Chapter 2

Protein Structures, Interactions
and Function from Evolutionary
Couplings

Thomas A. Hopf and Debora S. Marks

Abstract The sequences of biomolecules such as proteins and RNA genes contain
information about their three-dimensional states and functions. For over 40 years
biologists have used the evolutionary conservation of this information to detect
homology and predict important subsets of residues. Recent work has substantially
extended this view of conservation by including the detection of evolutionary
couplings, interactions, between residues, resulting in a paradigm shift in our ability
to compute three-dimensional structures from sequences alone. In addition to
three-dimensional structure of single proteins and RNA, this statistical analysis
of evolutionary constraints can identify functional residues involved in ligand
binding, biomolecule-interactions, alternative ensembles of conformations, “invis-
ible” tertiary states of disordered proteins and allows quantitative prediction of
effects of mutations. In this chapter we present an overview of the statistical
inference methodologies, a survey of the resulting applications and challenges
facing the field.
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2.1 Introduction

Three-dimensional structure information is missing for a large fraction of known
proteins and protein interactions, as experimental structure determination remains
low-throughput whilst sequence databases grow exponentially. For instance, only
about 50% of Pfam families have a solved structure for any of the family members
(Finn et al. 2016) while structural coverage outside of conserved domains is even
lower (Perdigao et al. 2015). Similarly, 60-80% of the approx. 10,000 and 40,000
heteromultimeric interactions in E. coli and human, respectively, have not yet been
characterized structurally (Rajagopala et al. 2014; Mosca et al. 2014). The sustained
effort to discover computational methods that have the potential to bypass the need
for one-by-one experimental approaches is therefore motivated by this large
experimental bottleneck. Comparative modelling transfers the coordinates from a
solved protein to a target with similar sequence, based on the observation that the
3D folds of proteins remain conserved even as their amino acid sequences diverge
(Webb and Sali 2014) (see also Chap. 4). In cases where no sequence-similar
structural template can be identified, de novo fragment assembly methods (Qian
et al. 2007) or even ab initio approaches using molecular force fields
(Lindorff-Larsen et al. 2011) are an alternative for small proteins (<150 residues)
(see also Chap 1). The applicability of these methods is however limited by the
enormous size of conformational space that has to be searched as well as the
accuracy of the available empirical force fields.

A conceptually different way of approaching the protein structure prediction
problem is to mine the information contained in sequences. The evolutionary con-
straint to maintain residue interactions required for stable and functional proteins
causes the coevolution of contacting amino acids. The idea therefore seems simple—
find covarying positions in aligned protein sequences to identify residue pairs that
correspond to physical contacts in the 3D structure, by analogy to the successful use
of this approach in determining RNA secondary structure (Gutell et al. 1992). If
correct, and if sufficient, these covarying residues could be transformed into distance
constraints to construct 3D models, in a similar way to distances used in NMR
structure determination.

However local covariation models applied to protein sequences did not con-
sistently detect residues close in 3D (Shindyalov et al. 1994; Neher 1994; Gobel
et al. 1994) despite some successful applications that showed enrichment of
interacting residues (Skerker et al. (2008), Pazos et al. (1997)) or identification of
contacts across proteins using additional biological information (Skerker et al.
2008). The apparent inability of these early covariance models to systematically
identify contacting residues was attributed to a number of different reasons,
including a loss of signal due to phylogenetic dependencies, the limited availability
of sequence data and even the idea that we should not expect that truly coevolved
residues are (mostly) close (Lapedes et al. 2012, 1997). Rather surprisingly, it
turned out that changing the underlying model used to compute the couplings was
the key innovation needed. This is because raw covariation frequencies or mutual
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information between pairs of positions are dominated by ‘indirect’ transitive cor-
relations, i.e. non-causal correlations between residues positions can be induced by
a chaining of causal correlations between intervening residues positions. In a
heterogeneous network, such as residues in a protein, these non-causal correlations
can appear stronger than causal direct correlations, a well-understood feature of the
Ising model in statistical physics where true correlations produce apparent
long-range correlation at a distance (Giraud et al. 1999). The solution to this is to
use a class of global probability models known as Potts model (a maximum entropy
model) in statistical physics (Giraud et al. 1999; Lapedes et al. 1997; Ben-Naim and
Lapedes 1999; Lapedes et al. 2012) and Markov Random Fields (an undirected
graphical model) in computer science (Koller and Friedman 2009). Using these
models the dependencies of types of amino acids in pairs of positions are computed
simultaneously and consistently, rather than analysing pairs of positions indepen-
dently of each other.

