laplacian.
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for all £, ¢ € V*, by the universal property of the exterior algebra, ¢ extends to
an algebra morphism ¢ : A V* — End(/\ V). We denote the operation of exterior
multiplication with an element v € V by

eW)(a) =vAa
and note the following basic identity (Exercise 2.7.6):

eW)E) +1@E)e(v) = (§.v) - 1. (2.7.33)

Let {e;} be an orthonormal basis of V, let {19/} be the dual basis and denote & j =
e(e;) and (¥ := ((¥*). In this notation, the natural action End(V) — Der(/A V) of
End(V) by derivations on the exterior algebra,

AA(vlA---Avk)=Av1sz/\---/\vk—f—---—i-vl/\---/\vk,l/\Avk,

is given by .
A" =nl'n(e, Aepe;lt . (2.7.34)

In terms of the matrix elements A;; = 7n(e;, Ae;), we have
At = Alelk. (2.7.35)

¢

By (2.7.34), the curvature endomorphism R$ (X, 7Y) acts as a derivation on /\kT*M
as follows:
R%(ei ¢j) = 1" g(R(ei, €))en, ene'x (2.7.36)

[

where ¢/} := 'i; and where {e ;) is any local orthonormal frame.

Definition 2.7.10 The Weitzenboeck curvature operator R4 : 2K(M) — 2X(M)
of V is defined by

RYU@) (X1, ..., Xi) = D 0 (RYej. X)) (X1, ... e Xi), (27.37)

1

where X1, ..., X; € X(M) and {e;} is an arbitrary orthonormal local frame.*’

Let us calculate 934 in the frame {e¥;}. Using (2.7.36), together with the symmetry
properties of R, we obtain

49We have only made the summation over i explicit. The remaining summations are in accordance
with the Einstein summation convention.
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RA@) (X1, ... X0) = D 0 (R (ej. Xpa) (Xy, ... e, ... Xp)

1

= anlnk”g(R(ep, em)e;, Xi) (€ ) (X1, ..., e, ..., Xi)
= Z(e'”koz)(Xl, e, njlnk”g(R(e,,, em)ej, Xi)ez, v Xp)
=— Z(emkoz)(X], M Rer e Xy o X

= (nk';RA(em,el) oe ) (@ (X1, ..., Xp).

In the last step, we have used that R* is a derivation which acts trivially on zero-forms.
Using (2.7.36) once again, we obtain

R4 = R;jpe /e (2.7.38)
Now we are able to formulate the main result of the second part of this section.
Theorem 2.7.11 (Weitzenboeck Formula) Let o € 2X(M). Then,
O« = V*Va + R («). (2.7.39)

Proof We choose an orthonormal local frame {e;} and the dual coframe {#?}. Using
Lemma 2.7.4, (2.2.47), (2.1.46) and and the first equation in (2.2.44), we calculate

dd*a = —d (njlelJVeja)

=0 AV, (njle,JVeja)

= -0 A (Vg’.EIJVe/a + €4V, Ve/a) njl
€i[ (Vvq 00 — Ve, Vej(x) njl .

On the other hand, again by Lemma 2.7.4, together with (2.1.47), we obtain
d*da = d* (%' A V,,a)
=—n'e)s(Ve, (¥ A Vo))
=—n''e)s (Ve,9' A Voo + 9" AV, Vea)
=n'le, (l?i A Vv(je,.a - A Ve_/.Ve,.a)

=l (Vveje,a -V, Veia) —pllet (Vvé,j o — Ve, Vel.a) )
Adding up these two equations and using (2.7.31) yields

Oo = V*Va — nﬂei (Vei Veja - Vej Ve, o — V(Ve,-ej—%je,’)o‘) :
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Since the Levi-Civita connection is torsionless, we have V,e; — V, e; = [e;, ¢;]
and, thus, by point 2 of Remark 1.5.12 and Eqgs. (2.1.32) and (2.7.36),

O« = V*Va — njlei,(RA(e,-, ej)oz) = V*Va + R,-jkls"v"skcla.
Comparing with (2.7.38), we obtain the assertion. |

