
Chapter 2
Thermodynamics

Thermodynamics includes a theoretical and an applied part. The applied thermo-
dynamics has its roots at the end of 19th century and it is used to calculate the
temperature distribution in a continuum body. This aim is fulfilled by employing
the balance of internal energy. We will study this approach in Sect. 2.1 for macro-
scopic systems and in Sect. 2.2 for microscopic systems. The difference between
macroscopic and microscopic systems relies on the used constitutive equation.

The theoretical thermodynamics has started around 1950s. It has the goal of defin-
ing constitutive (material) equations that close the balance equations. By using ther-
modynamics wewill derive the constitutive equations necessary in the computational
reality. In Chap.1 we have employed many constitutive equations with an ad-hoc
method. In this chapter we will answer the question of how to derive these equations
in a thermodynamically consistent manner. Concretely, in Sect. 2.3 we will analyze
such an approach and derive the Navier–Stokes–Fourier equations for a viscous
fluid. Unfortunately, there are various methods in the literature for the thermodynam-
ically consistent derivation of constitutive equations—we will not discuss the pros
and cons of these different approaches. Herein, we present an engineering approach
suitable for many simple material models. Although the method fails to cover some
processes, it is general enough for determining all of the constitutive equations neces-
sary for the simulated engineering applications in this book. Moreover, the necessary
mathematical knowledge is fairly low. After having studied the method in Sect. 2.3
we will employ it in Sect. 2.4 for viscoelastic materials and in Sect. 2.5 for plastic
deformations. Much use of the method will be made in the next chapter, too.
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112 2 Thermodynamics

2.1 Temperature Distribution in Macromechanics

A conductive material possesses the ability of transferring thermal energy, heat,
without mass transport. In other words, heat travels between particles where particles
remain at their positions. Ifweholdone endof a steel spoon inhotwater, heat conducts
to the other end without any deformation of the spoon itself. Of course there is a
small expansion due to the temperature change in the spoon, however, in this section
we neglect this reversible deformation and assume the body as rigid throughout the
simulation. The balance equations can be introduced in a material or open system.
The local forms of the equations are identical in both systems.

We motivate the governing equations for a solid body by using a material system.
Mass and momentum balances in current frame read

( ∫
B

ρ dv

)•

= 0 ,

( ∫
B

ρvi dv

)•

=
∫

∂B

σ j i n j da +
∫
B

ρ fi dv . (2.1)

From the mass balance we calculate the mass density (or pressure) and from the
momentum balance we acquire the displacement (or velocity). For the temperature
calculation we will use another balance equation. In order to obtain this equation we
start off with the balance of total energy in the current frame:

( ∫
B

ρe dv

)•

=
∫

∂B

Fjn j da +
∫
B

ρs dv , (2.2)

where ρ, e, Fi , and s denote the mass density,1 the specific2 total energy, the energy
flux, and the specific energy supply, respectively. The total energy is a conserved
quantity like mass and momentum; the balance of total energy lacks a production
term. We can decompose total energy density:

ρe = ρu + 1

2
ρv2 , (2.3)

where the first term is the so-called internal energy density with the specific internal
energy, u, and the second term is the kinetic energy density due to the velocity, v.
Now, by inserting the mass balance into the balance of energy as well as into the
balance of momentum, we obtain

∫
B

ρv•
i dv =

∫
∂B

σ j i n j da +
∫
B

ρ fi dv ,

∫
B

ρe• dv =
∫

∂B

Fjn j da +
∫
B

ρs dv .

(2.4)

1Density means per volume.
2Specific means per mass.
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After applying Gauss’s law, we acquire the local forms:

ρv•
i − ∂σ j i

∂x j
− ρ fi = 0 , ρe• − ∂Fj

∂x j
− ρs = 0 . (2.5)

We observe a clear structure in the balance equations. The first terms indicate which
term is balanced. The second terms are divergence of fluxes. The third terms are
supply terms. On the right-hand side the production terms are written—momentum
and total energy are conserved quantities. Equation (2.3) implies that the rate of
specific energy can be rewritten by making use of the momentum balance:

e• =
(
u + 1

2
vivi

)• = u• + v•
ivi ,

ρe• = ρu• + vi

(
∂σ j i

∂x j
+ ρ fi

)
.

(2.6)

By using the latter in the balance of total energy we obtain

ρu• + vi
∂σ j i

∂x j
− ∂Fj

∂x j
+ viρ fi − ρs = 0 ,

ρu• − ∂

∂x j

(
Fj − σ j ivi

) − ρ(s − fivi ) = σ j i
∂vi

∂x j
.

(2.7)

This equation has a structure of a balance equation. The first term denotes that the
internal energy is balanced. The second term is a divergence of the internal energyflux
and the third term is the internal energy supply. These terms are often abbreviated as

−q j = Fj − σ j ivi , r = s − fivi , (2.8)

where the so-called heat flux, qi , and the supply term, r , needs to be defined or given.
The minus sign in front of the heat flux is due to the convention that the heat pumped
into the system has been seen as a positive quantity. The first power generators were
using coal to burn and they did produce mechanical energy. Heat added into the
system as well as the mechanical work taken out of the system were seen as positive
quantities. We keep herein this convention and define the flux term of the internal
energy as −qi . The balance of internal energy reads

ρu• + ∂q j

∂x j
− ρr = σ j i

∂vi

∂x j
, (2.9)

or in global form (after using the balance of mass and Gauss’s law)

( ∫
B

ρu dv

)•

= −
∫

∂B

q jn j da +
∫
B

ρr dv +
∫
B

σ j i
∂vi

∂x j
dv . (2.10)
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Herewe see again the effect of theminus sign in front of the flux term. The heat flux is
defined as the rate of energy transported into the systemacross the boundary. Since the
plane normal is directed outward,we need aminus sign in order to describe a transport
into the system. In other words, the heat fluxes into the body against the direction of
the plane normal, n. Therefore, a minus sign is necessary to heat the system up, if the
heat flux is positive. The second term on the right-hand side is called a radiation term,
r . Actually, the name radiation might be misleading; this is not a thermal radiation,
for example, radiation from the sun cannot be modeled with this term. This term is a
specific (per mass) heat supply, r , used in the microwave oven or in a laser welding.
We will call the term internal heating or heat supply in the following. The last term
on the right-hand side denotes a production term. When a deformation occurs, this
production term will alter the internal energy. We cannot simply neglect this term.
As long as there is a deformation in the continuum body, internal energy will be
produced. The internal energy is related to the temperature such that an increasing
internal energy will imply a temperature increase. Therefore, for any process where
a deformation occurs, there will be a change in temperature. The production term
is also called an internal friction. In many systems this production term may be
small, especially for slow deformations, such that we can assume that the process is
isothermal. This justification has been used in the Chap.1.

In this section we restrict the model for rigid bodies, vi = 0, no deformations are
allowed. Balances of mass and momentum are satisfied identically and the balance
of internal energy simplifies to

ρu• + ∂q j

∂x j
− ρr = 0 . (2.11)

For a rigid body the internal energy depends only on temperature,

u = u(T ) . (2.12)

The internal heating or heat supply, r , increases the temperature by affecting all
particles together. This term is a volumetric power; the food in the microwave oven
heats up in each of its particles at the same time. In the example of a spoon in hot
water, heat is transferred across the surface and then fluxes from one end to the other.
If we put the spoon in a microwave oven, all of its particles heat up together due
to the supplied heat supply, r . The same holds in case of a laser beam.3 A laser
beam supplies energy on a focused location. Suppose that a laser beam irradiates on
one end of the spoon. All particles on that end are irradiated and they all heat up
simultaneously. The laser radiates heat in such a way that it increases the temperature
volumetrically. We model a laser welding via specific heat supply term, r .

We want to implement a laser welding process and choose a plate as geometry: A
steel plate is welded with a laser beam. The energy supply comes as a laser beam in

3A laser (Light Amplification by Stimulated Emission of Radiation) generates a focused beam of
photons in the same wavelength (coherent).

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Fig. 2.1 Laser beam
distribution as the Gaussian
bell shape in xy-plane
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a concentrated manner and heats up the whole thickness of the plate at once, roughly
alike cylinder, but instead a circle cross section, a Gaussian bell shape4 should be
modeled. Any circular Gaussian bell shape in x1x2-plane can be expressed as

r = P exp

(
−

(
(x1 − x̂1)

2 + (x2 − x̂2)
2
))

, (2.13)

such that the laser beam reaches its maximum value P at the position (x̂1, x̂2), since
r = P exp(0) = P . The power becomes asymptotically zero for coordinates away
from (x̂1, x̂2) owing to the minus sign. We want to simulate a laser beam evolving in
time. The power (energy rate) of the laser reads

L(xi , t) = P exp

(
− 50000

((
x1 − l

2

(
1 + 1

2
sin(2πτ )

))2 + (
x2 − vL t

)2))
,

(2.14)
where the laser beam moves with a time parameter τ = t/tend = [0, . . . 1] in x1
sinusoidally and along x2 linearly with a constant speed vL . Of course, this is a
model problem. In reality, the path is already defined in design and programmed into
a NC (Numeric Controller) laser welding machine. Here we want to implement a
complicated path description in order to present how to implement such a process
into the code. The power of the laser beam, P , can be found in the data sheet of the
laser weldingmachine. In order to visualize the implemented laser beam distribution,
we plot the distribution for x̂ = ŷ = 30mm and P = 3000W/kg in Fig. 2.1. Since
we multiplied L in Eq. (2.14) with a huge number of 50 000, the laser beam affects
only locally, as expected from a focused light.

4It is named for Carl Friedrich Gauß.
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For a rigid body the deformation gradient equals to the Kronecker delta such
that current and initial frames are equal, xi = Xi . The balance of internal energy
reads

ρ
∂u

∂t
+ ∂qi

∂xi
− ρr = 0 . (2.15)

For the internal heating we use the laser beam, r = L . Moreover, the internal energy
depends only on the temperature, u = u(T ), in case of a rigid body. Hence we obtain

ρ
∂u

∂T

∂T

∂t
+ ∂qi

∂xi
− ρL = 0 . (2.16)

In Sect. 2.3 on p.126 we will formally introduce and discuss the so-called specific
heat capacity:

c = ∂u

∂T
, (2.17)

and explain how tomeasure thismaterial parameter. The specific heat capacity is con-
stant for many engineering materials. We also need a constitutive (material) equation
for the heat flux, qi . The simplest relation is given by Fourier’s law:5

qi = −κ
∂T

∂xi
, (2.18)

where the material parameter, κ, is referred to as thermal conductivity. We assume it
being constant. The minus sign denotes that the heat flux conducts in the direction of
decreasing temperature gradient. Hence, heat fluxes from higher to lower tempera-
ture. This phenomenon is known intuitively and its validity is a subject of theoretical
thermodynamics. For the moment we take it for granted and insert Fourier’s law
into the balance of internal energy

ρc
∂T

∂t
− κ

∂2T

∂xi∂xi
− ρL = 0 . (2.19)

This differential equation is called the field equation for T , where its solution leads
to the temperature distribution in a rigid body. We acquire the variational form of the
latter differential equation by discretizing in time and by using integration by parts.
First we utilize a backward difference scheme for temporal discretization, as usual,

∂T

∂t
= T (t) − T (t − Δt)

Δt
= T − T 0

Δt
. (2.20)

5The constitutive equation is named after Jean-Baptiste Joseph Fourier.
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Secondly, we multiply the field equation by the test function, δT , for spatial dis-
cretization ∫

B

(
ρc

Δt
(T − T 0) − κ

∂2T

∂xi∂xi
− ρL

)
δT dv = 0 . (2.21)

The second term in the integral form possesses a second derivative in space, whereas
the multiplied test function has no derivatives. Thus, the continuity conditions of
T and δT are different. In the Galerkin procedure we utilize the same function
space for the primitive variable T and its test function δT . Hence it has to belong to
class C2 at least. We can integrate by parts and acquire a form where both terms are
differentiated once such that the continuity condition of T , δT is weakened and they
need to belong to C1. After integrating by parts we acquire the weak form:

FT =
∫
B

(
ρc

Δt
(T − T 0) δT + κ

∂T

∂xi

∂ δT

∂xi
− ρL δT

)
dv −

∫
∂B

κ
∂T

∂xi
δTni da .

(2.22)
The integrand on the boundaries ∂B shall be given. In Chap.1 we have seenDirich-
let boundary conditions, where the solution itself is given, and Neumann boundary
conditions, where the gradient of the solution in the surface outward normal, ni , is
defined. For the case of the energy equation the heat flux, qi , projected into the surface
normal, qini , defines aNeumann condition. This condition is the heat exchange from
the surface of the plate to the surrounding medium, probably air or some special kind
of gases like Argon or Helium for a better welding. The heat exchange is due to the
temperature difference between the surface and the surroundings. Surface becomes
hot as a consequence of the energy delivered by the laser beam. The temperature of
the surroundings might be set constant6 to an ambient temperature, Tamb. Thus, we
obtain the Dirichlet condition T = Tamb on the boundary. Both conditions can be
mixed together in order to create another type of boundary condition. We introduce
a mixed boundary condition, to which is referred as a Robin boundary condition,7

for the whole surface ∂B as follows

qini = h(T − Tamb) ∀xi ∈ ∂B , (2.23)

where a (positive) convective heat transfer coefficient, h in W/(m2 K), is introduced
that depends on the material and state of the ambient. If the body is embedded in
fluid the convection heat transfer coefficient is higher than in air. In case of a moving

6Constant temperature of the surroundings is a warm bath idealization. Suppose that there is so
much water in a bath; a heat exchange with the body within the bath does not affect the temperature
of the bath, at all. The water on the surface of the body remains at the same constant temperature
all the time.
7It is named after Victor Gustave Robin.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Fig. 2.2 Temperature distribution at 2, 5, 15, and 50s in the steel plate during the laser welding

fluid that surrounds the body, the coefficient is even higher. This so-called natural
convection in Eq. (2.23) provides a positive energy flux into the body if the ambient
temperature is higher than the surface temperature,

−qini = h(Tamb − T ) > 0 when Tamb > T . (2.24)

Additionally, for the heat flux we readily employ Fourier’s law in Eq. (2.18). Now
the linear variational form reads

FT =
∫
B

(
ρc

Δt
(T − T 0) δT + κ

∂T

∂xi

∂ δT

∂xi
− ρL δT

)
dv+

+
∫

∂B

h(T − Tamb) δT da .