Application of these global statistical models was the key innovation in the
identification of evolutionary couplings between pairs of positions in multiple
sequence alignments that corresponded to contacting residues (Hopf et al. 2012;
Marks et al. 2011, 2012; Morcos et al. 2011; Jones et al. 2012; Balakrishnan et al.
2011; Ekeberg et al. 2013; Lapedes et al. 2012; Michel et al. 2014). A retrospective
analysis showed that even sequence data from 1999 PFAM family alignments was
sufficient to infer large number of accurate residue contacts with the maximum
entropy model for a few protein families (Marks et al. 2011). A pioneering
Bayesian approach (Burger and van Nimwegen 2010, 2008) had some success but
predictions were not as accurate with respect to residue proximity (Marks et al.
2011) and the use of belief propagation for parameter inference (Weigt et al. 2009)
was computationally intractable for all but the smallest proteins. Although the
methods required a sufficient number of sequences that diverged under functional
selection, global statistical probability approaches such as those in Tables 2.1 and
2.2 provided a chance to obtain detailed structural and functional information for
unsolved proteins of biological interest that was unprecedented.

Predicted contacts derived from evolutionary couplings have allowed the de
novo prediction of protein 3D structures even for large molecules beyond the scope
of previous approaches (Hopf et al. 2012; Marks et al. 2011, 2012; Hopf et al.
2015b; Ovchinnikov et al. 2014, 2015; Michel et al. 2014; Kosciolek and Jones
2014; Sulkowska et al. 2012) their complexes (Ovchinnikov et al. 2014; Hopf et al.
2014), multimeric contacts (Hopf et al. 2012; dos Santos et al. 2015), alternative
conformations (Hopf et al. 2012; Toth-Petroczy et al. 2016; Morcos et al. 2013),
and even the ability to predict structured states of apparently-disordered proteins
(Toth-Petroczy et al. 2016). Many of these reports show, at least anecdotally, that
evolutionary couplings models are able to identify functionally constrained residues
over and above single column conservation and, most recently, the model has been
used to make quantitative prediction of mutational changes in proteins (Hopf et al.
2017; Mann et al. 2014; Figliuzzi et al. 2016). In this chapter, we briefly describe
the theoretical approach that underlies the methods, survey the most impactful
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applications and finally suggest challenges for the future, some of which might be
solved by the time you read this!

2.2 Evolutionary Couplings from Sequence Alignments

The basis of coevolution-based structure and function prediction methods is the
quantification of evolutionary couplings between all amino acid types in all pairs of
sites derived from a multiple sequence alignment of the protein family (Fig. 2.1).
These evolutionary couplings open up a wide variety of applications (Fig. 2.2).

2.2.1 The Global Model

To avoid indirect correlations of residues pairs (as described above), global
methods infer a probabilistic description of the sequence alignment that explains the
observed correlations using underlying causative couplings between positions.
These couplings are inferred by maximising the likelihood of observing the
sequences in the alignment under the maximum entropy/Markov random field
probability model.

Pairwise couplings are computed between amino acids to limit the number of
model parameters to O(N°), but models of higher order (e.g. triples) are in principle
possible given large enough protein families.

Under the pairwise graphical model the probability of any amino acid sequence
o= (0, ..., g,) of length N is defined as

Y ™,
4 =
Observation 4
b d
(_ ' 4
Statistical :
inference . s
F_lesidue contact Coevolution of residues in
in 3D structure protein family sequence alignment

Fig. 2.1 Residue interactions leave a coevolutionary record in protein sequences. The
evolutionary constraint to maintain residue interactions, e.g. required for stable protein structures
or complex formation with other molecules, creates a record of amino acid covariation in protein
family sequence alignments. Mining this sequence record for residue pairs with strong
evolutionary couplings using global statistical models opens a window to protein structure and
function prediction (adapted from Hopf 2016, 2015b)
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Fig. 2.2 Applications of evolutionary couplings to predict protein structure and function.
Evolutionary couplings allow to predict diverse aspects of protein structure and function that are
defined by evolutionarily constrained interactions between residues, including the structures of
monomers and complexes and changes in conformation. The approach can also be readily applied
to other types of biomolecules, such as RNA, and used to quantify the phenotypic consequences of
mutations with explicit modeling of epistatic interactions to the rest of the sequence (adapted from
Marks et al. 2012)

