Chapter 2

What Is Generalized Continuum
Mechanics (GCM)?

Introduction

We classify under the title “generalized continuum mechanics” all what is not
covered in the restricted framework of the Cauchy model exposed in the prereq-
uisite Chap. 1 under the title of “classical continuum mechanics”. In a structured
overview this generalization can be presented through the successive abandonment
of the basic working hypotheses of standard continuum mechanics of Cauchy: that
is, introduction of a density of bulk couple, of a rigidly rotating microstructure and
couple stresses (Cosserat continua or micropolar bodies, nonsymmetric stresses),
introduction of a truly deformable microstructure (micromorphic bodies), “weak”
nonlocalization with gradient theories and the notion of hyperstresses, and the
introduction of characteristic lengths, “strong” nonlocalization with space func-
tional constitutive equations and the loss of the Cauchy notion of stress, and finally
giving up the Euclidean and even Riemannian material background. We peruse
these steps in this overview, referring the reader to specialized entries for technical
details.

Asymmetric Stress

This asymmetry may be due to the existence of body couples; the only known
physical example of these couples relates to the case of electromagnetic deformable
continua where the volume magnetization is not aligned with the local magnetic
field M, or the dielectric polarization P is not aligned with the local electric field
creating thus couples per unit volume in the form of vector products M x H or
P x E in an obvious notation. Accounting for such terms in Eq. (1.7) will result in a
deviation from the symmetry condition (1.2) with the existence of a nonzero skew
part of the stress given by
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In many materials this is strictly zero in reason of the proportionality of the field
M in H or of P in E. Also, the situation described by Eq. (2.1) may be only
transient as M may rapidly align with H or P with E. Of course interaction of
electromagnetic fields with deformable matter may be much more complicated than
that described by Eq. (2.1) involving both couple and force of electromagnetic
origin, and an import of a specific energy. For a full development of this aspect in
Galilean or relativistic dynamics we recommend the treatise of Eringen and Maugin
(1990; reprint 2012).

Surface Couples

This concept may be harder to imagine physically. But there is no opposition of
principle to introduce in strict parallel with an applied surface traction (in the
Cauchy model), an applied surface couple C? per unit surface. This is an axial
vector. A reasoning a la Cauchy will yield the introduction of the notion of couple
stress m such that
_ d
n;mj; = Ci . (22)
The object of induced component my; still is “axial” in its second index
i. Accordingly, we can introduce a geometrical object with three indices, m;j;, such
that

Myji = Mylji) = MipEpjis (2-3)

where ¢,; is Levi-Civita alternating symbol. Inclusion of a surface contribution
involving the expression in Eq. (1.7) will transform the local statement of the
balance of moment of momentum (1.2) in the following more general form:

1) + myjig = 0. (24)

If in addition there exits a distribution of body couples per unit mass (rewritten
as a skewsymmetric tensor C;; = —Cj), then Eq. (2.4) will be generalized to the
following local equilibrium of couples:

1y + p Cij + myjip = 0. (2.5)

Furthermore, if this additional effect is related to the existence of a true internal
degree of freedom (of rotation) giving rise to some spin, then an inertial term will be
added in the right-hand side of Eq. (2.5) that then becomes a true dynamic
equation:
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tjg + 0 Cij + myjip = o Sji, (2.6)

where §;; = —S; is a spin (i.e., an angular momentum).

Equation (2.5) was the equation to which the Cosserats (1909) were naturally
led—together with the static form of (1.1)—by applying an invariance requirement
(Euclidean action) that represents a pioneer’s application of group theory in con-
tinuum mechanics, and requires from translation and possible rotational degrees of
freedom of a material point to be on the same a priori footing. Of course, the
expression of constitutive equations in order to close the system of field equations
demands an elaboration of the associated generalized kinematics (see entry on
Cosserat continua). Furthermore, Eringen (1966) formulated a law of conservation
of micro-inertia that complements the usual conservation of mass in the dynamical
case. Equation (2.6) corresponds to a rewriting of the global conservation law in the
following generalized form:

d
E/p(vxx—i—s)dv:/p(fxx+c)dv+ / (T? x x+C%) da,  (2.7)
B B B

where s and c¢ are the axial vectors dual of the skew tensors S and C, respectively.