(2.25)

The code below computes the temperature distribution transiently, which can be seen
in Fig. 2.2.
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1 ”””Computational r e a l i t y 10 , temperature d i s t r i b u t i o n in a
→ macroscopic body”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU Gen e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 parameters [ ” a l l ow ex t r apo l a t i on ”]=True
9 parameters [ ” form compi l er ” ] [ ” cpp opt imize ” ] = True

10 s e t l o g l e v e l (ERROR)
11
12 rho=7860.0 # mass d e n s i t y o f s t e e l i n kg /mˆ3
13 c=624.0 # he a t c a p a c i t y i n J / ( kg K)
14 kappa=30.1 # th e rm a l c o n d u c t i v i t y i n W/(m K)
15 h=18.0 # he a t c o n v e c t i o n ou t o f t h e s u r f a c e i n t o amb i e n t

→ i n W/(mˆ2 K)
16 Ta=300.0 # amb i en t t e mp e r a t u r e i n K
17 l =0.1 # l e n g t h i n x and y d i r e c t i o n s i n m
18 t h i c kn e s s=0.001 # t h i c k n e s s o f t h e p l a t e i n m
19 P=3.0 e6 # l a s e r powe r i n W/ kg
20 speed=0.02 # l a s e r s p e e d i n m/ s
21 # C r e a t e mesh and d e f i n e f u n c t i o n s p a c e
22 mesh = BoxMesh ( Point ( 0 . 0 , 0 . 0 , 0 . 0 ) , Point ( l , l , t h i c kn e s s ) ,

→ 200 ,200 ,2)
23 Space = FunctionSpace (mesh , P , 1)
24 c e l l s = Cel lFunct ion ( s i z e t , mesh )
25 f a c e t s = FacetFunction ( s i z e t , mesh )
26 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
27 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
28 t=0.0
29 t end=50.0
30 Dt=0.1
31 i n i t i a l T = Expres s ion ( ”Tini ” , Tini=Ta)
32 T0 = i n t e r p o l a t e ( i n i t i a l T , Space )
33 Laser = Expres s ion ( ”P exp ( −50000.0 ( pow(x [0 ] −0.5 l (1+0.5 s i n

→ (2 p i t / t e ) ) , 2)+pow(x [1] − ve l o t , 2) ) ) ” ,P=P, t=0, t e=
→ t end/10.,l=l , v e l o=speed )

34 T = Tria lFunct ion ( Space )
35 del T = TestFunction ( Space )
36 Form = ( rho c/Dt (T−T0) del T \
37 + kappa T. dx ( i ) del T . dx ( i ) \
38 − rho Laser del T ) dv \
39 + h (T−Ta) del T da
40
41 l e f t=l h s (Form)
42 r i gh t=rhs (Form)
43
44 A = assemble ( l e f t ) # non−c h a n g i n g by t im e s t e p p i n g
45 b = None # d y n am i c a l l y a s s emb l e d a c c . t o t im e
46 T = Function ( Space )
47 f i l e T = F i l e ( ”/ c a l c u l /CR10/T. pvd” )
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48 for t in numpy. arange (0 , t end , Dt ) :
49 print ”Time ” , t
50 Laser . t=t
51 b=assemble ( r i gh t , t en sor=b)
52 s o l v e (A, T. v ec to r ( ) , b , cg )
53 i f t == int ( t ) : f i l e T << (T, t )
54 T0 . as s i gn (T)

To-do

Temperature distribution in a macroscopic rigid body has been computed. In order
to deepen the understanding of the implementation try to do the following steps:

• Since the integral form is linear we may have implemented as in the previous
sections by using “Form” and “Gain.” Try to implement in this way, the results
have to be identical.

• Change the boundary condition to a weak8 Dirichlet condition and then to adi-
abatic9 boundaries by manipulating the parameter h.

• Search for approximate values of h for natural and forced convection. Which one
has been established in the given code?

• Since heat escapes over the boundaries, sooner or later the temperature becomes
the ambient temperature homogeneously in all body. Find the material parameters
for a polymer and apply the same laser power. Is the body out of steel or polymer
will reach the ambient temperature quicker?

2.2 Heat Transfer in Micromechanics

Heat propagation in a rigid body has been described by a parabolic differential equa-
tion in the last section. A mathematician recognizes the differential equations under
two classes: diffusion andwave problems. A parabolic differential equation models a
diffusion problem and a hyperbolic differential equation models a wave propagation.
We refrain from using this terminology and point on the famous “paradox” due to
the characteristics of the parabolic differential equation used in the heat transfer.10

Consider Fourier’s law describing the heat flux:

qi (x, t) = −κGi (x, t) , Gi = ∂T

∂xi
. (2.26)

8We apply a Dirichlet condition strongly by exchanging the solution with the given solution by
using “DirichletBC” in the code. Instead of this method, we can satisfy the condition weakly by
writing it under the boundary integral.
9An adiabatic boundary prevents heat transfer across boundaries.
10See [16] for some interesting explanations on the characteristics of the heat propagation.
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Flux is the rate of energy exchange, in other words, it describes how quickly the heat
energy travels between neighboring particles. Since the flux depends only on the
temperature gradient, as long as there exists a temperature gradient the exchangemay
happen as quick as possible. Therefore, heat flux depending only on the temperature
gradient results in an infinite propagation of the information. A typical example is a
long bar excited on one end by a laser pulse. As expected, the temperature changes on
the excited end. According to Eq. (2.26) at the very moment changed the temperature
the neighboring element feels this change. The temperature change implies a heat flux
instantaneously, thus whole bar “knows” this temperature change. In other words,
the temperature starts changing in the whole bar instantaneously. For a bar in a
macroscopic length scale, the temperature change is insignificant. Hence, Fourier’s
law is quite accurate for many engineering problems in macroscale. However, in a
microscopic length scale and laser pulses in femtoseconds the accuracy of Fourier’s
law is inappropriate. There are even measurements in these scales suggesting a more
sophisticated definition of the heat flux11 than Fourier’s law. In this section we
will generalize the heat flux by adding a rate dependency, similar to ideas used in
Sect. 1.4, and simulate in microscale.

The generalization of the heat flux can be introduced in many different ways. We
are interested in applied thermodynamics; so we use an argumentation that the flux
and temperature gradient occur in different time instants. It is challenging to choose
cause and effect, thus, we basically introduce a time lag both to the heat flux and
temperature gradient:

qi (x, t + τq) = −κGi (x, t + τT ) . (2.27)

The parameters τq and τT defines the time-delay or relaxation times between the
flux and its response, i.e., the temperature gradient. By setting τT = 0 we attain
Cattaneo–Vernotte’s heat flux12 Since we want to evaluate the heat flux in the
current time, t , we expand the left and right sides of Eq. (2.27) around the current
time by using a Taylor series with linear terms:

qi (x, t) + τqq
•
i (x, t) = −κGi (x, t) − κτT G

•
i (x, t) . (2.28)

By suppressing the arguments the heat flux for micromechanics reads

qi = −τqq
•
i − κGi − κτT G

•
i . (2.29)

11See, for example, [18].
12It is named for Carlo Cattáneo and Pierre Vernotte.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Since the body is rigid, there is no difference between the total and partial time rate.
Time discretization delivers

qi = −τq
qi − q0

i

Δt
− κGi − κτT

Gi − G0
i

Δt
,

qi = Δt

Δt + τq

(
τq

Δt
q0
i − κ

(
1 + τT

Δt

)
Gi + κτT

Δt
G0

i

)
.

(2.30)

As we have established the field equation for a rigid body in the last section

ρc
∂T

∂t
+ ∂qi

∂xi
− ρL = 0 , (2.31)

we can now implement the heat flux with relaxation times. After making the first
term discrete in time, multiplying by the test function, δT , and then applying an
integration by parts, we obtain the weak form:

∫
B

(
ρc

Δt
(T − T0) δT − qi

∂ δT

∂xi
− ρL δT

)
dv +

∫
∂B

q̂ δT da , (2.32)

where q̂ = qini is the given boundary condition.
Every body consists of electronic particles and thus emits energy as a result of

the changes in the electronic configurations of the atoms. This phenomenon happens
above the absolute temperature, 0 K, for all times in form of radiation. Radiation
is a volumetric supply and every particle of the body emits energy in the form
of electromagnetic waves (photons), however, they are again absorbed from the
neighboring particles. Only the particles building the surface emits energy such that
this type of radiation is modeled as a surface phenomenon.13 The maximum rate of
energy emitted from a rigid body into a vacuum is given by the Stefan–Boltzmann
law:14

q̃ = σT 4 , (2.33)

where the Stefan–Boltzmann constant, σ = 5.670 · 10−8W/m2, is a universal
constant. In the vacuum, the radiation waves propagate with the speed of light,
c0 = 2.998 · 108m/s. In air, they propagate with cair = c0/n, where the refractive
index is n = 1.0008 for air. The energy rate to the air is

q̃ = n2σT 4 , (2.34)

in other words, it is only 0.16% more than into the vacuum; this difference is neg-
ligible. The aforementioned relation holds for the idealized surface referred to as a

13For some intuitive explanations and examples of the thermal radiation, see [2, Chap. II, Sect. 9–4].
14The law is named after Josef Stefan and Ludwig Boltzmann.
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blackbody. Real surfaces emit less energy than the blackbody and this rate is mea-
sured by the emissivity, ε, of the surface:

q̃ = εσT 4 . (2.35)

The emissivity is between zero and one. Even in vacuum this type of energy exchange
occurs. If the body is surrounded by air at Tamb then the energy rate emitted from the
body reads

q̃ = εσ(T 4 − T 4
amb) . (2.36)

We can now combine the natural convection and the surface radiation in order to find
out the boundary condition as follows

q̂ = qini = h(T − Tamb) + εσ(T 4 − T 4
amb) , (2.37)

for a body embedded in resting air. If the air possesses a velocity, as in case of a
forced convection, the value of h increases and the heat exchange via convection
dominates; the surface radiation can be completely neglected.

We acquire the following weak form for the computation:

Form =
∫
B

(
ρc

Δt
(T − T0) δT − qi

∂ δT

∂xi
− ρL δT

)
dv+

+
∫

∂B

(
h(T − Tamb) + εσ(T 4 − T 4

amb)
)
δT da ,

(2.38)

with the heat flux, qi , as in Eq. (2.30). Obviously, the weak form is nonlinear due to
the thermal radiation in the boundary conditions.

Suppose we have a tiny beam of 100 × 5 × 5μm excited on one end with a laser
beam. Taken from [18] time lag parameters are given below in picoseconds:

for Cu , τT = 70.833 ps , τq = 0.4648 ps ,

for Au or Ag , τT = 89.286 ps , τq = 0.7438 ps ,

for Pb , τT = 12.097 ps , τq = 0.1720 ps .

(2.39)

We choose an appropriate unit system:

1 ps = 10−12 s , 1μg = 10−9 kg , 1μm = 10−6 m , 1 nN = 10−9 N , (2.40)

where energy is in femtoJoule, 1nN × 1μm = 10−15 Nm = 1 fJ, and temperature
in K as usual. A short pulse of laser on one end ignites a heat transport to the surface
and toward to other end, see Fig. 2.3. The implementation with consistent units has
been realized by the code below.



124 2 Thermodynamics

Fig. 2.3 Temperature distribution at 1, 15, 50, and 100ns in the gold bar, consider the change of
the temperature scale for a better visualization

1 ”””Computational r e a l i t y 11 , temperature d i s t r i b u t i o n in a
→ micros cop i c body”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU Gen e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 parameters [ ” a l l ow ex t r ap o l a t i on ”]=True
9 parameters [ ” form compi l er ” ] [ ” cpp opt imize ” ] = True

10 s e t l o g l e v e l (ERROR)
11
12 rho=19.3E−6 # mass d e n s i t y o f g o l d (Au ) i n mug/mumˆ 3 ]
13 c=129.0E6 # he a t c a p a c i t y i n f J / ( mug K)
14 kappa=318.0E−3 # th e rm a l c o n d u c t i v i t y i n f J / (mum K ps )
15 tau T = 89.286 # i n ps
16 tau q = 0.7438 # i n ps
17 h=18.0E−9 # n a t u r a l c o n v e c t i o n c o e f f i c i e n t i n f J / ( p s mumˆ2

→ K) ]
18 emis=0.47 # e m i s s i v i t y o f g o l d n o t p o l i s h e d
19 sigma=5.670E−17 # St e f a n −Bo l t zmann c o n s t a n t i n f J / ( p s mum 2 )
20 Ta=300.0 # amb i en t t e mp e r a t u r e i n K
21 l =100.0 # l e n g t h i n mum
22 th=5.0 # t h i c k n e s s i n mum
23 P=30.0E3 # l a s e r powe r i n f J / (mum ps )
24
25 mesh = BoxMesh ( Point ( 0 . 0 , 0 . 0 , 0 . 0 ) , Point ( l , th , th ) , 200 ,10 ,10)
26 Space = FunctionSpace (mesh , P , 1)
27 VectorSpace = VectorFunctionSpace (mesh , P , 1)
28 c e l l s = Cel lFunct ion ( s i z e t , mesh )
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29 f a c e t s = FacetFunction ( s i z e t , mesh )
30 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
31 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
32 t=0.0
33 t end=100000.0 #0 . 1 mus
34 Dt=1000.0
35 i n i t i a l T = Expres s ion ( ”Tini ” , Tini=Ta)
36 T0 = i n t e r p o l a t e ( i n i t i a l T , Space )
37 Laser = Expres s ion ( ”P exp ( −1.0 ( pow(x [0] −2 , 2)+pow(x [ 1 ] , 2)+

→ pow(x [2 ] −2 . 5 , 2) ) ) ” ,P=P)
38 T = Function ( Space )
39 del T = TestFunction ( Space )
40 dT = Tria lFunct ion ( Space )
41 q0 = Function ( VectorSpace )
42 G = as t en s o r (T. dx ( i ) , ( i , ) )
43 G0 = as t en s o r (T0 . dx ( i ) , ( i , ) )
44 q = as t en s o r (Dt/(Dt+tau q ) ( tau q /Dt q0 [ i ]−kappa (1+tau T/Dt

→ ) G[ i ]+kappa tau T/Dt G0[ i ] ) , ( i , ) )
45 Form = ( rho c/Dt (T−T0) del T \
46 − q [ i ] del T . dx ( i ) \
47 − rho Laser del T ) dv \
48 + (h (T−Ta) \
49 + emis sigma (T 4−Ta 4) ) del T da
50 Gain = de r i v a t i v e (Form , T, dT)
51
52 f i l e T = F i l e ( ”/ c a l c u l /CR11/T. pvd” )
53 for t in numpy. arange (0 , t end , Dt ) :
54 print ”Time ” , t
55 i f t>=2000.: Laser .P=0
56 s o l v e (Form== 0 , T, [ ] , J=Gain , \
57 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−3} } , \
58 f orm compi l er parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

59
60 i f t == int ( t ) : f i l e T << (T, t )
61 q0 = p ro j e c t (q , VectorSpace )
62 T0 . as s i gn (T)

To-do

Temperature distribution with a time lag has been implemented.