The model has two types of parameters that describe the constraint on acceptable
amino acid configurations ¢; and o¢; at sites i and j: bias terms h; (single-site
conservation) and pair couplings J;; (co conservation between pairs of sites i, j).
Each variable ¢; can assume one of the 20 amino acids as a value (most existing
approaches treat gaps in the alignment as an additional 21st character, unless
modelled as missing data). The partition function Z is defined as

Z = Zexp Zh o; —1—2 Z J,] a,,aj

i=1 j=i+1

It sums over all possible 21N sequences ¢ = (g, ..., ay) of length N and ensures
that P(c) is a valid probability distribution. Due to the exponential number of
summations, calculating Z is intractable for our application domain and we use a
method that approximates Z using a factorization (see below).

To identify evolutionary constraints from an alignment, the inverse problem of
inferring the model parameters from sequences has to be solved. Once the
parameters are inferred, the pair couplings J;; can be used to quantify the strength of
evolutionary coupling between pairs of sites i and j.
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Parameter inference. All the widely used current methods use an approximation
to maximum likelihood estimation, which finds the set of parameters that maxi-
mizes the probability of observing the data. For the pairwise probability model
defined above and a sequence alignment X with sequences o, the likelihood
function L(h,J) of the model parameters 4 and J is given by

L(h,J) =P(2[h,J) = [[ P(c|h,J)

1 ocX N . y
= h; i i
(gZ(h J)exp<; (0:) + z:: :z: (0,0 )

However, since straightforward calculation of the likelihood function is pro-
hibited by the intractability of Z(h,J), several approaches have been taken to
approximate parameter inference. These include gradient ascent with Monte Carlo
sampling (Lapedes et al. 2012), message passing (Weigt et al. 2009) and mean-field
(Marks et al. 2011; Morcos et al. 2011; Michel et al. 2014; Jones et al. 2012; Stein
et al. 2015), but most current applications use pseudo-likelihood approximations to
the full likelihood (Besag 1975; Balakrishnan et al. 2011; Ekeberg et al. 2013;
Kamisetty et al. 2013; Michel et al. 2014; Hopf et al. 2015a, b; 2014; Toth-Petroczy
et al. 2016; Weinreb et al. 2016; Ovchinnikov et al. 2014, 2015).

When adopting the pseudo-likelihood maximization (PLM) approach, the full
likelihood for each sequence ¢ = (g, ..., g,) is approximated by a product of
conditional likelihoods for each site i, i.e.

N
P(oy,...,on|h,])) = HP(ai\a\ai,h,J)
i=1

The conditioning of the probability to observe a selected amino acid o; in site
i on the rest of the sequence (o \ g;) leads to the cancellation of the global partition
function Z(h,J). Instead, the pseudo-likelihood normalizes locally over all possible
21 amino acid configurations at each site i. This factorization of the full likelihood
function reduces the computational complexity of the parameter inference from
O(21™) to O(|Z|N?). The set of parameters minimizing the pseudo-likelihood is
identified using standard iterative optimization algorithms.

Regularization. In addition, all published methods use some form of regular-
ization to avoid overfitting to the data, as there are orders of magnitude more
parameters in the model than there are effectively-independent samples (Number of
parameters = N (N-1)/2 (q-1)> + N(g-1) for protein length N and ¢ = 21 amino acid
states). For example, the model has approximately 2*10° parameters for a protein of
length N = 100 whereas most protein families only contain 10* to 10° effective (i.e.
redundancy-reduced) sequences. This gap increases quadratically as the protein
length N increases. The EVcouplings method and others (Kamisetty et al. 2013)
typically employ parameter type-specific l,-regularization (equivalent to a Gaussian
prior) while the mean-field methods uses pseudocounts (Marks et al. 2011; Morcos
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et al. 2011) and sparse inverse covariance method uses 1; (Jones et al. 2012).
Finally, since the phylogenetic relationships between sequences mean that they are
not independent and identically distributed, most methods for computing evolu-
tionary couplings methods address the issue by sequence reweighting schemes
(Weigt et al. 2009; Marks et al. 2011; Morcos et al. 2011; Ekeberg et al. 2013) and
we expect this approach to be improved in the future to account more quantitatively
for phylogenetic tree structure.

