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Abstract Particulate systems and granular matter are discrete systems made of
many particles; they display interesting dynamic or static, fluid- or solid-like states,
respectively, or both together. The challenge of bridging the gap between the
particulate, microscopic picture towards their continuum description (via the
so-called micro-macro transition) is one of today’s challenges of modern research.
This short paper gives a brief overview of recent progress and some new insights
about local granular flow rules for soft particles.

1 Introduction

Particulate systems pose many challenges for academia and industry. From
molecular dynamics simulations of many atoms or particles, one can extract scalar
fields like density or temperature, as well as vectorial fields like velocity, or tensors
like stress, strain-rate, and structure (fabric). Given sufficiently good statistics the
data can have a quality that allows to derive constitutive relations that describe the
local rheology and flow behavior [1–6] of fluids (e.g. atoms confined in a
nano-scale channel [4]) or granular systems, which are non-Newtonian, with par-
ticular relaxation behavior, anisotropy etc. [1–3, 5, 6]. With attractive forces
involved, like van-der Waals forces or liquid-bridges, this leads to cohesion added
on top of the already non-trivial dynamics of granular matter [2, 6–8]. Dependent
on the energy input (e.g. through an applied shear-rate), the particles can flow like a
fluid, jam or un-jam, or be solid with interesting anisotropic structure (contact-and
force-networks) [9, 10].

The goal of the present paper is to use the micro-macro transition proposed by
Isaac Goldhirsch [11, 12] to determine three-dimensional local rheology laws that
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go beyond the μ(I)-rheology [13], which predicts well the flow behaviour of rigid
particles, where only the inertial number is relevant. However, for real particles also
the confining stress (softness) has to be taken into account as control parameter, as
presented below. Additionally relevant parameters are not discussed in this study,
namely cohesiveness and granular temperature or fluidity.

2 Phenomenology

In granular systems, the interplay between strain, stress and anisotropy can lead to
dilatancy that is only one of the interesting micro-mechanical mechanisms related to
the ‘memory’ of the packing. Starting from a dense packing, shear motion is only
possible if the grains “unlock” from their dense arrangement. Shearing for long
time, the initial state is forgotten and a steady state (sometimes referred to as critical
state) is reached. The evolution of the steady state anisotropy (micro-structure) is
independent from the direction-dependency (“anisotropy”) of stress, both in rates as
well as in principal directions, i.e., tensorial eigen-system orientations [3–5]. In
steady state, a certain proportionality and relative orientation establishes, which is
subject of ongoing research. Thus, particulate systems behave in various ways like a
non-Newtonian fluid [3, 4], as observed by modern particle simulations, from
which all the macroscopic scalar, vectorial, and tensorial fields can be obtained
[3–7]. The micro-macro transition translates the information about particle
positions, velocities and forces into the continuum fields density, displacement
(gradient) structure, and stress, using smoothing and time-averaging (in stready
state). In a particular geometry, i.e., the split bottom ring shear cell, see Fig. 1, the
fields are functions of the height and the radial distance from the symmetry axis, so
that a wide range of local densities, strain-rates and pressures are covered. Having
available this information from the micro-macro transition, the next step is to
formulate general, local constitutive relations that allow to predict the systems flow
behaviour in inhomogeneous systems [5, 7–9]. Similar methods and approaches can

Fig. 1 Schematic plot of the
ring-shear cell with the
relevant geometry parameters
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also be applied to solid-like systems [10]—all are based on the original ideas of
coarse-graining from micro-to-macro [11, 12], following the ideas of Isaac
Goldhirsch [3, 11, 12]. Macroscopic data can be obtained as functions of particle-
and contact-properties like particle sizes, stiffness, friction as well as system
parameters like the external shear-rate.

Examples of the most basic element tests, i.e., small and representative systems
with relevance for the micro-macro approach, involve homogeneous systems like
the tri-axial box with pure-shear deformations [9, 10], and planar flows with a mix
of simple- and pure-shear [4]. Examples for inhomogeneous systems are
simple-shear in avalanches on inclined planes [3], or the split-bottom ring-shear cell
[5–8]. One simulation of a homogeneous system allows for just one data-set,
obtained with a good statistics due to global averaging. In inhomogeneous systems,
on the other hand, by means of a suitable local and time averaging, a single
simulation allows for the collection of plenty of data-sets (including the particle
density, displacement, velocity or velocity gradient, stress and fabric for the
micro-structure).

3 Results

Here, a short summary of recent results on formulating the local granular rheology
is presented and concluded with an outlook for future research.

When formulating a granular rheology, the starting point is the successful,
simple, and elegant so-called μ(I)-rheology [5, 13], which relates the so-called
macroscopic (bulk) friction, i.e., the shear-stress to pressure ratio μ = τ/p, in a
sheared particulate system to the inertial number, i.e., the dimensionless strain-rate:

I ¼ _cd0=
ffiffiffiffiffiffiffiffiffi
p0=q

p
with shear rate _c, diameter d0 = 0.0022 m, mass-density ρ = 2000 kg/m3, and
pressure p’. The relation that describes well a wide variety of flows [13] of hard,
cohesionless particles, at various strain rates is:

lðIÞ ¼ l0 þðl1 � l0Þ
1

1þ I0=I
ð1Þ

where l0 ¼ 0:15 and l1 ¼ 0:42 represent the zero and infinite strain rate limits,
respectively, and the characteristic dimensionless strain-rate is I0 = 0.06, where
inertia effects considerably kick in. Since the simulations presented below concern
particle simulations with a very small coefficient of particle contact friction,
μp = 0.01, the dependence of the coefficients in (1) on friction is not considered.

