
Periodic Trajectories of Dynamical Systems
Having a One-Parameter Group
of Symmetries

Roberto Giambò and Paolo Piccione

Abstract We study a class of dynamical systems on a compact (semi-)Riemannian
manifold endowedwith a non trivial 1-parameter (pre-compact) groupof symmetries,
and we determine the existence of a class of periodic trajectories of these systems.

1 Introduction

The present was originally meant to be the note of an invited lecture given by the
second author at the International Research School “Differential Geometry and Sym-
metry”, held at theUniversidad deMurcia, Spain, inMarch 2009. During that lecture,
emphasis was given mostly to the study of topological and geometrical properties of
compact Lorentzian manifolds endowed with a Killing vector field which is time-
like somewhere. The main results presented concern some questions of compactness
for 1-parameter subgroups of the isometry group of such manifolds, and a proof of
existence of non trivial periodic geodesics. The material of the talk is almost entirely
contained in references [8, 20].

Actually, some of the techniques employed in [8] to prove the existence of non
trivial periodic geodesics in compact Lorentzian manifolds, apply as well in the
more general case of periodic solutions of dynamical systems. In this note we will
show how to extend the results of [8] to this more general situation using suitable
notions of symmetry, thus fitting in the general theme of the Research School. We
will consider here two types of dynamical systems whose configuration space is a
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(compact) Riemannian or semi-Riemannian manifold (M, g), namely, conservative
systems, i.e., of the type kinetic energy plus potential, and exact magnetic dynamical
systems. Trajectories of these systems are curves x : [0, L] → M that are solutions
of a certain second order differential equation of the type D

dt ẋ = F(x, ẋ), where D
dt is

the operator of covariant differentiation for vector fields along x induced by the Levi–
Civita connection of g, and F : T M → R is a smooth map defined by the potential
energy or the magnetic field. When F ≡ 0, then solutions of the dynamical system
are geodesics of (M, g). A trajectory x : [0, L] → M of the system is periodic if
x(0) = x(L) and ẋ(0) = ẋ(L).

We will define a notion of symmetry for such systems (Definitions 2.1, 3.1),
which is an isometry of the base manifold that preserves the potential energy or the
magnetic field. The first key observation here is that when the dynamical systems
admits a non trivial 1-parameter group of isometries, or, equivalently, a Killing vector
field whose flow preserves the potential energy or the magnetic field, then some of
the flow lines of the group are trajectories of the system. Such special flow lines
have a variational characterization, i.e., they are those flow lines passing through the
critical point of some natural smooth function on the basemanifold (Propositions 2.6,
2.7, 3.6). In particular, being solutions of a first order differential equation, such
special trajectories do not have self-intersections. It is interesting to observe that
infinitesimal symmetries of dynamical systems produce conservation laws for the
solutions of such systems (Lemmas 2.4 and 3.4); these are special cases of Noether’s
theorem first theorem on conserved quantities from symmetries, see [18].

When the base manifold (M, g) is compact and Riemannian, then its isometry
group is compact. The second important observation is that the compactness of the
isometry group implies that when the dynamical system admits a non trivial one-
parameter group of symmetries, then it also admits a non trivial one-parameter group
of symmetries all of whose flow lines are closed (Proposition 4.5). The proof of this
fact is based on elementary Lie group techniques; it implies in particular that if there
exists a non trivial one-parameter group of symmetries, then the manifold M has the
topology of a generalized Seifert space, i.e., it admits a smooth circle action without
fixed points (Proposition 5.1). Using these two observations, periodic trajectories
of dynamical systems on compact Riemannian manifolds are obtained from flow
lines of the group of symmetries. Multiplicity of periodic trajectories can be studied
using equivariant Ljusternik–Schnirelmann category theory, which provides a lower
bound for critical orbits of a smooth function on a compact manifold invariant by
the action of a compact group of transformations (Sect. 5).

The very same conclusions can be drawn for dynamical systems on arbitrary com-
pact semi-Riemannian manifolds (M, g) having a non trivial one-parameter group
of symmetries which is pre-compact in the isometry group of (M, g). Also in this
situation one has the existence of a non trivial 1-parameter group of symmetries all
of whose flows lines are closed. Recall that, unlike the Riemannian case, the (con-
nected component of the identity of the) isometry group of an arbitrary compact
semi-Riemannian manifold is in general not compact, and thus the pre-compactness
of 1-parameter subgroups has to be explicitly assumed. However, there are important
situations where this property is satisfied. For instance, when the compact manifold
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(M, g) is Lorentzian, simply connected, and real analytic. Namely, in this case a
celebrated result of D’Ambra [4] guarantees that the isometry group of (M, g) is
compact. A second important case of pre-compact 1-parameter group of symmetries
of a Lorentzian manifold is when the infinitesimal generator of the subgroup, which
is a Killing field, is timelike at some point.