Eringen-Mindlin Micromorphic Model of Microstructured
Continua

In the previous section no mention of any microscopic definition of the newly
introduced quantities was given. But we can well imagine in agreement with the
original vision of Voigt, Duhem and the Cosserats that a material point that nor-
mally experiences a translation is now assimilated to a small rigid body that can
also rotate, and is thus able to respond to local couples. A more refined vision
would be to see this point itself as a small deformable body, hence exhibiting six
degrees of freedom in addition to translation. This corresponds to the model of
micromorphic media devised by Eringen and Suhubi in 1964; the model of mi-
crostructured media devised by Mindlin (1964) in the same year is equivalent
(representing a homogeneous deformation within the small body) (see entry on
Eringen-Mindlin model).
The local balance of equilibrium in a micromorphic body can be written as

Mt — s+l =0, i =tgy+t, s =0, Li=Cit+lp  (2.8)

where 1y is the called the hyperstress tensor, s;; is the so-called symmetric
micro-stress, and [;; is the body-moment tensor of which the skew part represents a
body couple C;; = —Cj;:
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M 5 — S+l =0, g =ty +t, s =0, Li=Ci+lgs  (29)

then the Cosserat or micropolar model is obtained by taking the skew part of the
first of Eq. (2.9) and setting myj;. = fyj;)-

Bodies with microstretch (Eringen 1969). This is a further reduction of the
model Eq. (2.9) obtained by noting my, the intrinsic dilatational stress or micro-
stretch vector; [ the body microstretch force such that /() = (1/3)d;;, and ¢ and s are
intrinsic and micro scalar forces, so that we have

1 1
Higm = g mkélm - E ElmrMr, (210)
hence
Myg g+ Emntin + C1 =0, my+1—s+1=0. (2.11)

Note that an additional natural boundary condition involving the new
higher-order stresses j; and m;; must complement the standard Cauchy condition
of the Prequisite Chap. 1, e.g.,

_ _ d
n g = Cy or mimy; = Cy, (2.12)
where Cf’ is akin to a surface couple.

Finally, we note the further case of dilatational elasticity (Cowin and Nunziato
1983) [only the second of Eq. (2.11) is relevant]:

Mg+t —s+1=0. (2.13)
Here the additional natural boundary condition will be of the form
nemy = M, (2.14)

where M? is akin to a tension.

All these equations are given here in Cartesian components in order to avoid any
misunderstanding that can be created by a direct intrinsic notation: f; is a new
internal force having the nature of a third-order tensor. It has to start with no
specific symmetry in Eq. (2.8) and it may be referred to as a hyperstress. In the case
of Eq. (2.10) this quantity is skewsymmetric in its last two indices and a second
order tensor—called a couple stress—of components m; can be introduced having
axial nature with respect to its second index. The fields s; and [;; are, respectively, a
symmetric second-order tensor and a general second-order tensor. The former is an
intrinsic interaction stress, while the latter refers to an external source of both stress
and couple according to the last of Eq. (2.9). Only the skew part of the later remains
in the special case of micropolar materials. The skewsymmetric C; can be of
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electromagnetic origin, and more rarely of pure mechanical origin. Equations (2.10)
and (2.13) represent a kind of intermediate case between micromorphic and
micropolar materials. The case of dilatational elasticity in Eq. (2.13) appears as a
further reduction of that in Eq. (2.11). This will be useful in describing the
mechanical behaviour of media exhibiting a distribution of holes or cavities in
evolution.