• Change the boundary condition to a Dirichlet boundary without radiation.
• Simulate the same problem with Fourier’s law.
• Produce a 2D plot with temperature versus x-coordinates. Plot the results with
Cattaneo–Vernotte’s and Fourier’s law on top of each other and analyse the
difference.
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2.3 Thermodynamics in a Nutshell

Theoretical thermodynamics concerns derivation of the constitutive equations, which
we have already been using in the former sections. For some viscous fluids, for exam-
ple water, we are certain that the Navier–Stokes equation is an adequate model to
describe the flow behavior. Thematerial model given by the constitutive equation has
been attained phenomenologically (by using empirical research). In the early 1940s
the concept of continuum mechanics has been redesigned under the name rational
mechanics. Different scientific branches of mechanics: solid body mechanics, fluid
mechanics, and applied thermodynamics, have been fused by using this concept.
Such an abstraction of different studies has lead to theoretical thermodynamics15

used to derive the constitutive equations.
Theoretical thermodynamics is a non-unique approach. At least four prominent

methodologies can be listed: the Coleman–Noll procedure, Muller’s rational
thermodynamics, and non-equilibrium thermodynamics.16 They deliver the basic
equations like Navier–Stokes’s equation such that we believe that all methodolo-
gies are correct. We omit an introduction and discussion of different methodologies
and design a method using elements from all of them. The output is again the well-
known equations for simple viscous fluids such that we can convince ourselves that
the procedure is acceptable. The proposed method possesses some limitations that
we will remark by presenting and applying the procedure in the following. Although
the method has some weak points, it is relatively simple and allows to be generalized
easily in order to involve electromagnetic interactions in Chap.3.

We have introduced and implemented the following three balance equations in
their local forms: the balance of mass, the balance of linear momentum, and the
balance of internal energy, respectively:

ρ• + ρ
∂vi

∂xi
= 0 , ρv•

i − ∂σ j i

∂x j
− ρ fi = 0 , ρu• + ∂qi

∂xi
− ρr = σi j

∂v j

∂xi
, (2.41)

in the current frame expressed in a Cartesian coordinate system. The first two has
zero sources, i.e., zero right-hand sides and the balance of internal energy has a non-
zero source. The source is a production term. We cannot eliminate or “shut off” the
production term. For example the production term of the internal energy—known as
the internal friction—alters the internal energy, as long as the material undergoes a
motion. Internal energy fails to be a conserved quantity. Mass and linear momentum
are conserved quantities, since they lack a production term.

From the balance equations we want to solve the mass density, ρ, the velocity, vi ,
and the temperature, T . First we need to close the balance equations by defining the
constitutive equations for the Cauchy stress, σ j i , for the specific internal energy, u,

15Thermodynamics of irreversible processes started with papers of Carl Eckart, see [4], [5], [6], [7].
16The Coleman-Noll procedure is named after Bernard D. Coleman and Walter Noll, see [3].
Muller’s rational thermodynamics is named for Ingo Müller, see [11]. The non-equilibrium ther-
modynamics is introduced by Sybren Ruurds de Groot and Peter Mazur, see [8].

http://dx.doi.org/10.1007/978-981-10-2444-3_3
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and for the heat flux, qi . After having found the definitions, the formulation will be
complete such that we can generate a weak form and solve the balance equations aug-
mented with the constitutive equations. Theoretical thermodynamics has the aim of
determining the constitutive equations. In this section we will perform the necessary
steps leading to the adequate constitutive equations modeling a viscous fluid.

We want to compute (ρ, vi , T ) for a fluid in a Eulerian frame, (xi , t). The
unknowns (ρ, vi , T ) are referred to as primitive variables: their mathematical exis-
tence is accepted without any further investigation. Our goal is to compute the primi-
tive variables by satisfying the balance equations.We can solve the balance equations
if they are closed: All constitutive equations for σi j , qi , and u are given by functions
depending on the primitive variables or their time and space derivatives.

The first assumption is that the specific total energy, e, is additive so that the
specific internal energy, u, and specific kinetic energy, ekin., are separable and inde-
pendent. Hence, the internal energy fails to depend on the velocity. By following
[14] we assume that the change of the internal energy17 is recoverable. The kinetic
energy is irreversible. There are many different formulations in the literature and
none of them is wrong, because we cannot measure different parts of the energy sep-
arately; they are just various models approximating the behavior of the material with
different accuracies. The accuracy of any formalism can only be tested by measure-
ments. In the end, the primitive variables are calculated with adequate accuracy, if
the material modeling is appropriate. Without discussing its limitations, we assume
that the internal energy possesses only terms occurring a recoverable change. This
assumption is of paramount importance and leads to a useful methodology described
in the following.

We introducemass density, ρ(xi , t), velocity, vi (x j , t), and temperature T (xi , t) as
primitive variables. We axiomatically assume that they are independent functions.18

Velocity fails to be an objective variable. If we perform a Euclidian coordinate
transformation, velocity transforms other than a tensor of rank one. Fortunately,
symmetric velocity gradient, di j = ∂v(i/∂x j), is an objective variable, it is a tensor
of rank two.19 Constitutive equations shall depend on objective variables.

We start the formulation byproposing an equation for the internal energy.Actually,
this equation can be derived in various ways. We present here a method based on the
balance of internal energy since we will make much use of it in the next chapter.20

Consider a material of having the following constitutive equation:

σ j i = rσ j i + dσ j i , (2.42)

17Under the assumption that no phase changes occur.
18Of course they are coupled, however, independent. We can hold the temperature fixed and move
the body or restrict any motion and change the temperature.
19The formulation holds for fluids with elasticity, too. Therefore, we need to introduce, di j = ε•

i j ,
for a fixed frame, wi = 0. The proof of this identity is out of scope, therefore, we explain it in
AppendixA.4 on p.301.
20For another, more conventional derivation, see [1, Sect. 3].
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where the reversible (recoverable) change is given by the first and irreversible (dissi-
pative) change is described by the second term. The assumption of separating stress
tensor additively is justified by the energy assumption, where we have also separated
the reversible (recoverable) and irreversible (dissipative) terms into an internal and
kinetic energy, respectively. For a fluid without elasticity, we introduce the reversible
term by using pressure, p, as follows

rσ j i = −pδ j i . (2.43)

The dissipative termwill be a function of di j leading to a flow in the system. The stress
consists of the reversible term, if the fluid rests (zero velocity),21 this state is called a
mechanical equilibrium. In equilibrium, the pressure enables a reversible momentum
transport, for example the sound waves in a fluid are transported by the pressure, p.
This process is reversible since the motion of fluid particles are recovered after the
sound wave has passed by. This small motion of fluid particles are neglected at all,
we only calculate the velocity leading to a convection of the fluid. If the fluid rests,
pressure still transports sound waves reversibly. Hence, we can call the pressure as
a hydrostatic pressure since it is responsible for a momentum transport in the static
or equilibrium state. In the mechanical equilibrium the stress reads

σ j i

∣∣∣
eq.

= −pδ j i . (2.44)

Formally, the decomposition in Eq. (2.42) is correct since we still have not defined
dσi j . Instead of searching for a definition of σi j we now have to search for p and dσ j i .

For a thermal equilibrium we introduce a quantity called a specific entropy, η, as

−∂qi
∂xi

∣∣∣
eq.

= q •
∣∣∣
eq.

,
1

T
q •

∣∣∣
eq.

= ρη• , (2.45)

by following [8, Chap.XIV, Sect. 2]. The entropy is responsible for a reversible
transport of energy, i.e., the process is in a thermal equilibrium. Thermal equilibrium
is often explained as a slow temperature change, actually, it is just the reversible
part of the process without any dissipation. Indeed a slow temperature change is
undertaken by the reversible part. Similar to the previous case, we now have to
determine a constitutive equation for η and qi . The balance of internal energy:

ρu• + ∂qi
∂xi

− ρr = σi j
∂v j

∂xi
, (2.46)

reads at thermal and mechanical equilibrium

21Since we use a Euclidean transformation to test the objectivity, a constant velocity is accepted,
too. Consider a rigid body moving with a constant velocity, it actually rests in a coordinate system
moving with this velocity. Hence, we can always introduce a constantly moving coordinate system,
which is allowed in the Euclidean transformation, where the body rests.
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ρu• − ρT η• = −p
∂vi

∂xi
, (2.47)

since by existing internal heating (supply term), equilibrium cannot take place. We
recall that the internal energy is fully recoverable. By introducing a specific volume,
v = 1/ρ, a volume per mass, we can rewrite the balance of mass as follows

(v−1)•v = −∂vi

∂xi
,

v•

v
= ∂vi

∂xi
,

ρv• = ∂vi

∂xi
.

(2.48)

Now by inserting the latter into the balance of internal energy we obtain

ρu• − ρT η• = −ρpv• ,

u• = T η• − pv• .
(2.49)

Furthermore from the latter expression, we acquire so-called Gibbs’s equation:

du = T dη − p dv , (2.50)

under the condition that u has a first integral:

u =
∫

du . (2.51)

Often, this condition is referred to as the 1st lawof thermodynamics.22 The integration
is between two states. Suppose we start from the state, {T = T0, v = v0}, and end
up in a state at another temperature and mass density (thus specific volume), {T, v}.
Since the internal energy is a total differential we can obtain the energy by integrating
from the state one to state two

u =
∫ (T,v)

(T0,v0)
du = u(T, v) − u(T0, v0) . (2.52)

Only the first and last states are important, not the states in between. This condition is
a limitation and the methodology herein with this limitation is called the equilibrium
thermodynamics. Exactly this assumption is a deficiency on the way to a general

22For instance in [14] the internal energy is introduced as a full recoverable quantity such that the
first integral is automatically justified. Either we can accept the axiom of existence of du as the 1st
law, or the assumption that the internal energy is fully recoverable as the 1st law.
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theory.23 In other words, for some processes this assumption may lead to constitutive
equations not capable of describing the process accurately. The fact that the total
energy has a dissipative term only due to the kinetic energy might be too restrictive.
The methodology presented here would not suffice for describing a process where
temperature (or its rate) plays a dissipative role in the total energy. However, at
least for all processes presented in this book, this restriction is admissible and the
implemented method is reliable.

Usually Gibbs’s equation is an axiomatic start; its validity is taken for granted.
Herein, we have motivated it by using the balance of internal energy at the equilib-
rium. Since the internal energy is assumed to be recoverable, the differential relation
holds for the non-equilibrium, too. By considering Eq. (2.50) we realize that the
internal energy is a function of entropy and specific volume,

u = u(η, v) . (2.53)

We have an inconsistency by defining energy depending on a variable, η, which is
not yet defined. Better we shall find a constitutive equation for energy depending
on the primitive variables or their derivatives, i.e., on the so-called state variables.24

In this section the state or primary variables are {T, v}. Thus, we need an energy
definition depending only on the primary variables. In order to obtain such an energy
we introduce the so-called specific Helmholtz free energy:

ψ = u − T η . (2.54)

Its total differential is assumed to exist25

dψ = du − η dT − T dη . (2.55)

By inserting Eq. (2.50) into the latter we obtain

dψ = −η dT − p dv . (2.56)

From this differential form we realize that the free energy depends on the primary
variables

ψ = ψ(T, v) . (2.57)

23For a brief explanation of this deficiency, we refer to [13, Chap.2].
24Since state variables are derived from the primitive variables we can also name them as primary
variables.
25This assumption is another weak point in the methodology, the 1st law of thermodynamics only
states that the internal energy has a perfect differential, du, but not the free energy. Concretely, we
have to make sure that d(T η) exists.
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Obviously, we have the following relations:

dψ = ∂ψ

∂T
dT + ∂ψ

∂v
dv , η = −∂ψ

∂T
, p = −∂ψ

∂v
. (2.58)

Our goal is to determine the dual variables depending on the primary variables26

η = η(T, v) , p = p(T, v) , (2.59)

leading to the following differentials:

dη = ∂η

∂T
dT + ∂η

∂v
dv = A dT + B dv ,

dp = ∂ p

∂T
dT + ∂ p

∂v
dv = C dT + D dv .

(2.60)

We need to determine the material coefficients A, B,C , D as functions depending on
the state variables. The partial derivatives are taken by holding the other arguments
fixed. We skip an explicit notation about the dependency, since it is superfluous. The
small change d(·) is simply how we shall undertake the measurements.

We cannot measure the (specific) entropy, η, directly. Instead, heat (thermal
energy) is measured in a calorimeter, δq = T dη. The notational difference, δq, is
only due to the fact that we cannot form a total differential of the heat. In other words,
it is necessary to integrate over the whole process that is an evolution, the knowledge
of the start and end states is not sufficient for δq. Technically, we justmeasure the heat
energy supplied to the system. By holding the specific volume constant, dv = 0, and
by varying the temperature, dT , we obtain a change of heat, δq, which is measured
as

δq = c dT ⇒ A = c

T
, (2.61)

where c is called the specific heat capacity by holding volume constant. It may
depend on temperature and have to be measured for different specific volumes. Of
course for different specific volumes, the numerical value of cmay vary, too. Hence,
c = c(T, v), at least in principle. These measurements are difficult such that either
heat capacity is assumed to be constant or solely the dependence on the temperature
is found in the literature.