Most of the paper is dedicated to the study of dynamical systems on Riemannian
manifolds, while the semi-Riemannian extension of the results, which basically
reduces to the study of the pre-compactness question for the group of symmetries,
is discussed briefly in the last section of the paper.

Potential readers of this note are graduate students; virtually everything here
should be accessible to anybody with a basic knowledge of calculus in Riemannian
manifolds and Lie group theory. Basic references for the background material in
Riemannian, Lorentzian and semi-Riemannian geometry are the classical textbooks
[1, 5, 19].

Very special thanks are due to the organizers of the School, to the Simon Stevin
Institute for Geometry, to the Universidad de Murcia, and especially to Stefan
Haesen.

2 Conservative Dynamical Systems with Symmetries
on Riemannian Manifolds

Let (M, g) be a Riemannian manifold; we will denote by X(M) the Lie algebra of
all smooth vector fields on M and by ∇ the Levi–Civita connection of g. Given a
smooth function f : M → R, the gradient of f is the vector field ∇ f defined by
d f = g

(∇ f, ·), and the Hessian of f is the smooth symmetric (0, 2)-tensor on M
defined by Hess f (v,w) = g

(∇v(∇ f ), w
)
for all v,w ∈ T M .

2.1 Conservative Dynamical Systems and Maupertuis
Principle

By a conservative dymanical system we will mean a triple (M, g, V ), where (M, g)

is a Riemannian manifold, and V : M → R is a smooth function. The manifold M
represents the configuration space of the dynamical system, and its dimension is the
number of degrees of freedom of the system. The function V is the potential energy
of some conservative force. By a trajectory of the dynamical systemwemean a curve
x : [0, L] → M which is the solution of the second order differential equation:

D
dt ẋ = −∇V (x), (1)
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where D
dt is the operator of covariant differentiation for vector fields along x relatively

to the connection of ∇. If x : [0, L] → M is a trajectory of the dynamical system,
then there exists a constant Ex ∈ R, called the (total) energy of x , such that following
identity holds on the interval [0, L]:

1
2g(ẋ, ẋ) + V (x) ≡ Ex .

The classical Maupertuis principle (see for instance [10, 24]) states that, up to a
reparameterization, trajectories of the dynamical system (M, g, V ) having energy E
are into one-to-one correspondence with geodesics in the open set:

ME = {
p ∈ M : V (p) < E

}
(2)

endowed with the metric gE = φE · g which is conformal to g, with conformal factor
φE (p) = E − V (p).

2.2 Symmetries of Conservative Systems

Let Iso(M, g) denote the Lie group of all isometries of (M, g), and let Iso0(M, g)

be the connected component of the identity of Iso(M, g).

Definition 2.1 An isometry φ ∈ Iso(M, g) is a symmetry for the dynamical system
(M, g, V ) if V is φ-invariant, i.e., if V ◦ φ = V .

An immediate calculation shows that if φ is a symmetry for (M, g, V ), then

dφ(p)∇V (p) = ∇V
(
φ(p)

)
,

and if x : [0, L] → M is a trajectory of (M, g, V ), then also φ ◦ x : [0, L] → M is
a trajectory of (M, g, V ). Let us denote by Sym(M, g, V ) the subset of Iso(M, g)

consisting of symmetries of (M, g, V ).

Lemma 2.2 Sym(M, g, V ) is a closed Lie subgroup of Iso(M, g).

Proof Sym(M, g, V ) is clearly a subgroup of Iso(M, g), and it is closed with respect
to the compact-open topology. Thus it is a Lie subgroup of Iso(M, g). �

Let us now introduce the notion of infinitesimal symmetry for a conservative dynam-
ical system. A vector field K ∈ X(M) is said to be a Killing vector field of (M, g)

if its flow consists of local isometries of g. Equivalently, K is Killing if the Lie
derivative LK (g) of the metric tensor g in the direction K vanishes identically, i.e.,
if g(∇v K , w) + g(v,∇w K ) = 0 for all pairs of tangent vectors v,w ∈ T M .