Clearly, the second term in the Weitzenboeck Formula may be analyzed in more
detail for every form degree k. To do so, recall the presentation of the Ricci tensor
in a local frame given by (2.3.27),
Ric(X,Y) = —n’g(R(X,e)Y.,e;) , X,Y € X(M). (2.7.40)
Associated with the Ricci tensor, one has the Ricci mapping
Ric: TM — TM, Ric(X) :=n"R(X,e)e; . (2.7.41)
Being an endomorphism of TM, the Ricci mapping naturally extends to a derivation
Ric” of ATM. In degree 2, it is common to denote this derivation by Ric A id. We
have
(RicAid)(X,Y) := Ric(X) A Y + X ARic(Y).
Analogously, associated with the curvature endomorphism form, one has the mapping
R: AN°TM — N°TM, X AY > ne; AR(X, Y)e; . (2.7.42)
In applications, the cases k = 1 and k = 2 are of special importance.

Corollary 2.7.12
1 For k = 1, the Weitzenboeck Formula (2.7.39) reads

Ooe = V*Va +a oRic. (2.7.43)
2 Fork =2, the Weitzenboeck Formula may be rewritten as follows:
Oa = V*Va +a o (R+ Ric Aid), (2.7.44)

where R is the mapping defined by (2.7.42).

Proof 1. Fork = 1, by (2.7.37), (2.7.36) and (2.7.41),
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R4 () (X) = 0 (R (e;, X)at) (e1)
=n"n"g(R(X, e)er, em)ot(ex)
= 7"g(Ric(X), en)a(er)
= a(Ric(X)).

2. By a similar calculation as under point 1, using additionally the algebraic
Bianchi identity (2.3.16), together with (2.1.52) and (2.3.25), one gets:

R (@) (ei, ej) = —Ryja; + Ruarj + Rijua
= a(Ric(e;), ¢;) — a(Ric(e;), e;) + n* (e, Ries, €))er)
= (e o (RicAid) +a o R)(e;, €;).

The proof of the following example is left to the reader (Exercise 2.7.5).

Example 2.7.13 For S", endowed with the canonical Riemannian metric, the map-
ping (2.7.42) is given by R = — id and the Ricci mapping reads Ric(X) = (n — 1) X.
Using (2.7.38), one finds

R =k(n —k)id (2.7.45)

on k-forms. ¢

Combining the Weitzenboeck Formula with the theory of harmonic forms, one gets
insight into the relation between curvature and topology. Let us discuss a simple
application of this type. We will write Ric > 0 if Ric,,(X, X) > Oforallm € M and
all X € T,,M, and Ric,, > 0 if Ric,,(X, X) > Oforall0 # X € T,,M.

Proposition 2.7.14 (Bochner) Let (M, Q) be an n-dimensional compact connected
and oriented Riemannian manifold with Ric > 0. Then, the following statements
hold.

1. Every harmonic 1-form « is parallel and fulfils Ric(g™" (o), g~ (@)) = 0.
2. If, additionally, Ric,, > 0 for some point m € M, then all harmonic 1-forms are
trivial.

Proof 1. By formula (2.7.43), for any o € 2Y(M), we have

(Oa, a) 2 =|| Vo ||7, + / Ric(g™" (@), 9" (@)vg.
M

If « is harmonic, then the left hand side vanishes. Since both terms on the right hand
side are non-negative, they must vanish, too.
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2. Leta € £2'(M) be harmonic. Then, it is parallel. Since, for any X € X(M),
V(e ) =Xl a ) =2(Vxa, «)

« has locally constant length. Thus, since M is connected, ¢, = 0 implies « = 0
everywhere and, therefore, the evaluation mapping & — «,, isinjective. Also by point
1, Ric(g‘l(a), g~ '(a)) = 0. Since Ric,, > 0 for some point m € M, we conclude
a,, = 0 and, by the injectivity of the evaluation mapping, o = 0. ]

From the above proof it is clear that the vector space of harmonic 1-forms has at most
dimension n. Combining this with point 1 of Remark 2.7.1 we get the following.