We can easily measure the coefficient D by fixing the temperature, dT = 0; vary-
ing the specific volume, dv; and measuring the pressure change, dp. It is possible
to change the temperature and measure the pressure for a fixed (specific) volume
for determining C . However, it is rather difficult to set the temperature constant and
measure the heat exchange due to the variation in the specific volume. The problem is

26Although this is mathematically obvious that the dual variables have to depend on the same set of
arguments of the free energy, namely on the state variables, this condition is called the equipresence
principle, see [17, Sect. 293.η].
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that we normally measure the heat change over the temperature measurement. There
is aMuller-calorimeter for this purpose but it is not appropriate for all materials.27

Fortunately, we can skip measurements for determining C coefficient because
C = B. In order to see this relation, we write the dual variables in a matrix notation:

(
dη
dp

)
=

(
c/T B
C D

)(
dT
dv

)
. (2.62)

The condition B = C is a symmetry condition in the matrix of coefficients. This
condition can be seen readily by using the free energy depending on T and v,

B = ∂η

∂v
= − ∂2ψ

∂v∂T
= − ∂2ψ

∂T∂v
= ∂ p

∂T
= C . (2.63)

This condition is known asMaxwell’s reciprocal relation.28 For a viscous fluid we
can integrate and find out the constitutive equations:

η =
∫

dη =
∫

c

T
dT +

∫
B dv , p =

∫
dp =

∫
B dT +

∫
D dv , (2.64)

from a reference state {Tref., vref.} to the current state {T, v}. For a linear material the
coefficients are constants such that we readily obtain

η = c ln
( T

Tref.

)
+ B(v − vref.) ,

p = B(T − Tref.) + D(v − vref.) .

(2.65)

For an incompressible material v = vref. such that B and D fails to be measured by a
variation of the specific volume, since dv = 0.Gibbs’s equation becomes du = c dT
and the specific entropy reads

η = c ln
( T

Tref.

)
. (2.66)

We calculate p from the balance of mass.
In order to derive the heat flux, qi , and the dissipative part of the stress tensor, dσi j ,

we continue the methodology in the following. Since we have defined the internal
energy, we can insert Eq. (2.49)2:

u• = T η• − pv• (2.67)

27See [10] for a detailed explanation about the Muller-calorimeter named after F. Horst Müller.
28It is named after James Clerk Maxwell.
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into the balance of internal energy in Eq. (2.41)3 and obtain

Tρη• − pρv• + ∂qi
∂xi

− ρr = σi j
∂v j

∂xi
,

Tρη• + ∂qi
∂xi

− ρr = dσi j
∂v j

∂xi
,

(2.68)

after having used the balance of mass as in Eq. (2.48). We can rewrite the latter
equation further,

ρη• + 1

T

∂qi
∂xi

− ρ
r

T
= 1

T
dσi j

∂v j

∂xi
,

ρη• + ∂

∂xi

(qi
T

)
− qi

∂

∂xi

( 1

T

)
− ρ

r

T
= 1

T
dσi j

∂v j

∂xi
,

(2.69)

in order to acquire a balance equation:

ρη• + ∂

∂xi

(qi
T

)
− ρ

r

T
= − qi

T 2

∂T

∂xi
+ 1

T
dσi j

∂v j

∂xi
. (2.70)

This balance equation is the balance of entropy:

ρη• + ∂Φi

∂xi
− ρ

r

T
= � , (2.71)

with the flux term, Φi , and the production term, �, as follows

Φi = qi
T

, � = − qi
T 2

∂T

∂xi
+ 1

T
dσi j

∂v j

∂xi
. (2.72)

The 2nd law of thermodynamics asserts that any process attains a positive entropy
production:

� ≥ 0 . (2.73)

This law restricts the possible constitutive relations. In other words, qi , σ j i have to
be such that � ≥ 0 is assured for every possible processes. This restriction leads to
the constitutive equations for qi and σi j as presented in the following in three steps.
First we introduce the following notation:

Gi = ∂T

∂xi
, di j = ∂v(i

∂x j)
, d|i j | = di j − 1

3
dkkδi j . (2.74)

Moreover, in non-polar materials the dissipative stress is symmetric, dσi j = dσ j i . We
exclude polar materials in this book.29 Secondly, we rewrite the entropy production:

29Nematic fluids used in LCD (Liquid Crystal Display) is a prominent polar material.
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� = − 1

T 2
qiGi + 1

3T
dσi i d j j + 1

T
dσ|i j |d|i j | ≥ 0 . (2.75)

This multiplication can be seen as thermodynamical fluxes:

Fα =
{

− qi , dσi i , dσ|i j |
}

, (2.76)

multiplied (by an inner product) with thermodynamical forces:

Kα =
{Gi

T 2
,

1

3T
d j j ,

1

T
d|i j |

}
, (2.77)

as follows
� = Fα · Kα ≥ 0 , α = 1, 2, 3 . (2.78)

The thermodynamical forces are independent among each other. Thirdly, each ther-
modynamical force is of another rank. For an isotropic material a thermodynamical
flux may depend only on the same rank of the thermodynamical forces. Since other-
wise under a coordinate transformation different rank tensors transform differently
such that the dependency of one flux component on the force component changes.
Hence, for isotropic materials the thermodynamical fluxes depend only on the ther-
modynamical forces of the same rank:

F1 = F1(K1) , F2 = F2(K2) , F3 = F3(K3) . (2.79)

This condition is known as the Curie symmetry principle.30 Consider the following
relations:

−qi = ā
1

T 2
Gi , dσi i = b̄

1

3T
d j j , dσ|i j | = c̄

1

T
d|i j | , (2.80)

where the material coefficients may depend on the thermodynamical forces.31 If we
insert the constitutive relations into the entropy production

� = ā
1

T 4
GiGi + b̄

1

9T 2
dii d j j + c̄

1

T 2
d|i j |d|i j | ≥ 0 , (2.81)

has to hold. We know that every term is a multiplication between different types of
fluxes and forces, i.e., every term is independent. In order to demand � ≥ 0 for any
process, the coefficients have to be

ā ≥ 0 , b̄ ≥ 0 , c̄ ≥ 0 , (2.82)

30It is named after Pierre Curie.
31For the sake of clarity, the coefficients are functions of the invariants of thermodynamical forces.
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since T > 0 in K(elvin). This conclusion is quite general and the coefficients may be
scalar functions of the thermodynamical forces, i.e., the thermodynamical fluxesmay
depend on the thermodynamical forces nonlinearly. If we rename the coefficients:

ā
1

T 2
= κ , b̄

1

3T
= 3λ + 2μ , c̄

1

T
= 2μ , (2.83)

and simplify to linear materials by assuming that κ, λ, and μ are constant, then we
end up in a Navier–Stokes–Fourier fluid:

qi = −κGi ,

σi j = −pδi j + dσi j = −pδi j + 1

3
(3λ + 2μ)dkkδi j + 2μd|i j | =

= (−p + λdkk)δi j + 2μdi j .

(2.84)

Obviously the material constants are κ ≥ 0, μ ≥ 0, and 3λ + 2μ ≥ 0, in order to
fulfill the 2nd law. Since dii = ρv• for an incompressible fluid, commonly 3λ + 2μ =
0 is used,which is knownasStokes’s hypothesis.However, this hypothesis cannot be
verified experimentally. Since dii = 0 holds for an incompressible fluid flow, it is not
possible to detect the value of 3λ + 2μ. We will never use this hypothesis. Certainly,
by utilizing dii = 0 we assume that the flow is incompressible. This interpretation is
correct, incompressibility is not a material property; even water flows compressible
under great pressure and temperature conditions.32 By using the incompressibility
we spare the mass balance for the computation of p. For a numerical stability λ shall
be a large number.

For a non-linear fluid we can now quickly generalize the constitutive equations
and propose

c̄
1

T
= 2

(
μ0 + k

π
√
I I

arctan
(√

I I

B

))
, I I = 1

2
di j di j , (2.85)

as already employed in Sect. 1.8. For the thermodynamical consistency, material
parameters, μ0, k, B, have positive values.

We want to compute the same channel problem as in Sect. 1.7, this time by com-
puting not only the pressure and velocity but also the temperature change.We choose
water, a viscous linear fluid and model with Fourier–Navier–Stokes constitutive
equations:

σi j = −pδi j + dσi j , dσi j = λdkkδi j + 2μdi j , qi = −κ
∂T

∂xi
. (2.86)

32However, if we use 3λ + 2μ = 0 then we assume that the incompressibility is a property of the
material. This is definitely not the case, see [9] and also [15].

http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Since water can be assumed as incompressible, dv = 0, we have the rate of internal
energy from Gibbs’s equation:

ρu• = ρT η• = ρcT • . (2.87)

For a fixed33 domain, �, we obtain a weak form from Eq(2.41)1 for computing the
pressure:

Fp =
∫

�

(
∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi

∂xi

)
δp

ρ
dv . (2.88)

This integral form is in the unit of power. For an incompressible flow the latter
reduces to

Fp =
∫

�

∂vi

∂xi
δp dv . (2.89)

Analogously the balance of linear momentum in Eq (2.41)2 leads to a weak form for
computing the velocity:

Fv =
∫

�

(
ρ
∂vi

∂t
δvi + ρv j

∂vi

∂x j
δvi + ∂ p

∂xi
δvi + dσ j i

∂ δvi

∂x j
− ρ fi δvi

)
dv−

−
∫

∂�

dσ j i n j δvi da .

(2.90)

This integral form is also in the unit of power. If we want to apply a Neumann

boundary bydefining amechanical pressure applied on the boundary, then the traction
vector:

t̂i = σ j i n j = −pni + dσ j i n j , (2.91)

is necessary. We can apply a mechanical pressure on left and right openings, p̂. The
mechanical pressure on a boundary reads

−1

3
σkk = p̂ = −1

3

( − pδkk + dσkk
)
. (2.92)

For applying this pressure we need the traction vector inward the domain

t̂i = −ni p̂ = ni
3

( − pδkk + dσkk
)
. (2.93)

For an incompressible flow, dkk = 0, the spherical dissipative stress vanishes such
that we obtain

t̂i = −pni , (2.94)

33In a fixed domain we simply write d(·)
dt instead of (·)• and obtain the balance equations for open

systems.
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leading to
dσ j i n j = t̂i + pni = 0 . (2.95)

Due to the latter the boundary terms vanish in Eq. (2.91), i.e., in general for incom-
pressible flows, the boundary terms in the weak form of velocity vanish.

In order to compute the temperature, we need a weak form in the unit of power.
Either we generate it from the balance of internal energy as in Eq. (2.41)3 by dividing
by T and multiplying with δT , or from the balance of entropy as in Eq. (2.70) by
multiplying with δT . For the first option we need to use ρu• = ρcT • and for the
second option η• = T •c/T . The result is the same. We use the entropy balance and
obtain
∫

�

(
ρc

T

∂T

∂t
+ ρc

T
vi

∂T

∂xi
+ ∂

∂xi

(qi
T

)
− ρr

T
− 1

T
σi j

∂v j

∂xi
+ 1

T 2
qi

∂T

∂xi

)
δT dv = 0 .

(2.96)

The term with the heat flux needs to be integrated by parts, since it consists a second
gradient of temperature. Hence we acquire the weak form

FT =
∫

�

(
ρc

T

∂T

∂t
δT + ρc

T
vi

∂T

∂xi
δT − qi

T

∂ δT

∂xi
− ρr

T
δT−

− 1

T
σi j

∂v j

∂xi
δT + 1

T 2
qi

∂T

∂xi
δT

)
dv +

∫
∂�

1

T
q̂ δT da .

(2.97)

After utilizing the time discretization we can sum up all integral forms since they are
all in the unit of power

Form = Fp + Fv + FT =
∫

�

(
vi,i δp + ρ

vi − v0
i

Δt
δvi + ρv jvi, j δvi+

+p,i δvi + dσ j i δvi, j − ρ fi δvi + ρc

T

T − T 0

Δt
δT + ρc

T
vi T,i δT − qi

T
δT,i−

−ρr

T
δT − 1

T
σi jv j,i δT + 1

T 2
qi T,i δT

)
dv +

∫
∂�

1

T
q̂ δT da ,

(2.98)

wherewe have employed the usual commanotation for a partial space derivative. This
form can be solved by applying appropriate boundary conditions. In a 2D channel
filledwithwater, the primitive variables, {p, vi , T }, are computed. On top and bottom
walls fluid rests at 300K temperature. Due to the greater pressure on the left side
than on the right hand side, water flows from left to right. The pressure on the left
rises linearly in time such that the viscous fluid moves faster in time, with the typical
parabolic flow profile. The production term increases the temperature because of
the viscous flow. We keep on top and bottom at 300K and on the left and right we
implement adiabatic boundaries. In Figs. 2.4, 2.5 and 2.6 we present distributions of
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Fig. 2.4 Pressure distribution in channel flow at 300s

Fig. 2.5 Velocity distribution in channel flow at 300s. Colors denote the magnitude of velocity

Fig. 2.6 Distribution of temperature in channel flow at 300s. Temperature increases due to the
internal friction. It is forced to be 300K on top and bottom boundaries

primitive variables after 5min obtained with the code below. The viscous flow with
a relatively high velocity causes a significant temperature change. We have used the
code given below. By using a mixed function space for primitive variables we have
computed all unknowns at once, i.e., monolithically. This method is necessary since
we have inserted the balance equations in each other by obtaining the governing
equations. Moreover, the field equations are coupled and nonlinear, so we are not
allowed to solve them separately.
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1 ”””Computational r e a l i t y 12 , channel f l ow o f Navier−Stokes−
→ Four ie r f l u i d ”””

2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU Gen e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9

10 x length = 0.5 # m
11 y length = 0.1 # m
12 mesh=RectangleMesh ( Point (0.0 ,− y length /2 . 0 ) , Point ( x length ,

→ y length /2 . 0 ) , 200 ,40)
13
14 TensorSpace = TensorFunctionSpace (mesh , P , 1)
15 VectorSpace = VectorFunctionSpace (mesh , P , 1)
16 ScalarSpace = FunctionSpace (mesh , P , 1)
17 # p , v , T
18 Space = MixedFunctionSpace ( [ ScalarSpace , VectorSpace ,