Definition 2.3 A Killing field K of (M, g) is an infinitesimal symmetry for the
dynamical system (M, g, V ) if V is invariant by the flow of K , i.e., if K (V ) =
g(K ,∇V ) = 0 on M .
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An infinitesimal symmetry K of the dynamical system (M, g, V )gives a conservation
law for the trajectories of (M, g, V ).

Lemma 2.4 If K is an infinitesimal symmetry of (M, g, V ) and x : [0, L] → M is
a trajectory of (M, g, V ), then the quantity g(ẋ, K ) is constant along x.

Proof An immediate calculation:

d
dt g(ẋ, K ) = g

(
D
dt ẋ, K

) + g
(
ẋ,∇ẋ K

) = −g(∇V, K ) = 0.

�

Denote by Kill(M, g) the Lie algebra of Killing vector field of (M, g), endowed
with the Lie bracket [K1, K2] = ∇K1 K2 − ∇K2 K1. Moreover, letSym(M, g, V ) the
space of all infinitesimal symmetries of (M, g, V ).

Lemma 2.5 Sym(M, g, V ) is a Lie subalgebra of Kill(M, g).

Proof Sym(M, g, V ) is obviously a vector subspace of Kill(M, g). Moreover,
given K1, K2 ∈ Sym(M, g, V ), then [K1, K2]V = K1(K2V ) − K2(K1V ) = 0, i.e.,
[K1, K2] ∈ Sym(M, g, V ). �

2.3 Infinitesimal Symmetries and Trajectories
of Conservative Systems

Given an infinitesimal symmetry K of (M, g, V ), let us introduce G K : M → R the
characteristic function of K , which is the smooth map defined by:

G K (p) = 1
2g(K p, K p) − V (p), p ∈ M.

It is easy to see that G K is K -invariant, i.e., K (G K ) = g(∇G K , K ) = 0 everywhere.
In particular, if p is a critical point of G K , then every point of the integral line of
K through p consists of critical points of G K . Critical points of G K are important
because of the following property.

Proposition 2.6 Let K be an infinitesimal symmetry of (M, g, V ). An integral curve
of K is a trajectory of (M, g, V ) is and only if it passes through a critical point of
G K .

Proof Let p ∈ M be a point and let x : [0, b] → M the integral curve of K such that
x(0) = p. Assume that x is a trajectory of (M, g, V ), then:
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D
dt ẋ(0) = ∇K p K = −∇V (p).

If w ∈ Tp M is an arbitrary vector, then:

w(G K ) = g(∇w K , K ) − g
(∇V (p), w

) = −g(∇K p K , w) − g
(∇V (p), w

) = 0,

i.e., p is a critical point of G K . The converse is established by the same argument,
using the observation that if x is an integral line of K passing through some critical
point of G K , then every point of x is critical for G K . �

When V = 0, Proposition 2.6 says that the integral lines of a Killing vector field
K passing through the critical points of the function g(K , K ) are geodesics, see [13,
Chap. VI, Proposition 5.7, p. 252].

By Lemma 2.4, the trajectories of (M, g, V ) that are obtained as integral curves
of K satisfy g(ẋ, ẋ) = g(ẋ, K ) = const.; in particular, also V is constant along such
solutions.

If one is interested in determining trajectories of (M, g, V )with a prescribed value
E of the total energy, there is a more appropriate approach. Given an infinitesimal
symmetry K of (M, g, V ) and a fixed real number E > min

M
V , let us consider the

following smooth non negative function FK ,E : M → R:

FK ,E (p) = (
E − V (p)

)
g(K p, K p), p ∈ M. (3)

As in the case of the characteristic function G K , also FK ,E is K -invariant; moreover,
if p is a critical point of FK ,E , then the integral curve of K through p consists entirely
of critical points of FK ,E .

Proposition 2.7 Let K be an infinitesimal symmetry of (M, g, V ), let E > min
M

V

be fixed and let x be an integral curve of K that passes through some critical point
of FK ,E in ME . Then, there exists a reparameterization of x which is a trajectory of
(M, g, V ) having total energy E.

Proof Using Maupertuis principle, it suffices to show that an integral curve of K
passing through some critical point of FK ,E in ME is a geodesic in the Riemannian
metric (ME , gE ). Note that since the flow of K preserves V , then ME is invariant
by the flow of K , i.e., integral curves of K that pass through some point of ME are
entirely contained in ME . The fact that integral curves of K passing through some
critical point of FK ,E in ME are geodesics in the Riemannian metric (ME , gE ) follow
immediately from Proposition 2.6 applied to the conservative dynamical system
whose underlying Riemannian manifold is (ME , gE ) and whose potential function
is VE ≡ 0, observing that for this dynamical system the characteristic function G K

coincides with FK ,E . �
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3 Exact Magnetic Equation with Symmetries
in Riemannian Manifolds

We will now consider a different dynamical system, that is the mathematical model
for trajectories of electric charges under the action of a magnetic field.