Corollary 2.7.15 Under the assumptions of Proposition 2.7.14 on (M, g), we have

1. IfRic > 0, then by(M) = dim Hjz (M) < n.
2. If, additionally, Ric,, > 0 for some point m € M, then by(M) = 0. |

Example 2.7.16

1. Since for the torus b1 (T") = n # 0, we conclude that this manifold does not admit
a Riemanian metric with positive Ricci curvature.

2. Using (2.7.45), for S" endowed with the canonical Riemannian metric, we get
R4 (@) = k(n — k), and thus the Weitzenboeck Formula implies [J > 0 for 0 <
k < n. Consequently, there are no nontrivial harmonic forms for 0 < k < n and
the Betti numbers of M vanish for all k # 0, n. ¢

In the remainder of this section, we show that the Weitzenboeck Formula generalizes
in a straightforward way to the case of differential forms on M with values in a
Riemannian (or Hermitean) vector bundle E endowed with a fibre metric (-, -) and a
compatible connection V. In this form, it will play a crucial role both for the study
of the instanton moduli space and for the investigation of stability of solutions to the
Yang-Mills equations.

Recall from point 2 of Remark 2.6.1 that, without loss of generality, we may
limit our attention to associated bundles £ = P xg F with fibre metrics (-, -)
induced from G-invariant inner products (-, -)r on F. First, note that the fibre
metric (-, -) induces a pairing QKM,E) x 2!(M, E) — (M) as follows.
Let @ € 2%(M, E) and B € 2'(M, E). For any m € M, we choose a local frame
si:U— E,i=1,...,dim F,onanopen neighbourhood U C M of m, decompose
a=a ®s; and B = B/ @ s, and define

(@ A B = atly A B (si(m), s;(m)) . (2.7.46)
Clearly, this definition does not depend on the choice of the local frame.
In particular, using the metric g on M and extending the Hodge-star on M to

QK(M, E) by putting s« := (xa') ® s;, we obtain a pairing

QKM E) x Q¥M,E) — 2"(M), (a,B) > aA xB. (2.7.47)
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The latter can be used to define an L2-inner product®® on 2%(M, E),
(@, B) 2 ;:/ QA xB. (2.7.48)
M

Decomposing & = «;9" and 8 = 8,97 with respect to a local orthonormal coframe
{#!} in the bundle of k-forms on M, we have

a A kB = (s, B0 A =n" (ar, B1) v . (2.7.49)

This shows that to the above pairing, there corresponds a natural inner product on
QK(M, E) given by the tensor product of the fibre metric (-, -) with the fibre metric
n'/in 2%(M).If (-, -) is positive definite and g is Riemannian, then this inner product
is positive definite.

Remark 2.7.17 Let& € 2%, (P, F) andﬁ e 2L (P, F) be the horizontal forms

o,hor o,hor

correspondingtoa € 2¥(M, E)and B € 2! (M, E) according to Proposition 1.2.12.
Then, one easily shows (Exercise 2.7.7)

GAB=n*(APp). (2.7.50)

¢

Next, recall the covariant exterior derivative d,o : 2X(M, E) — 2%*'(M, E) asso-
ciated with the connection form w of V, cf. Definition 1.5.1. We define its dual
o : QKY(M, E) — 2K(M, E) in the sense of Hodge by

(@, d}B)2 = (doa, B2, (2.7.51)
fora € 2¥(M, E)and B € 251(M, E). The operator d will be called the covariant
exterior coderivative. Note that, given this operator, we have a natural generalization
of the Hodge-Laplacian, cf. (2.7.14),

O, :=d,od* +d* od, : 2YM,E)— QYM,E). (2.7.52)
Proposition 2.7.18 Fora € 2%(M, E),
dfa = ()" DTy d, s a. (2.7.53)

Proof Using (2.7.50), (1.5.1) and the G-invariance of (-, -)r, for 8 € 2! (M, E),
we calculate

50 Again, we must restrict ourselves to square-integrable forms. In particular, we may consider forms
with compact support.
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7 (dpa A % B) = Do A xB
= (d& + o'(w) A &) A B
=d@A*p) — (=@ A (dxB + o' (w) A %B)
=d@A*p) — (-1)*@ A D,(xB)
=x* (d@A xB)) — (—D*7* (@ Ad, x B).