Positional constraints from evolutionary couplings

After inference, the coupling parameter matrices J; contain the family-specific
constraints on all 20 x 20 amino acid pair configurations g; and g; for each possible
combination of positions i and j. The last remaining step in the calculation of
positional constraints from the evolutionary couplings between pairs of sites is to
summarize the 20 numbers in each Ji; matrix into a single number that quantifies
the total coupling for pair (i, j). The preferred method for this summary statistic is
the Frobenius norm.

Of each coupling matrix J;; (after first centring the means of rows and columns
around zero, J,fj)

J/ij(kv )= Jij(kv 1) — Jl](» 1) — Jij(k’ ) +Jij('7 )

where - means average across these entries,

FNGij) = Jill= /D2 dik. )’

which sums across all 212 amino acid combinations k 1.

Since the J;; parameters summarized in the FN matrix are confounded by factors
such as finite sampling and phylogenetic relationships between samples, the
empirically derived average product correction (APC) is applied to the FN matrix
to remove background coupling that arises due to noise (Dunn et al. 2008; Jones
et al. 2012; Ekeberg et al. 2013). The correction assumes that, on average, each site
should only have couplings to a limited subset of all sites. For each site pair (i, j),
the APC therefore approximates the noise (background coupling of both sites) with
the product of the row and column averages of the FN score matrix (*) and subtracts
these from the raw pair scores FN(i, j):

. . FN(i,-)FN(-.j)
EC(Z?]) - FN(lvj) FN(-, )

The final result after applying the correction is the symmetric N x N evolutionary
coupling score matrix (N = length of protein). Each entry EC(i, j) estimates the
strength of evolutionary coupling between a pair of sites (i, j): larger positive values
indicate strong evolutionary co-constraints; values around zero indicate that the
model could not detect any coupling. The most significant evolutionary couplings
can then be selected based on the shape of the score distribution by estimating the
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degree to which each pair score is an outlier (Hopf et al. 2014; Ovchinnikov et al.
2014; Toth-Petroczy et al. 2016).

2.3 Three-Dimensional Protein Structures
from Evolutionary Couplings

Starting from evolutionary couplings inferred from sequence alignments of protein
families, one could then test if the couplings provide sufficient information to
predict the 3D structure of proteins (Fig. 2.3a). The first publication on proteins
folded with evolutionary couplings was using the EVfold method in 2011, and
included a diverse set of proteins from 15 families (Marks et al. 2011). The
resulting computed 3D structures were typically within 3-5 A Co-RMSD from the
known experimental structures of these proteins. To our knowledge, this was the
first time longer proteins, including some with more than 200 residues, had been
folded without comparative modelling, fragments or known long-range contacts to
anywhere near this degree of accuracy. Initially, the approach for computing cou-
plings from the sequence alignment was based on a mean field approximation to
find the parameters of the maximum entropy model, which was later updated to the
more accurate PLM method described above. 3D structures were generated from
evolutionary couplings using standard NMR distance geometry and simulated
annealing software that use only little compute time, as the number of generated
candidate models was only approx. 200—400 per protein. Simple geometric rules
were then used to rank the prediction candidates and choose the most favoured
models.

Many other groups have since used this or similar approaches to predict accurate
long-range contacts from sequences, benchmarking against known contacts in
observed 3D structures; such accurate predictions are typically available for thou-
sands of families (Hopf et al. 2012; Michel et al. 2014; Kosciolek and Jones 2014;
Ovchinnikov et al. 2015; Toth-Petroczy et al. 2016). The available methods choose
different ways of thresholding the number of predicted couplings they display in
contact maps and number of couplings used for structure prediction, but overall
their strategies and outputs are very similar. Many of the observed differences are
just as likely due to different input alignments as they are to do with the algorithms
for inferring the couplings. The webservers of EVfold, PSICOV and GREMLIN
provide downloads of coupling files that can be used to define restraints for the
folding software of your choice. Of the available methods, to date only EVfold will
fold on demand for particular sequences of interest, though other methods offer
precomputed structures for a limited set of protein families (see Table 2.1 for an
overview of available webservers and Table 2.2 for standalone evolutionary cou-
plings software).