→ ScalarSpace ] )
19
20 f a c e t s = FacetFunction ( s i z e t ,mesh )
21 c e l l s = Cel lFunct ion ( s i z e t ,mesh )
22 da = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
23 dv = Measure ( dx , domain=mesh , subdomain data=c e l l s )
24
25 l e f t = CompiledSubDomain ( near (x [ 0 ] , 0 ) && on boundary )
26 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ x length )
27 bottom = CompiledSubDomain ( near (x [1] , − y l /2 . 0 ) , y l=y length )
28 top = CompiledSubDomain ( near (x [ 1 ] , y l /2 . 0 ) , y l=y length )
29
30 v no s l i p = Constant ( ( 0 . 0 , 0 . 0 ) )
31 pL = Expres s ion ( 100000.0+10 t , t=0)
32 pR = Constant (100000 . 0 )
33 Tini = 300. #K
34 bc1=DirichletBC ( Space . sub (0) , pL , l e f t )
35 bc2=DirichletBC ( Space . sub (0) , pR, r i gh t )
36 bc3=DirichletBC ( Space . sub (1) , v nos l i p , bottom)
37 bc4=DirichletBC ( Space . sub (1) , v nos l i p , top )
38 bc5=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , l e f t )
39 bc6=DirichletBC ( Space . sub (1) . sub (1) , 0 . 0 , r i gh t )
40 bc7=DirichletBC ( Space . sub (2) , Tini , top )
41 bc8=DirichletBC ( Space . sub (2) , Tini , bottom)
42
43 bc=[bc1 , bc2 , bc3 , bc4 , bc5 , bc6 , bc7 , bc8 ]
44 u i n i t = Expres s ion ( ( p0 , 0 . 0 , 0 . 0 , T0 ) , p0=100000.0 ,T0=

→ Tini )
45
46 i , j , k , l =i n d i c e s (4 )
47 n = FacetNormal (mesh )
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48 t = 0 .0
49 Dt = 50 .
50 t end = 500.
51
52 t e s t = TestFunction ( Space )
53 du = Tria lFunct ion ( Space )
54 u0 = Function ( Space )
55 u = Function ( Space )
56 u0 = i n t e r p o l a t e ( u i n i t , Space )
57 u = i n t e r p o l a t e ( u i n i t , Space )
58 p0 , v0 , T0 = s p l i t ( u0 )
59 p , v , T = s p l i t (u)
60 delp , delv , delT = s p l i t ( t e s t )
61 de l ta = Id en t i t y (2)
62
63 #wa t e r app r ox . a t 300 K
64 rho = 995.7 #kg /mˆ3
65 mu = 0.8 #Ns/mˆ2 = kg / s /m
66 lambada = mu 1E5
67 c = 4180. #J / ( kgK )
68 kappa = 0.58 #W/ (m K)
69 h=18.0 #W/ (mˆ2 K)
70 Tamb = Tini
71
72 d = sym( grad (v ) )
73 dsigma = as t en s o r ( lambada d [ k , k ] d e l t a [ i , j ] + 2 . 0 mu d [ i , j

→ ] , ( i , j ) )
74 sigma = as t en s o r ( −p de l ta [ i , j ] + dsigma [ i , j ] , ( i , j ) )
75 q = as t en s o r ( −kappa T. dx ( i ) , ( i , ) )
76 f = Constant ( ( 0 , 0 ) )
77 r = Constant (0)
78
79 Form = ( v [ i ] . dx ( i ) delp \
80 + rho (v−v0 ) [ i ] /Dt de lv [ i ] \
81 + rho v [ j ] v [ i ] . dx ( j ) de lv [ i ] \
82 + p . dx ( i ) de lv [ i ] \
83 + dsigma [ j , i ] de lv [ i ] . dx ( j ) \
84 − rho f [ i ] de lv [ i ]
85 + rho c/T (T−T0) /Dt delT \
86 + rho c/T v [ i ] T. dx ( i ) delT \
87 − q [ i ] /T delT . dx ( i ) \
88 − rho r /T delT \
89 − 1 . /T sigma [ i , j ] v [ j ] . dx ( i ) delT \
90 + 1./T 2 q [ i ] T. dx ( i ) delT \
91 ) dv
92
93 Gain = de r i v a t i v e (Form , u , du )
94
95 pwd= / c a l c u l /CR12/
96 f i l e p = F i l e (pwd+ pres su re . pvd )
97 f i l e v = F i l e (pwd+ v e l o c i t y . pvd )
98 f i l e T = F i l e (pwd+ temperature . pvd )
99
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100 for t in numpy. arange (0 , t end , Dt ) :
101 print time : , t
102 pL . t = t
103 s o l v e (Form== 0 , u , bc , J=Gain , \
104 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
105 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

106 f i l e p << (u . s p l i t ( ) [ 0 ] , t )
107 f i l e v << (u . s p l i t ( ) [ 1 ] , t )
108 f i l e T << (u . s p l i t ( ) [ 2 ] , t )
109 u0 . a s s i gn (u)

To-do

We have implemented the same channel flow as in Sect. 1.7 by incorporating the
temperature distribution caused by the viscous flow. For such high velocities, the
temperature increase is significant. This outcome is partly due to the implemented
adiabatic boundaries, which are actually not very realistic.

• Implement Robin boundary conditions for heat flux on all boundaries.
• Implement the code by using a material with a higher viscosity (search for prop-
erties of a polymer melt).

2.4 Thermoviscoelasticity

By considering the principles of thermodynamics in a Eulerian frame, we have
derived all of the necessary constitutive equations for a viscousfluid in the last section.
For fluids we use an open system. In this section we will derive the constitutive
equations for a deformable solid in a Lagrangean (reference) frame expressed in
Cartesian coordinates. Amaterial system is utilized for solids. As the reference frame
we choose the initial frame, where the positions (coordinates) of particles are known.
We start first by transforming the balance equations from the current frame to the
initial frame. The following identities in a Cartesian coordinate system:

dv = J dV , n j da = (F−1)k j J Nk dA , (2.99)

have been derived in Sect. 1.4 for arbitrary coordinate systems. The balance equations
of mass, momentum, and internal energy in the current frame for a material system:34

34Amaterial system is a closed system possessing the same particles over time. In a material system
no (mass) convection is allowed.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1


142 2 Thermodynamics

( ∫
B

ρ dv

)•

= 0 ,

(∫
B

ρvi dv

)•

=
∫

∂B

σ j i n j da +
∫
B

ρ fi dv ,

( ∫
B

ρu dv

)•

= −
∫

∂B

q jn j da +
∫
B

(
ρr + σ j i

∂vi

∂x j

)
dv ,

(2.100)

are transformed into the initial frame
(∫

B0

ρJ dV

)•

= 0 ,

(∫
B0

ρvi J dV

)•

=
∫

∂B0

σ j i (F−1)k j J Nk dA +
∫
B0

ρ fi J dV ,

( ∫
B0

ρu J dV

)•

= −
∫

∂B0

q j (F−1)k j J Nk dA +
∫
B0

(
ρr + σ j i

∂vi

∂x j

)
J dV .

(2.101)
Initial frame is constant in time, ( dV )• = 0, thus, the balance of mass in the initial
frame reads

ρ0 = ρJ . (2.102)

The mass density in the initial state, ρ0, is of course constant in time, ρ•
0 = 0. By

introducing fluxes in the initial frame:

Pki = σ j i (F−1)k j J , Qk = q j (F−1)k j J , (2.103)

and inserting the mass balance into the momentum balance and internal energy
balance, we acquire

∫
B0

ρ0v
•
i dV =

∫
∂B0

Pki dA +
∫
B0

ρ fi J dV ,

∫
B0

ρ0u
• dV = −

∫
∂B0

QkNk dA +
∫
B0

(
ρ0r + Jσ j i

∂vi

∂x j

)
dV .

(2.104)

After utilizingGauss’s law on the boundary integrals, wewrite the balance equations
in their local forms:

ρ0v
•
i − ∂Pki

∂Xk
− ρ0 fi = 0 , ρ0u

• + ∂Qk

∂Xk
− ρ0r = Jσ j i

∂vi

∂x j
. (2.105)

We have written the production terms on the right-hand side. Since the formulation is
in the initial frame, the partial derivative with respect to xi needs to be reformulated
as a differentiation in Xi . The velocity gradient in the current frame reads
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∂vi

∂x j
= ∂vi

∂Xk

∂Xk

∂x j
= ∂vi

∂Xk
(F−1)k j , (2.106)

hence, we obtain

Jσ j i
∂vi

∂x j
= Jσ j i

∂vi

∂Xk
(F−1)k j = Pki

∂vi

∂Xk
. (2.107)

The second Piola–Kirchhoff stress tensor:

Si j = (F−1) jk Pik = (F−1) jkσlk(F−1)il J , (2.108)

is more beneficial by obtaining constitutive equations. From the latter the nominal
stress becomes

Pi j = Fjl Sil . (2.109)

We further rewrite the production term. By starting with the right Cauchy–Green
deformation tensor, Ci j = Fki Fkj , and its corresponding Green–Lagrange strain
tensor, 2Ei j = (Ci j − δi j ), we obtain

Ci j = Fki Fkj = Fkj Fki = C ji ,

2E •
i j = C •

i j = 2F •
k(i Fk j) .

(2.110)

In the initial frame we have the following identity:

∂v j

∂Xi
= ∂2x j

∂Xi∂t
= ∂2x j

∂t∂Xi
= F •

j i , (2.111)

since xi = xi (t, X j ). By using the aforementioned relations we acquire the following
version of the production term:

Pi j
∂v j

∂Xi
= Fjl Sil

∂v j

∂Xi
= Fjl Sil F

•
j i = Fj (l Sil F

•
j i) = Sil E

•
il , (2.112)

for a symmetric stress tensor, Si j = Sji . In case of non-polar materials, the Cauchy
stress tensor is symmetric, leading to the symmetric second Piola–Kirchhoff stress
tensor given in Eq. (2.108). For non-polar materials the balance of internal energy in
the initial frame reads

ρ0u
• + ∂Qk

∂Xk
− ρ0r = Si j E

•
i j . (2.113)

At equilibrium the balance of internal energy is

ρ0u
• − ρ0T η• = eSi j E

•
i j , (2.114)
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since the internal energy is fully recoverable and the stress tensor is decomposed into
an elastic (reversible) term, eSi j , and into a dissipative (irreversible) term, dSi j , such
that

Si j = eSi j + dSi j . (2.115)

We need constitutive equations for the specific entropy, η, for the heat flux, Qi ,
and for the elastic and dissipative stress tensors, eSi j , dSi j . By using the 1st law of
thermodynamics we can rewrite the rate of internal energy as a differential form:

du = T dη + eSi jv dEi j , (2.116)

where the specific volume, v = 1/ρ0, is a known quantity. The latter differential form
is often introduced as Gibbs’s equation.35

In Eq. (2.116) the internal energy is given as a function of η and Ei j . Having
a function of the strains is adequate since the strains are given by the primitive
variables (displacement). However, we have just introduced a variable called entropy,
η, we lack a definition for it. We simply want to exchange the dependency from
entropy to the temperature, which is one of the primitive variables. We transform36

the differential form in Eq. (2.116) by introducing a free energy:

ψ = u − T η , (2.117)

into the following form:

dψ = du − η dT − T dη = −η dT + eSi jv dEi j . (2.118)

This differential form implies an energy depending on the temperature and strain,

ψ = ψ(T, Ei j ) , (2.119)

such that

−η = ∂ψ

∂T
, eSi jv = ∂ψ

∂Ei j
. (2.120)

The temperature and strain are called the primary or state variables. Since the energy
depends on the primary variables, its derivatives depend on the same set of variables,
too. So the derived, dual, or conjugate variables, η, eSi j , depend on the primary
variables

dη = A dT + p̄i j dEi j ,

d eSi j = pi j dT + Ci jkl dEkl .
(2.121)

35For an alternative derivation of Gibbs’s equation we refer to [12, Chap.8].
36Mathematicians call this transformation a Legendre transformation named after Adrien-Marie
Legendre.
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We can readily apply the Maxwell symmetry condition (reciprocal relation):

p̄i j = ∂η

∂Ei j
= − ∂2ψ

∂Ei j∂T
= − ∂2ψ

∂T∂Ei j
= −∂ eSi jv

∂T
= −v

∂ eSi j
∂T

= −vpi j .

(2.122)
The specific volume is a given function in space for heterogeneous materials or a
constant value for homogeneous materials. It is coupled to the temperature through
constitutive equations, however, it is independent on T so we have taken it out in the
differentiation with respect to the temperature. The dual variables read

dη = A dT − pi jv dEi j ,

d eSi j = pi j dT + Ci jkl dEkl .
(2.123)

As in the previous section A = c/T , where the specific heat capacity, c, is mea-
sured by varying the temperature and recording the change of heat by fixed strains,
dEi j = 0. In other words, all of the boundaries are clamped and the temperature is
varied. The stiffness tensor Ci jkl is measured on a constant temperature, dT = 0, by
varying the strains dEi j and recording the stress changes d eSi j . Since Ci jkl consists
of many coefficients, we also need to establish various measurements. One of such
measurements is the prominent tensile test. Throughout the experiment, the temper-
ature is fixed such that the components of Ci jkl are valid for a specific temperature.
One needs to redo the experiments in different temperatures for determining com-
ponents as a function in T . The thermal pressure pi j is the pressure occurring due to
temperature variation by fixed strains, dEi j = 0. The body tries to expand or shrink
and applies a pressure on the clamped boundaries holding the strains fixed.

The values for the thermal pressure are difficult to find in the literature. Therefore,
we introduce the coefficients of thermal expansion, αi j , which are measured by
varying the temperature and measuring the strain change

dEi j = αi j dT , (2.124)

for a specific stress. Since such a measurement is realized by fixed stress, d eSi j = 0,
we can observe from Eq. (2.123)2

0 = pi j dT + Ci jkl dEkl , pi j dT = −Ci jklαkl dT

⇒ pi j = −Ci jklαkl .
(2.125)

Now, the dual variables become

dη = c

T
dT + Ci jklαklv dEi j ,

d eSi j = −Ci jklαkl dT + Ci jkl dEkl .

(2.126)

For non-polar materials the stress tensor is symmetric, we assume that the elastic part
is also symmetric, eSi j = eSji . We restrict the formalism for linear materials such that
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the stiffness tensor, Ci jkl , the coefficients of thermal expansion, αi j , and the specific
heat capacity, c, are constants and we acquire the dual variables by integrating from
the reference state, T = Tref., Ei j = 0, to the current state

η = c ln
( T

Tref.

)
+ Ci jklαklvEi j ,

eSi j = −Ci jklαkl(T − Tref.) + Ci jkl Ekl .

(2.127)

Often, thermal strains are introduced

thEkl = αkl(T − Tref.) , (2.128)

such that the elastic stress is written as

eSi j = Ci jkl
(
Ekl − thEkl

)
. (2.129)

Finally, we have determined the Gibbs equation:

du = T dη + eSi jv dEi j =
= c dT + TCi jklαklv dEi j + Ci jkl

(
Ekl − αkl(T − Tref.)