Thus,
dya A xf=d@A *xB) — (=D aAd, % B.

Integrating this identity over M, using Stokes’ Theorem, we obtain
(doe, B2 = (o, (=) F xedy % B) 2.
Comparing with (2.7.51), we read off the assertion. |

As above, we need a unified description in terms of the Koszul calculus. For that
purpose, it will be convenient to view the space £2¥(M, E) as follows. Denote

TSr :R"@ o ®Rn ®Rn*® S ®Rn*

Consider the fibre product®’ O (M) x; P over M with structure group O(k, [) x G
and the associated bundle with typical fibre 7] ® F,

E,, = (0OM) xy P) xowxnxc (T, @ F),

which is clearly isomorphic to the tensor product T} (M) ® E of vector bundles. The
left actions of O(k,[) and G on 7, and F are denoted by u and o, respectively.
By Remark 1.3.17, the Levi-Civita connection form @’ on O (M) and the gauge
connection form w on P induce a connection form w’ + w on O(M) x P, cf.
(1.3.16).5% As usual, we denote the induced covariant exterior derivative acting on
.Q(k#ﬁ).hor(O(M) Xy P, T/ ® F)by D(u0t4),its counterpart acting on KM, E.y)
by d(.»+v) and the corresponding covariant derivative acting on sections of E, ; by
V@ +©) By the general theory,

Dyto® = d® + (1 (0°) ® idF +idr ®0'(w)) 0 D, (2.7.54)

cf. (1.4.2). Clearly, u'(0°) ® idr +id7r ®0'(w) must be viewed as a 1-form on
Q xy P with values in End(7] ® F). It is obtained by differentiating the tensor
product representation 4 ® o. Moreover, Q(ku,a),hor(O(M ) xy P, T] ® F) may be
viewed as a subspace of

SICf. Remark 1.1.9/2.
32For simplicity, we omit the canonical projections onto O (M) and P, respectively.
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Homou,nx6(O(M) xy P, T ; ® F)

consisting of those elements whose last k covariant tensor indices are anti-symmetric.

By Proposition 1.2.12, the latter space in turn may be identified with I"*°(E, s4).

Elements of this space may be viewed as tensor fields of type (r, s + k) on M with

values in the associated bundle E. In particular, we get the following identification:

KM, E) = 2%(M, Eqg) . (2.7.55)

Now, the generalization of the Weitzenboeck Formula is straightforward. First, for
(r, s) = (0, 0), the action u is trivial and hence (2.7.54) implies

Aot = dpa, d?wv+w)0‘ =dla,
for any a € 2¥(M, E). This implies
o = Dweto) - (2.7.56)

Lemma 2.7.19 Leta € 2X(M, E). Then, under the identification (2.7.55),

doa(Xo. ... X)) = D (=) (v)((”j’*“’)a) (Xo. .7 Xp) . (2.7.57)
J
() Xz, X)) = = > 0! (v;;v"w)a) (&1, X .. X0) (2.7.58)

il
for Xg, ..., Xy € X(M) and {e;} being an orthonormal frame on (M, Q).

We note the following immediate consequence of (2.7.57):

dyo = Z AV (2.7.59)
J

where {7} is the coframe dual to {e;}.

Proof To prove (2.7.57), it is enough to consider elements « = ¢ ® 8, where ¢ €
I'™(E) and B € 2¥(M). Then, again using that the action  is trivial, for the left
hand side of (2.7.57) we get

dot = dpp A B+ @dB.