To assess the utility of evolutionary couplings for structure prediction, it is
important to distinguish between predicting residue contacts and folding the pro-
tein. It is possible to have quite accurate residue contact predictions when
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Fig. 2.3 Protein 3D structure predicted from evolutionary sequences. a The 3D structure of a
protein can be predicted from a multiple sequence alignment of the protein family by calculating
evolutionary couplings between pairs of sites using a global probability model of the sequences.
Assuming that residue pairs with strong couplings are close in 3D, the structure can then be
computed by restraining the distances of these pairs in an extended polypeptide (adapted from
Hopf 2016, 2015b; Marks et al. 2012) b Evolutionary couplings (black dots) for the human
adiponectin receptor 1 (ADR1) largely correspond to residue contacts in the experimental 3D
structure (light brown dots, precisions of 0.49 (SA distance cutoff) and 0.77 (8A cutoff), PDB
3wxv). ¢ Models generated by EC-based 3D structure prediction (dark orange cartoon, best
model) show good agreement with the experimental structure of ADR1 (pale orange cartoon, 2.4
A Ca-RMSD over 192 residues, PDB 3wxv)

comparing evolutionary couplings to experimental structures, and still one may not
be able to successfully fold the protein. For instance, predicted contacts may be
clustered in one area of the protein, or only local along the chain and therefore
missing key long-range contacts that define the overall topology of the molecule,
such as contacts connecting the N- and C-termini. Only folding is therefore a
definitive test if the computed evolutionary couplings contain sufficient information
about the 3D structure of the protein.

While evolutionary couplings give valuable information about the 3D confor-
mation of proteins, they also provide information over and above structure, such as
functional residues that are particularly enriched for couplings with other residues
(Fig. 2.2). Examples for strong coupling in functional sites include the active site of
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trypsin, or the ligand binding pocket of the GPCR rhodopsin, where Lys-296 binds
the retinal cofactor and has several strong couplings to other residues (Marks et al.
2011; Hopf et al. 2012). While it may be possible to identify some of these residues
by single-site conservation alone, others may appear less conserved, and couplings
offer the advantage of identifying the relevant interaction partners.

2.3.1 Transmembrane Proteins

Transmembrane proteins are of special biological interest as they mediate infor-
mation transfer and molecule exchange across the cellular membranes in all forms
of life, but are especially challenging to investigate experimentally when compared
to globular proteins (see also Chap. 5). Given the resulting lack of experimental
structures for the majority of membrane proteins, the most natural leverage of the
evolutionary couplings approach was to predict their 3D structures, especially for
large multipass proteins of high biomedical interest.

The first work to do so predicted evolutionary couplings and 3D structure for
over 40 large membrane proteins, 25 of which were from families that had members
with known structures and 18 of which were de novo predictions for families
without any structure (Hopf et al. 2012). The blindly predicted structures on the test
set of 25 proteins could be compared to known 3D coordinates and resulted in 3—
6A Ca-RMSD over at least 80% of the membrane domain. In similar work, the
prediction of a test set of 28 proteins resulted in TM scores of at least 0.5 for most
proteins (Jones et al. 2012). More recently, we updated various components of the
EVfold prediction pipeline, including sequence alignment generation and inference
of evolutionary couplings using PLM. Together with the increased number of
sequences since the original publication in 2012, this leads to significant increases
in prediction accuracy compared to the original method (average TM score increase
of 0.08 on set of 25 proteins, highest TM score 0.82). We expect prediction
accuracy to continue improving in the future as more sequences become available
and better methods for folding are implemented.