3.1 Exact Magnetic Fields

Let (M, g) be a Riemannian manifold, and let ω be a 1-form on M ; the vector field
B ∈ X(M) defined by ω = g(B, ·) will be called the dual vector field to ω. The
exterior differential dω is given by:

dω(v,w) = g(∇v B, w) − g(v,∇w B),

for all v,w ∈ T M . Let F̂ be the g-anti-symmetric (1, 1)-tensor on M defined by:

dω(v,w) = g(v, F̂w),

for all v,w ∈ T M ; an easy calculations shows that F̂ can be written in terms of B as:

F̂ = (∇B)� − ∇B,

where (∇B)� is the g-adjoint of ∇B, defined by:

g
(
(∇B)�v,w

) = g(∇w B, v)

for all v,w ∈ T M . The triple (M, g,ω) will be called an exact magnetic dynamical
system. Here M represents the configuration space of an electric charge, and the exact
2-form dω represents the magnetic field. By a trajectory of the magnetic dynamical
system we mean a smooth curve z : [0, T ] → M for which there exists a constant
� ∈ R such that z is a solution of the second order differential equation:

D
dt ż = � · F̂(z)ż. (4)

Solutions of (4) represent trajectories of particles having electric charge equal to (a
suitable multiple of) � (see [3, 9, 16]); such constant � will be called the electric
charge of the trajectory z. If z : [0, L] → M is a trajectory of (M, g,ω), then the
quantity g(ż, ż) is constant on [0, L].
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3.2 Symmetries of Exact Magnetic Fields

Let (M, g,ω) be an exact magnetic dynamical system and let B be the dual vector
field to ω.

Definition 3.1 An isometry φ ∈ Iso(M, g) is called a symmetry of (M, g,ω) if ω is
φ-invariant, i.e., if the pull-back φ∗(ω) coincides with ω.

It is easy to show that if φ is a symmetry of (M, g,ω) and z : [0, L] → M is a trajec-
tory of (M, g,ω), then also φ ◦ z is a trajectory of (M, g,ω). Let Sym(M, g,ω)

denote the subset of Iso(M, g) consisting of symmetries of (M, g,ω). Clearly,
Sym(M, g,ω) is a subgroup of Iso(M, g), and it is closed (relatively to the topology
of C1-convergence on compact subsets).

Thus, in perfect analogy with Lemma 2.2, we have:

Lemma 3.2 Sym(M, g,ω) is a closed Lie subgroup of Iso(M, g).

An infinitesimal symmetry of (M, g,ω)will be a Killing vector field K ∈ Kill(M, g)

whose flow consists of (local) symmetries for (M, g,ω). More precisely.

Definition 3.3 A Killing field K ∈ Kill(M, g) is an infinitesimal symmetry of
(M, g,ω) if the Lie derivative LK (ω) of ω vanishes.

The condition LK (ω) = 0 can be written in terms of the vector field B dual to ω,
observing that, for all v ∈ T M :

LK (ω)v = g
(∇K B, v

) + g
(
B,∇v K

) = g
(∇K B − ∇B K , v

) = g
([K , B], v)

.

Thus, K ∈ Kill(M, g) is an infinitesimal symmetry of (M, g,ω) if and only if:

LK (B) = [K , B] = 0. (5)

If K is an infinitesimal symmetry of (M, g,ω), then the quantity g(B, K ) is constant
along the flow lines of K ; namely:

K
(
g(B, K )

) = g
(∇K B, K

) + g
(
B,∇K K

) = g
(∇K B, K

) − g
(
K ,∇B K

)

= g
([K , B], K

) = 0.

Moreover, an infinitesimal symmetry K of (M, g,ω) gives the following conserva-
tion law for the trajectories of (M, g,ω).

Lemma 3.4 If K is an infinitesimal symmetry of (M, g,ω) and z : [0, L] → M is
a trajectory of (M, g,ω) with electric charge �, then the quantity

g(ż, K ) + � · g(B, K )

is constant along z.
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Proof An immediate calculation:

d
dt

[
g(ż, K ) + � · g(B, K )

]

= g
(
D
dt ż, K

) + (
ż,∇ż K

) + � · g
(∇ż B, K

) + � · g
(
B,∇ż K

)

= �
[
g
(∇K B, ż

) − g
(∇ż B, K

) + g
(∇ż B, K

) − g
(∇B K , ż

)]

= g
([K , B], ż

) = 0.