The first correction to the μ(I)-rheology is relevant for soft particles, as based on
the results by Singh et al. [5]; it was originally given as linear additive term to the

From Particles in Steady State Shear Bands via Micro-Macro … 15



above rheology for small strain-rates [5], however, it can also be re-phrased as
multiplicative correction factor:

lðI; pÞ ¼ lðIÞ 1� p
p0

� �1=2
 !

ð2Þ

with the dimensionless pressure p = p′ d0/k, the characteristic pressure at which this
correction becomes considerable, p0 = 0.9, and the stiffness k = 100 N/m. This
correction accounts for a range of particle stiffness (or softness), but also for different
magnitudes of gravity, as in a centrifuge or on the moon. This approach allows
describing granular flows using a local approach, in opposition to non-local models,
saving the beautiful simplicity of locality and extending the basic model by including
neglected features. Additional corrections for cohesive particles involve the so-called
Bond-number (Bo), as studied elsewhere [6, 7] and ignored in the following.

Both dimensionless numbers can be expressed as a ratio of time-scales, namely
I ¼ tp=t _c and p ¼ ðtc

�
tpÞ2, where the subscripts denote strain-rate, pressure and

contact duration, respectively.
In order to complete the rheology for soft, compressible particles, a relation for

the density as function of pressure and shear rate is missing:

/ I; pð Þ ¼ /c 1þ p
pc/

 !
1� I

Ic/

 !
ð3Þ

with the critical or steady state density under shear, in the limit of vanishing
pressure and inertial number, φc = 0.648, the strain rate for which dilation would
turn to fluidization, Ic/ ¼ 0:85, and the typical pressure level for which softness
leads to huge densities, pc/ ¼ 0:33 (double, due to the linear contact model). Note
that both correction terms are valid only for sufficiently small arguments: Too large
inertial numbers would fully fluidize the system so that the rheology should be that
of a granular fluid, for which kinetic theory applies, while too large pressure would
lead to enormous overlaps, for which the contact model and the particle simulation
become questionable. In the following, the considered inertial numbers are I < 0.1,
while the pressures are p < 0.01.

A small correction to the functional form of (3) removes the invalidity for large
arguments, while remaining identical to first order Taylor expansion for small
arguments:

/ I; pð Þ ¼ /c exp
p
pc/

 !
exp � I

Ic/

 !
ð4Þ

From a rapid and moderate external rotation frequency, f, of the split-bottom ring
shear cell, with split at Rs = 0.085 m, representative data from [5] are plotted in
Fig. 2 against the radial position. Higher confining stress corresponds to a higher
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density, deeper below the free surface, while the density is reduced in the shear
band, proportional to the local shear-rate, due to dilatancy. Overall the simulation
data agree very well with the corrected density from the analytical (3), where only
local information enters, besides some scatter and more systematic deviations in the
tails of the shear band, away from the split, where the local strain rates are very
small.

The macroscopic friction, i.e., the shear stress ratio, is plotted in Fig. 3, against
the radial position for the same data-sets, in comparison with the classical rheology
of (1) and the pressure-dependent rheology, (2). The pressure dependence is
improved when using the latter, especially in the tails, for the slower rotation rate,
where the classical rheology has no pressure dependence. Nevertheless, in the tails
the stress ratio does not agree well with theory, indicating a missing additional
correction term that accounts for a combination of very low strain-rate and finite
granular temperature effects playing a dominating role in those regimes, see [5] for
more details.
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Fig. 2 Density for rapid (left) and moderate (right) rotation frequency, plotted against the radial
distance r, with data from particle simulations in [5], using the external rotation rates, f = Ω/2π,
given above the panels, filtered at three different (approx.) pressure levels, p, as given in the inset
(i.e. red, green and blue correspond to: close to the surface, in the middle, and closer to the
bottom). The lines correspond to (3), with all parameter values given in the main text; the
horizontal lines give the low stress and strain-rate limit, φc. The thin lines in the left-panel
represent (3) while the thicker lines represent the improved form in (4) (Color figure online)
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4 Conclusions and Outlook

In conclusion, particle simulations and the micro-macro transition can guide the
development of new rheological particle-flow models that include and combine
various mechanisms, which are quantified by dimensionless numbers. The original
rheology for hard, cohesionless particles was generalized to include the effect of large
confining stress and softness (or compressibility) of the particles. Both density and
shear stress ratio are well predicted by the improved, pressure dependent rheology
model, especially in the centre of the shear band. However, in the tails deviations still
occur, which can be due to several reasons: (i) the statistics is much worse in areas
where the strain rate is small, (ii) the system has not yet reached the true steady state
—as reported in [14], (iii) there can be non-local effects as encompassed, e.g., by a
“fluidity” variable, as used in [15–18], or there are additional local corrections
needed, as proposed in [19] and reported as relevant for the present system in [5].

Ongoing research is aiming at finding such further corrections for very small
strain rates, but also for cohesive particles. As next step the implementation of such
multi-purpose, generalized flow/rheology models into continuum solvers is in
progress. Final step is the development of fully tensorial flow models, as suggested
in [3, 4], that are needed to account for all the non-Newtonian aspects of particulate
and granular matter.
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Fig. 3 Shear stress ratio, μ, for the same simulations as in Fig. 2. The lines correspond to (1), the
classical rheology (thin lines), or (2), the corrected soft rheology (thick lines), with parameters as
given in the main text. The horizontal dotted lines give the constant low strain-rate limit, μ0 (Color
figure online)
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