For several examples from our set of de novo predictions, experimental struc-
tures have been published since. In general, our predictions show reasonable
agreement with the experiment and have identified the correct overall 3D topology
(TM score >0.5) (Hopf 2016). Amongst these examples, the experimental struc-
tures confirmed that we correctly predicted the structural similarity of the unsolved
complex 1 subunit 1 (MT-NDI1) to the other subunits of the complex despite no
detectable homology on the sequence level (Baradaran et al. 2013). We also cor-
rectly predicted the fold of the human adiponectin receptor 1 (Fig. 2.3) (TM score
0.69 from model in 2012, TM score = 0.79 in 2016), and successfully identified the
cluster of activate site residues on the cytoplasmic side of the membrane (Tanabe
et al. 2015). Both cases highlight the predictive power of evolutionary couplings to
study the structure and function of proteins with limited experimental data.
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2.3.2 Protein Interactions and Complexes

The coevolution of interacting residues is not only necessary to maintain the 3D
structures of individual proteins, but also to maintain protein interactions and
complexes. Based on this premise, others and we developed a general method for
computing evolutionary couplings between proteins. The largest scale results
identified interacting residues for over 50 protein interactions and the resulting 3D
structure for a subset (Hopf et al. 2014; Ovchinnikov et al. 2014) (Fig. 2.4a,
Tables 2.1 and 2.2) and many others have now computed a more limited number of
interactions that often concentrate on disentangling paralog pairs of histidine kinase
and response regulators (Cheng et al. 2016; Boyd et al. 2016; Feinauer et al. 2016;
Bitbol et al. 2016; Gueudre et al. 2016).

For those methods with general applicability, the approaches are very similar.
First, one must pair the sequences of putatively interacting proteins within each
species to create a concatenated sequence alignment of the complex. Second, one
computes both the couplings within (intra-protein evolutionary couplings) and
between (inter-protein evolutionary couplings) the subunits simultaneously. This
way, both the individual proteins can be predicted as well as the complex, using the
inter-protein couplings as restraints in a docking protocol. Both EVcomplex and
GREMLIN compute the couplings using pseudo-likelihood maximization, and
differ only in their alignments, ranking and docking protocols.

However, the scope of both methods is currently limited by the generation of
correctly paired sequence alignments that have sufficient sequence diversity.
Correctly pairing the sequences when there are paralogs in a species depends on
being able to identify the correct interacting proteins. Both EVcomplex and
GREMLIN use the observation that interacting proteins are often encoded on the
same operon. We have estimated that this excludes 80% of interacting proteins from
EC-based prediction, even in E. coli. More recent approaches are being developed
that aim to solve this issue, but their general applicability outside of a couple of
systems still has to be demonstrated.

A second more pernicious assumption of this approach is that that the interac-
tions, as well as the proteins themselves are conserved across evolution. While this
may be a reasonable assumption for the components of ATP synthase, how con-
served interactions are may be unknown for a large number of protein pairs. We
expect to see significant algorithmic developments in this area so that the models
can be used to ask the question rather than assume the answer.

Nevertheless, evolutionary couplings from sequence variation allow to predict
protein interactions at residue level resolution not possible before (Fig. 2.4b),
including the 3D structures of complexes that had not been solved experimentally at
the time but whose subsequent characterisation confirmed the accuracy of the
approach (e.g. DinJ-YafQ toxin-antitoxin interaction) (Hopf et al. 2014).

Both EVcomplex and GREMLIN also show that one can predict whether or not
two proteins in a subunit interact physically, given sufficient sequence diversity and
confidence in the matched alignment. In the case of the ATP synthase complex, we
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alignment, where putatively interacting sequences within each species are matched with each
other. Assuming coevolution due to structural proximity, the 3D structure of the complex can then
be predicted from the monomer structures by docking with distance restraints on the strongly
coupled pairs. b Left Evolutionary couplings (coloured dots) in the ABC transmembrane
transporter MetIN correspond to structurally proximal residue pairs (dark/medium/light grey dots
at 5/8/12A distance cutoffs, PDB 3tui) both in the monomer structures (intra-protein ECs, triangle
contact maps) as well as between the interacting subunits (inter-protein ECs, square contact map).
The inter-protein ECs define the structural interaction between both subunits (red lines between
orange and brown cartoons). Right Docking of the monomer structures (orange/brown cartoons)
using significant inter-protein ECs leads to an accurate model of the complex (grey cartoon, 1.5A
interface-RMSD, PDB 3tui). (Figure adapted from Hopf 2016, 2014)

correctly identified 24 of 28 interactions with only 2 false positives and two
interactions that are experimentally ambiguous. Similarly, GREMLIN correctly
identified 12/23 interacting protein pairs in the ribosomal 50S subunit. The missing
predictions (false negatives) may arise because the models are wrong, or, just as
plausibly, the interactions could be weaker and a consequence of constraints
between other subunits in the complex. Finally, recent work has also highlighted
that evolutionary couplings can be applied to accurately predict the 3D structure of
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RNA as well as protein-RNA interactions, in ribosomal complexes and RNaseP,
from sequences alone (Weinreb et al. 2016).