)
v dEi j =

= c dT + vCi jklαkl Tref. dEi j + vCi jkl Ekl dEi j ,

(2.130)

solely depending on the temperature and displacement (over the known relation
between strain and displacement). For a linear thermoelastic isotropic body, the
material parameters reduce to

Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk , αi j = αδi j , (2.131)

thus, the internal energy rate reads

u• = cT • + v(3λ + 2μ)αTref.E
•
i i + v(λδi j Ekk + 2μEi j )E

•
i j . (2.132)

For deriving the heat flux, Qi , and the dissipative stress, dSi j , we start with Eq. (2.116)
in the following form:

ρ0u
• = ρ0T η• + (

Si j − dSi j
)
E •
i j , (2.133)

and insert it into Eq. (2.113) in order to acquire the balance of entropy in the reference
frame:

ρ0η
• + ∂

∂Xi

(Qi

T

)
− ρ0

r

T
= 1

T
dSi j E

•
i j + Qi

∂

∂Xi

( 1

T

)
,

ρ0η
• + ∂

∂Xi

(Qi

T

)
− ρ0

r

T
= 1

T
dSi j E

•
i j − 1

T 2
Qi

∂T

∂Xi
.

(2.134)
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The right-hand side is the production term and it has to be positive according to the
2nd law of thermodynamics:

� = 1

T
dSi j E

•
i j − 1

T 2
QiGi ≥ 0 , (2.135)

where again for simplicity we have used the following notation:

Gi = ∂T

∂Xi
. (2.136)

The stress tensor is symmetric for non-polar materials; we have employed a symmet-
ric reversible term, the dissipative term has to be symmetric, too. A symmetric tensor
of rank two can be decomposed into a spherical (volumetric) term and a deviatoric
term. Multiplication of a volumetric with a deviatoric term vanishes such that the
entropy production reads

� = 1

3T
dSii E

•
j j + 1

T
dS|i j |E •

|i j | −
1

T 2
QiGi ≥ 0 . (2.137)

By introducing thermodynamical fluxes:

Fα =
{
Qi , dSii , dS|i j |

}
, (2.138)

and thermodynamical forces:

Kα =
{

− Gi

T 2
,

1

3T
E •

j j ,
1

T
E •

|i j |
}

, (2.139)

we can rewrite the 2nd law:

� = Fα · Kα , α = 1, 2, 3 . (2.140)

All of thermodynamical fluxes are of different type (tensors of different ranks).
According to the Curie principle thermodynamical fluxes depend only on their
corresponding thermodynamical forces of the same rank such that we obtain

F1 = F1(K1) , F2 = F2(K2) , F3 = F3(K3) . (2.141)

We can readily propose linear constitutive equations:

dSii = μ1E
•
i i , dS|i j | = μ2E

•
|i j | , Qi = −κGi , (2.142)

where μ1, μ2, and κ are all positive constants such that � ≥ 0. The viscous part of
the stress reads
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dSi j = 1

3
dSkkδi j + dS|i j | = μ1

3
E •
kkδi j + μ2

(
E •
i j − 1

3
E •
kkδi j

)
=

= μ1 − μ2

3
E •
kkδi j + μ2E

•
i j .

(2.143)

Then by using the obtained elastic stress we acquire a linear thermoviscoelastic
material model:

Si j = Ci jkl
(
Ekl − αi j (T − Tref.)

) + μ1 − μ2

3
E •
kkδi j + μ2E

•
i j . (2.144)

For a constant κ the constitutive equation:

Qi = −κ
∂T

∂Xi
, (2.145)

is called Fourier’s law in the Lagrangean frame.
In order to compute the displacement and temperature in a linear thermoviscoelas-

tic body, we employ the balance of momentum and the balance of entropy:

ρ0u
••
i − ∂Pji

∂X j
− ρ0 fi = 0 ,

ρ0η
• + ∂

∂Xi

(Qi

T

)
− ρ0

r

T
= 1

T
dSi j E

•
i j − 1

T 2
Qi

∂T

∂Xi
.

(2.146)

The primitive variables are displacement, ui , and temperature, T . Hence wemultiply
the balance of linear momentum with δui and integrate over the continuum body for
generating a form in the unit of energy. Bymultiplying the balance of entropywith δT
and integrating over the body, we obtain a form in the unit of power. After discretizing
in time, we can multiply the equation with Δt in order to acquire both forms in the
unit of energy. Having forms in the same unit, we can sum them up. Furthermore,
we apply Gauss’s law in order to weaken the forms and acquire

Form =
∫
B0

(
ρ0

ui − 2u0i + u00i
ΔtΔt

δui + Pji δui, j − ρ0 fi δui+

+ρ0

T
(η − η0) δT − Δt

1

T
Qi δT,i − Δt

ρ0r

T
δT − 1

T
dSi j (Ei j − E0

i j ) δT+

+Δt
1

T 2
QiT,i δT

)
dV +

∫
∂B0

(
Δt

1

T
Q̂ δT − t̂i δui

)
dA ,

(2.147)

where the comma notation has been used for a partial space derivative in Xi . We
summarize the necessary relations:

Fi j = ∂ui
∂X j

+ δi j , Ci j = Fki Fkj , Ei j = 1

2
(Ci j − δi j ) ,
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eSi j = −Ci jklαkl(T − Tref.) + Ci jkl Ekl , η = c ln
( T

Tref.

)
+ Ci jklαklvEi j ,

dSi j = μ1 − μ2

3
E •
kkδi j + μ2E

•
i j , Qi = −κ

∂T

∂Xi
,

Si j = eSi j + dSi j , Pi j = Fjl Sil . (2.148)

For an isotropic body the stiffness tensor and coefficients of thermal expansion are

Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk , αi j = αδi j . (2.149)

Therefore, in case of an isotropic body we need seven material parameters, viz., λ,
μ, α, μ1, μ2, κ, and c.

In a tensile testing we normally assume that the process is isothermal. By comput-
ing the reality where heat is produced due to the entropy production, we can validate
this engineering assumption. The geometry is a beam along X1 and we use a Robin
boundary condition for the heat flux over all boundaries:

Q̂ = h(T − Tamb) . (2.150)

On the left side we hold the beam fixed and on the right side we pull with the force
given by the traction vector t̂i = (800t, 0, 0)MPa linearly in time, t . The traction
(force per area) is the controlled parameter, i.e., the machine is steered by the force.
The tip displacement is measured, it is an observed quantity. Conveniently we plot
stress versus strain, where the stress (on the right tip) is the (axial) traction and the
(normal axial) strain, E11, is the displacement divided by the initial length. The
traction vector, t̂ = N j Pji , is given by the nominal or engineering stress, Pji . The
strain, Ei j , is called the engineering strain; we have introduced it as the Green–
Lagrange strain measure.

We apply a mechanical load and measure the temperature in the middle of the
beam as well as the stress and strain on the tip. In Fig. 2.7 the temperature change can
be seen, it is clearly negligible. This is good news, because we measure the elasticity

Fig. 2.7 Tensile testing and
temperature change due to
the deformation
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components, λ, ν for isotropic materials by using a tensile testing and assume that
the temperature remains constant. The code for the computation is given below.

1 ”””Computational Rea l i ty 13 , t h e rmov i s c o e l a s t i c i t y ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU Gen e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 #u n i t s : mm, 1 0 0 0 kg=ton , s , MPa , mJ , K

10 de l ta = Id en t i t y (3)
11 f = Constant ( ( 0 . 0 , 0 . 0 , −9810.) )
12 r = 0 .
13 Tref = 293.15 #i n K
14 Tamb=Tref
15
16 # Ma t e r i a l d a t a o f P265GH ( S t 4 5 . 8 ) f r om VDI Wae rmeat l a s , a t

→ 2 9 3 . 1 5 K
17 rho0 = 7850.0E−9 #i n kg / mmˆ3
18 kappa = 57.0 #i n mJ / ( s mm K)
19 capac i ty = 430.0E6 #i n mJ / ( ton K)
20 alpha = 12.2E−6 #i n 1/K a t 3 7 3 . 1 5 K
21 EModul = 211.E+3 #i n MPa
22 nu = 0.28
23 h = 10 .E−3 #i n mJ / ( s mˆ2 K)
24 mu1 = 1 .E+6 #i n MPa / s
25 mu2 = 3 .E+6 #i n MPa / s
26
27 tMax = 5.0
28 Dt = 0.5
29 t = 0 .0
30
31 xMin , xMax , xElements = 0 . 0 , 100 . 0 , 10
32 yMin , yMax , yElements = −10. , +10. , 10
33 zMin , zMax , zElements = +10. , −10. , 10
34 mesh = BoxMesh ( Point (xMin , yMin , zMin ) , Point (xMax , yMax , zMax) ,

→ xElements , yElements , zElements )
35 N = FacetNormal (mesh )
36 l ength = abs (xMax−xMin)
37
38 T Space = FunctionSpace (mesh , P , 1)
39 u Space = VectorFunctionSpace (mesh , P , 1)
40 Space = MixedFunctionSpace ( [ T Space , u Space ] )
41
42 c e l l s = Cel lFunct ion ( s i z e t , mesh )
43 f a c e t s = FacetFunction ( s i z e t , mesh )
44 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
45 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
46
47 l e f t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=xMin

→ )
48 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ xMax)
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49 back = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=yMin
→ )

50 f r on t = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=
→ yMax)

51 bottom = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=
→ zMin )

52 top = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=zMax)
53
54 f a c e t s . s e t a l l ( 0 )
55 r i gh t . mark ( f a c e t s , 1)
56 tHat = Expres s ion ( ( A t , 0 . , 0 . ) , A=250. , t =0.)
57 bc = [ DirichletBC ( Space . sub (1) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) ,

→ l e f t ) ,\
58 DirichletBC ( Space . sub (1) . sub (1) , Constant ( 0 . 0 ) , r i gh t ) ,\
59 DirichletBC ( Space . sub (1) . sub (2) , Constant ( 0 . 0 ) , r i gh t ) ]
60
61 dunkn = Tria lFunct ion ( Space )
62 t e s t = TestFunction ( Space )
63 delT , delu = s p l i t ( t e s t )
64
65 unkn = Function ( Space )
66 unkn0 = Function ( Space )
67 unkn00 = Function ( Space )
68
69 unkn in i t = Expres s ion ( ( T in i , 0 , 0 , 0 ) , T in i=Tref )
70 unkn = i n t e r p o l a t e ( unkn in i t , Space )
71 unkn0 . a s s i gn (unkn)
72 unkn00 . a s s i gn ( unkn0)
73
74 T, u = s p l i t ( unkn)
75 T0 , u0 = s p l i t ( unkn0)
76 T00 , u00 = s p l i t ( unkn0)
77
78 i , j , k , l = i n d i c e s (4 )
79 de l ta = Id en t i t y (3)
80 F = as t en s o r (u [ i ] . dx ( j )+de l ta [ i , j ] , ( i , j ) )
81 F0 = as t en s o r ( u0 [ i ] . dx ( j )+de l ta [ i , j ] , ( i , j ) )
82 C = as t en s o r (F [ k , i ] F [ k , j ] , ( i , j ) )
83 C0 = as t en s o r (F0 [ k , i ] F0 [ k , j ] , ( i , j ) )
84 E = as t en s o r ( 1 . / 2 . (C[ i , j ]− de l ta [ i , j ] ) , ( i , j ) )
85 E0 = as t en s o r ( 1 . / 2 . (C0 [ i , j ]− de l ta [ i , j ] ) , ( i , j ) )
86 lambada = EModul nu / ( 1 . + nu) / ( 1 . − 2 . nu)
87 mu = 0.5 EModul / ( 1 . + nu)
88 C = as t en s o r ( lambada de l ta [ i , j ] d e l t a [ k , l ]+mu de l ta [ i , k ]

→ de l ta [ j , l ]+mu de l ta [ i , l ] d e l ta [ j , k ] , ( i , j , k , l ) )
89 alp = as t en s o r ( alpha de l ta [ i , j ] , ( i , j ) )
90 eS t r e s s = a s t en s o r (−C [ i , j , k , l ] a lp [ k , l ] (T−Tref ) + C [ i , j , k

→ , l ] E [ k , l ] , ( i , j ) )
91 dSt re s s = a s t en s o r ( (mu1−mu2) /3 . (E−E0) [ k , k ] /Dt de l ta [ i , j ] +

→ mu2 (E−E0) [ i , j ] /Dt , ( i , j ) )
92 S = as t en s o r ( eS t r e s s [ i , j ]+ dSt re s s [ i , j ] , ( i , j ) )
93 P = as t en s o r (F [ j , l ] S [ i , l ] , ( i , j ) )
94 eta = as t en s o r ( capac i ty ln (T/Tref ) + C [ i , j , k , l ] a lp [ k , l
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→ ] 1 . / rho0 E[ i , j ] , ( ) )
95 eta0 = as t en s o r ( capac i ty ln (T0/Tref ) + C [ i , j , k , l ] a lp [ k , l

→ ] 1 . / rho0 E0 [ i , j ] , ( ) )
96 Q = as t en s o r (−kappa T. dx ( i ) , ( i , ) )
97
98 Form = ( rho0 (u−2. u0+u00 ) [ i ] /Dt/Dt delu [ i ] + P[ j , i ] delu [ i ] .