Weakly Nonlocal Modelling

Cases examined in the preceding paragraphs do not question the notion of conti-
guity of Euler and Cauchy. They just add new fields of internal forces that still
satisfy the same contiguity argument. Totally different is the viewpoint that
envisages a more analytically precise definition of a classical quantity such as the
elastic displacement. This is best emphasized by extending the obvious limited
expansion of the power on internal forces considered in the first of Eq. (2.15) to
higher order spatial gradients of the velocity field, for instance as

Pime = —(livij +mgivige + ), (2.15)

where nyj; = m;); may be called a stress of higher order or hyperstress. This a
priori has at most eighteen independent components. In terms of the geometry of a
bounding surface (so-called natural boundary condition) this new concept will
require the consideration of the second-order geometrical description of the surface,
hence the curvature. This destroys the standard Euler-Cauchy notion of contiguity.
In pure elasticity, the effect of the contribution of the hyperstress will be of
importance wherever the strain is not spatially uniform, and obviously where one
observes a rapid variation of the elastic displacement, e.g. in boundary layers. This
vision is quite different from the one considered in the preceding section, since now
only one standard field, the displacement, or the velocity in the case of fluids, is
involved. The Euler-Cauchy framework maybe referred to as a first—gradient
theory—when referred to the expression of the power of internal forces. The theory
described by Eq. (2.15) with an expansion limited to second-order is called a
second-gradient theory. One can generalize this in principle to an nth-gradient
theory (cf. Maugin 1980). The second-gradient is well exposed in Germain (1973).
Such theories are often referred to as weakly nonlocal theories. The only compli-
cations are the statement of the relevant boundary conditions, and the obviously
large number of material coefficients to be measured, save in carefully selected
simple geometries. Analytically, the resulting problems will be stiffer than standard
ones, but they may be approached by some approximations such as singular per-
turbations (as exemplified by boundary-value problems involving matched
asymptotic expansions between inner and outer expansions).
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Historically, the roots of the gradient theories may probably be found in the
general presentation by G. Piola (in the 1840s—1860s), and more precisely in Barré
de Saint-Venant (1869) and the original works of Le Roux (1911, 1913). In the
1960s we note the works of Mindlin and co-workers and Toupin who revived this
approach in the modern framework (Mindlin and Eshel 1968; Mindlin and Tiersten
1962; Toupin 1962). Note that this modelling is sometimes mistaken for the
Cosserat model even by the best authors. This may come from the fact that if one
assumes in a Cosserat continuum that the rotational velocity of the microstructure is
constrained to follow the usual rate of rotation of the Cauchy continuum, then we
are led to a degenerate theory of the second-gradient type, which should be called
the constrained Cosserat continuum. This appears to be badly conditioned for
dynamical properties.

Strongly Nonlocal Modelling

Although the basic idea may be mentioned in Duhem (1893), a true development of
this modelling took place in the 1960s with the works of Kroner and Datta (1966),
Kunin (1966), and Rogula (1965). Later on Eringen and Edelen (1972) elaborated a
more abstract formulation. Synthesis works on the subject are by Kunin (1982) and
Eringen (2002). Technically, the Cauchy construct does not apply anymore since
contiguity is lost altogether. In principle, only the case of infinite bodies should be
considered as any cut would destroy the prevailing long-range ordering.
Constitutive equations become integral expressions over space, perhaps with a more
or less rapid attenuation with distance of the spatial kernel. This, of course, inherits
from the action-at-a-distance dear to the Newtonians, while adapting the disguise of
a continuous framework. This view is justified by the approximation of an infinite
crystal lattice: the relevant kernels can be justified through this discrete approach.
But this approach raises the matter of solving integro-differential equations—not
always a pleasant task—instead of partial-differential equations. What about
boundary conditions that are in essence foreign to this representation of
matter-matter interaction? There remains a possibility of the existence of a
“weak-nonlocal” limit by the approximation by gradient models. Typically one
would consider in the linear elastic case a stress constitutive equation in the form

1i(x) = / Cii(|x — X'|) en(x') &’x, (2.16)

all space

where the constitutive functions Cj;; decreases markedly with the distance between
material points x" and x, that are equivalent with an obvious reciprocity. Note that
standard local linear elasticity follows from Eq. (2.16) by considering the special case
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Cina(jx = x'[) = Cjyy 8(|]x — x']), (2.17)

where ¢ is Dirac’s delta generalized function, and the tensorial coefficient ngkl
depends at most on the point x alone (for inhomogeneous materials).