2.3.3 Conformational Plasticity and Disordered Proteins

Many, if not most proteins may be structurally flexible, with conformational
plasticity ranging from simple hinge movements or open-closed conformational
switching to ordered stable structures that occur only upon binding or in the
appropriate environment. Indeed, it may be the case that even protein segments that
are considered highly flexible, such as histone tails, may take on a defined 3D
structure in some functional states. Around half of human proteins contain sub-
stantially sized regions whose amino acid sequence is considered to indicate
structural ‘disorder’, sometimes called ‘intrinsic disorder’(van der Lee et al. 2014,
Oates et al. 2013) (see also Chap. 6). These regions can range from 30 amino acid
long insertions to longer regions of many hundreds of amino acids that are often
present on transcription and translation factors.

Early work on evolutionary couplings showed that these methods will capture
contacts from alternative 3D conformation, as demonstrated by the identification of
couplings corresponding to open and closed conformations of the
glycerol-3-phosphate transporter GlpT (Hopf et al. 2012) and the L-leucine binding
protein (Morcos et al. 2013). More recently, this has been explored systematically
with another 38 proteins known to have alternative conformations and differential
contacts, demonstrating not only fold rearrangement but also, sometimes, secondary
structure switching (Toth-Petroczy et al. 2016).

This recent work has extended the exploration of conformational states to pro-
teins considered disordered. Since a small number of disordered proteins are known
to become ordered in specific environments and have been captured experimentally,
this gave the opportunity to investigate whether evolutionary couplings methods
can detect these 3D states. After a number of methodological improvements,
including iterative testing for alignment robustness, evolutionary couplings were
computed to determine the potential of these proteins forming long-range contacts
and secondary structure. In 40 of the 45 cases contacts were successfully predicted
for known “order upon binding’, including the well-known cyclin inhibitor p27
when it binds the Cyclin A-Cdk2 complex. Importantly, the method also found very
little evidence of structural constraints for proteins such as the C-terminal tail of
Histone H1 that had multiple lines of evidence for lack of structure (Toth-Petroczy
et al. 2016). Hence, the true positive predictions for proteins with ordered con-
formations do not seem to be at the expense of false positives in proteins without
ordered conformations.

To explore the structural potential of apparently disordered regions for which
there is currently no experimental information on a proteome-wide scale,
Toth-Petroczy et al. systematically surveyed all regions in the human proteome of
more than 100 amino acids in length where alignments could be constructed (about
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25% of all regions). This analysis resulted in predictions for ~ 1000 protein
regions, of which 40% showed signal for some long-range structure and another
40% secondary structure. The predicted contact maps revealed that some of these
disordered domains resembled zinc finger and RNA-binding domains, which could
not be identified from their primary sequence (the data from this analysis is
available from http://marks.hms.harvard.edu/disorder).

2.4 Predicting the Effect of Mutations

A major challenge in biology is being able to predict the functional effects of
mutations on phenotype or fitness. New work has shown that the global statistical
models of sequences can also be used to predict the effects of mutations by
quantifying the change of probabilities between the mutated protein and the wild
type sequence (AE = log P(mutant) /P(wild type)) (Hopf et al. 2017; Figliuzzi et al.
2016; Mann et al. 2014). This quantity AE, called the statistical energy difference of
a mutant, is computed by summing the changes in couplings and site amino acid
preferences between all pairs of positions, to give a total score that describes the
effect of any single or higher-order mutation. For instance, as illustrated in the
cartoon protein in Fig. 2.5a, the substitution W3L leads to a change in 4 couplings
and one single site bias term. Through the evaluation of couplings to other sites, the
computation explicitly models the context dependence (or epistasis) of mutations.
These interactions are typically neglected by approaches using single-site conser-
vation to quantify the effects of mutations. It is important to note that this approach
uses precisely the same statistical model (e.g. PLM or DCA) as one uses to compute
residue contacts from the sequence alignment, but does not depend on computing
the structure. This allows to infer epistatic mutational landscapes for any protein
with enough sequence information (Figs. 2.5b, c).