�

Let Sym(M, g,ω) be the space of all infinitesimal symmetries of (M, g,ω).

Lemma 3.5 Sym(M, g,ω) is a Lie subalgebra of Kill(M, g).

Proof Clearly, Sym(M, g,ω) is a vector subspace of Kill(M, g).

If K1, K2 ∈ Sym(M, g,ω), then [K1, B] = [K2, B] and thus, by Jacobi identity:
[[K1, K2], B

] = [[K1, B], K2
] + [

K1, [K2, B]] = 0,

i.e., [K1, K2] ∈ Sym(M, g,ω). �

3.3 Infinitesimal Symmetries and Trajectories of Magnetic
Dynamical Systems

Given an infinitesimal symmetry K of (M, g,ω), we introduce two functions on M ,
denoted by H+

K , H−
K : M → R and defined by:

H±
K (p) = 1

2

[
g(K p, K p) ± ωp(K p)

2
] = 1

2

[
g(K p, K p) ± g(Bp, K p)

2
]
.

An immediate calculation shows that H±
K is K -invariant; in particular, if p is a critical

point of H±
K , then the integral curve of K through p consists entirely of critical points

of H±
K .

Proposition 3.6 Let K be an infinitesimal symmetry of (M, g,ω). An integral curve
of K through a critical point p of H±

K is a trajectory of (M, g,ω) with electric charge
� = ∓g(K p, Bp).

Proof Since the integral curve z of K through p consists entirely of critical points
of H±

K , it suffices to show that z satisfies (4) at the point p. Set � = ∓g(K p, Bp);
note that g(K , B) is constant along z, as it follows easily from Lemma 3.4. If w is
an arbitrary vector in Tp M , then:
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0 = w
[
1
2g(K , K ) ± 1

2g(B, K )2
]

= g
(∇w K , K p) ± g(K p, Bp)

[
g
(∇w B, K p

) + g
(
Bp,∇w K

)]

= −g
(∇K p K , w

) − �
[
g
(∇w B, K p

) − g
(
w,∇Bp K

)]

by (5)= −g
(∇K p K , w

) − �
[
g
(∇w B, K p

) − g
(
w,∇K p B

)]

= −g
(∇K p K , w

) − �
[
g
([∇B − (∇B)�

]
w, K p

)
,

thus:
∇K p K = �

[
(∇B)� − ∇B

]
K p,

which concludes the proof. �

4 Existence of Periodic Trajectories

We will now establish an existence result for periodic trajectories of a conservative
dynamical system (M, g, V ) and of an exact magnetic dynamical system (M, g,ω).
We will assume henceforth that M is compact; this implies in particular that the
isometry group Iso(M, g) of (M, g) is compact, see [12]. If K is a Killing vector
field for (M, g), then its flow consists of a 1-parameter group of (globally defined)
isometries of (M, g).

Lemma 4.1 Sym(M, g, V ) is the Lie algebra of the Lie subgroup Sym(M, g, V )

and Sym(M, g,ω) is the Lie algebra of the Lie subgroup Sym(M, g,ω).

Proof Left to the reader as an exercise. �

Thus, the conservative dynamical system (M, g, V ) admits a non trivial symmetry
if and only if dim

(
Sym(M, g, V )

)
> 0; similarly, the magnetic dynamical system

(M, g,ω)) admits a non trivial symmetry if and only if dim
(
Sym(M, g,ω)

)
> 0.

4.1 Closed Infinitesimal Symmetries

Propositions 2.6 and 3.6 suggest that we can look for periodic trajectories of
(M, g, V ) and (M, g,ω) that are closed integral curves of an infinitesimal sym-
metry K . An infinitesimal symmetry K of (M, g, V ) or of (M, g,ω) will be called
closed if all its integral curves are closed, i.e., homeomorphic to circles or constant.
Let us recall the following result from [8]:

Lemma 4.2 Let (M, g) be a compact Riemannian manifold and let K be a Killing
vector field. Then K is closed if and only if K generates a closed 1-parameter
subgroup of isometries of Iso(M, g).
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A non trivial closed 1-parameter subgroup of Iso(M, g) is isomorphic to the circle S1;
thus, the existence of a non trivial closed Killing vector field for (M, g) is equivalent
to the existence of a smooth isometric action of S1 without fixed points, see Sect. 5.