To analyze the right hand side, we use the derivation property of the covariant deriv-
ative,
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V)((erw)(X:V;?(ﬁ@ﬁ—l-(p@V;‘()ﬂﬂ_

This, together with formula (2.2.49), implies the assertion.
The proof of (2.7.58) is analogous to the proof of (2.7.23). We replace d by d,,
and use (2.7.59). |

Now, by the same calculation as in the proof of Theorem 2.7.11, we obtain the
following Generalized Weitzenboeck Formula

* il V4o
Dwa = (V(w0+w)) v(wo-f-w)a + n_]lell(RV( )(ej, ei)a) ’ (2760)

(1)0 w) . . . .
where RV ™ is the curvature endomorphism form of the connection w° + w given
by (1.5.13). Here, it reads

(AJU ),
RV (X, Y) =, 0 {1/ (22(X", ") @ id +id ®0" (2, (X", Y")} 01",

where m e M, z e = '(m) C OM) xy P, X,Y € T,,M and X" and Y" are the

horizontal lifts of X and Y to z, respectively. Clearly, by the additivity of RV" . the
second term on the right hand side of (2.7.60) is the sum of the Weitzenboeck cur-
vature operators for the representations p and o, respectively, cf. Definition 2.7.10.
This yields the following.

Theorem 2.7.20 (Generalized Weitzenboeck Formula) For o € Q2%(M, E),
Lo = (v(w0+w))*v(wu+w)a + mV“’” (@) + RV’ (@). (2.7.61)

As above, formula (2.7.61) may be analyzed degreewise. Clearly, the terms coming
from the Levi-Civita connection are identical with those in Corollary 2.7.12. Thus,
we obtain the following.

Corollary 2.7.21
1. Fora € 2Y(M, E), the Weitzenboeck Formula (2.7.61) reads

Opa = (V@*)' V94 4o o Ric + RV () . (2.7.62)
2. Fora € Q*(M, E), formula (2.7.61) may be rewritten as follows:
o = (VOH)' VO 4 oo (R+Ric Aid) + R (@),  (2.7.63)

The Generalized Weitenboeck Formula will be taken up again in Example 5.6.7.
There, it will be discussed from the point of view of Dirac operator theory. It will
play a basic role in the analysis of the stability of Yang-Mills connections.
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Exercises
2.7.1 Prove the formulae (2.7.8)—(2.7.10).
2.7.2 Prove the identities contained in (2.7.15)—(2.7.17).

2.7.3 Prove that on a compact connected oriented Riemannian manifold fulfilling
H (M) = 0 there does not exist any nontrivial harmonic 1-form. Construct a non-
trivial harmonic 1-form on the 2-torus T? C R%.

2.7.4 Prove formula (2.7.27).
2.7.5 Prove the statements of Example 2.7.13.
2.7.6 Prove formula (2.7.33).
2.7.7 Prove formula (2.7.50).

2.8 Four-Dimensional Riemannian Geometry. Self-duality

In this section, we deal with 4-dimensional (oriented) Riemannian manifolds. We
will show that, in contrast to other dimensions, they admit a rich additional structure.
Let us explain the reason for that. Given an oriented Riemannian manifold (M, g),
we know from Sect.2.4 that g yields a reduction of the frame bundle L(M) to the
principal SO(4)-bundle O, (M) of oriented orthonormal frames. Correspondingly,
all tensor bundles over M become associated with O (M) with their typical fibres
carrying representations of SO(4). Now, among all rotation groups, SO(4) is the
unique group which is not simple. This has striking consequences, as we will see
below. Recall from Example 1/5.1.10 the isomorphism

Sp(1) = SUQ), a=z+jwrs [fv _ZW} , 2.8.1)

where we have identified C with span{1, i} C Hand H with C? by writing quaternions
in the form z + jw with z, w € C. Also recall from Example 1/5.1.11 that Sp(1) and
Sp(1) x Sp(1) are the universal (two-fold) covering groups>® of SO(3) and SO(4),
respectively. Denoting by ¢ : Sp(1) — Sp(1) x Sp(1) the diagonal embedding, we
have the following commutative diagram

Sp(1) ———=Sp(1) x Sp(1) (2.8.2)

l |

SO(3) ——— = S04)

33In Chap. 5, we will see that these are the spin groups in 3 and 4 dimensions, respectively.
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This fact reduces the representation theory of SO(4) to that of Sp(1). By the isomor-
phism Sp(1) = SU(2), we are led to consider complex representations built from the
basic representation of SU(2) on V = C?. By a standard theorem in representation
theory [689], up to isomorphisms, the set of irreducible complex SU(2)-modules is

