Chapter 2
Surface Plasmon Resonance

2.1 Introduction

Free electrons in metals behave like a gas of free charge carriers (also known as
a plasma). The quanta corresponding to plasma oscillations are called plasmons.
They exist in two forms: bulk plasmons in the volume of the material and surface
plasmons which are bound at the metal-dielectric interface [1]. Surface plasmons
originate from the interactions between free electrons and an incident electromag-
netic (EM) wave. Hence, one picture describes a surface plasm on as a propagating
electron density wave occurring at the metal/dielectric interface; Alternatively, it
can also be viewed as a bound electromagnetic wave that propagates at an interface
[2]. Such propagating wave is more specifically termed as a surface plasmon
polariton (SPP) to differentiate it from the localized surface plasmon in small
nanoparticles. One schematic of SPP is shown in Fig. 2.1a. For small metallic
particles with sizes comparable to the penetration depth of an EM wave in a metal,
the distinction between bulk plasmon and surface plasmon disappears. The EM
field penetrates into the metallic particles and shifts the free electrons with respect to
the metal ion lattice, which results in a restoring local field. The coherent interplay
between the local field and the shift of electrons yield a resonance referred to as
the localized surface plasmon resonance (LSPR) (Fig. 2.1b). Next, with the aid of
simple models, we proceed to provide a mathematical description of a surface
plasmon.

2.2 Surface Plasmon Polariton

The dispersion relation of SPP modes (i.e., frequency—wavevector relationship) is
obtained by solving the Helmholtz equation:
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where E the oscillating electric field E(r,7) = E(r)e™™ and ko =2 is the
wavevector in vacuum. For the simplest geometry: a single, flat interface between a
non-absorbing dielectric in one half space and a metal plate in the other half space
(Fig. 2.2a), the dispersion relation can be easily solved by applying suitable
boundary conditions:
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kspp = ko (2.2)

where ¢, and ¢4 are the dielectric constant of the metal and the dielectric layer,
respectively. In the free electron model of the electron gas with negligible damping,

the dielectric constant of the metal is: &, =1 ——E, where w, is the plasma
frequency.

Figure 2.2b shows the dispersion relation of SPPs at the interface between a
Drude metal and air (gray curves ¢ = 1) and silica (black curves gg = 2.25). The
solid and broken curves are the real and imaginary parts of the wavevector,
respectively. In the retarded regime when the frequencies approach zero, the SPP
wavevectors approach the light wavevector ky; whereas in the opposite non-retarded
regime of large wavevectors, the SPP frequencies approach the surface plasmon
frequencies:
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Notice that there is no crossing between the light lines and the SPP curves, i.e.,
the wavevector of SPP mode is always larger than that of light at the same fre-
quency. Hence, it is impossible to excite the SPP at an ideal planar interface directly
with light. To couple light into the SPP, phase-matching methods have to be used.
A grating or prism can be used for exciting the SPP with light. As shown in
Fig. 2.2b, the light line in the silica glass intersects with the SPP at the metal/air
interface at a certain point, where the phase-matching condition is satisfied.

At a real metal/dielectric interface, the SPP propagates but will gradually
attenuate due to absorption losses in the metal. The propagation length can be
obtained from the imaginary part of the complex SPP wavevector,
kspp = k’sPP + ikgPP. It can be expressed as [4]:
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where &, = ¢ +1i¢, is the dielectric constant of the metal. For example, silver
which has the lowest loss in metals have a propagation length of 22 pum at 515 nm
and reaches 500 pm at 1060 nm. Meanwhile, SPP also attenuates evanescently
perpendicular to the metal interface and can be quantified using the skin depth:
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The skin depth in dielectric layer is usually longer than that in the metal. For
example, for silver, at 600 nm wavelength, the skin depth in the metal layer is
24 nm while in air, it is 390 nm [5].

2.3 Localized Surface Plasmon Resonance

Localized surface plasmons are non-propagating free electron density waves that
are coupled to the EM field. Consider the simplest structure: a metallic sphere with
a diameter R surrounded by a uniform dielectric environment (dielectric constant:
&) and an EM field E = Eyz passes through it (Fig. 2.3). Using the Laplace
equation for the potential V2® = 0 to obtain the field distribution in the vicinity of
the metallic sphere, we have:

.
o(r,0) =Y [Alr’+3,f<’+1> Py(cos ). (2.6)
=0
As the potential is finite at » = 0 and r — oo, we have:

O(r,0) = iAlr’Pl(cos 0) (r<R) (2.7)
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Applying the boundary conditions at r = R

100(r,0) __100(r,0) (2.9)
R 90 | _ R 00 | '
o0(r, 0) o(r, 0)
— ) ———— = —gq0———~ 2.10
A T P A (210
and at r — 00,
®D|,_, = —Eorcosl (2.11)
The potential distribution can be obtained:
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The electric potential outside the sphere comprises of the applied electric field
contribution and that from the field-induced dipole in the sphere:
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p = 47epeq (2.14)

The dipole is at resonance when &y, + 2¢4 reaches a minimum, which is referred
to as the LSPR. The resonance frequency is sensitive to the dielectric constant of
the environment the metal nanoparticle located in and the metal’s dielectric
response to the EM wave.

In 1908, Professor Gustav Mie gave an exact analytical description of the optical
behavior of sub-micrometer metallic nanoparticles [6]. For particles much smaller
than incident wavelength, only the dipole oscillation contributes to the absorption
and scattering, Mie’s theory for nanosphere can be approximated into:
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where N is the number of spheres per unit volume; V is the volume of each sphere; A
is the light wavelength; ¢; and ¢, are the real and imaginary part of the metal
dielectric constant ¢, = ¢ +i¢ey [7]. When & +2¢4 = 0, the absorption and scat-
tering reaches a resonant maximum, corresponding to the LSPR of the metallic
sphere. Professor Richard Gans extended Mie’s theory to prolate and oblate
ellipsoids by adding a depolarization factor [7, 8]. More complex systems require
computational methods such as finite-difference time domain (FDTD),
discrete-dipole approximation (DDA) etc., to obtain an approximate solution of the
optical properties. Figure 2.4 displays the extinction efficiency (i.e., ratio of the
cross section to the effective area) of silver nanoparticles having different shapes.
The LSPR peak position is very sensitive to the shape of the nanostructures [9].

2.4 Summary

A succinct description of surface plasmons and their underlying theories has been
presented. For more details, the interested reader is directed to many excellent
books on plasmonics [2—4, 10, 11].
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