4.2 Existence of Periodic Solutions

A preliminary result on the existence of periodic trajectories:

Proposition 4.3 Assume that the conservative dynamical system (M, g, V ) admits a
non trivial closed infinitesimal symmetry K . Then, for every E > min

M
V there exists

a periodic trajectory x of (M, g, V ) having total energy E.
Similarly, if the exact magnetic dynamical system (M, g,ω) has a non trivial

closed infinitesimal symmetry, then there exist a positive constant �+ > 0 and a (non
constant) periodic solution x+ : [0, L+] → M of (4) with � = �+.

Proof Using Maupertuis principle, it suffices to show that for all E > min
M

V , the

conformal metric gE in the set ME has non trivial closed geodesics. Since the flow of
K preserves the metric g and the function V , then the flow of K preserves the set ME ,
and K is a Killing field also for the conformal metric gE . The function FK ,E is equal
to gE (K , K ), and applying Proposition 2.7 to the conservative dynamical system
with underlying Riemannian manifold (ME , gE ) and potential function VE ≡ 0, we
obtain that an integral curve of K passing through some critical point of FK ,E is a
geodesic for (ME , gE ). Since K is closed, any integral curve of K is closed, thus it
suffices to show that FK ,E has a critical point p in ME where K p 	= 0. We claim that
FK ,E has maximum in ME , which is not zero; the proof of the first statement in the
thesis will be concluded once we prove the claim. Namely, since K is Killing for
(M, g), then K cannot vanish identically on any non empty open set of M , see [19,
Chap. 9, Lemma 27]; thus, since E > min V , then K does not vanish identically on
ME . Since FK ,E vanishes on the boundary ∂ME of ME , then the (positive) maximum
of FK ,E on the compact set M E = ME

⋃
∂ME is attained at some point p of ME .

This proves the claim.

As to the second statement of the thesis, if K ∈ Sym(M, g,ω) is closed and non
trivial, then let �+ = H+

K (p+) be the maximum of the function HkK on M , attained
at the point p+ ∈ M . It must be �+ > 0, because K does not vanish identically. If x+
denotes the integral curve of K through p+, then by Proposition 3.6, x+ is a solution
of (4) with � = �+; x is a periodic trajectory of (M, g,ω) because K is closed. �

Remark 4.4 More precise estimates on the number of periodic trajectories of a con-
servative dynamical system or of an exact magnetic dynamical system can be done
with an analysis of the critical points of the functions FK ,E and H±

K . This is left as an
exercise for the reader. (A hint for the proof of a second non constant periodic trajec-
tory of (M, g,ω): if either min

M
H−

K or max
M

H−
K are non zero, then the corresponding



32 R. Giambò and P. Piccione

integral curve of K is a non constant periodic trajectory. If min
M

H−
K = max

M
H−

K = 0,

then every integral curve of K is a periodic trajectory.)

It is interesting to observe that the periodic solution x whose existence is proved in
Proposition 4.3 does not have self-intersection. This follows easily from the fact that
it is the integral line of a vector field, i.e., it is the solution of a first order differential
equation.

We will now establish an existence result for closed infinitesimal symmetries.

Proposition 4.5 Given an infinitesimal symmetry K of the conservative system
(M, g, V ) (resp., of (M, g,ω)), there exists a sequence Kn of closed infinitesimal
symmetries Kn of (M, g, V ) (resp., of (M, g,ω)) that converges uniformly to K as
n → ∞. In particular, if K is not identically zero, then there exists a closed infini-
tesimal symmetry of (M, g, V ) (resp., of (M, g,ω)) which is not identically zero.

Proof Since Iso(M, g) is compact, then by Lemma 2.2, Sym(M, g, V ) is compact
(resp., by Lemma 3.2, Sym(M, g,ω) is compact). Using Lemma 4.2, we will show
that K is the limit of a sequenceofKillingvector fields that generate a closed subgroup
of isometries in Sym(M, g, V ) (resp., in Sym(M, g,ω)). Let G ⊂ Sym(M, g, V )

(resp., G ⊂ Sym(M, g,ω)) be the 1-parameter group of isometries generate by K .
If G is not closed, let G be its closure, which is a compact abelian subgroup of
Sym(M, g, V ) (resp., of Sym(M, g,ω)). Then, G is a torus of dimension greater than
or equal to 2. Thus, the tangent vector v ∈ TeG ⊂ Sym(M, g, V ) (resp., v ∈ TeG ⊂
Sym(M, g,ω)), where e is the identity, is limit of a sequence vn ∈ Sym(M, g, V )

(resp., vn ∈ Sym(M, g,ω)) such that the corresponding Killing field K vn are closed.
This concludes the proof. �

Corollary 4.6 If Sym(M, g, V ) 	= {0}, then for every E > min
M

V there exists a

periodic trajectory x of (M, g, V ) having total energy E.
Similarly, Sym(M, g,ω) 	= {0}, then there exists a periodic trajectory x of

(M, g,ω) with positive electric charge �.