{S'V:r=>0},

where SV denotes the subspace of @V of totally symmetric tensors. Equivalently,
this subspace may be identified with the space of homogeneous polynomials of
degree r in two variables. Thus, dimc(S" V) = r 4 1. Moreover,

min(p,q)

S'VesIVE P osrtry. (2.8.3)
r=0

Note that S?V is the (complexified) adjoint representation space.
Now, any complex SO(4)-module (W, o) may be viewed as an (Sp(1) x Sp(1))-
module via the mapping

oo f: Sp(l) xSp(l) — Aut(W).

Let us denote the basic representation spaces corresponding to the first and the
second factor in Sp(1) x Sp(1), respectively, by V. and V_. Then, again, by standard
representation theory, the irreducible complex (Sp(1) x Sp(1))-modules are given
by

SPl =8PV, ®S1V_, p,q=0. (2.8.4)

Clearly, an irreducible representation Sp(1) x Sp(1) — Aut(S”:?) factors through
the covering homomorphism f, giving a representation of SO(4), iff p + g is even.
Moreover, in that case, S”9 is the complexification of a real representation which
we denote by /7. It is common to call S the real representation underlying S?9.
Also note that

dimc ($77) = dimg(S7) = (p+ D@+ 1).

In particular, the basic complex SO(4)-module is S'"' = V, ® V_. We denote T :=

S!!and write T* for the dual (contragredient) representation space. Clearly, we may
use the Euclidean metric on T to identify T = T*. Now, calculating (Exercise 2.8.1)

NTz= NV eV = (S e AV ) e (AV. e sV )
and using that /\2V is the trivial Sp(1)-module, we obtain

NTE = SV, @ S2V_. (2.8.5)
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Since S?V is the adjoint representation of Sp(1), /\2Té‘ is the (complexified) adjoint
representation space of SO(4) with (2.8.5) corresponding to the Lie algebra decompo-
sition s0(4, C) = s0(3, C) @ s0(3, C). Thus, we have the underlying isomorphism
of real representations

NT* = 520 g 502 (2.8.6)

corresponding to the decomposition s0(4) = s0(3) @ s0(3).

Next, we will relate the above decompositions to the Hodge star operator. Thus,
letx: A'T* — /\47rT* be the Hodge star operator with respect to the Euclidean
metric on 7. By Proposition 1/4.5.3,

* 0% = id/\zT* , (2.8.7)

that is, on two-forms, the Hodge star operator is an involution. Thus, we may decom-
pose /\ZT* into an orthogonal direct sum of eigenspaces of * corresponding to the
eigenvalues %1,

NT =N, T &N _T*. (2.8.8)

Elements of /\iT* are called self-dual and elements of /\Z_T* are called anti-self-
dual. Since the Hodge star operator is invariant under the action of SO(4), the sub-
spaces /\iT* are SO(4)-invariant and, thus, they coincide with the direct summands
in (2.8.6),

N LTH =820, NP T =502, (2.8.9)

For the corresponding complexifications, we get
N TE =82V, N _TE =SV (2.8.10)

Remark 2.8.1

1. Let 9!, ..., 9% be an oriented orthonormal basis in T*. Then, the irreducible
subspaces /\iT* are spanned by

oL (@' AT £ A9Y),

@ (@' A9 F 02 ADY),

(@' At £ 92 A7),

W
S-Sl Sl

o1
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2. In the same way as above, we can calculate

SPTE = SH (VL@ Vo)
= (S2V, @ SPVO) @ (A Ve ® A\*Vo)
=SV sVoecC.