In one-dimensional space, a constitutive equation such as Eq. (2.16) will provide
a balance of linear momentum in the following integro-differential form:

+ o0
Pu 0 Ou(x',t
P52 " Bx /E“('x‘x")%df =0, (2.18)
or
0%u 0 ou
97 Doy [ a_] =0, (2.19)

where the symbol * stands for the convolution product (in space) and we have set
c3 = E/p,. One needs a sensible expression for the kernel (or influence function or
weight function) o.

The historical moment in the recognition of the usefulness of strongly nonlocal
theories was the EUROMECH colloquium on nonlocality organized by Dominik
Rogula in Warsaw in 1977. Note in conclusion to this point that any field theory can
be generalized to a nonlocal one while saving the notions of linearity and aniso-
tropy, but losing the usual notion of flux.

The Loss of Euclidean Structure

In classical continuum mechanics the arena of regular deformations is the physical
Euclidean space E* which is assimilated to R?. That is fine for regular displacement
fields. But in some materials such as metals there exists a huge quantity of dislo-
cations, lines along which the displacement suffers a discontinuity measured by the
so-called Burgers vector. There also exist other kinds of singularities such as
disclinations (lines along which the rotation vector does not close up in a round
circuit), and cavities (vacancies in the case of crystals) or micro inclusions (foreign
atoms in the case of atoms). The existence of what may be called defects questions
the generally accepted idea to represent a material manifold—the set of material
points—as a simple Euclidean space. Something more sophisticated must be
envisaged. This was achieved in the second half of the twentieth century with no
unique answer. But the most frequent one seems to consider a more adapted
geometric background that will be non-Euclidean or even non-Riemannian. This is
exemplified by a manifold without curvature but with affine connection, or an
Einstein-Cartan space with both torsion and curvature, etc. With this one enters a
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true “geometrization” of continuum mechanics of which conceptual difficulties
compare favourably with those met in modern theories of gravitation. Pioneers in
the field in the years 1950-70 were Kondo (1955) in Japan, Kroner (1958) in
Germany, Bilby (1955) and his group in the UK, Stojanovic (1969) in what was
then Yugoslavia, and Noll (1967) and Wang (1967) in the USA. Main properties of
this type of approach are: (i) the relationship to the multiple decomposition of finite
strains (Bilby, Kroner, Lee) and (ii) the generalization of theories such as the theory
of volumetric growth or the theory of phase transitions within a unified approach to
local structural rearrangements (local evolution of reference).

Another complication may be the intrinsic difficulty to define analytically some
fields, in particular gradients, when the material itself is viewed as a fractal set. This
constitutes the last avatar of continuum mechanics with a possible relationship to
fractional derivatives (see the dictionary entry “Fractal continua”).

General references on generalized continuum mechanics are: Altenbach and
Eremeyev (2013), Altenbach et al. (2011, 2013), Maugin (2010, 2011), Maugin and
Metrikine (2010), and the historical proceedings (Kroner 1968).

Cross references in the dictionary part: Cosserat continua, Couple stress,
Directors theory, Electromagnetic continua, Eringen-Mindlin medium, Fractal
continua, Gradient elasticity, Higher-order gradient theories, Hyperstresses, Le
Roux elasticity, Micromorphic continua, Microstructure, Non-locality (strong),
Non-locality (weak).
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