Proof By Proposition 4.5, if Sym(M, g, V ) 	= {0} (resp., Sym(M, g,ω) 	= {0})
then there exists at least one non trivial closed infinitesimal symmetry K of (M, g, V )

(resp., of (M, g,ω). The conclusion now follows from Proposition 4.3. �

5 Topology of M and Multiplicity of Periodic Solutions

The material in this section follows closely [8, Sect. 3].



Periodic Trajectories of Dynamical Systems Having a One-Parameter … 33

5.1 Fibration Associated to a Closed Killing Vector Field

A compact manifold M will be called a generalized Seifert fibered space if it admits
a smooth action of the circle S1 without fixed points or, equivalently, with finite
isotropy. The orbits of a fixed point free action of S1, that are diffeomorphic to
S1, are called the fibers of the fibered space. Low dimensional simply connected
generalized Seifert fibered spaces are classified, see [6, 7, 14, 22, 23]. By standard
results on group actions, the orbit space of a smooth action of a compact Lie group
on a compact manifold having finite isotropy has the structure of a compact orbifold
(see the Appendix of E. Salem in [17] for details on orbifolds; the book contains
also a more general result on the orbifold structure of orbit spaces in the context of
Riemannian foliations).

Proposition 5.1 A compact manifold M admits a Riemannian metric tensor g whose
isometry group Iso(M, g) has positive dimension if and only if it is diffeomorphic to
a generalized Seifert fibered space.

Proof If dim
(
Iso(M, g)

)
> 0, then by Proposition 4.5 (applied with V ≡ 0) there

exists a non trivial closed Killing vector field K of (M, g). The one-parameter group
of isometries generated by such a Killing field gives a smooth action of S1 without
fixedpoints; K is tangent to thefibers of this action.Conversely, given a smooth action
of S1 on M without fixed points, by a standard averaging argument one can find a
Riemannianmetric tensor g whichmakes such action isometric, i.e., the infinitesimal
generator K of this action is Killing (see for instance [11]). �

Remark 5.2 Given a free action of S1 on a compact manifold M , then the orbit space
M/S1 is a smooth manifold (see for instance [2, Theorem 23.4] or [13, Theorem
4.3]). We observe however that in general the quotient space M0 = M/S1 is not a
manifold. As an example, consider M to be the Klein bottle obtained as the quotient
of R2 endowed with the Euclidean metric dx2 + dy2 by the action of the group
generated by the isometries (x, y) �→ (x + 1, y) and (x, y) �→ (1 − x, y + 1). The
vector field K = ∂

∂y on M is Killing; all its integral lines are periodic. It is easily seen

that in this case the S1-action induced by the flow of K has exactly two exceptional
orbits, and that the orbit space M/S1 is homeomorphic to the closed interval [0, 1

2 ].
As a corollary of Proposition 5.1,we get a somewhat better estimate on the number

of periodic solutions of dynamical systems based on the Ljusternik–Schnirelman
category. Recall that the Ljusternik–Schnirelman category (shortly, LS category)
cat(X ) of a topological space X is the cardinality (possibly infinite) of a minimal
family of closed contractible subsets of X whose union covers X . If X is G-space,
i.e., a topological space on which a compact group G is acting continuously, then
one candefine the equivariant notion ofLjusternik–SchnirelmanG-category catG(X )

(see for instance [15]). A homotopy H : U × [0, 1] → X of an open G-invariant set
U ⊂ X is called G-equivariant if gH(x, t) = H(gx, t) for any g ∈ G, x ∈ U and
t ∈ [0, 1]. The set U is G-categorical if there is a G-homotopy H with H(·, 0) the
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identity, and H(·, 1) maps U to a single orbit. The equivariant category catG(X ) is
the cardinality of aminimal family of G-categorical open sets whose union coversX .

If G is a compact Lie group, X is a smooth G-manifold, and h : X → R is a
smooth function which is G-invariant, then h has at least catG(X ) distinct critical
G-orbits (see [15, Theorem 3.2]).