To test the applicability of our implementation of the method, EVmutation, the
predicted effects of mutations have been compared against thousands of variants
assayed in high-throughput multiplexed mutational scans that have emerged over
the last few years, providing a large pool of ground truth for evaluation (Deng et al.
2012; Jacquier et al. 2013; Stiffler et al. 2015; Melamed et al. 2013; 2015;
Rockah-Shmuel et al. 2015; Starita et al. 2015; Roscoe and Bolon 2014; Starita
et al. 2013; Li et al. 2016; Melnikov et al. 2014). Whilst the exact interpretation of
AE effects is not clear a priori, one would expect them to be related to the ‘fitness’
of the protein sequence. For instance, AE of all single mutations to a bacterial DNA
methylase correlated well with an experimental scan testing their effect on bacterial
fitness (Spearman’s rank correlation p = 0.69) (Rockah-Shmuel et al. 2015).
Similarly, EVmutation effects showed significant correlations across a wide range
of 34 experimental datasets for 21 proteins and a tRNA molecule (Hopf et al. 2017).
The approach generalizes to any type of biological sequence, and could also be used
to predict effects for protein-RNA complexes. Using epistatic interactions with
other sites particularly contributed to improved prediction accuracy in functional
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global probability model of a protein family can be used to predict the effects of mutations by
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sites, such as ligand binding and protein interaction interfaces, when compared to a
model that only uses single-site conservation. When tested on human disease
variants, AE separated them from neutral variants with similar or higher accuracy
than state-of-the-art methods for variant effect classification without, however,
being specifically trained on known variants for this problem (Hopf et al. 2017).
This suggests that established machine learning methods could benefit from the
inclusion of evolutionary statistical energies instead of positional sequence
conservation.
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2.5 Summary and Future Challenges

Over the last 5 years, approaches based on evolutionary couplings from sequence
alignments have already shown their power in predicting structural constraints and
3D structures for proteins, RNA, their interactions, the potential structured states of
disordered regions, as well as the effects of mutations on protein function. Readers
would do well to use this chapter as a basis, but since the field will change rapidly
in the next few years, they should be encouraged to search for more recent work
than the snapshot presented here.

We expect to see an increase in hybrid approaches that combine evolutionary
couplings with experimental methods to accelerate structure determination in such
fields as cryoEM, NMR, crystallography or mass spectrometry. First promising
work that demonstrates the power of this type of approach has already been pub-
lished (Tang et al. 2015). Where refined 3D models are desired, there is a still a
clear need for improving the structure prediction protocols, although some advances
have been made here recently.

Notwithstanding the impressive impact these methods have already had, there
are many challenges to be solved, not least with the probability model itself. First,
an implicit assumption in the underlying model is that all sequences have been tried
by evolution and the ones that we see now are the only possible functional ones,
leading to many issues associated with inferring models from undersampled data.
Whilst regularization during inference and heuristics for post hoc corrections
address this problem somewhat, we expect advances in this area would be bene-
ficial for more accurate models.

A second challenge for the emerging field is to develop improved criteria for
assessing the quality of alignments, and the choice of alignment depth that is
critically dependent on the research question being asked. If we did not know what
the 3D structure of GPCRs looked like, then any family alignment however large
and non-specific may be useful; on the other hand, if we want to explore the
different ligand-binding pockets of the subfamilies we would need alignments that
reflected that specificity. Similarly, for complexes and protein interactions the
challenge is to assess the likelihood of interaction with the ambiguity that the
interaction may not be conserved in all alignable sequences.

A third challenge is to blindly disambiguate evolutionary couplings that arise
due to different aspects of protein function, including the blind assignment of
couplings to different conformational states, or the distinction between intra- and
inter-protein interactions in homomultimeric complexes in the absence of an
experimental structure of the monomer.

All of these challenges are exciting questions for future research, and will help to
further increase the usefulness of evolutionary couplings as a tool in exploring
diverse aspects of protein structure and function.
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