Thus, using (2.8.10),
ST = N, T* @ N T, (2.8.11)
where the subindex zero refers to tracelessness. ¢

Comparison of the decompositions (2.8.8) with (2.2.16) yields the following deep
insight. Let 7* be endowed with the complex structure>*

|4 0
s=[33])-
where J; is the standard complex structure on R?. With respect to this structure, the
decomposition (2.2.16) reads

N'TE = (/\2’°T(5 ) /\"’ZTg) o AT (2.8.12)

As already noted, the left hand side may be identified with the Lie algebra o(4, C).
In analogy to (2.2.22), J induces an embedding U(2) C SO(4) and the summands on
the right hand side of (2.8.12) carry representations of U(2). Observe that the almost
symplectic form B defined by (2.2.26) belongs to /\”Té‘ and is U(2)-invariant.
Thus, we have an orthogonal decomposition

AVTE = Ce AT

into U(2)-irreducible components. By dimension counting, /\é’ng =512, C) (the
complexification of su(2)) and, thus, (2.8.12) corresponds to the complexification
of the Lie algebra decomposition 0(4) = R @ su(2) & m, cf. point 3 of Example
2.5.27.

Lemma 2.8.2 We have
ANL.Ti=Ce (/\2-°Tg ® /\O’ZTE) NI = AT (2.8.13)

Proof Let {ey, ..., e4} be the standard basis in the basic SO(4)-module T = R* and
let {9, ..., 9%} be the dual basis in T*. Clearly, /\l’oTék is spanned by

54This choice is made in order to be compatible with standard conventions in gauge theory. It is
obtained by combining the standard complex structure Jo on R* with the transformation defined by
permuting the standard basis vectors e, and e3. Beware that J and Jy induce different orientations.



2.8 Four-Dimensional Riemannian Geometry. Self-duality 185
vl =o' +i0?, y2=0+i9*.

Now, using point 1 of Remark 2.8.1, we express the generators of the U(n)-modules
on the right hand side of (2.8.12) in terms of the bases {¢’.} of /\iT*:

1 _ _
S AP P AT =L,
v Ay =9 tigl,
YAyt =t —igl,
1 _ i
El(l/flAlﬂl—WzAlﬁz):wl_,
YAy =9 —ig?,
VAP =—¢2 +igl.
m

Corollary 2.8.3 A 2-form on R* is anti-self-dual iff it is of type (1, 1) for all com-
patible complex structures. |

As we will see, the following lemma is of basic importance in 4-dimensional Rie-
mannian geometry [592].

Lemma 2.8.4 We have
% (/\ZT*) > §00 gy §00 @y §22 @y §40 @ §04 (2.8.14)
Proof Using (2.8.8), we calculate
52 (/\iT* @ /\Z_T*) = 52 (/\iT*) ® (/\iT* ® /\Z_T*) % (/\2_T*) .

By (2.8.9), the second term on the right hand side corresponds to S*2. The complex-
ification of the first term corresponds via (2.8.10) to the symmetric component of
S?V, ® SV, and thus has complex dimension 6. By (2.8.3),

S2V+ ® 52V+ - S4V+ @ SZV+ @ S0V+ .

By counting dimensions, we find that the symmetric component corresponds to
S*V, @ S°V,. It follows that

s? (/\iT*) =50 s> (2.8.15)

and, analogously, S2 (/\iT*) = 8% @ §90. [ |
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Now, we can apply the above results to the 4-dimensional Riemannian manifold
(M, g). By Proposition 1/4.5.3, the Hodge star operator is an isometric involution on
the bundle of two forms, that is, * : /\2T*M — /\ZT*M fulfils
kok =idpopy, . (e, %B) 2 = (o, )12, (2.8.16)
and, corresponding to (2.8.8), we have the splitting
NTM =N T"M& N\ _TM. (2.8.17)
Clearly, the decomposition (2.8.17) implies a decomposition of 2-forms on M,
QM) = Q23(M) ® 22(M). (2.8.18)
Thus, any & € £2?(M) may be decomposed as follows:
a=a"+a", x¢T=a", xa =—a, (2.8.19)

where ot = %(a + *a). Elements of .Qi (M) are called self-dual and elements of
22 (M) are called anti-self-dual 2-forms. Finally, for a local oriented orthonormal

frame 9!, ..., 9% in \'T*M, the subbundles A% T*M are locally spanned by {¢’. }
given by the same formulae as in Remark 2.8.1/2.
Next, let us consider the Riemann curvature endomorphism form