Corollary 5.3 Let (M, g, V ) be a conservative dynamical system, with M compact,
having a non trivial closed infinitesimal symmetry K . Consider the S1-action on
M determined by K . Then, for all E > max

M
V , there are at least catS1(M) distinct

periodic non self-intersecting periodic solutions of (M, g, V ) having energy E.

Proof If E > max
M

V , then the open set ME in (2) coincides with M . The function

FK ,E : M → R (recall (3)) is constant on the orbits of G = S1, thus it has at least
catG(M) critical orbits. Hence, the proof follows by observing that distinct critical
G-orbits of FK ,E in M correspond to distinct non self-intersecting periodic solutions
of (M, g, V ) having total energy equal to E . �

We have an analogous result for periodic trajectories of exact magnetic dynamical
systems:

Corollary 5.4 Let (M, g,ω) be an exact magnetic dynamical system, with M com-
pact, having a non trivial closed infinitesimal symmetry K . Consider the S1-action
on M determined by K . Then, there are at least catS1(M) distinct periodic non
self-intersecting periodic solutions of (M, g,ω).

Proof Such solutions are integral curves of K that are critical orbits of the function
H+

K on M . The estimate on the number of periodic trajectories of (M, g,ω) can be
improved considering critical orbits of the function H−

K . This is left as an exercise
for the reader. �

In Corollaries 5.3 and 5.4, note that the integer catS1(M) is greater than or equal to
2. Namely, if it were catS1(M) = 1, then M would be (equivariantly) homotopic to
an orbit of S1, which is diffeomorphic to S1. But, no compact manifold of dimen-
sion greater than or equal to 2 is homotopic to S1. Observe also that in general
the equivariant LS category catS1(M) is greater than or equal to the LS category
cat(M/S1) of the quotient space M/S1. The Klein bottle in Remark 5.2 provides an
example where such inequality is strict: here the quotient space M/S1 is contractible,
and thus cat(M/S1) = 1, while it is easily computed catS1(M) = 2.

6 Dynamical Systems in Semi-Riemannian Manifolds

It is desirable to extend the results of existence of periodic solutions to the case
of dynamical systems whose underlying geometry is given by a compact semi-
Riemannian manifold (M, g).Recall that g is a semi-Riemannianmetric tensor if it is
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everywhere nondegenerate, but not necessarily positive definite; a semi-Riemannian
metric tensor g is Lorentzian if it has index 1.

The notions of conservative dynamical system and exact magnetic system extend
naturally by the very same definition to the case of semi-Riemannianmanifolds. Sev-
eral results discussed here for dynamical systems in Riemannian manifolds, namely
those in Sects. 2 and 3 as well as Proposition 4.3 (where the positive definite charac-
ter of the metric tensor has not been used) extend by the same arguments to general
semi-Riemannian dynamical systems. However, the main difference is that for an
arbitrary semi-Riemannian manifold the (connected component of the identity of
the) isometry group is not compact. Thus, the central result of Proposition 4.5 does
not hold, unless one assumes that the 1-parameter subgroup of isometries generated
by the infinitesimal symmetry K is precompact. Recall that, by the Arzelà–Ascoli
theorem, precompactness is equivalent to equicontinuity.

Proposition 6.1 The result of Proposition 4.5 holds for conservative or exact mag-
netic dynamical systems on a compact semi-Riemannian manifold (M, g) under the
assumption that the infinitesimal symmetry K generates a precompact one-parameter
subgroup of the isometry group Iso(M, g).

The question of precompactness of one-parameter subgroups of the isometry
group of a compact Lorentzian manifold has been studied recently in [8] and espe-
cially in [20]. Let us recall the following situation where Proposition 6.1 can be
used.

• If (M, g) is a compact real-analytic Lorentzian manifold, then Iso(M, g) is com-
pact; this is proved in [4].

• if (M, g) is a compact Lorentzian manifold and K is a Killing vector field which is
timelike at some point p ∈ M , i.e., g(K p, K p) < 0, then K generates a precompact
one-parameter subgroup of isometries of (M, g); this is proved in [8] and in [20],
see also [21].

• Let (M, g) be a compact Lorentz manifold that admits a Killing vector field which
is timelike at some point. Then, the identity component of its isometry group is
compact, unless it contains a group locally isomorphic to SL(2,R) or to an oscil-
lator group (in particular, the one-parameter subgroup generated by any Killing
vector field is precompact). This is proved in [20].
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