→ dx ( j ) − rho0 f [ i ] delu [ i ] + rho0/T ( eta−eta0 ) delT −
→ Dt/T Q[ i ] delT . dx ( i ) − Dt rho0 r /T delT − 1 . /T dStre s s
→ [ i , j ] (E−E0) [ i , j ] delT + Dt/T 2 Q[ i ] T. dx ( i ) delT )
→ dV + Dt/T h (T−Tamb) delT (dA(0)+dA(1) ) − tHat [ i ] delu
→ [ i ] dA(1)

99
100 Gain = de r i v a t i v e (Form , unkn , dunkn)
101
102 import matp lo t l i b as mpl
103 mpl . use ( Agg )
104 import matp lot l i b . pyp lot as pylab
105 pylab . rc ( t ex t , usetex=True )
106 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e=30 )
107 pylab . rc ( l egend , f o n t s i z e =30)
108 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
109 pylab . s ubp l o t s ad j u s t ( top =0.90)
110 pylab . s ubp l o t s ad j u s t ( bottom=0.17)
111 pylab . s ubp l o t s ad j u s t ( l e f t =0.20)
112 pylab . s ubp l o t s ad j u s t ( r i gh t =0.8)
113
114 f i g = pylab . f i g u r e (1 , f i g s i z e =(14 ,10) )
115 ax1 = f i g . add subp lot (111)
116 ax1 . g r id (True , ax i s= x )
117 ax1 . s e t x l a b e l ( u 1 / l 0 in \% )
118 ax1 . s e t y l a b e l ( F/A in MPa , c o l o r= r )
119 ax1 . t ick params ( ax i s= y , c o l o r s= r )
120 ax1 . g r i d (True , ax i s= y , c o l o r= r )
121 ax2 = ax1 . twinx ( )
122 ax2 . s e t y l a b e l ( (T−T \mathrm{ r e f }) in K , c o l o r= b )
123 ax2 . t ick params ( ax i s= y , c o l o r s= b )
124 ax2 . g r i d (True , ax i s= y , c o l o r= b )
125 ax2 . t i c k l a b e l f o rma t ( s t y l e= s c i , ax i s= y , s c i l i m i t s =(−2,2) )
126
127 pwd= / c a l c u l /CR13/
128 f i l e u = F i l e (pwd+ d i s p l . pvd )
129 f i l e T = F i l e (pwd+ temp . pvd )
130 s t ra in , s t r e s s , temp = [ ] , [ ] , [ ]
131
132 while t < tMax :
133 print time : , t
134 tHat . t = t
135 s o l v e (Form== 0 , unkn , bc , J=Gain , \
136 s o lv e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
137 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )
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138
139 f i l e T << ( unkn . s p l i t ( ) [ 0 ] , t )
140 f i l e u << ( unkn . s p l i t ( ) [ 1 ] , t )
141
142 s t r a i n . append(unkn . s p l i t ( ) [ 1 ] ( xMax , 0 . , 0 . ) [ 0 ] / l ength 100 . )
143 s t r e s s . append( tHat (xMax , 0 . , 0 . ) [ 0 ] )
144 temp . append(unkn . s p l i t ( ) [ 0 ] ( xMax/ 2 . , 0 . , 0 . )−Tref )
145 ax1 . p l o t ( s t ra in , s t r e s s , o− , c o l o r= r )
146 t i c k s = numpy. l i n s p ac e (numpy . array ( s t r a i n ) .min( ) , numpy.

→ array ( s t r a i n ) .max( ) , 4)
147 ax1 . s e t x t i c k s ( t i c k s )
148 ax1 . s e t x t i c k l a b e l s ( [ %1.2 f % i t i c k s for i t i c k s in

→ t i c k s ] )
149 ax2 . p l o t ( s t ra in , temp , d− , c o l o r= b )
150 f i g . s a v e f i g (pwd+ CompReal13 tens i l etes t . pdf )
151 unkn00 . a s s i gn ( unkn0)
152 unkn0 . a s s i gn (unkn )
153 t += Dt

To-do

We have employed the 1st and 2nd laws of thermodynamics, obtained constitutive
(material) equations, and computed a coupled thermoviscoelastic problem. In a ten-
sile testing the temperature change is negligible.

• Which term is responsible for the temperature change?
• Implement the code for a thermoelastic problem by setting μ1 = μ2 = 0, thus,

dSi j = 0. Solve a laser welding application as in Sect. 2.1 and determine the defor-
mations.

• Try to implement a bimetal and apply a thermal loading. Guess and inspect the
occurring deformation.

2.5 Thermoplasticity

We have seen a methodology for deriving material equations from thermodynamical
restrictions called the 1st and 2nd laws. Unfortunately, it is rather difficult to utilize
this procedure for plasticity. There are numerous different suggestions but none of
them is accepted by all communities. We present here a more or less widely accepted
methodology—it is used in many commercial codes.37 Within its derivation there
occurmany assumptions, hence, themethod fails to rely on a sound thermodynamical
formulation. From a pragmatic point of view, however, it works!

37We present amonolithic approach; however, many commercial codes still use a staggered schema.
A staggered schema solves the field equations subsequently such that the results from each solution
are used in the subsequent field equation. Such an approach is used in Sect. 1.9, where the balance
equations are solved subsequently.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
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Balance equations of mass, momentum, and internal energy has been motivated
in the last section. By neglecting big deformations with Fi j ≈ δi j they result in38

ρ0 = ρ , ρu••
i − σ j i, j − ρ fi = 0 , ρu• + qi,i − ρ0r = σi jε

•
i j . (2.151)

We axiomatically assume that the production of internal energy consists of two parts:
a reversible part including elastic and thermal strain, and an irreversible part due to
the plastic strain:

σi jε
•
i j = σi j

(
rε•
i j + pε•

i j

)
. (2.152)

This assumption is by nomeansmore restrictive than the assumption of decomposing
the stress in the last sections. Again we assume that the reversible part remains at
equilibrium such that we obtain from the balance of internal energy at equilibrium

ρu• − T η• = σi j
rε•
i j . (2.153)

In this setting, Gibbs’s equation reads

du = T dη + vσi j d
rεi j , (2.154)

again with v = 1/ρ as a known quantity. The latter equation allows us to generate the
material equations for the dual variables. However, this time rεi j is not known. Hence,
the chosen primary variables should be {T,σi j }. We use the same mathematical trick
in order to transform the energy into a quantity depending on the primary variables
by introducing the so-called specific Gibbs free energy:

g = u − T η − vσi j
rεi j , (2.155)

with its differential:

dg = du − η dT − T dη − v rεi j dσi j − vσi j d
rεi j , (2.156)

and by inserting the latter in Eq. (2.154)

dg = −η dT − v rεi j dσi j . (2.157)

The assumption that the free energy possesses a first integral:

g =
∫

dg , (2.158)

38We also use a linear strain measure, εi j , instead of Ei j in order to attain an identical formulation
for plasticity as given in the literature.
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is a weakness in the formulation. We take the latter as granted; under this assumption
it is obvious that we can write

g = g(T,σi j ) , −η = ∂g
∂T

, −v rεi j = ∂g
∂σi j

. (2.159)

Gibbs’s free energy depends on the primary variables, viz., on T and σi j . The con-
jugated or dual variables, η and rεi j , depend on the same set of arguments as the
energy,

dη = c

T
dT + ᾱi j dσi j ,

d rεi j = αi j dT + Si jkl dσkl .

(2.160)

Again we employ the Maxwell relation:

ᾱi j = ∂η

∂σi j
= − ∂2g

∂σi j∂T
= − ∂2g

∂T∂σi j
= v

∂ rεi j

∂T
= vαi j , (2.161)

since v = 1/ρ is a function of Xi but not of the temperature. For a linear material
model the coefficients, c, αi j , Si jkl are all constants. For a linear model we obtain
the dual variables by integrating from the ground state {T = Tref.,σi j = 0} without
strain and entropy to the current state and obtain

η = c ln
( T

Tref.

)
+ vαi jσi j ,

rεi j = αi j (T − Tref.) + Si jklσkl .

(2.162)

The first term can be seen as thermal strains and the second term as elastic strains:

thεi j = αi j (T − Tref.) , eεi j = Si jklσkl ,
rεi j = thεi j + eεi j .

(2.163)

Then the so-called Hooke’s law with Duhamel–Neumann supplemental term39

for thermal strains can be deduced

σkl = Ckli j
(

rεi j − thεi j
)
, (2.164)

where the stiffness tensor, Ci jkl , is the inverse40 of the compliance tensor, Si jkl . We
can even use the assumption already undertaken:

39It is named after Jean-Marie Constant Duhamel and Franz Ernst Neumann.
40For the inverse of a tensor of rank four we need an identity tensor of rank four. This method can be
challenging. Instead of that, the inverse is found by using the Voigt notation. For linear materials
we can always rewrite the compliance tensor in the Voigt notation, which is a 6 × 6 matrix and its
inverse is easy to determine. From the resulting 6 × 6 matrix in the Voigt notation, the stiffness
tensor is obtained.
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εi j = rεi j + pεi j , (2.165)

in order to rewrite the material equation for stress:

σi j = Ci jkl
(
εkl − pεkl − thεkl

)
. (2.166)

The rate of stress reads

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl − thε•
kl

)
,

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl − αkl T
•
)
,

(2.167)

by using that Ci jkl , αi j , as well as Tref. are constants. From the balance of internal
energy in Eq. (2.151)3 augmented by Gibbs’s equation (2.154) we obtain

ρT η• + σi j
rε•
i j + qi,i − ρ0r = σi jε

•
i j ,

ρT η• + qi,i − ρ0r = σi j
pε•
i j .

(2.168)

Now by using the material equations for dual variables in Eq. (2.160) and in
Eq. (2.166) we obtain the field equation for temperature:

ρcT • + Tαi jσ
•
i j + qi,i − ρ0r = σi j

pε•
j i ,

ρcT • + Tαi jCi jkl
(
ε•
kl − pε•

kl − αkl T
•
) + qi,i−

−ρ0r − Ci jkl
(
εkl − pεkl − αkl(T − Tref.)

)
pε•

j i = 0 .

(2.169)

The field equation for displacement is acquired from Eq. (2.151)2 by augmenting
Eq. (2.166) as follows

ρu••
i − σ j i, j − ρ fi = 0 ,

ρu••
i − C jikl

(
εkl − pεkl − αkl(T − Tref.)

)
, j

− ρ fi = 0 .
(2.170)

Thefield equations are nonlinear and coupled.We can solve themafter having defined
pεi j , pε•

i j , and qi .
Plasticity starts with the assumption that we can acquire the rate of plastic strain

by using a dissipation function, Φ, as follows

pε•
i j = Λ• ∂Φ

∂σi j
. (2.171)
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The associated plasticity proposes to use the flow potential, f , for the dissipation
function, f ≡ Φ. Modeling kinematic hardening has been discussed in Sect. 1.6.2,
we use the same notation and skip the calculations undertaken there. The flow
potential:

f = 1

2
(σ|i j | − βi j )(σ|i j | − βi j ) − 1

3
σ2
Y , (2.172)

results in

cΛ• = Γ • , Λ• =
(
σ|i j | − βi j

)
σ•
i j

2
3cσ

2
Y

. (2.173)

With the help of Eq. (2.167) we write

Λ• =
(
σ|i j | − βi j

)
Ci jkl

(
ε•
kl − pε•

kl − thε•
kl

)
2
3cσ

2
Y

, (2.174)

and by inserting the rate of plastic strain:

pε•
kl = Λ• ∂ f

∂σkl
= Λ•

(
σ|kl| − βkl

)
, (2.175)

into the multiplier, we obtain

Λ•

(
1 +

(
σ|i j | − βi j

)
Ci jkl

(
σ|kl| − βkl

)
2
3cσ

2
Y

)
=

(
σ|i j | − βi j

)
Ci jkl(ε

•
kl − thε•

kl)

2
3cσ

2
Y

,

Λ• =
(
σ|i j | − βi j

)
Ci jkl(ε

•
kl − thε•

kl)

4
9Hσ2

Y + (
σ|i j | − βi j

)
Ci jkl

(
σ|kl| − βkl

) ,

(2.176)
where we have chosen c = 2/3H for an easier association of parameters.41 By using
the conditional parameter 〈γ〉 from Eq. (1.216) we define the plastic strain rate:

pε•
mn = 〈γ〉

(
σ|i j | − βi j

)
Ci jkl(ε

•
kl − thε•

kl)

4
9Hσ2

Y + (
σ|i j | − βi j

)
Ci jkl

(
σ|kl| − βkl

) (σ|mn| − βmn) . (2.177)

This equation gives the evolution of the plastic strain, which is accumulated by the
rate of plastic strain such that we can acquire it by integration,

pεi j =
∫

pε•
i j dt . (2.178)

41We use H for the plastic modulus instead of h as in Sect. 1.6 since we have started to use h for
the convective heat transfer coefficient in the mixed boundary conditions for temperature.

http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1
http://dx.doi.org/10.1007/978-981-10-2444-3_1
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For the heat flux we use Fourier’s law:

qi = −κT,i . (2.179)

Furthermore, we may test the validity of the evolution equation by employing the
2nd law of thermodynamics. By using Eq. (2.168)2 we reformulate the balance of
internal energy into the balance of entropy:

ρT η• + qi,i − ρr = σi j
pε•
i j ,

ρη• +
(qi
T

)
,i

− ρ
r

T
= − 1

T 2
qi T,i + 1

T
σi j

pε•
i j ,

(2.180)

with the production term being positive:

� = − 1

T 2
qi T,i + 1

T
σi j

pε•
i j ≥ 0 . (2.181)

Obviously, it is challenging to prove that the rate of plastic strain in Eq. (2.177) is
thermodynamically admissible. Therefore, we rather have to “believe in” the for-
mulation than to derive in a thermodynamically compatible way. For the moment a
thermodynamically consistent formulation of plasticity is an unresolved issue and
still heavily discussed in the literature.

We have obtained two coupled field equations for temperature and displacement
from the balance equations of internal energy in Eq. (2.169) and of momentum in
Eq. (2.170), respectively. In the initial frame the time derivatives are simply the partial
time derivatives. From the balance of momentum and energy we generate the weak
forms in the unit of energy. First we apply the usual time discretization. Secondly,
we multiply the momentum balance with δui and the energy balance with Δt δT/T
in order to rectify the unit of energy. Finally, we integrate by parts and obtain

Fu =
∫
B0

(
ρ
ui − 2u0i + u00i

Δt2
δui + σ j i δui, j − ρ fi δui

)
dV −

∫
∂B0

t̂i δui dA ,

(2.182)
as well as

FT =
∫
B0

(
ρc

T
(T − T 0) δT + Δtαi jCi jkl

(
ε•
kl − pε•

kl − thε•
kl

)
δT−

−Δtqi
(
δT

T

)
,i

− Δt
ρr

T
δT − Δt

T
σi j

pε•
i j δT + Δt

1

T 2
qi T,i δT

)
dV+

+
∫

∂B0

Δt q̂
δT

T
dA ,

(2.183)
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with
F = Fu + FT , (2.184)

wherewe implement the stress, the kinematic hardening, and the plastic strain accord-
ing to the so-called incremental plasticity,

σ•
i j = Ci jkl

(
ε•
kl − pε•

kl − thε•
kl

)
, σi j = σ0

i j + Δtσ•
i j ,

thε•
kl = αkl

T − T 0

Δt
, β•

i j = (σ0
|kl| − β0

kl)σ
•
kl

2
3σ

2
Y

(σ0
|i j | − β0

i j ) ,

pε•
mn = 〈γ〉

(
σ0

|i j | − β0
i j

)
Ci jkl(ε

•
kl − thε•

kl)

4
9Hσ2

Y + (
σ0

|i j | − β0
i j

)
Ci jkl

(
σ0

|kl| − β0
kl

) (σ0
|mn| − β0

mn) ,

βi j = β0
i j + Δtβ•

i j , pεi j = pε0i j + Δt pε•
i j ,

(2.185)

and the heat flux as well as the strain as follows

qi = −κT,i , εi j = u(i, j) , ε0i j = u0(i, j) , ε•
i j = 1

Δt
(εi j − ε0i j ) . (2.186)

Consider again a one-axial tensile testing, as in the previous section. By including
plasticity we can capture an effect known from the daily life. If a cyclic loading with
plastic deformation is utilized, the structure heats up. This phenomenon can clearly
be seen in Fig. 2.8. A part of the energy has been stored such that the temperature
decreases and increases. This part of the process is reversible and it is modeled by
the entropy, η. Simultaneously, entropy is produced by �, which is an irreversible
effect increasing the temperature further. In total, after one cycle of deformation, the
temperature is increased approximately 1K. The code is below including all realistic
material parameters for a standard steel.