R e £2%(M, End(TM))
of (M, g). By Remark 2.3.7, pointwise, it may be viewed as a symmetric endomor-
phism of A\°T* M,
Rm) € §? (/\2T;;M) . (2.8.20)
Correspondingly, for every u € O(M), it may be viewed as an element
2w e N (R @ A\’ ([®) =5 (AN (RY)) . (2.8.21)
We wish to derive the counterpart of the general decomposition formula (2.3.21) for

n = 4. Here, according to the additional structures at a our disposal, this can be done
in two different ways. First, using (2.8.17), we can write

R(m) = [ ;T g] ) (2.8.22)
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Here, B € Hom(A>T;, M, \>T: M), A € End(\2 T}, M)and C € End(\>T;,M).
Since R(m) € S%( /\sz‘n M), both A and C are symmetric endomorphisms. Note that
BT is the adjoint of B.

Lemma 2.8.5 We have |
trA=trC=—-Sc,
4

where Sc denotes the scalar curvature of V.
Proof This is a simple exercise which we leave to the reader (Exercise 2.8.2). W

Remark 2.8.6 'We show that the decomposition (2.8.22) corresponds to the decom-
position of S%( /\2T*) into irreducible components of SO(4) given by Lemma 2.8.4,
with one of the two §%° = R-summands removed. For that purpose, we choose an
orthonormal basis in T,, M and use it to identify T,,M with T. Using (2.8.15), we
obtain

Aes? (/\ir*) =S50 @ S0 Cestte s,

Moreover,
B € Hom (/\Z_T*, /\iT*) > §20 @ §02 = §22

Finally, by Lemma 2.8.5, one of the summands S?*O is removed and we obtain the
following 4-dimensional counterpart of the decomposition (2.3.21) of the space of
Riemann curvatures

Am) =" ® $*?* @ sH0 @ $™,

with

R(m)=(rA,B,A—3trA,C —trC). (2.8.23)
This result belongs to Singer and Thorpe [592]. ¢
We denote

Wi :=A—1trA, W_:=C—-3uC, (2.8.24)
and call

. W+ O
we [ 0]

the Weyl tensor. Note that Wy : A7 — A3 are symmetric endomorphisms with
vanishing trace. Summarizing the above discussion, we obtain the following.

Theorem 2.8.7 (Singer-Thorpe) The Riemann curvature R of an oriented 4-
dimensional Riemannian manifold defines a symmetric endomorphism of /\ZT*M
which decomposes as

R=-11%]p70

Sc 0 B
12

} +W. (2.8.25)
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The statements of the following remark are left as an exercise to the reader
(Exercise 2.8.3).

Remark 2.8.8 In alocal orthonormal frame on M, the decomposition (2.8.25) reads
as follows:

Sc 1
Riju = ?(5,'15[/{ — 88ir) + E(Riz3jk + Rjidir — Riedji — Rjdix) + Wijua ,

(2.8.26)
where R;; are the components of the Ricci tensor. Clearly, the Weyl tensor W; i =
g(W(e;, e;)ex, e;) inherits the properties (2.3.15) from the curvature tensor. By con-
struction, we have >, W;jr; = 0. .

Definition 2.8.9 An oriented Riemannian 4-manifold is called self-dual or anti-self-
dual if, respectively, W_ =0 or W, = 0.

By direct inspection of (2.8.26), one can check that M is Einstein if B = 0.

Example 2.8.10

1. The manifolds S*, S' x S? and T*, endowed with their natural metrics, have a
vanishing Weyl tensor and are, thus, both self-dual and anti-self-dual (Exercise
2.8.4).

2. CP? with its standard metric and orientation is self-dual. For a detailed proof we
refer to [689]. ¢

Exercises

2.8.1 Prove formula (2.8.5). Hint. Construct explicit bases for the occuring repre-
sentation spaces.

2.8.2 Prove Lemma 2.8.5.
2.8.3 Prove the statements of Remark 2.8.8.

2.8.4 Prove the statements of Example 2.8.10/1.
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