Fig. 2.8 Tensile testing and
temperature rise due to the
plastic deformation
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1 ”””Computational r e a l i t y 14 , t h e rmop l a s t i c i t y ”””
2 au th o r = ”B. Emek Abal i ”
3 l i c e n s e = ”GNU GPL Vers ion 3 . 0 or l a t e r ”
4 #Th i s c od e u n d e r l i e s t h e GNU Gen e r a l P u b l i c L i c e n s e ,

→ h t t p : / /www . gnu . o r g / l i c e n s e s / gp l − 3 . 0 . en . h tm l
5
6 from f e n i c s import
7 import numpy
8 s e t l o g l e v e l (ERROR)
9 #u n i t s : mm, 1 0 0 0 kg=ton , s , MPa , mJ , K

10 Tref = 300. #i n K
11 Tamb=Tref
12 # Ma t e r i a l d a t a o f P265GH ( S t 4 5 . 8 ) f r om VDI Wae rmeat l a s , a t

→ 2 9 3 . 1 5 K
13 rho = 7.85E−9 #i n t on n e / mmˆ3
14 kappa = 57.0 #i n mJ / ( s mm K)
15 capac i ty = 430.0E6 #i n mJ / ( ton K)
16 alpha = 12.2E−6 #i n 1/K a t 3 7 3 . 1 5 K
17 EModul = 211.0E+3 #i n MPa
18 nu = 0.28
19 H = 2600. #MPa
20 h = 10 .E−3 #i n mJ / ( s mmˆ2 K)
21 sigmaY = Constant ( 250 . 0 ) #MPa
22
23 tMax = 10.0
24 Dt = 0.2
25 t = 0 .0
26
27 xMin , xMax , xElements = 0 . 0 , 100 . 0 , 20
28 yMin , yMax , yElements = −5. , +5. , 2
29 zMin , zMax , zElements = −5. , +5. , 2
30 mesh = BoxMesh ( Point (xMin , yMin , zMin ) , Point (xMax , yMax , zMax) ,

→ xElements , yElements , zElements )
31 N = FacetNormal (mesh )
32 l ength = abs (xMax−xMin)
33
34 Sca l a r = FunctionSpace (mesh , P , 1)
35 Vector = VectorFunctionSpace (mesh , P , 1)
36 Tensor = TensorFunctionSpace (mesh , P , 1)
37 Space = MixedFunctionSpace ( [ Sca lar , Vector ] )
38
39 c e l l s = Cel lFunct ion ( s i z e t , mesh )
40 f a c e t s = FacetFunction ( s i z e t , mesh )
41 dA = Measure ( ds , domain=mesh , subdomain data=f a c e t s )
42 dV = Measure ( dx , domain=mesh , subdomain data=c e l l s )
43
44 l e f t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=xMin

→ )
45 r i gh t = CompiledSubDomain ( near (x [ 0 ] , l ) && on boundary , l=

→ xMax)
46 back = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=yMin

→ )
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47 f r on t = CompiledSubDomain ( near (x [ 1 ] , l ) && on boundary , l=
→ yMax)

48 bottom = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=
→ zMin )

49 top = CompiledSubDomain ( near (x [ 2 ] , l ) && on boundary , l=zMax)
50
51 f a c e t s . s e t a l l ( 0 )
52 d i s p l = Expres s ion ( ( 0 . 5 s i n ( 2 . p i f time ) , 0 . 0 , 0 . 0 ) , f

→ =0.1 , time=0)
53 bc1 = DirichletBC ( Space . sub (1) , d i sp l , r i gh t )
54 bc2 = DirichletBC ( Space . sub (1) , Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) ) , l e f t )
55
56 bc = [ bc1 , bc2 ]
57
58 dunkn = Tria lFunct ion ( Space )
59 t e s t = TestFunction ( Space )
60 delT , delu = s p l i t ( t e s t )
61
62 unkn = Function ( Space )
63 unkn0 = Function ( Space )
64 unkn00 = Function ( Space )
65
66 unkn in i t = Expres s ion ( ( Tini , 0 , 0 , 0 ) , Tini=Tref )
67 unkn = i n t e r p o l a t e ( unkn in i t , Space )
68 unkn0 . a s s i gn (unkn)
69 unkn00 . a s s i gn ( unkn0)
70
71 T, u = s p l i t ( unkn)
72 T0 , u0 = s p l i t ( unkn0)
73 T00 , u00 = s p l i t ( unkn0)
74
75 i , j , k , l , m, n , o , p , r , s = i n d i c e s (10)
76 de l ta = Id en t i t y (3)
77 lambada = EModul nu / (1.+nu) / (1. −2. nu)
78 mu = 0.5 EModul / (1.+nu)
79 C = as t en s o r ( lambada de l ta [ i , j ] d e l t a [ k , l ]+mu de l ta [ i , k ]

→ de l ta [ j , l ]+mu de l ta [ i , l ] d e l ta [ j , k ] , ( i , j , k , l ) )
80 alp = alpha de l ta
81
82 peps0 = Function ( Tensor )
83 sigma0= Function ( Tensor )
84 dev s igma0 = as t en s o r ( sigma0 [ i , j ] −1./3 . sigma0 [ k , k ] d e l t a [ i ,

→ j ] , ( i , j ) )
85 beta0 = Function ( Tensor )
86
87 eps = sym( grad (u) )
88 eps0 = sym( grad (u0 ) )
89 Deps = ( eps−eps0 ) /Dt
90
91 teps = alp (T−Tref )
92 Dteps = alp (T−T0) /Dt
93
94 gamma = Function ( Sca l a r )
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95 Dpeps = as t en s o r (gamma ( dev sigma0−beta0 ) [ i , j ] C[ i , j , k , l ] (
→ Deps−Dteps ) [ k , l ] / ( 4 . / 9 . H sigmaY 2+( dev sigma0−beta0 )
→ [m, n ] C[m, n , o , p ] ( dev sigma0−beta0 ) [ o , p ] ) ( dev sigma0−
→ beta0 ) [ r , s ] , ( r , s ) )

96
97 Dsigma = as t en s o r (C[ i , j , k , l ] ( Deps−Dpeps−Dteps ) [ k , l ] , ( i , j ) )
98 Dbeta = as t en s o r ( gamma ( dev sigma0−beta0 ) [ k , l ] Dsigma [ k , l

→ ] / ( 2 . / 3 . sigmaY 2) ( dev sigma0−beta0 ) [ i , j ] , ( i , j ) )
99

100 sigma = sigma0 + Dt Dsigma
101 beta = beta0 + Dt Dbeta
102 peps = peps0 + Dt Dpeps
103
104 dev s igma = as t en s o r ( sigma [ i , j ] −1./3 . sigma [ k , k ] d e l t a [ i , j ] ,

→ ( i , j ) )
105 q = as t en s o r (−kappa T. dx ( i ) , ( i , ) )
106
107 f = Constant ( ( 0 . 0 , 0 . 0 , 0 . 0 ) )
108 R = Constant ( 0 . 0 )
109 qHat = h (T−Tamb)
110
111 F u = ( rho (u−2. u0+u00 ) [ i ] /Dt/Dt delu [ i ] + sigma [ j , i ] delu [ i

→ ] . dx ( j ) − rho f [ i ] delu [ i ] ) dV
112 F T = ( rho capac i ty /T (T−T0) delT+ Dt alp [ i , j ] C[ i , j , k , l ] (

→ Deps−Dpeps−Dteps ) [ k , l ] delT − Dt q [ i ] ( delT/T) . dx ( i ) −
→ Dt rho R/T delT − Dt sigma0 [ i , j ] Dpeps [ j , i ] delT/T )
→ dV + Dt qHat delT/T dA

113
114 Form = F u + F T
115 Gain = de r i v a t i v e (Form , unkn , dunkn)
116
117 import matp lo t l i b as mpl
118 mpl . use ( Agg )
119 import matp lo t l i b . pyp lot as pylab
120 pylab . rc ( t ex t , usetex=True )
121 pylab . rc ( f on t , fami ly= s e r i f , s e r i f= cm , s i z e=30 )
122 pylab . rc ( l egend , f o n t s i z e =30)
123 pylab . rc ( ( x t i ck . major , y t i ck . major ) , pad=15)
124 pylab . s ubp l o t s ad j u s t ( top =0.90)
125 pylab . s ubp l o t s ad j u s t ( bottom=0.17)
126 pylab . s ubp l o t s ad j u s t ( l e f t =0.20)
127 pylab . s ubp l o t s ad j u s t ( r i gh t =0.75)
128
129 f i g = pylab . f i g u r e (1 , f i g s i z e =(14 ,10) )
130 ax1 = f i g . add subp lot (111)
131 ax1 . g r i d (True , ax i s= x )
132 ax1 . s e t x l a b e l ( r u 1 / l 0 in \% )
133 ax1 . s e t y l a b e l ( r \ s igma {11} in MPa , c o l o r= r )
134 ax1 . t ick params ( ax i s= y , c o l o r s= r )
135 ax1 . g r i d (True , ax i s= y , c o l o r= r )
136 ax2 = ax1 . twinx ( )
137 ax2 . s e t y l a b e l ( r (T−T \mathrm{ r e f }) in K , c o l o r= b )
138 ax2 . t ick params ( ax i s= y , c o l o r s= b )
139 ax2 . g r i d (True , ax i s= y , c o l o r= b )
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140 ax2 . t i c k l a b e l f o rma t ( s t y l e= s c i , ax i s= y , s c i l i m i t s =(−2,2) )
141
142 pwd= / c a l c u l /CR14/
143 f i l e u = F i l e (pwd+ d i s p l . pvd )
144 f i l e T = F i l e (pwd+ temp . pvd )
145 s t ra in , s t r e s s , temp = [ ] , [ ] , [ ]
146
147 while t < tMax :
148 print time : , t
149 d i s p l . time = t
150 s o l v e (Form== 0 , unkn , bc , J=Gain , \
151 s o l v e r paramete r s ={” newton so lver ” : { ” l i n e a r s o l v e r ” :

→ ”mumps” , ” r e l a t i v e t o l e r a n c e ” : 1e−5} } , \
152 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

153
154 f i l e T << ( unkn . s p l i t ( ) [ 0 ] , t )
155 f i l e u << ( unkn . s p l i t ( ) [ 1 ] , t )
156
157 s igma = p ro j e c t ( sigma , Tensor , s o l v e r t yp e=”mumps” ,\
158 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

159 sigma0 . a s s i gn ( s igma )
160 beta = p ro j e c t ( beta , Tensor , s o l v e r t yp e=”mumps” ,\
161 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

162 beta0 . a s s i gn ( beta )
163 f l ow = p ro j e c t ( 1 . / 2 . ( dev sigma0−beta0 ) [ i , j ] ( dev sigma0

→ −beta0 ) [ i , j ] − 1 . / 3 . sigmaY 2 , Scalar ,
→ s o l v e r t yp e=”mumps” ,\

164 form compi ler parameters={” cpp opt imize ” : True , ”
→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

165 f l ow boo l = f l ow . v ec tor ( ) . array ( ) >= 0 .
166 d i r e c t i o n = p ro j e c t ( ( dev sigma0−beta0 ) [ i , j ] Deps [ i , j ] ,

→ Scalar , s o l v e r t yp e=”mumps” ,\
167 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

168 d i r e c t i o n bo o l =1./2 . ( numpy . s i gn ( d i r e c t i o n . v ec tor ( ) .
→ array ( ) ) +1.)

169 gamma . v ec tor ( ) [ : ] = numpy . array ( f l ow boo l d i r e c t i on boo l ,
→ dtype=int )

170
171 peps = p ro j e c t ( peps , Tensor , s o l v e r t yp e=”mumps” ,\
172 form compi ler parameters={” cpp opt imize ” : True , ”

→ r ep r e s en t a t i on ” : ” quadrature ” , ”
→ quadrature degree ” : 2} )

173 peps0 . a s s i gn ( peps )
174
175 unkn00 . a s s i gn ( unkn0)
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176 unkn0 . a s s i gn (unkn)
177
178 s t r a i n . append( unkn0 . s p l i t ( ) [ 1 ] ( xMax , 0 . , 0 . ) [ 0 ] / l ength

→ 100 . )
179 s t r e s s . append( sigma0 (xMax/ 2 . , 0 . , 0 . ) [ 0 ] )
180 temp . append( unkn0 . s p l i t ( ) [ 0 ] ( xMax/ 2 . , 0 . , 0 . )−Tref )
181 ax1 . p l o t ( s t ra in , s t r e s s , o− , c o l o r= r )
182 t i c k s = numpy. l i n s p ac e (numpy . array ( s t r a i n ) .min( ) , numpy.

→ array ( s t r a i n ) .max( ) , 4)
183 ax1 . s e t x t i c k s ( t i c k s )
184 ax1 . s e t x t i c k l a b e l s ( [ %1.2 f % i t i c k s for i t i c k s in

→ t i c k s ] )
185 ax2 . p l o t ( s t ra in , temp , d− , c o l o r= b )
186 f i g . s a v e f i g (pwd+ CompReal14 tens i l e tes t . pdf )
187
188 t += Dt

To-do

Plastic deformation generates a temperature change in the system.

• Try to change the boundary conditions to adiabatic boundaries. Guess the result
before starting the numerical calculation.

• Find out a stress/strain curve for another material and determine the plasticity
modulus or hardening parameter H in MPa. What will be the result for a lower or
higher H parameter?

• Find out the material behavior of aluminum and explain why the linear hardening
model used in this section is inadequate for modeling an aluminum sample.
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